
Coded Modulation in the Block-Fading Channel:

Coding Theorems and Code Construction
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Abstract

We consider coded modulation schemes for the block-fading channel. In the setting

where a codeword spans a finite number N of fading degrees of freedom, we show that

coded modulations of rate R bit/complex dimension, over a finite signal set X ⊂ C of size

2M , achieve the optimal rate-diversity tradeoff given by the Singleton bound δ(N,M,R) =

1+bN(1−R/M)c, for R ∈ (0,M ]. Furthermore, we show also that the popular bit-interleaved

coded modulation achieve the same optimal rate-diversity tradeoff. We present a novel

coded modulation construction based on blockwise concatenation that systematically yields

Singleton-bound achieving turbo-like codes defined over an arbitrary signal set X ⊂ C. The

proposed blockwise concatenation significantly outperforms conventional serial and parallel

turbo codes in the block-fading channel. We analyze the ensemble average performance under

Maximum-Likelihood (ML) decoding of the proposed codes by means of upper bounds and

tight approximations. We show that, differently from the AWGN and fully-interleaved fading

cases, Belief-Propagation iterative decoding performs very close to ML on the block-fading

channel for any signal-to-noise ratio and even for relatively short block lengths. We also

show that, at constant decoding complexity per information bit, the proposed codes perform

close to the information outage probability for any block length, while standard block codes

(e.g., obtained by trellis-termination of convolutional codes) have a gap from outage that

increases with the block length: this is a different and more subtle manifestation of the

so-called “interleaving gain” of turbo codes.

Index Terms: Block-fading channels, outage probability, diversity, MDS codes, concatenated

codes, ML decoding, distance spectrum, iterative decoding, bit-interleaved coded modulation.
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1 Introduction

The block-fading channel was introduced in [1] (see also [2]) in order to model slowly-varying

fading, where codewords span only a fixed number N of fading degrees of freedom, irrespectively

of the code block length. This model is particularly relevant in wireless communications situa-

tions involving slow time-frequency hopping (e.g., GSM, EDGE) or multicarrier modulation using

orthogonal frequency division multiplexing (OFDM). More in general, despite its extreme simpli-

fication, it serves as a useful model to develop coding design criteria which turn out to be useful

in more general settings of correlated slowly-varying fading.

Coding for the block-fading channel has been considered in a number of recent works (e.g.,

[3, 4, 5, 6] and references therein). The design criteria for codes over the block-fading channel

differ significantly with respect to the standard design criteria for codes over the AWGN channel

or over the fully-interleaved fading channel. The key difference is that the block-fading channel

is not information stable [7, 8]. Under mild conditions on the fading distribution, the reliability

function of the block-fading channel is zero for any finite Signal-to-Noise Ratio (SNR).

Using union bound arguments [3, 4, 5, 6] and error exponent calculations [9], it was shown

that in Rayleigh fading the error probability behaves like O(SNR−dB) for large SNR. The exponent

dB, an integer in [0, N ], is referred to as the code block diversity and is given by the minimum

number of blocks on which any two distinct codewords differ (block-wise Hamming distance). If

the code is constructed over a finite alphabet (signal set), there exists a tradeoff between the

achievable block diversity and the coding rate. More precisely, a code over an alphabet X of

cardinality |X |, partitioned into N blocks of length L, can be seen as a code over the alphabet

X L of cardinality |X |L with block length N . Hence, we have trivially that any upper bound on

the minimum Hamming distance of |X |L-ary codes of length N and size A yields a corresponding

upper bound on the achievable block diversity dB for codes over X and rate R = 1
NL

log2 A. In

[9, Th. 1], it is shown that for binary codes the Singleton bound is tight for any R ∈ (0, 1]. The

achievability proof in [9, Th. 1] is based on the existence of maximum distance separable (MDS)

codes over F2L (e.g., Reed-Solomon codes).

