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Abstract — This paper presents a very accurate

and simple to compute approximation to the perfor-

mance of bit-interleaved coded modulation (BICM)

systems. The proposed method is based on approxi-

mating the binary-input continuous-output equivalent

BICM channel by a binary-input AWGN (BI-AWGN)

channel with scaled SNR. The scaling factor can be

easily computed numerically and depends on the ac-

tual channel SNR and on the modulation signal set

and binary labeling. The key is that very good ap-

proximation results when the Bhattacharyya param-

eter is used to estimate the variance of the under-

lying Gaussian channel. Under such approximation,

we can use all bounding techniques known for binary

codes in Gaussian channels. In particular, we use the

union and the tangential-sphere bounds and we ap-

ply such results to both convolutional and turbo-like

codes. The proposed method represents a simple yet

powerful tool for estimating the error probability of

finite-length turbo-like codes with BICM.

I. Introduction and outline of the work

Bit-interleaved coded modulation (BICM) was introduced in
[1] and further generalized and elaborated in [2] as a means
of coding for spectrally efficient modulations. In essence, it
states that nearly optimal performance can be achieved by
concatenating a powerful binary code with a non-binary mod-
ulator, by the simple addition of a bit-interleaver between
these two components. An additional advantage offered by
BICM is its inherent flexibility, as a single mother code may
be used for several modulations, with no additional adapta-
tions. This is an appealing feature for future communication
systems where a large set of spectral efficiencies is needed.

The original works on BICM [1, 2], consider a decoder that
for every symbol produces soft statistics for the bits of its
binary label, and feeds these values to a ML decoder of the
mother code, as if they were outputs of a virtual binary-input
continuous-output channel. We shall refer to this decoder as
BICM-ML decoder and the virtual channel as the equivalent
BICM channel.

1The work by A. Guillén i Fàbregas and G. Caire has been sup-
ported by the ANTIPODE project of the French Telecommunica-
tions Research Council RNRT, and by Institut Eurecom’s indus-
trial partners: Bouygues Telecom, Fondation d’enterprise Groupe
Cegetel, Fondation Hasler, France Telecom, Hitachi, STMicroelec-
tronics, Swisscom, Texas Instruments and Thales.

Several works have also considered iterative decoding of
convolutionally encoded BICM with optimized mappings,
showing remarkable performance increase with respect to
Gray mapping (see e.g. [3, 4]). Simple iterative decoding
analysis of such system has been provided in [3] based on
an approximation of density evolution techniques [5] for infi-
nite blocklength. However, no such satisfactory results have
been observed when using capacity approaching codes such as
turbo-like or LDPC codes, where iterative decoding analysis
is very complicated (see [6] for recent results on the subject).
Therefore it is common practice to couple turbo-like or LDPC
codes and BICM with Gray mapping, since it offers the best
performance-complexity tradeoff.

Error probability bounds of finite-length BICM under
BICM-ML decoding have been derived in [2]. The metric
model assumed by the BICM-ML decoder is nearly optimal for
Gray mapping and assumes no demapping iterations. A sim-
ple union bound based on a bitwise Bhattacharyya factor was
found to be quite loose. Several refined techniques, also de-
rived in [2], provided more accurate results, but are much more
complex to compute. In this paper, we provide a very sim-
ple method that allows for the computation of very accurate
approximations on the error probability of BICM with BICM-
ML decoding, which is mainly based on a Gaussian approx-
imation (GA) of the binary-input BICM equivalent channel.
We verify the validity of the approximation and we apply the
results to compute tight union and tangential-sphere bounds
for both convolutional and turbo-like codes. We also illus-
trate how the proposed approximation can be used to compute
BICM-ML thresholds. We show that the proposed method is
a simple and powerful tool, since it yields very accurate error
probability estimates with little computational effort.

II. System model

We consider a classical additive white Gaussian noise (AWGN)
channel, for which the received signal at time k, yk ∈ C is given
by,

yk =
√

ρxk + zk , k = 1, . . . , L (1)

where xk ∈ C is the transmitted signal at time k with L
the codeword length, ρ = Es

N0
is the the signal-to-noise ratio

(SNR) and zk ∈ C is the complex noise sample at time k
i.i.d. ∼ NC(0, 1). We denote by X ∈ C the complex signal
constellation (i.e. PSK, QAM). Without loss of generality we
study unit energy constellations, i.e., E[|x|2] = 1.

