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Abstract

This paper studies turbo-like coded modulation in the
block-fading channel. In particular we show that the
performance of such coded modulation schemes is close
to the information outage probability of the channel for
any block length, as opposed to standard coded mod-
ulation schemes based on trellis-terminated convolu-
tional codes. For large block length, asymptotic perfor-
mance of the proposed structure is given by the distri-
bution of its decoding threshold. By using asymptotic
weight enumerator techniques, we derive the asymp-
totic maximum-likelihood performance of the proposed
codes.

1. INTRODUCTION

The block-fading channel was introduced in [1] (see
also [2]) in order to model slowly-varying fading, where
codewords span only a fixed number NB of fading
degrees of freedom, irrespectively of the code block
length. This model is particularly relevant in wire-
less communications situations involving slow time-
frequency hopping (e.g., GSM, EDGE) or multicarrier
modulation using orthogonal frequency division multi-
plexing (OFDM). More in general, despite its extreme
simplification, it serves as a useful model to develop
coding design criteria which turn out to be useful in
more general settings of correlated slowly-varying fad-
ing.

Strictly speaking, the block-fading channel has zero
capacity, since, there is an irreducible probability that
the transmitted data rate is not supported by the chan-
nel, namely the information outage probability. There-
fore, for large block length, the probability of error will
be at least as large as the outage probability. There-
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fore, the goodness of coded modulation schemes over
the block-fading channel is measured by their ability
to approach the outage probability limit for large block
length.

We study a family of codes based on the block-
wise concatenation of two component encoders through
interleavers. Such codes, are known to achieve the
optimal rate-diversity tradeoff given by the Singleton
bound [3]. In this paper we show that, for such turbo-
like structure, by using asymptotic weight enumera-
tor techniques, the word-error rate (WER) of the pro-
posed codes is almost independent of the block length,
while the component encoders are fixed, i.e., the de-
coding complexity of the BP decoder is linear with the
block length. On the contrary, in the case of block
codes obtained by trellis termination of trellis codes,
the WER increases (roughly linearly) with the block
length for linear decoding complexity. We interpret
this fact as another manifestation of the so-called “in-
terleaving gain” typical of turbo codes, even though, in
block-fading, no “waterfall” behavior of the error curve
is visible, even for very large block length.

2. SYSTEM MODEL AND OPTIMAL RATE-

DIVERSITY TRADEOFF

We consider a single-input single-output block-
fading AWGN channel model [1] with NB fading blocks,
where each block has length L complex dimensions.
Fading is flat, constant on each block, and i.i.d. on
different blocks. The discrete-time complex baseband
equivalent channel model is given by

yb =
√

ρhb xb + zb , b = 1, . . . , NB (1)

where yb,xb, zb ∈ CL denote the b-th received, trans-
mitted and noise vectors respectively, hb denotes the
b-th block fading coefficient and the noise compo-
nents are i.i.d. complex circularly-symmetric Gaussian
∼ NC(0, 1). We consider Rayleigh fading, for which
hb ∼ NC(0, 1).

We consider codes constructed over a complex
signal-set X (e.g., QAM/PSK) of cardinality 2M , i.e.,
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the components of the vectors xb are points in the con-
stellation X . The overall codeword block length is NBL
(complex dimensions). Therefore, each codeword spans
at most NB independent fading coefficients. Without
loss of generality, we assume normalized fading, such
that E[|hb|2] = 1 and unit-energy signal set X (i.e.,
2−M

∑
x∈X |x|2 = 1). Therefore, ρ denotes the average

received SNR and the instantaneous SNR on block b
is given by γbρ, where γb

∆
= |hb|2 denotes the fading

power gain.
It can be shown that the minimum achievable error

probability is given by the information outage proba-
bility defined as Pout(ρ, R) = Pr(Ih(PX) ≤ R), where
R is the transmission rate in bits per channel use and
Ih(PX ) is the instantaneous mutual information for a
given input distribution PX [1]. The goodness of a cod-
ing scheme is then measured by the SNR gap from the
outage probability for large block length L. In particu-
lar, we say that a coded modulation scheme is good for
the block-fading channel if for L → ∞ the word error
probability (WER) shows a fixed gap from Pout(ρ, R)
asymptotically independent of L.

