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Abstract

We consider the impact on transmit antenna diversity on a
TDMA downlink with multiuser diversity scheduling, in-
spired by the 1XEV-DO scheme in 3G systems. Transmit
diversity is examined under the adaptive scheduling pol-
icy that achieves the stability region of the transmit queues,
and, in the case of infinite backlog, under proportional fair
scheduling. We show that, in the realistic case of non-ideal
data rate feedback information from the users to the base
station, transmit diversity might achieve a larger stability
region and is beneficial even for users with symmetric traf-
fic or infinite backlog. This findings attenuate the common
belief that “channel hardening” due to transmit diversity is
always detrimental for multiuser diversity scheduling sys-
tems.

1. Motivation

3G wireless cellular networks are expected to support
a wide variety of data services. In particular, for applica-
tions such as wireless Internet, a high data rate downlink
is needed. The downlink of a single cell system?! is mod-
eled as a fading Gaussian broadcast channel, whose capac-
ity region has been completely characterized under different
assumptions in several recent papers (e.g., [13]). In partic-
ular, it is known that, under mild fading ergodicity condi-
tions, when the base station is equipped with a single an-
tenna and has perfect Channel Sate Information (CSI), the
average throughput (long-term average sum rate) is maxi-
mized by transmitting at each instant to the user with the
largest fading coefficient (e.g., [1,5]). Intuitively, serving
the best user at each time allows using the channel at the fad-
ing peak rather than at the fading average level, thus achiev-
ing a power gain. This effect is referred to as multiuser
diversity. Motivated by this result, downlink scheduling ap-
proaches known as High-Data Rate (HDR) system [4] or as
1XEV-DO system in 3G standards [14] have been proposed.
Such systems assume that all connected users have infinite
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1Equivalently, we may think of a multi-cell system where no inter-cell
processing is allowed because of practical complexity reasons and inter-
cell interference is treated as noise.

backlog (i.e., all data to be transmitted are already present at
the base station). At each time slot, the users measure their
channel quality and send a data-rate control (DRC) signal
to the base station. This is the data rate that, given the in-
stantaneous channel quality, each user can reliably decode
if served. The base station schedules the user to be served
in the current slot as the one achieving the maximum of the
DRC scaled by an adaptive factor that takes into account
fairness.

When the base station is equipped with A/ > 1 an-
tennas, the single-cell downlink falls in the class of vector
Gaussian broadcast channels, whose capacity region with
perfect CSI has been fully characterized in [12] and ref-
erences therein. In particular, for a system with A trans-
mit antennas and K > M users, a multiplexing gain of
M can be achieved, i.e., the average throughput scales as
M log SNR for high SNR, and M users can be served at
the same time on each slot. A low-complexity alternative
usage of multiple transmit antennas for the downlink with
scheduling and TDMA consists of the opportunistic beam-
forming scheme proposed in [1], where the multiple anten-
nas are used to generate a rotating beam inducing an artifi-
cial fading that varies slowly enough to be measured and fed
back by the users but rapidly enough to make the scheduling
algorithm share the channel equally among the users avoid-
ing the bottleneck of users permanently in bad channel con-
ditions. A spatial-multiplexing version of the opportunis-
tic beamforming is proposed and analyzed in [10], where
M mutually orthogonal random beams are simultaneously
used and the best M users are selected at each time.

In parallel with the development of multiuser diversity
schemes and their multi-antenna opportunistic beamform-
ing versions, the current research and standardization trends
in wireless cellular systems have focused on Space-Time
Coding (STC). When no DRC feedback signal is available
at the transmitter, the event that the transmitted rate falls
below the instantaneous mutual information of the fading
channel is called information outage. This is the event that
dominates the decoding error probability for good codes in
high SNR conditions [15, 16]. In the most realistic scenario
where the base station is equipped with A antennas and the
mobile terminal has a single antenna, STC can achieve M-



fold transmit diversity, making block error probability de-
crease as O(SNR™™) for high SNR, that is, M times faster
than in a single-antenna system.