The codewords x = (x1, . . . , xL) ∈ XL are BICM code-
words obtained by bit-interleaving the codewords c of the
binary code C ∈ F

N
2 of rate r = K/N , and mapping with



the mapping rule µ, that maps binary labels of length M =
log2 |X | over to the points of X [1, 2]. The resulting BICM
codeword length is L modulation symbols, with L = N/M ,
and the spectral efficiency of such system is R = rM bit/s/Hz.

Due to the presence of the bit-interleaver, ML decoding of
BICM is only possible by exhaustive search. Several subop-
timal strategies have been used, all derived from the belief-
propagation iterative algorithm [7], for which, the bit metrics
of a given bit b being in the m-th label position of a given
symbol are given by,

p(y|b,m) ∝
X

z∈Xm

b

p(y|z)P (z) (2)

where Xm
b is the set of all signal constellation symbols with

bit b in the label position m, p(y|z) = 1
π

exp(−|y − √
ρz|2) is

the channel transition probability density function (pdf), and
P (z) denotes the a priori probability of the symbol z. When
iterative demapping is performed, P (z) are given by the de-
coder of C. In this paper, we restrict our attention to the
case of equally likely symbols where no demapping iterations
are performed, i.e. P (z) = 1

|X| . The suboptimal BICM-ML
decoder is known to perform near optimal for signal constel-
lations with Gray mapping [2, 3]. We will refer to the channel
between a given binary codeword c ∈ C and its correspond-
ing bit-metrics, as the equivalent binary-input BICM channel.
In particular, for a coded binary symbol mapped to the m-th
label position of the k-th modulation symbol, the bit-wise pos-
terior log-probability likelihood ratio (LLR) is given by

Lk,m = log

X

x∈Xm
0

exp
`

−|yk −√
ρx|2

´

X

x∈Xm
1

exp
`

−|yk −√
ρx|2

´

. (3)

We also report the capacity with BICM under suboptimal
BICM-ML decoding, which is given by [2],

C = M − 1
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, (4)

which is known to be maximized for Gray or quasi-Gray binary
labeling rules. For the sake of future reference, we show in
Figure 1 the capacity with 16-QAM inputs and the BICM
capacity with 16-QAM and Gray mapping.

III. The Bhattacharyya Union Bound

The Bhattacharyya Union Bound for BICM was first proposed
in [2] as a simple approach for upper bounding the error prob-
ability of BICM under BICM-ML, i.e., ML decoding of C using
the bit-metrics (2) with no demapper iterations. For the frame
error probability it is given by,

Pe ≤
X

d

AdB(ρ)d (5)

where Ad = |Sd| is the weight enumeration function (WEF)
of C and accounts for the number of pairwise error events of
C at Hamming distance d, with Sd = {c ∈ C : wH(c) = d}
denoting the set of codewords with Hamming weight d, and
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Fig. 1: Capacity for 16-QAM inputs and BICM capacity with

Gray mapping.

B(ρ) is the Bhattacharyya factor which is given by,

B(ρ)= Ey,m,b
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where p(y|b,m) are given in (2), the expectation is over the
joint distribution of the received signal y, the labeling posi-
tion m and the bit b as value of the m-th label position and
b̄ denotes the binary complement. Notice that B(ρ) depends
actually on the signal constellation and the binary mapping.
Also note that this expectation can be easily evaluated us-
ing the Gauss-Hermite quadrature rules which are tabulated
in [8], since n ∼ NC(0, 1). The results in [2] show that (5)
can be very loose, and therefore, not very useful as analyti-
cal tool to describe the error probability of BICM. Reference
[2] elaborates more refined bounds on the performance of the
BICM-ML decoder, which are, however, much harder to com-
pute.