For coded modulation schemes over discrete con-
stellations, the optimal rate-diversity tradeoff is given
by the SNR reliability function (optimal diversity)

d?
B

∆
= sup

C∈F
lim

ρ→∞
− logPe(ρ, C)

log ρ

for a coded modulation family F , and can be stated as
follows [3, 4],

Theorem 1 Consider the block-fading channel (1) with
i.i.d. Rayleigh fading and input signal set X of cardi-
nality 2M . The SNR reliability function of the channel
is upperbounded by the Singleton bound

d?
B(R) ≤ dSB(R)

∆
= 1 +

⌊
NB

(
1 − R

M

)⌋
(2)

The random coding SNR exponent d
(r)
B (R) of the coded

modulation ensemble M(C, µ,X ) defined previously,

with block length L(ρ) satisfying limρ→∞
L(ρ)
log ρ

= β and
rate R, is lowerbounded by

βNBM log(2)

(
1 − R

M

)
,

for 0 ≤ β < 1
M log(2) and

dSB(R)−1+min

{
1, βM log(2)

[
NB

(
1 −

R

M

)
− dSB(R) + 1

]}

for 1
M log(2) ≤ β < ∞.

Furthermore, the SNR random coding exponent of
the associated BICM channel satisfies the same lower
bounds.

Corollary 1 The SNR reliability function of the block-
fading channel with input X and of the associated
BICM channel is given by d?

B(R) = dSB(R) for all
R ∈ (0, M ], except for the NB discontinuity points of
dSB(R), i.e., for the values of R for which NB(1 −
R/M) is an integer.

These results state that for large block length, the opti-
mal diversity order is given by the Singleton bound on
the block diversity, and that it is achievable by random
codes, for a block length that grows like L = β log ρ for
large enough β.

3. BLOCKWISE CONCATENATED CODES

Figure 1 shows the proposed encoder structure for
M(C, µ,X ) that we refer to as Blockwise Concatenated
Coding (BCC). The binary linear code C is formed by
the concatenation of a binary linear outer code CO of
rate rO and block length NBLπ, partitioned into NB

blocks of length Lπ. The blocks are separately inter-
leaved by the permutations (π1, . . . , πNB

) and the re-
sult is fed into the NB encoders for the inner code CI

of rate rI and length LB = LM . Thus, the total length
of C is NBLB (binary symbols). Finally, the output of
each component inner code is mapped onto a sequence
of signals in X by the one-to-one symbol mapper µ.
We denote by K the number of information bits per
codeword. In particular, the codes considered make
use of bit-interleaving between the inner encoder and
the mapper [5], denoted in Figure 1 by the permuta-
tions (πµ

1 , . . . , πµ
NB

). However, we hasten to say that
mapping through interleavers is not necessary for the
construction and more general mappings could be en-
visaged. The rate of the resulting blockwise concate-
nated code is R = rOrIM .

When the outer code is a simple repetition code of
rate rO = 1/NB and the inner codes are rate-one accu-
mulators [6], the resulting BCC is referred to as Repeat
and Blockwise Accumulate (RBA) code. Since inter-
leavers and inner encoding are performed on a block-
wise basis, the block diversity of the concatenated code
coincides with the block diversity of the outer code.
For example, a RBA code has always full diversity
dB = NB . When both outer and inner codes are convo-
lutional codes, we will refer to the resulting structure as
blockwise concatenated convolutional codes (BCCC).