Scheduling and STC are contrasting in both their as-
sumptions and their goals. The former chooses the coding
rate such that the selected user is never in outage, i.e., it can
always decode its codeword with high probability. In order
to do so, it must collect reliably and without delay the DRC
signals from the users. On the contrary, the latter is geared
to systems dominated by the information outage event. The
rate is chosen a priori and no DRC feedback is required.
Since in the current 3G standardization both approaches are
left as options and might be used at the same time for down-
link data transmission, it is natural to ask whether STC and
scheduling are compatible. This issue has been investigated
in a number of recent papers [2, 3, 6, 11] essentially show-
ing that the channel hardening effect of transmit diversity is
generally harmful for scheduling.

In this paper we consider the same question under more
realistic conditions taking into account finite transmission
buffers driven by packet arrival processes, and non-ideal
DRC (e.g., due to delay in the DRC feedback loop). De-
liberately, we limit our investigation to a TDMA-based sys-
tem where one user is served at each given time, with-
out any claim of optimality (we do claim practicality since
the current system proposals indeed consider TDMA). For
a K-user system, the base station has K queues. Each
gueue is characterized by an input arrival process. Follow-
ing [7-9], we define the system stability region and study
the system performance versus the transmit diversity order
M (achieved by ideal “Gaussian” STC) under the adaptive
scheduling policy that achieves all points in the stability re-
gion. In the case of infinite backlog, we study the impact of
transmit diversity under the Proportional Fair (PF) schedul-
ing currently considered for 1XEV-DO. We find that, under
ideal DRC feedback, transmit diversity is generally detri-
mental for symmetric traffic users or infinite backlog, and
might be beneficial only for finite buffers and very unbal-
anced traffic. On the other hand we show that, as the qual-
ity of the DRC feedback decreases, transmit diversity might
provide a significantly larger stability region and may be
beneficial also for symmetric traffic or infinite backlog.

2. System Model

We consider a base station with A antennas transmit-
ting to K user terminals. The channel for user & in slot ¢ is
defined by

vi(t) = X()h (1) + 2 (2) 1)
where y (t),z;(t) € CV*" are the received and the noise
signal in slot ¢, N denotes the number of complex dimen-
sions (channel uses) per slot, X(t) € CY** denotes the
transmitted space-time codeword and hy,(¢) € C* denotes

the M -input 1-output channel response for the user k& chan-
nel in slot ¢, assumed time-invariant over each slot. The
noise is complex circularly symmetric AWGN with i.i.d.
~ Ng(0,1) components. The base station has transmit
peak power « (energy per symbol), that is, the channel input
constraint is +-tr(X ()X (¢)#) < ~ for each codeword. Due
to the noise variance normalization, - takes on the meaning
of maximum transmit SNR.

Coding and decoding is performed on a slot-by-
slot basis. We assume that N is large enough such
that good Gaussian-like code ensembles exist such that
the block error probability for transmitting at rate R
bit/channel use is given by the information outage proba-
bility Pr (log, (1 + Bk (t)y) < R) where we define 34 (t) =
Iy (1)]” and B(t) = (B1(8), ... Bre(1)).

The base station has K transmission queues, where
queue k is associated to user k. Each queue & is driven
by an ergodic stationary input process A (t), such that
Ay (t) denotes the number of bits input to the queue buffer
during slot ¢t. The input arrival rate is defined by A\, =
lime_o0 75 Do, Ax(t) bit/channel use. The number of
bits present in the queue buffer & in slot ¢ is denoted by
sk (t). At the beginning of each slot, a DRC signal a(t) =
(a1 (t),...,ak(t)) is revealed to the transmitter. A TDMA
scheduling policy is defined by the sequence {p(t), R(¢)},
where p(t) = (p1(¢),...,pr(t)) > 0such that p(t) € Px
is a sequence of time-sharing parameters 2 and R(t) =
(Ri(t),...,Rk(t)) € Rf is a sequence of coding rates.
In each slot ¢, the scheduling policy T partitions the slot
into disjoint sub-slots of length Np;(¢),..., Npk(t) and
let user k£ transmit on the k-th sub-slot with rate Rj(¢)
bit/channel use.