IV. The Gaussian Approximation

In this section we describe how the Gaussian approximation
can be used to describe the binary-input equivalent channel of
BICM. Notice that the Gaussian approximation of the binary-
input BICM channel is commonly employed in convergence
analysis of iterative decoding based in density evolution tech-
niques [3, 5] for infinite blocklength. Consider for a moment
that the binary code C mapped over a BPSK signal constella-
tion (i.e., X = {−1, +1}) is transmitted across a binary-input
AWGN channel with SNR γ. Then, the standard union and
Bhattacharyya bounds can be written as,

Pe ≤
X

d

AdQ
“

p

2dγ
”

≤
X

d

AdB2(γ)d (7)

where

Q(x) =
1√
2π

Z ∞

x

e−
t
2

2 dt



is the Gaussian tail function, and the Bhattacharyya factor
for binary inputs B2(γ) is given by [9],

B2(γ) = Ey

"
s

p(y| − 1)

p(y| + 1)

#

= e−γ . (8)

It is also well-known that for such binary-input AWGN
channel (BI-AWGN), the log-likelihood ratio (LLR) defined
as

L = log
p(y| − 1)

p(y|+ 1)
(9)

is ∼ N (4γ, 8γ).
Then, by comparing (6) with (8), we can approximate the

equivalent binary input BICM channel as a BI-AWGN with
SNR γ. Therefore, we can write,

B(ρ) = e−γ (10)

from where we obtain that the signal-to-noise ratio of the
equivalent binary-input BICM channel is given by,

γ = ρα, (11)

where

α = −1

ρ
log B(ρ) (12)

is the scaling factor with respect to the nominal SNR of the
channel ρ.

It is not difficult to show that for ρ → ∞, by simply taking
a single dominant term in the numerator and denominator of
the term under

√
. in (6) we have,

α ≈ −1

ρ
log

0

@

1

M2M

M
X

m=1

1
X

b=0

X

x∈Xm

b

exp

„

−1

4
ρd2(x, x′)

«

1

A

(13)
where for each x ∈ Xm

b , the symbol x′ is the point at minimum
squared Euclidean distance d2(x, x′) from x in the complement
subset Xm

b̄ . By letting ρ → ∞ and using Varadhan integral
lemma, we keep only the dominant term in the above sum and
we get

lim
ρ→∞

α =
d2
min

4
=

„

dmin

2

«2

(14)

where d2
min is the minimum distance of the constellation. No-

tice that this asymptotic value does not depend on the binary
labeling rule. Also note that the term dmin

2
represents the

distance from one constellation point to the decision thresh-
old corresponding to its nearest neighbor. Figure 2 shows
the SNR scaling α for BICM with 16-QAM with Gray and
Set-Partitioning binary labelings as a function of ρ. As pre-
dicted by the analysis above, both mappings approach the

asymptotic value α =
d2

min

4
= 0.1. Notice however that Gray

mapping shows a smaller scaling thus implying that the equiv-
alent BICM channel is less noisy. This conclusion was already
observed directly from the upper bounds with BICM-ML de-
coding in [2].

We suggest to replace the BICM equivalent channel by a
BI-AWGN with scaled SNR γ = αρ. Therefore, any suitable
bounding technique for binary codes over the BI-AWGN chan-
nel can be applied verbatim on the binary code underlying the
BICM scheme. The resulting error probability bound will only
depend on the SNR of the actual channel ρ, on the scaling fac-
tor α,which incorporates the effects of the signal constellation
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Fig. 2: Signal-to-noise ratio scaling of the equivalent BI-AWGN

channel for BICM with 16-QAM and Gray and Set-Partitioning

mapping.

X and the binary labeling µ, and the weight distribution of
the underlying binary code.

In order to verify the validity of the proposed Gaussian
approximation for the computation of error probabilities, in
the following we report several numerical examples. We plot
in Figures 3, 4 and 5 the simulated pdfs of the log-likelihood
ratio (3) given that a 0 was transmitted1, denoted by LLR0,
for BICM with 16-QAM and Gray mapping at ρ = 10dB and
ρ = 20dB. We also plot the corresponding Gaussian approxi-
mation of the equivalent BI-AWGN channel, i.e., a Gaussian
distribution N (4γ, 8γ). In the case of ρ = 10 dB, γ = 1.07dB
while when ρ = 20 dB, γ = 10.16dB. We observe that in both
cases, the error probability behavior, i.e., Pr(LLR0 < 0) is
approximately the same for the BICM as for the correspond-
ing Gaussian case, since tails of both distributions are almost
identical.

V. Approximations on BICM-ML Error

Probability

From the results in the previous section, we here recall some
BICM-ML decoding error probability upper bounds for BICM
based on the Gaussian approximation of the binary-input
BICM equivalent channel. Consider the equivalent binary-
input BICM AWGN channel with signal-to-noise ratio γ de-
scribed in the previous section. Then, the union bound on the
frame error probability is given by,

Pe /
X

d

AdQ
“

p

2dρα
”

. (15)

Notice that in order to compute the bit error probability, we
should replace Ad by

Bd =
X

i

i

K
Ai,d,

where Ai,d is the input-output WEF (IOWEF) of C [9].