Practical decoding of BCC resorts to the well-
known BP iterative decoding algorithm over the code
graph [7]. In particular, when either CO or CI are con-
volutional codes, the well-known forward-backward de-
coding algorithm is used over the subgraph represent-
ing the corresponding trellis [8]. In the case of non-
binary modulations, we consider a suboptimal decoder
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that consists of producing, for each received symbol,
the posterior probabilities of the binary coded sym-
bols in its label (defined by the symbol mapper µ),
and then feeding these probabilities to the decoder
for the binary code C over the resulting binary-input
continuous-output channel. We nickname such decoder
as BICM-ML decoder. BICM-ML decoding is known
to yield near-optimal performance when coupled with
Gray mapping.
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Figure 1: The general encoder for Blockwise Concate-
nated Coding.

4. GOODNESS OF BCCs

We say that a code ensemble over X is good if, for
block length L → ∞, its WER shows a fixed SNR gap
to outage probability, asymptotically independent of L.
In this section we give an explicit sufficient condition
for code goodness in terms of the asymptotic exponen-
tial growth rate function [9] of the multivariate weight
enumerator of explicit code ensembles.

Characterizing the goodness of a given code ensem-
ble is non-trivial, as illustrated by the following argu-
ment. A code ensemble M(C, µ,X ) such that, for all
sufficiently large L, a randomly generated member in
the ensemble attains the Singleton bound with proba-
bility 1 is a good candidate for code goodness. How-
ever, this condition is neither necessary nor sufficient.
For example, the ensemble M(C, µ,X ) considered in
Theorem 1 has a small but non-zero probability that
a randomly selected member is not blockwise MDS,
nevertheless it attains the optimal SNR exponent pro-
vided that L grows faster than log ρ, and hence it is
good. On the contrary, the ensemble of random BCCs
with given outer and non-trivial inner encoders and the
ensemble of blockwise partitioned CCs (i.e., BCCs with
convolutional outer encoder and rate-1 identity encoder
considered in [10, 11]) that can be seen as BCCs with
convolutional outer encoder and trivial (identity) in-
ner encoder, attain the Singleton bound with probabil-
ity 1 provided that the outer code is blockwise MDS.
Nevertheless, simulations show that while the WER of
general BCCs with recursive inner encoder is almost in-
dependent of the block length, the WER of CCs grows
roughly linearly with the block length. For example,

Fig.2 shows the WER for fixed SNR versus the infor-
mation block length K, for the ensemble of R = 1/4
RBA codes and the standard 64-states CCs with gener-
ators (135, 135, 147, 163)8 mapped over NB = 4 blocks,
and of r = 1/2 BCCs (with outer convolutional en-
coder (5, 7)8 and inner accumulators) and the 64-states
CCs mapped over NB = 8 blocks optimized in [11]
with generators (103, 147)8 for the block-fading chan-
nel. The different behavior of the WER as a function
of the block length for the two ensembles is evident.
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Figure 2: WER vs. information block length at
Eb/N0 = 8dB for binary BCC, RBA and trellis ter-
minated CCs obtained by simulation (10 BP decoding
iterations for the BCCs and ML Viterbi decoding for
the CCs).

We focus first on codes over the BPSK modula-
tion. Therefore, in this case L = LB . Let ω =
(ω1, . . . , ωNB

) ∈ [0, 1]NB be the vector of normalized
Hamming weights per block. The asymptotic exponen-
tial growth rate function [9] of the multivariate weight
enumerator is defined by

a(ω)
∆
= lim

ε→0
lim

LB→∞

1

LB

log
∣∣SLB

ε (ω)
∣∣ (3)

where SLB

ε (ω) is the set of codewords in the length-LB

ensemble with Hamming weights per block satisfying

|wb/LB − ωb| ≤ ε, b = 1, . . . , NB (4)

We have the following results:

Theorem 2 Consider an ensemble of codes M(C, µ,X )
of rate R, where X is BPSK, transmitted over a block-
fading channel with NB blocks. Let a(ω) be the asymp-
totic exponential growth rate function of the ensemble
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multivariate weight enumerator. For 1 ≤ k ≤ NB, let
W(NB , k) ∈ F

NB

2 denote the set of binary fading vec-
tors with Hamming weight not smaller than NB−k+1,
and define ŝ to be the infimum of all s ≥ 0 such that

inf
x∈W(NB,dSB(R))

inf
ω∈[0,1]NB

{
s

NB∑

b=1

xb ωb − a(ω)

}
> 0

(5)
If ŝ < ∞, then the code ensemble is good.