In general, we define the SNR exponent of error probability for a given family of codes as

d? ∆
= sup

C∈F
lim
ρ→∞

− log Pe(ρ, C)

log ρ
(1)

where ρ denotes the channel SNR, Pe(ρ, C) is the error probability of code C, and the supremum
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is taken over all codes in the family F .

In [10], a block-fading multiple-input multiple-output (MIMO) channel with N = 1 fading

blocks is considered and no restriction is imposed on the code family other than the standard

average input power constraint. For every r > 0, codes of rate R(ρ) = r log ρ are considered and

the optimal SNR exponent is found as a function of r. It is also shown that the optimal exponent

coincides with the random coding exponent for an ensemble of Gaussian i.i.d. codes of fixed block

length, provided that the block length is larger than a certain integer that depends on the number

of transmit and receive antennas.

In this work, we consider a single-input single-output (SISO) block-fading channel with ar-

bitrary (but fixed) number N of fading blocks. We are interested in the ensemble of coded

modulations, i.e., codes over a given finite signal set X ⊂ C with fixed rate R that, obviously,

cannot be larger than M = log2 |X | bit/complex dimension. We study the SNR exponent (1)

as a function of the coding rate, denoted by d?
X (R). This “SNR reliability function” represents

the optimal rate-diversity tradeoff for the given family of codes. We prove that d?
X (R) is indeed

given by the Singleton bound, and we find an explicit expression for the random-coding SNR error

exponent, denoted by d
(r)
X (R), which lower bounds d?

X (R) and is tight for all R provided that the

code block length grows rapidly enough with respect to log(ρ): namely, the code block length

must be superlinear in the channel SNR expressed in dB. Furthermore, we show that the popular

pragmatic Bit-Interleaved Coded Modulation (BICM) scheme [11] achieves the same d
(r)
X (R) (and

hence d?
X (R), subject to the same condition on the block length growth with respect to SNR).

Then, we focus on the systematic construction of codes achieving the optimal SNR exponent

and we introduce a turbo-like code construction suited to the block-fading channel. Notice that

standard code ensemble analysis and optimization techniques based on Density Evolution [12]

and on various approximations thereof, such as the ubiquitous EXtrinsic Information Transfer

(EXIT) functions [13], are useless over the block-fading channel. In fact, these techniques aim at

finding the iterative decoding threshold, defined as the minimum SNR at which the bit error rate

(BER) vanishes after infinitely many iterations of the Belief-Propagation (BP) iterative decoder,

for a given code ensemble in the limit of infinite block length. In our case, since the block-fading

channel is affected by a finite number N of fading coefficients that do not average out as the block

length grows to infinity, the iterative decoding threshold is a random variable that depends on the

channel realization. Hence, one should optimize the distribution of the fixed points of the Density
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Evolution with respect to the code ensemble: clearly, a very difficult and mostly impractical task.

For our codes we provide upper bounds and tight approximations to the error probability

under maximum-likelihood (ML) decoding. While ML decoding is generally infeasible because of

complexity, we show by simulation that the iterative Belief-Propagation (BP) “turbo” decoder

performs very close to the ML error probability. This fact stands in stark contrast with the

typical behavior of turbo and LDPC codes on the AWGN and fully interleaved fading channels

[14, 15, 16, 17, 18], where ML bounds are able to predict accurately the “error floor region”

but are quite inaccurate in the “waterfall region” of the BER curve. Hence, our bounds and

approximations are relevant, in the sense that they indeed provide very accurate performance

evaluation of turbo-like coded modulation in the block-fading channel under BP iterative decoding.

The proposed coded modulation schemes outperform standard turbo-coded or LDPC-coded

modulation and outperform also previously proposed trellis codes for the block-fading channel

[3, 5, 6]. In particular, by using asymptotic weight enumerator techniques, we show that the word-

error rate (WER) of our codes is almost independent of the block length, while the component

encoders are fixed, i.e., the decoding complexity of the BP decoder is linear with the block length.