1Notice that the LLR given that a 1 was transmitted is com-
pletely symmetric, since the binary-input BICM channel is output
symmetric (BIOS) according to the assumptions made in [2].
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Union bound-based techniques are known not to pro-
vide good estimates of the error probability of capacity-
approaching codes over AWGN channels. On the contrary,
improved bounding techniques such as the tangential-sphere
bound (TSB) [10, 11] have been shown to provide very accu-
rate results. In our case, the tangential-sphere bound is given
by,

Pe /

Z +∞

−∞

dz1√
2πσ2

e−z2

1
/2σ2

(

1 − Γ̄

„

N − 1

2
,

rz1

2σ2

«

+

+
X

d: δ/2<αδ

Ad Γ̄

 

N − 2

2
,
r2

z1
− βδ(z1)

2

2σ2

!

.

.

»

Q

„

βδ(z1)

σ

«

− Q

„

rz1

σ

«–

)

(16)

where δ = 2
√

d is the Euclidean distance corresponding to a
pairwise error event at Hamming distance d with unit energy,
R2 = N is the squared sphere radius,

σ2 = (2ρα)−1 (17)

is the variance Gaussian noise corresponding to the equivalent
binary-input BICM channel,

Γ̄(a, x) =
1

Γ(a)

Z x

0

ta−1e−tdt

is the normalized incomplete gamma function and

Γ(x) =

Z +∞

0

tx−1e−tdt

is the gamma function,

rz1
= r
`

1 − z1

R

´

,

βδ(z1) =
rz1

r

1 − δ2

4R2

δ

2r
,

αδ = r

r

1 − δ2

4R2

and r, the cone radius, is the solution of

X

d: δ/2<αδ

Ad

Z θk

0

sinN−3 φdφ =

√
πΓ
`

N−2
2

´

Γ
`

N−1
2

´ (18)

with

θk = cos−1

0

B

B

@

δ

2r

1
r

1 − δ2

4R2

1

C

C

A

. (19)

Again, notice that the integral in (16) can be efficiently com-
puted using the Gauss-Hermite quadratures.

In Figure 6 we illustrate the BICM-ML error probability
approximations presented above for the 64 states rate 1/2
convolutional code with 16-QAM with Gray mapping, with
a frame of K = 128 information bits. The overall spectral
efficiency is R = 2 bit/s/Hz. We have used in all bounds
the truncated bit-error distance spectrum of the code, i.e.,
we have considered all error events for which d ≤ 256. We
show the bounds for the bit-error probability and we compare
them with the bit error rate simulation. We observe that the



Bhattacharyya union bound is quite loose [2], while the union
bound with the Gaussian approximation denoted by UB-GA is
much tighter. Moreover, as expected, the TSB with the Gaus-
sian approximation, denoted by TSB-GA, is the tightest and
offers a better estimate in the low-SNR regime. This suggests
that there is no loss in tightness if we use the Bhattacharyya
bound, provided that we use it as a means of estimating the
variance of an underlying Gaussian channel, and then use the
standard bounding functions to estimate the error probability
of the channel.
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Fig. 6: BER ML BICM Bounds for the 64 states convolutional

code of rate 1/2 with 16-QAM and Gray mapping.

Figures 7 and 8 illustrate the same BICM-ML bit er-
ror probability approximations and simulation for a repeat-
accumulate (RA) code [12] of rate 1/4 with K = 512 and
K = 1024 information bits respectively with 16-QAM with
Gray mapping. The overall spectral efficiency is R = 1
bit/s/Hz. Notice that for such code ensembles, the weight
enumerator can be computed explicitly [12, 13]. For the sake
of comparison, in Figure 7 we plot also the corresponding (true
ML) bounds and simulation for the BPSK case. We observe
the same behavior of the binary case, i.e., the TSB-GA yields
a good estimate of the waterfall region while the UB-GA and
the Bhattacharyya are only valid for estimating the error floor.
Similar comments apply to Figure 9, where we show the BER
performance for the quasi-repeat and accumulate (QRA) code
ensemble2 with K = 1024 and 16-QAM with Gray mapping.
The capacity at R = 1 bit/s/Hz is also shown. This con-
stitutes a simple and yet accurate finite length analysis for
turbo-like codes with BICM, since convergence analysis of it-
erative decoding can be very complicated task [6].