As far as higher order coded modulations are con-
cerned, we have the following

Corollary 2 Consider an ensemble of codes M(C, µ,X )
of rate R, where X is a complex signal set of size
2M , transmitted over a block-fading channel with NB

blocks, where modulation is obtained by (random) bit-
interleaving and decoding by the BICM-ML decoder. If
the underlying ensemble of binary codes (i.e., mapping
the binary symbols directly onto BPSK) is good, then
the ensemble M(C, µ,X ) is good.

The above results (and the proofs in [4]) reveal
that the error probability of good codes in the regime
where both the block length and the SNR are large is
dominated by the event that more than dSB(R) fad-
ing components are small (in the sense of the proof
of Theorem 2). This is precisely the same behavior
of the information outage probability for the rate R
and discrete signal set X . On the contrary, when less
than dSB(R) fading components are small, the code
projected over the significant fading components has
a finite ML decoding threshold (with probability 1).
Therefore, apart from some SNR gap, its error prob-
ability vanishes for all such fading realizations. It is
also intuitively clear that, due to this sharp thresh-
old behavior, hitting the SNR transition region (known
as “waterfall”) for which the error probability is non-
vanishing even if the fading has less than dSB(R) small
components is an event of small probability. This par-
tially explains why BP iterative decoding performs very
close to ML in block-fading channels and why more
refined bounding techniques such as the tangential-
sphere bound do not provide almost any improvement
[12, 4]. In fact, it is well-known that BP and ML per-
form similarly on both the high-error probability region
(below the ML decoding threshold) and in the low-
error probability region (above the iterative decoding
threshold). The gap between the ML and the iterative
decoding thresholds seems to play a negligible role in
the block-fading channel, for ensembles of good codes.
The sharper and sharper transition between the below-
threshold and above-threshold regimes of random-like
concatenated codes is referred to as interleaving gain

in [13, 14]. We argue that code goodness of BCCs in
block-fading channels is another manifestation of in-
terleaving gain, even if on such channel no waterfall
behavior is observed.

It can also be shown that the ensemble of trellis
terminated CCs of increasing block length considered
in [10, 11] does not satisfy the condition of Theorem 2.

Numerical verification of Theorem 2 is needed for a
specific code ensemble. In particular, one has to show
that

sup
x∈W(NB,dSB(R))

sup
ω∈[0,1]NB

a(ω)
∑NB

b=1 xbωb

< ∞ (6)

Supported by simulations and by explicit calculation of
the multivariate weight enumerator for RBAs (see [6]
and [12, 4] for details), we conjecture this is true for
the family of random BCCs with MDS outer code and
inner recursive encoders.

Combining the limiting before average technique in-
troduded by Malkamaki and Leib (M&L) in [15] with
the Bhattacharyya union bound for a code over the
BPSK signal set we can write

Pe(ρ) ≤ E


min



1,

∑

ω∈[0,1]NB

e
−LB

(
ρ
∑NB

b=1
γbωb − F (ω)

)







where F (ω)
∆
= 1

LB
log Aw is the fixed length growth

rate of the multivariate weight enumerator Aw and
w = (ω1LB, . . . , ωNB

LB) ∈ N
NB is the weight vector.