Under a given scheduling policy T, the buffers evolve
according to the stochastic difference equation

sp(t+1)
max{se(t) — Npo(t)Ri (1), 0} + Ax(0),
itlogy (14 Bu(t)) > Belt)
sk(t) + Ag(t),
else

In writing (2), we have assumed that a simple ARQ retrans-
mission protocol is used at the physical layer such that, if a
decoding error occurs (information outage event), it is de-
tected with probability 1 and the unsuccessfully decoded
data is left in the transmission buffer and will be resched-
uled for transmission in a later time.

We are interested in the causal scheduling policies T¢,
for which {p(¢), R(¢)} may depend on all DRC signal se-
quence and the buffer size history up to time ¢. Among

2We denote by Pr the K-dimensional probability simplex and by
V(Px) the set of its vertices. Therefore p € P i means that p is a non-
negative vector summing to 1, and e € V(P x ) means that e has a single
non-zero component equal to 1. We denote by e, the vector in V(P )
with the k-th component equal to 1.



the class T¢, we distinguish the nested subclasses of mem-
oryless policies 7™, for which {p(¢),R(¢)} is a (possi-
bly random) function of «(t),s(t), of stationary policies
T8, that are memoryless policies such that the mapping
{a(t),s(t)} — {p(t),R(t)} does not depend on ¢, and
of 0-1 stationary policies 749!, that are stationary policies
such that p(t) € V(Pk), i.e., the whole slot is assigned to
a single user at each time t.

The average service rate of user k (in bit/channel use),
under a given scheduling policy, is given by

t

3)
Notice that this does not coincide in general with the
throughput (average spectral efficiency) of user &, since its
buffer might be empty. We follow [7] and define the buffer
overflow function

t—o0

t
g(S) =Tmsup+ S 1se(r) > 5} (@)
=1

We say that the system is stable if, for all &,
lims_, o0 gx(S) = 0. We define the system stability re-
gion Q as the set of all arrival rates K -tuples A € R% such
that there exists a causal policy for which the system is sta-
ble. Clearly, for the system defined above the main goal
of a scheduling policy is to stabilize the system whenever
A € Q. In the case of infinite backlog (no transmission
buffers), the notion of stability region is meaningless. In
this case, the main goal of a scheduling policy is to maxi-
mize the throughput subject to some fairness criterion. In
this work we shall consider the PF scheduling policy [3],
suitably modified in order to handle the case of non-ideal
DRC feedback.

3. Main Results

We assume that {«(t), 3(t)} are jointly stationary and
ergodic, with joint first-order pdf faﬂ(a, b). We assume
also the Markov chain condition {a(7) : 7 = 1,...,t —
1} = a(t) — B(t). Under these assumptions we have
Proposition 1. For any time-sharing sequence p(t) that
depends causally on the DRC signal (), the rate allocation

policy maximizing the service rate (3) is given by

Rj(a) = ;1;[()] R Pr(logy(1+ Bry) > Rlaa=a) (5)

O
For later use, we define the conditional outage rate of
user k given a = a as

Rout.k(a) = Rj(a) Pr(logy(1+ Bry) > Ri(a)la = a)
(6)

p, =liminf 7 > pe() () Hlog, (14+64(7)) > Fu(7)

The function R* is determined uniquely by the joint first-
order pdf of {«(¢), Bk (¢)} which is independent of ¢ be-
cause of stationarity. In the case ay(t) is a one-to-one
function of 8y (t) (perfect CSl), no outage event occurs and
Proposition 1 yields

Rj(a) = Rout k(a) = logy (1 + va) (7

i.e., the usual AWGN capacity with channel gain a. Our
second result gives an explicit expression for the system sta-
bility region.