VI. BICM-ML Thresholds for Turbo-coded

BICM

In [14], the author proposed a tight upper bound on the ML
decoding signal-to-noise ratio threshold γth for binary codes.

2We denote the quasi-repeat and accumulate (QRA) ensemble
as the serially concatenated convolutional code ensemble of rate r =
1/q that has as outer code generators (in octal form) (1, . . . , 1

| {z }

q−1

, 3)8

and inner accumulator.
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For signal-to-noise ratios γ > γth the exponent of the simple
bound of Divsalar is positive, and therefore, for large block-
length Pe → 0 [14]. Following the footsteps of the previous
sections, we can easily extend this result to the binary input
BICM channel through the Gaussian approximation, which
yields that,

˛

˛

˛

˛

Eb

N0

˛

˛

˛

˛

th

≤ 1

αR
max

0≤ω≤1

»

(1 − e−2a(ω))(1 − ω)

2ω

–

(20)

where ω = d/N is the normalized output Hamming weight,
and

a(ω) = lim
N→∞

1

N
log Aω

is the asymptotic growth rate of the normalized weight enu-
merator Aω of C [13]. For the binary RA and QRA code
ensembles, table I in [13] reports the upper bounds on the ML
˛

˛

˛

Eb

N0

˛

˛

˛

th
thresholds for BPSK modulation. As remarked in [13]

the QRA ensemble significantly outperforms the RA ensemble
as far as ML thresholds are concerned.

Based on the results obtained in the previous sections, we
can easily establish the thresholds for BICM-ML decoding of
turbo-coded BICM using the Gaussian approximation. For
example, by performing simple computations, when we use
BICM with 16-QAM with Gray mapping with a RA code of
rate r = 1/4, as done in Figures 7 and 8, the BICM-ML with

the Gaussian approximation threshold is
˛

˛

˛

Eb

N0

˛

˛

˛

th
= 1.2648 dB,

while the BICM capacity with BICM-ML decoding (4) for 16-
QAM with Gray mapping for R = 1 bit/s/Hz is at 0.6050
dB (see Figure 1). For the sake of comparison, we show the
BICM capacity limit and the simple threshold in Figures 8
and 9. Table VI summarizes the BICM-ML decoding simple
bound thresholds (20) using the Gaussian approximation for
the RA and QRA ensembles with 16-QAM with Gray mapping
with corresponding spectral efficiencies of R = 1, 2 bit/s/Hz.

Rate R Capacity (4) RA QRA
1 bit/s/Hz 0.6050 dB 1.2648 dB 0.8820 dB
2 bit/s/Hz 2.2671 dB 6.1512 dB 3.1409 dB

Tab. 1: Upper bounds on the BICM-ML decoding
˛
˛
˛

Eb

N0

˛
˛
˛
th

thresholds (20) using the Gaussian approximation for 16-QAM

with Gray mapping compared to the BICM capacity limit (4).

Reference [15] provides some ML thresholds based on the
union bound. For example, for the RA code ensemble of rate
r = 1/4 with 16-QAM modulation with Gray mapping, the
˛

˛

˛

Eb

N0

˛

˛

˛

th
= 5.91 dB. As we can observe, the proposed thresholds

are much tighter than those proposed in [15], due to the im-
proved threshold based on the simple bound of [14] and to the
accuracy of the Gaussian approximation of the binary-input
BICM channel.

VII. Conclusions

We have presented a very accurate and simple to compute ap-

proximation to the error probability of BICM under BICM-

ML decoding using the Gaussian approximation of the binary-

input BICM equivalent channel. We have verified the va-

lidity of the approximation to compute error probabilities

and we have applied it to compute simple and accurate esti-

mates of the error probability with BICM based on union and

tangential-sphere bounds for both convolutional and turbo-

like codes. We have also found accurate estimates of the

BICM-ML decoding threshold. The key result is that very

good approximation is given when the Bhattacharyya bound

is used to estimate the variance of the underlying binary-input

BICM equivalent channel. The proposed method constitutes

a simple and very powerful tool for finite-length ML analysis

of capacity approaching codes with BICM.
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