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ABSTRACT

This paper studies the effect of signal constellation expansion on the
achievable diversity of space-time codes in quasistatic multiple an-
tenna channels. Signal constellation expansion can be obtained ei-
ther by increasing the size of the constellation in the complex plane
or by using multidimensional linear mappings. By means of two
simple space-time code constructions, we provide a comparison of
the two options with message passing decoding. We show that mul-
tidimensional expansion that inherently achieves full diversity, can
be advantageous over complex plane expansion due to its intrinsic
design flexibility.

1. INTRODUCTION AND SYSTEM MODEL

Multple antenna transmission has emerged as a key technology to
achieve large spectral and power efficiency in wireless communica-
tions. In this work, we consider communication in a multiple an-
tenna environment with NT transmit and NR receive antennas in
quasistatic frequency flat fading. The complex baseband received
signal matrix Y ∈ C

NR×L
is given by,

Y =
√

ρHX + Z, (1)

where L is the blocklength, X = [x1 . . .xNT
]T ∈ C

NT ×L
is the

transmitted signal matrix, H = [h1 . . .hNT
] ∈ C

NR×NT , is the
fading channel matrix which stays constant during the whole trans-
mission of X (quasistatic fading), Z ∈ C

NR×L
is a matrix of noise

samples i.i.d. ∼ N
C

(0, 1), and ρ is the average signal to noise ratio
(SNR) per transmit antenna. The elements of H are assumed to be
i.i.d. circularly symmetric Gaussian random variables ∼ N

C
(0, 1)

(frequency flat Rayleigh fading). The channel H is assumed to be
perfectly known at the receiver and not known at the transmitter.

The multiple-input multiple-output (MIMO) channel defined by
(1) has zero capacity. Consider an ensemble of space-time codes
(STC) generated according to the input distribution PX . We denote
the mutual information per channel use (for a fixed H) by IH(PX).
It can be shown that the minimum achievable error probability for
the ensemble in the limit for large block length is given by the infor-
mation outage probability defined as Pout(R) = Pr(IH(PX) ≤ R)
where R is the transmission rate in bits per channel use. When
PX = N

C
(0, ρ) (Gaussian inputs), IH(PX) = log det(I +

ρHHH). A space-time code S ⊆ C
NT ×L

is a coding scheme that
exploits both temporal and space dimensions in order to achieve re-
liable communication. The goodness of a STC scheme is usually
measured by its ability to approach the outage probability limit.

Conventional code design for quasistatic MIMO channels is
based on the ML decoding union bound error probability [1]. The
average (over the channel states) pairwise error probability, i.e., the
probability of deciding in favor of X′ when X was transmitted as-
suming that there are no other codewords, is given by,

This work has been supported by the ANTIPODE project of the French Telecom-
munications Research Council RNRT, and by Institut Eurecom’s industrial partners:
Bouygues Telecom, Fondation d’enterprise Groupe Cegetel, Fondation Hasler, France
Telecom, Hitachi, STMicroelectronics, Swisscom, Texas Instruments and Thales.

P (X′ → X) ≤ Gcρ
−drNR (2)

where Gc is the coding gain and drNR denotes the diversity gain,
where

dr = min
X,X′∈S

rank(X− X
′) (3)

is the rank diversity of the space-time code S ⊆ C
NT ×L

, defined
as the set of all possible codewords. Conventional space-time code
design searches for full-diversity codes S , i.e., dr = NT , with the
largest possible coding gain.

In this work, we study two different approaches to construct
full-diversity space-time codes. In particular, we first review a
pragmatic construction based on bit-interleaved coded modulation
(BICM) [2], which relies on the algebraic properties of the underly-
ing binary code to achieve diversity. Secondly, we consider the con-
catenation of a coded modulation schame with an inner code that
is linear in the field of complex numbers (linear dispersion (LD)
code [3]).In both cases, full-diversity space time codes of any de-
sired spectral efficiency are constructed by suitably expanding the
signal constellation. In the first case, we have constellation expan-
sion in the complex plane (Ungerboeck’s style expansion), while in
the second, we have multidimensional expansion induced by the in-
ner code. By means of message passing decoding, we compare both
approaches and we show that, in general, the concatenated LD con-
struction is always advantageous due to its higher design flexibility.