Proposition 2. If {«a(t), B(¢t)} and { A1 (2),..., Ak (t)}
are jointly stationary ergodic Markov processes, the system
stability region is given by

0= U

peg-sol

{)\ e RY ¢ A < Elpy(@)Rouei(e)],

k=1,.... K } 6)
It follows immediately from the convexity of 2 that its
boundary surface, denoted by 012, is given by
Proposition 3. 052 is the convex closure of the points A
solution of

K
max GkAk (9)
Ae ;
for all non-negative weight vectors 8 € Pg. O

The boundary surface can be obtained by maximiz-
ing over p € T, for all @ € Pk, the functional
S, 0k E[pr () Rout x (@)]. The solution is readily given
by

K
= 0. Roy 10
p(a) = arg Inax ;% k Rout,k(a) (10)

which yields the solution p(a) = e; where k =
arg maxy, 0 Rout,x(a). We notice that the solution of (10)
is a deterministic 0-1 policy. However, 02 might require
time-sharing between such deterministic policies, i.e., it is
generally achieved by random 0-1 policies in 7501, as it is
expected from Proposition 2.

In practice, it is important to have a single adaptive pol-
icy that learns implicitly the arrival rates and guarantees sta-
bility whenever A € €. Following the approach of [7] (see
also [8,9]), based on Liapunov stability, we can show:

Proposition 4 (Max-Stability scheduling). Under the
joint stationary and ergodic Markov assumption of the chan-
nel state, DRC signal and arrival processes, the adaptive pol-
icy given by

K

p(t) =arg max > aqufss(t) Rous(a(®) (1)
X k=1

for any positive weight vector 8 € P achieves stability for
all A € Q. Explicitly, (11) is given by p(t) = e; where
k= arg maxy O5sk(t)Rout,k(a(t)). O



The weighting vector @ introduce priorities among the
users and can be used to induce lower average delay for
certain users while guaranteeing the system stability.

For the case of infinite backlog, we modify the PF
scheduling policy in order to take into account the fact that
DRC is not ideal, so that the requested rate might not be
decodable. The modified PF policy is given as follows: for
givenv > 0, the time-averaged throughput of user & is given
by the recursive equation

Ty(t+1)

(1= 0)Te(t) + vpp! (8 Rf (et >>

_ iflog, (1 + Bk(t)'Y)

(1 =v)Tk(t),
else

where Rj(a) is given in Proposition 1 and p*/(t) = e;
with & = arg max TG0 Notice that Rou i (cx(1))
rather than R} (o(t)) is used to assign the user. This corre-
sponds to maximizing the expected instantaneous through-
put normalized by the long-term average throughput.

4. Examples

We evaluate the impact of transmit diversity on the
TDMA downlink with scheduling under the max-stability
scheduling (for finite backlog and given packet arrival pro-
cesses) and under the modified PF scheduling (for infinite
backlog).

Setting. We assume mutually independent arrival pro-
cesses such that Ag(t) = Zj]‘i’“l(t) bi,;(t), where M;(t)
is an i.i.d. Poisson distributed sequence that counts the
number of packets arrived to the k-th buffer during slot ¢
and by ;(t) are i.i.d. exponentially distributed random vari-
ables expressing the number of bits per packet. We take
E[by ;(t)] = N, so that A, = E[M; (2)].

The fading hy(¢) is a stationary ergodic Gaussian com-
plex circularly symmetric vector process with i.i.d. com-
ponents, such that hy(t) ~ N(C(O, +1). We assume that
the DRC feedback signal «y(¢) is obtained from an esti-
mation gy (t) of hy(¢), jointly Gaussian with hy(¢). More-
over, we assume that the pairs {hy(t), gx(¢)} are mutually
i.i.d. for different users. In particular, let {h;(¢)} evolve
in time according to Jake’s autocorrelation model, where
E[hk (t)hk (t—E)H] = TMZI, withr, = JO(QWfDTé) and fD
and T denoting the one-sided Doppler bandwidth (in Hz)
and the slot duration (in seconds), respectively. We assume
that the receivers can compute the DRC signal from exact
past measurements of the channel {hy(t — d), ..., hy(t —
d—n+ 1)}, where d is the delay of the DRC feedback loop
and n is the size of the observation window.