On the contrary, in the case of block codes obtained by trellis termination of trellis codes, the WER

increases (roughly linearly) with the block length for linear decoding complexity. We interpret

this fact as another manifestation of the so-called “interleaving gain” typical of turbo codes, even

though, in block-fading, no “waterfall” behavior of the error curve is visible, even for very large

block length.

The paper is organized as follows. Section 2 defines the system model. Section 3 presents the

coding theorems for the rate-diversity tradeoff of coded modulation and BICM. In Section 4 we

present our novel turbo-like coded modulation scheme, we provide useful upper bounds and ap-

proximations of its error probability under ML decoding and we show that the error probability is

(asymptotically) independent of the block length. Also, several examples of code construction and

performance comparisons are provided. Section 5 summarizes the conclusions of this work. Proofs

and computation details of the error bounds and approximations are reported in the appendices.
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2 System model

We consider the block-fading channel model [1] with N fading blocks, where each block has length

L complex dimensions. Fading is flat, constant on each block, and i.i.d. on different blocks. The

discrete-time complex baseband equivalent channel model is given by

yn =
√

ρ hn xn + zn , n = 1, . . . , N (2)

where yn,xn, zn ∈ C
L, hn denotes the n-th block fading coefficient and the noise zn is i.i.d.

complex circularly-symmetric Gaussian, with components ∼ NC(0, 1).

We consider codes constructed over a complex signal-set X (e.g., QAM/PSK) of cardinality

2M , i.e., the components of the vectors xn are points in the constellation X . The overall codeword

block length is NL (complex dimensions). Therefore, each codeword spans at most N independent

fading coefficients. Without loss of generality, we assume normalized fading, such that E[|hn|2] = 1

and unit-energy signal set X (i.e., 2−M
∑

x∈X |x|2 = 1). Therefore, ρ denotes the average received

SNR and the instantaneous SNR on block n is given by γnρ, where γn
∆
= |hn|2 denotes the fading

power gain.

The channel (2) can be expressed in the concise matrix form

Y =
√

ρHX + Z (3)

where Y = [y1, . . . ,yN ]T ∈ C
N×L, X = [x1, . . . ,xN ]T ∈ C

N×L, H = diag(h1, . . . , hN) ∈ C
N×N and

Z = [z1, . . . , zN ]T ∈ CN×L.

The collection of all possible transmitted codewords X forms a coded modulation scheme over

X . We are interested in schemes M(C, µ,X ) obtained by concatenating a binary linear code C of

length NLM and rate r bit/symbol with a memoryless one-to-one symbol mapper µ : FM
2 → X .

The resulting coding rate (in bit/complex dimension) is given by R = rM .

In this work we assume that the vector of fading coefficients h = (h1, . . . , hN) is perfectly

known at the receiver and not known at the transmitter. It is worthwhile to notice that in the

limit of L → ∞ and fixed N , the capacity and, more generally, the outage capacity, of the block-

fading channel does not depend on the assumption of perfect channel knowledge at the receiver

[2]. Therefore, in this limit such assumption is not optimistic.

Let w ∈ {1, . . . , |M|} denote the information message and X(w) denote the codeword corre-

sponding to w. We shall consider the following decoders:
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1. The ML decoder, defined by

ŵ = arg min
w=1,...,|M|

‖Y −√
ρHX(w)‖2

F (4)

(‖ · · · ‖F denotes the Frobenius norm).