Since min(1, f(x)) is continuous in x for continuous
f and min(1, f(x)) ≤ 1, we can apply the dominated
convergence theorem [16] and write,

lim
LB→∞

E


min



1,

∑

ω∈[0,1]NB

e
−LB

(
ρ
∑NB

b=1
γbωb − F (ω)

)







= E


min



1, lim

LB→∞

∑

ω∈[0,1]NB

e
−LB

(
ρ
∑NB

b=1
γbωb − F (ω)

)







= E


min



1, lim

LB→∞

∑

ω∈[0,1]NB

e
−LB

(
ρ
∑NB

b=1
γbωb − a(ω)

)







(7)
The factor multiplying LB in the exponent of the

RHS of (7) is positive for a given channel realization γ

if

ρ̂
∆
= max

ω∈[0,1]NB

a(ω)
NB∑

b=1

γbωb

< ρ (8)
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Conditioning with respect to γ we have that, in the
limit of large LB , Pe(ρ|γ) → 0 if ρ > ρ̂ while Pe(ρ|γ) ≤
1 otherwise. It follows that in the limit for LB → ∞
the M&L Bhattacharyya bound takes on the form

Pe(ρ) ≤ Pr

(
max

ω∈[0,1]NB

a(ω)
∑NB

b=1 ωbγb

≥ ρ

)
. (9)

Equation (9) illustrates that the asymptotic per-
formance is given by the distribution of the decoding
threshold (in this case the ML union bound thresh-
old). In order to obtain the BP decoding asymptotic
performance, we should characterize the distribution of
the BP decoding threshold. Unfortunately this can be
computationally very expensive, since we need Mon-
tecarlo averaging, and for every channel realization we
must compute one density evolution. Therefore, in this
case, the need for extremely computationally efficient
density evolution is evident.

As an example, in Fig. 3 we show the asymptotic
WER for the RBA ensemble of rate 1/2 with BPSK
modulation, over a channel with NB = 2 fading blocks.
The asymptotic WER is computed via the asymptotic
Bhattacharyya M&L bound given by (9). Simulations
(BP iterative decoder) for information block lengths
K = 100, 1000 and 10000 are shown for comparison.
This figure clearly shows that the WER of these codes
becomes quickly independent of the block length and
shows fixed gap from the outage probability.
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Figure 3: Asymptotic error probability (9) for a binary
rate r = 1/2 RBA code mapped over NB = 2 fading
blocks and corresponding BP decoding simulation with
30 iterations and K = 100, 1000 and 10000.

In order to illustrate the goodness of BCCs with
BICM and high-order modulations, Fig. 4 shows the

asymptotic WER of an RBA code of rate R = 2
bit/complex dimension with 16-QAM modulation over
NB = 2 fading blocks. The asymptotic WER can be
derived in a similar way by using the asymptotic BICM
Bhattacharyya M&L bound given by

Pe(ρ) ≤ Pr

(
max

ω∈[0,1]NB

a(ω)
∑NB

b=1 ωbζb

≥ ρ

)
, (10)

where ζb = − 1
ρ

log Bb(ρ, µ,X ),

Bb(ρ, µ,X ) = Em,a,x,Z




√√√√√√√√

∑

x′∈Xm
ā

e−|√ργn(x−x′)+Z|2

∑

x′∈Xm
a

e−|√ργn(x−x′)+Z|2




is the Bhattacharyya factor of the BICM channel as-
sociated to the b-th fading block, with SNR γbρ, and
Xm

a is the set of constellation points for which the m-
th label position has content a ∈ {0, 1}. Simulations
(BP iterative decoder) for information block lengths
K = 100, 1000 and 10000 are shown for comparison,
and we can observe the same effect as for the BPSK
case.
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Figure 4: Asymptotic error probability (10) for a rate
R = 2 RBA code mapped over NB = 2 fading blocks
with 16-QAM (BICM) and corresponding BP decoding
simulation with 30 iterations for K = 100, 1000 and
10000.
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5. CONCLUSIONS

In this paper we have studied the asymptotic per-
formance of blockwise concatenated coded modula-
tion in the block-fading channel. By using asymp-
totic weight enumerator techniques, we have shown
that for large block length, the error probability is
given by the distribution of the decoding threshold.
We have also argued that, as opposed to ergodic chan-
nels, in the block-fading channel, belief-propagation
and maximum-likelihood decoding perform very simi-
lar. This represents a remarkable improvement with re-
spect to standard trellis-based codes with a wide range
of applications.
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