We define g;. as the MMSE estimate of hy, from hy, (¢ —
d),...,hy(t —d—n+1). Itisimmediate to show that the

covariance of [h!, gZ17 is given by

1 I (1—0o)I
M| Q-0)I (1-03)I

e

where o2 is the MMSE estimation error variance. It follows
that Sy, given gy, is non-central chi-squared distributed with
2M degrees of freedom, and its distribution depends only
on o2 (assumed to be known) and on |g|?. Hence, the DRC
signal to be a (t) = |gk(t)|*. Notice that the Markov chain
assumption {a(7) : 7 = 1,...,t = 1} = a(t) = B(t)
holds asymptotically for large n.

In our experiments we have considered mobile speeds
25km/h and 60km/h. By letting 7' = 1.67 msec [4], the
prediction order n = 8, the feedback delay d = 2 slot, we
obtain o2 = 0.05 and 0.40, respectively.

Sum rate for infinite backlog. The maximum sum-rate
is given by explicitly by

[, Roc(on)|  09)
M 2
1

Rout(K: M) =

E
- /0 Ryt (2)K - <(1
e

e
k
()
— M=z 1—02
1—e 1-0Z Ee— dzx

M —iioT M1
(M —1)!

K-1

Fig. 1 shows the maximum sum-rate vs. a number of
users for estimation error 02 = 0 (ideal DRC) and 02 =
0.05,0.40 (non-ideal DRC). We observe that there exists a
threshold K, of the number of users above which trans-
mit diversity becomes harmful. This depends heavily on the
DRC quality. We have K;; = 2 for ideal DRC, and K;; =
5, K, > 20 for non-ideal DRC with o2 = 0.05, 0.40, re-
spectively.

Fig. 2 shows the sum-rate as a function of the number of
users under the modified PF scheduling with v = 0.005. By
introducing the fairness to balance the average throughput
between users, multiuser diversity cannot be fully exploited.
As a result, transmit diversity becomes slightly more use-
ful or at least less harmful than with best-user scheduling.
However, for practical values of v, the difference between
best-user and PF scheduling is almost negligible.

Two-user stability region. Fig. 3 shows two-user sta-
bility region for 2 = 0.0,0.40. For non-ideal DRC,
transmit diversity enlarges the whole stability region in-
cluding the maximal sum-rate point since R,,:(2,1) <
R,u:(2, M > 1). On the other hand, for perfect CSI trans-
mit diversity improves only the vertices of the stability re-
gion. This implies that transmit diversity is beneficial espe-
cially in asymmetric traffic conditions.

Average buffer size. We evaluated the impact of trans-
mit diversity under max-stability scheduling in terms of the




average buffer size under both symmetric and asymmetric
arrival processes. Here, the average buffer size denotes the
time- and user-averaged buffer size expressed in bit. We
consider a K = 20 user system with channel estimation er-
ror o2 = 0.40 (60km/h). Fig. 4 shows the average buffer
size as a function of the sum arrival rate under symmetric
arrivals, i.e., A\; = --- = Xyg. The buffers overflow when
the sum arrival rate achieves the boundary of the stability
region, which corresponds to the max sum-rate for the sym-
metric arrivals. Transmit diversity reduces the buffer size
over the whole arrival rate range.

In the case of asymmetric arrivals, we partitioned the
20 users into four different classes with 5 users each, with
arrival rates such that Ao = 81, A3 = 32\1, \s = 64,
Fig. 5 shows the average buffer size as a function of the
sum arrival rate. We observe that the buffers diverge earlier
than in the symmetric arrival case and that the gain due to
transmit diversity is more significant for asymmetric arrivals
especially close to at the boundary point.
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Figure 1: Max. sum-rate vs. number of users (best-user
selection).
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