2. A suboptimal decoder that consists of producing, for each received symbol, the posterior

probabilities of the binary coded symbols in its label (defined by the symbol mapper µ), and

then feeding these probabilities to a ML decoder for the binary code C over the resulting

binary-input continuous-output channel. Since this scheme is particularly effective if used

in conjunction with BICM [11], we shall refer to it as the BICM-ML decoder (even though

it can also be used without an explicit bit-interleaver between C and µ). It follows from

the definition of the ensemble {M(C, µ,X )} that the coded bits output by the binary linear

encoder for C are partitioned into N blocks of length LM , each of which is further partitioned

into L binary labels of length M bits, which are eventually mapped into modulation symbols

by the mapping µ. Let again w denote the information message and let C(w) ∈ C denote the

codeword of C corresponding to w. The components of of C(w) are indicated by cn,k,m(w)

where the triple of indices (n, k, m) indicates the fading block, the modulation symbol, and

the label position. The corresponding “bit-wise” posterior log-probability ratio is given by

Ln,k,m = log

∑

x∈Xm
0

exp
(
−|yn,k −

√
ρ hnx|2

)

∑

x∈Xm
1

exp
(
−|yn,k −

√
ρ hnx|2

) (5)

where Xm
a denotes the signal subset of all points in X whose label has value a ∈ {0, 1} in

position m. Then, the BICM-ML decoding rule is given by

ŵ = arg max
w=1,...,|M|

N∑

n=1

L∑

k=1

M∑

m=1

(1 − 2cn,k,m(w))Ln,k,m (6)

In all cases, the average word-error rate (WER) as a function of SNR, averaged over the fading,

is defined as Pe(ρ) = Pr(w 6= ŵ) where a uniform distribution of the messages is assumed.

As it will be clear in the following, both the ML and the BICM-ML decoders are practically

infeasible for the class of coded modulation schemes proposed in this paper. Hence, the suboptimal

turbo decoder based on Belief-Propagation (BP) will be used instead. Nevertheless, the two
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decoders defined above are easier to analyze and provide a benchmark to compare the performance

of the BP decoder. Since BP iterative decoding is standard and well-known, for the sake of space

limitation we shall omit the detailed BP decoder description. The reader is referred to e.g. [19]

for details.

3 Optimal rate-diversity tradeoff

Let I(PX ,h)
∆
= 1

NL
I(X;Y|h) denote the mutual information (per complex dimension) between

input and output, for given fading coefficients h and NL-dimensional input probability assignment

PX , satisfying the input power constraint 1
NL

E[‖X‖2
F ] = 1. Since h is random, I(PX ,h) is generally

a random variable with given cumulative distribution function FI(z)
∆
= Pr(I(PX ,h) ≤ z). The

channel ε-capacity (as a function of SNR ρ) is given by [7]

Cε(ρ) = sup
PX

sup {z ∈ R : FI(z) ≤ ε} (7)

The channel capacity is given by C(ρ) = limε↓0 Cε(ρ). For fading distributions such that P (|h| <

δ) > 0 for any δ > 0 (e.g., Rayleigh or Rice fading), we have C(ρ) = 0 for all ρ ∈ R+, meaning

that no positive rate is achievable. Hence, the relevant measure of performance on this channel is

the optimal WER 1 given by

ε(ρ) = inf
PX

FI(R) (8)

In many cases, the input distribution is fixed by some system constraint. Hence, it is customary

to define the information outage probability [2, 1] as Pout(ρ, R)
∆
= FI(R) for given PX , ρ and R.

The goodness of a coding scheme for the block-fading channel is measured by the SNR gap from

outage probability for large block length L.

For the ensemble M(C, µ,X ) where C is a random binary linear code, PX is the uniform i.i.d.

distribution over X . Under this probability assignment, we have that

I(PX ,h) =
1

N

N∑

n=1

JX (γnρ) (9)

1Notice that for short block length L it is possible to find codes with WER smaller than ε(ρ) given in (8).

However, in the limit of large L and fixed coding rate R, no code has error probability smaller than ε(ρ). A lower

bound to the WER of any code for any finite length L is provided by Fano Inequality and reads [10]:

Pe(ρ) ≥ inf
PX

E

[
max

{
1 − 1

R
I(PX ,h) − 1

RNL
, 0

}]

that converges to ε(ρ) as L → ∞.
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where

JX (s)
∆
= M − 2−M

∑

x∈X
E

[
log2

∑

x′∈X
e−|√s(x−x′)+Z|2+|Z|2

]
(10)

is the mutual information of an AWGN channel with input X ∼ Uniform(X ) and SNR s (expec-

tation in (10) is with respect to Z ∼ NC(0, 1)).