2. PRAGMATIC SPACE-TIME CODES

We consider natural STCs (NSTC) coupled with BICM as a prag-
matic way to construct good space-time codes (see e.g. [4, 5]). We
nickname such scheme BICM NSTC. Such codes are formally de-
fined by a binary block code C ⊆ F

N

2 of length N and rate r
and a spatial modulation function F : C → S ⊆ XNT ×L, such
that F(c) = X, where X ⊆ C is the complex signal constel-
lation. We study the case where F is obtained as the concatena-
tion of a block/antenna parsing function P : Z+ → Z

2
+ such that

P(n) = (t, `), 1 ≤ n ≤ N, 1 ≤ t ≤ NT , 1 ≤ ` ≤ LM par-
titions a codeword c ∈ C into sub-blocks, and blockwise BICM,
where each sub-block is independently bit-interleaved and mapped
over the signal set X according to a labeling rule µ : F

M

2 → X ,
such that µ(b1, . . . , bM ) = x, where M = log2 |X | (see Figure
1) 1. In this case, N = NT LM . The transmission rate (spectral
efficiency) of the resulting STC is R = rNT M bit/s/Hz.

BICM NSTCs are designed assuming a genie aided decoder that
produces observables of the transmitted symbols of one antenna,
when the symbols from all other antennas are perfectly removed2.
In this way, the channel decomposes into an equivalent set of NT

single-input single-output non-interfering parallel channels (see [6]

1In the remainder of this paper we shall only consider Gray labeling rules,
since they are more efficient (see e.g [4]) in quasistatic channels. This con-
clusion may be reversed in fully-interleaved channels [5].

2The reader will notice the analogy with the case of decision feedback
equalization for frequency selective channels, where correct feedback is as-
sumed to design the equalizer filters.
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Figure 1: Transmission scheme of BICM NSTC.

and references therein). We define the block diversity of a STC S as
the blockwise Hamming distance,

δβ = min
X,X′∈S

|{t ∈ [1, . . . , NT ] : xt − x
′
t 6= 0}|,

i.e., the minimum number of nonzero rows of X − X′. Then, with
a genie aided decoder BICM NSTCs can achieve diversity δβNR

[6]. Notice that applying BICM within a block, preserves the block
diversity of the underlying binary code, since the binary labeling
rule µ is a bijective correspondence. Thus, the block diversity of
S is equal to the block diversity of C provided that the parser P
preserves the block diversity of C. For a binary code C of rate r over
F2 mapped over B independent blocks, a fundamental upper bound
on δβ is provided by the Singleton bound (SB),

δβ ≤ 1 + bB (1 − r)c (4)

Consequently, with BICM NSTCs we will search for codes maxi-
mizing δβ , i.e., achieving the SB for all values of B. In quasistatic
MIMO channels we let B = NT .

On the other hand, the evaluation of the rank diversity of BICM
NSTCs can be a very involved task especially for constellations with
M > 1. For binary BICM NSTCs, it is however possible to verify
through the stacking construction theorem whether a BICM NSTC
is full-rank or not. In particular consider the following.

Stacking construction [7]. Let G1, . . . , GNT
be binary matri-

ces∈ F
K×N

2 , and consider the binary linear code of rate K/(NT N)
generated by G = [G1,G2, . . . ,GNT

]. Let the code words

c = bG of C, where b ∈ F
K

2 , be parsed as

C = F(c) =

2

6

6

4

bG1

bG2

...
bGNT

3

7

7

5

Then, if for all a1, . . . , aNT
∈ F2 non all zero, the K × N matrix

M =

NT
M

t=1

atGt

(
L

indicates addition in the binary field F2) has rank K, then the
binary BICM NSTC obtained from C with the above parsing has full
rank-diversity dr = NT (the condition is necessary and sufficient).

Now let GC
t be the t-th generator matrix of C. The genera-

tor matrices G′
t of BICM NSTCs can be easily obtained from GC

t ,
by simply applying the permutation πt to the columns of GC

t , for
t = 1, . . . , NT . We can now apply the stacking construction the-
orem with the generator matrices of the BICM NSTC G′

t, in order
to check for its a priori diversity performance under ML decoding.
Notice that for BICM NSTCs we have that dr ≤ δβ ≤ NT .

3. LD CONCATENATED CODES

In this section we consider the case where the codewords X of the
STC S are obtained from the concatenation of an outer coded mod-
ulation scheme CO ⊆ Xn of rate rO and length n with an inner LD
code. The inner code is formed by a parser P , that partitions the
codewords c ∈ CO into sub-blocks c[j] = [c1[j], . . . , cQ[j]], j =
1, . . . , J of length Q, with K = n/Q and by a LD space-time mod-
ulation function F defined by,

S[j] = F(c[j]) =

Q
X

q=1

(cq [j]Gq), (5)

where Gq ∈ C
NT ×T

are the LD code generator matrices. Finally,
the overall space-time codeword is given by X = [S[1] . . .S[J ]].
Then,

Y[j] = HS[j] + Z[j], j = 1, . . . , J. (6)

Equation (1) can be rewritten as a virtual MIMO channel with Q
inputs and Nv

R = NRT outputs as,

y[j] = Hc[j] + z[j], j = 1, . . . , J (7)

where H ∈ C
Nv

R
×Q

is the equivalent channel matrix given by,

H = [IT ⊗ H]G (8)
where ⊗ is the Kronecker product, G ∈ C

NT T×Q
is the suitably

reformatted generator matrix of the LD code, y[k] = vec(Y[k]),
z[k] = vec(Z[k]), Nv

R = NRT is the number of virtual receive an-
tennas, and vec(A) = [aT

1 . . .aT
l ]T , for a matrix A = [a1 . . .al].

Will refer to Q as the number of virtual transmit antennas.
In this work, we consider that CO is obtained by BICM, i.e, a

binary code C ∈ F
N

2 of rate r whose bit-interleaved codewords are
mapped onto the signal set X according to the binary labeling rule
µ : F

M
2 → X [2]. As inner LD code, we will use the threaded

algebraic space-time (TAST) constellations of [8]. We nickname
such a transmission scheme as BICM TAST (see Figure 2).
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Figure 2: Transmission scheme of BICM TAST.
The aforementioned algebraic STCs rely on the threaded layer-

ing first introduced in [9] for threaded STCs (TSTC). In TSTC, a
number of component encoders (or layers) NL and the component
codewords c` ∈ C` , ` = 1, . . . , NL are mapped onto the array
TNT ,NL,NL

following the (layer, antenna, time) indexing triplet

P(`, n) = (`, |t + ` − 1|NT
, t), 1 ≤ t ≤ T, ` = 1, . . . , NL,

thus having full spatial and temporal spans. Modulo-k operation is
denoted by |.|k . The encoding functions corresponding to C`, ` =
1, . . . , NL are γ` = φ`M, where M is a rate one full-diversity
linear algebraic rotation and φ`, ` = 1, . . . , NL scalar complex co-
efficients chosen to be Diophantine numbers that ensure that TAST
codes achieve full diversity with maximum-likelihood (ML) decod-
ing (see [8] for details). In TAST codes, NL = min(NT , NR),
T = NT , Q = NLNT , and φ`, ` = 1, . . . , NL are chosen such
that |φ`| = 1, ` = 1, . . . , NL. The transmission rate of the result-
ing STC is R = rNLM bit/s/Hz. Notice that following this divide
and conquer design, full diversity is always guaranteed by the inner
code, while coding gain is left to the outer coded modulation.

4. MESSAGE PASSING DECODING

Because of the pseudo-random bit interleaver present in both
schemes, ML decoding of BICM NSTC or BICM TAST is of un-
affordable complexity. We therefore resort to iterative techniques
based on a factor graph representation. In analogy to the case of
multiuser receivers for CDMA [10], applying the belief propaga-
tion (BP) algorithm to the STC dependency graph, yields several re-
ceivers that approximate the optimal maximum a posteriori (MAP)
detection rule. In particular, exact BP reduces the overall receiver
to a MAP soft-input soft-output (SISO) bitwise demodulator and a
MAP SISO decoder of C, that exchange extrinsic information prob-
ability messages through the iterations. When C is a trellis code, the
messages are efficiently computed by the forward-backward algo-
rithm (BCJR) with linear complexity in N [11]. For example, in the
case of BICM NSTC3 the log-likelihood ratio (LLR) message pro-
duced at the i-th iteration by the MAP SISO bitwise demodulator for

3The case of BICM TAST is completely analogous, and it suffices to
replace NT by Q, L by J and H byH.



the decoder of C, corresponding to the m-th bit of the constellation
symbol transmitted over antenna t at discrete time ` is given by,

LLR
(i)
ext(ct,`,m|y`,H) =

log

P

x∈X t
m=0

p(y`|x, H)
QNT

t′=1

QM

m′=1
m′ 6=m if t=t′

P
(i−1)
ext (ct′,`,m′)

P

x∈X t

m=1

p(y`|x, H)
QNT

t′=1

QM

m′=1
m′ 6=m if t=t′

P
(i−1)
ext (ct′,`,m′)

for 1 ≤ m ≤ M, 1 ≤ t ≤ NT , 1 ≤ ` ≤ L, where X t
m=a is

the set of NT -dimensional symbols for which the m-th bit of the
symbol transmitted over antenna t equal to a, P

(i)
ext(c) denotes ex-

trinsic (EXT) probability (provided by the SISO decoder of C) of
the coded binary symbol c at the i-th iteration with P

(0)
ext(c) = 0.5.

The conditional p.d.f. of the received signal y` =
√

ρHx` + z`,
given the input signal x and the channel H is p(y`|x,H) ∝
exp(−‖y` −√

ρHx‖2). Exact BP is of exponential complexity in
M and NT for BICM NSTC and Q for BICM TAST and it is usu-
ally approximated by soft-output sphere decoding techniques (see
e.g. [12] for recent results on the subject).

In this work we also consider lower-complexity algorithms
based on iterative interference cancellation (IC) and linear filtering.
In this case, the LLR message to the decoder of C is given by,

LLR
(i)
ext(ct,`,m|z(i)

t,` ,H) =

log

P

x∈Xm=0
p(z

(i)
t,` |x,H)

QM

m′=1
m′ 6=m

P
(i−1)
ext (ct,`,m′)

P

x∈Xm=1
p(z

(i)
t,` |x,H)

QM

m′=1
m′ 6=m

P
(i−1)
ext (ct,`,m′)

for 1 ≤ m ≤ M, 1 ≤ t ≤ NT , 1 ≤ k ≤ L, where now Xm=a is
the set of all constellation points of X with the m-th bit of the label
equal to a, z

(i)
t,` is the output at symbol time ` and i-th iteration of

the front-end linear filter f
(i)
t of antenna t after IC,

z
(i)
t,` = f

(i) H
t

`

y` −
√

ρ

NT
X

t′ 6=t

ht′ x̂
(i−1)
t′,`

´

,

where (dropping antenna and time indexes for simplicity),

x̂(i) = E[x |EXT] =
X

x∈X

x
M
Y

m=1

P
(i)
ext(cm)

is the minimum mean-square error estimate (conditional mean) of
the symbol x given the extrinsic information (briefly denoted by
EXT) relative to the bits in the label of x.

In particular, we consider minimum mean squared error
(MMSE) IC, for which the filter at the i-th iteration corresponding
to the t-th antenna is given by,

f
(i)
t = αt

√
ρR−1

ht, (9)

where αt = (ρhH
t R−1ht)

−1 is the normalization constant, R =

I +
√

ρ
PNT

t=1 hth
H
t vt is the covariance matrix of the input signal

to the filter, and vt = E[|xt − x̂t|2] is the variance of the residual
interference at virtual antenna t (see [10] and references therein). A
practical implementation (and in our simulations) we estimate vt as
vt ≈ 1− 1

L

PL

`=1 |x̂t[`]|2. Notice that f (i)
t has to be computed once

per virtual transmit antenna and iteration. The proposed algorithm
differs from that proposed in [9] in that the latter has to be computed
once per symbol interval, transmit antenna and iteration.

5. EXAMPLES
In this section we provide several numerical examples obtained by
computer simulation that illustrate the effect of the constellation
expansion on the achievable diversity of BICM NSTC and BICM
TAST. For the sake of comparison, we include the outage probability
curves with Gaussian inputs at the corresponding spectral efficiency.
Unless otherwise specified we take frames of 128 information bits
and 5 decoding iterations.

Figure 3 reports the frame error rate (FER) as a function of
Eb/N0 in a MIMO channel with NT = 4 and NR = 4, using
BPSK moduilation and the 4 states (5, 7, 7, 7)8 convolutional code
of r = 1/4. The overall spectral efficiency is R = 1bit/s/Hz.
Clearly, the block diversity of C is δβ = 4. In dased-dotted line
we show the FER for the NSTC with ML decoding. Recall that
the NSTC array is constructed using identity permutations [7], and
therefore ML decoding is possible using the Viterbi algorithm. Ap-
plying the stacking construction theorem yields that the NSTC code
is rank defficient. We have also applied the theorem to BICM NSTC
with a large number of randomly generated interleaver permuta-
tions, and none of them gave a full-rank code. However, as the
curves in the figure show, in the FER region of interest full-diversity
performance is achieved with two suboptimal iterative receivers (BP
and MMSE-IC). This simple example shows the key role that the
block diversity plays to achieve full diversity in BICM NSTC.

Figure 4 shows the FER performance in a NT = 2 and NR = 2
MIMO channel with the 4 states (5, 7)8 convolutional code of r =
1/2 with QPSK and 16-QAM modulations with Gray mapping. The
spectral efficiencies are R = 2, 4 bit/s/Hz respectively. The block
diversity of C is δβ = NT = 2, and therefore, BICM NSTC should
achieve full diversity with a good decoder. On the other hand, the
diversity of BICM TAST is given by the TAST constellation and the
coded modulation is only responsible for an horizontal shift of the
error curve, i.e, the coding gain. Notice that, in such concatenated
scheme, we can set φ` = 1, ` = 1, . . . , NL without any noticeable
difference in performance, since the outer code removes most of the
rank-deficient error events of the inner code. In this way, it suffices
to find a good rotation matrix M in orfer to construct good BICM
TAST codes. As we observe, under BP decoding and the same con-
figuration, since BICM NSTC has full block diversity, all schemes
perform almost identical regardless of their different nature. Notice
that LD constellations induce an increased peak-to-average power
ratio, which can make them impractical for applications where the
power amplifier is operated close to saturation.

In Figure 5 we report the FER performance in a NT = 2 and
NR = 2 MIMO channel with the 4 states convolutional codes and
QPSK and 8-PSK modulations with Gray mapping for an overall
spectral efficiency of R = 3bit/s/Hz. In this case the frame is taken
to be 132 information bits long. This figure clearly illustrates the
effect of constellation expansion to achieve full diversity. In fact,
in order to achieve R = 3bit/s/Hz with QPSK, we need the rate
of C be r = 3/4. As we observe, under such configuration BICM
TAST achieves full diversity due to its inherent multidimensional
constellation expansion. On the other hand, the diversity of BICM
NSTC is governed by the Singleton bound (which in this case yields
δβ = 1) and therefore under this configuration it does not achieve
full-diversity. However, R = 3bit/s/Hz can also be achieved by
using a rate r = 1/2 code (which has δβ = NT = 2) and expand-
ing the signal constellation in the complex plane, i.e., using 8-PSK
modulation. As we observe, in this case, BICM NSTC achieves full
diversity. However, it pays about a 1dB penalty in average power
for the expansion with respect to the BICM TAST.

Figure 6 shows the FER performance of BICM NSTC and
BICM TAST in a MIMO channel with NT = 4 and NR = 4, with
the 4 states (5, 7, 7, 7)8 convolutional code of r = 1/4, using 16 and
64 QAM modulations with Gray mapping and MMSE-IC decoding.
The corresponding spectral efficiencies are R = 4, 6 bit/s/Hz. In
the case of 64-QAM we have considered frames of 120 information
bits. We also plot the simulated matched filter bound (MFB), i.e.,
an ideal genie aided decoder. In this example we observe that a new
effect arises, namely, for too large spectral efficiency, even if the
transmission schemes ensure full diversity, the MMSE-IC decoder
is not able to remove the interference and achieve the correct slope.
The characterization of the thresholds of the spectral efficiency for
which the MMSE-IC is able to perform close to ML or BP is a very
diffiult problem and at present there is no satisfactory explanation.
In [13] we have derived a semi-analytical method based on density
evolution and bounding techinques, which however is as complex as
simulation due to the outer expectation over the quasistatic fading.



6. CONCLUSIONS

In this paper we have illustrated the effect of signal constellation
expansion on the achievable diversity in quasistatic MIMO chan-
nels. In particular we have compared complex plane expansion and
lattice-based expansion. We have shown that under message pass-
ing decoding, concatenated STCs with inner LD codes benefit from
a higher design flexibility and show some performance advantage.
However, in the same setting, both schemes perform equivalent.
Thus, since LD-based methods induce an increased peak-to-average
power ratio, we shall prefer the first approach in applications where
the power amplifier is driven close to saturation.
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Figure 6: FER for NT = 4, NR = 4 with (5, 7, 7, 7)8 convolutional
code, 16-QAM and 64-QAM with Gray mapping, with MMSE-IC
decoding.