We define the BICM channel associated to the original block-fading channel by including

the mapper µ, the modulator X and the BICM-ML posterior log-probability ratio computer (5)

as part of the channel and not as a part of a (suboptimal) encoder and decoder. Following

[11], the associated BICM channel can be modeled as set of M binary-input symmetric-output

channels, where the input and output of the m-th channel over the n-th fading block are given

by {cn,k,m : k = 1, . . . , L} and {Ln,k,m : k = 1, . . . , L}, respectively. The resulting mutual

information is given by

JX ,BICM(s)
∆
= M − 2−M

M∑

m=1

1∑

a=0

∑

x∈Xm
a

E


log2

∑

x′∈X
e−|√s(x−x′)+Z|2

∑

x′∈Xm
a

e−|√s(x−x′)+Z|2


 (11)

Notice that the expectation over Z ∼ NC(0, 1) in (10) and (11) can be easily evaluated by using

the Gauss-Hermite quadrature rules which are tabulated in [20] and can be computed using for

example the algorithms described in [21].

The information outage probabilities of the block-fading channel with i.i.d. input X ∼
NC(0, 1), X ∼ Uniform(X ) and that of the associated BICM channel are denoted by2 P G

out(ρ, R),

PX
out(ρ, R) and by PX ,BICM

out (ρ, R), respectively. From the data processing inequality and the fact

that the proper complex Gaussian distribution maximizes differential entropy [22], we obtain that

P G
out(ρ, R) ≤ PX

out(ρ, R) ≤ PX ,BICM
out (ρ, R) (12)

for all R and ρ.

By evaluating the outage probability for a given signal set X we can assess the performance loss

incurred by the suboptimal coded modulation ensemble M(C, µ,X ). Furthermore, by evaluating

the outage probability of the BICM channel, we can assess the performance loss incurred by the

suboptimal BICM-ML decoder with respect to the ML decoder.

2It is straightforward to show that with i.i.d. input X ∼ NC(0, 1), I(PX ,h) = 1
N

∑N

n=1 log(1 + γnρ).
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For the sake of simplicity, we consider independent Rayleigh fading, i.e., the fading coefficients

hn are i.i.d., ∼ NC(0, 1) and the fading power gains γn are Chi-squared with two degrees of

freedom, i.e., γn ∼ fγ(z) = e−z11{z ≥ 0}, where 11{E} denotes the indicator function of the event

E . This assumption will be discussed and relaxed at the end of this section.

We are interested in the SNR reliability function (1) of the block-fading channel. Lemma 1

below, that follows as a corollary of the analysis in [10], yields the SNR reliability function subject

to the average input power constraint.

Lemma 1 Consider the block-fading channel (2) with i.i.d. Rayleigh fading, under the average

input power constraint 1
NL

E[‖X‖2
F ] ≤ 1. The SNR reliability function for any block length L ≥ 1

and fixed rate R is given by d?(R) = N and it is achieved by Gaussian random codes, i.e., the

random coding SNR exponent d
(r)
G (R) of the Gaussian i.i.d. ensemble for any L ≥ 1 is also equal

to N .

Proof. Although Lemma 1 follows as a corollary of [10, Th. 2], we provide its proof explicitly

for the sake of completeness and because it is instructive to illustrate the proof technique used for

the following Theorem 1.

In passing, we notice that the proof of Lemma 1 deals with the more general case of coding

schemes with rate increasing with SNR as R(ρ) = r log ρ, where r ∈ [0, 1], and shows that3

d?(r) = N(1− r) and this optimal SNR exponent can be achieved by coding schemes of any block

length L ≥ 1. The details are given in Appendix A. �

For the considered coded modulation ensemble, we have the following result:

Theorem 1 Consider the block-fading channel (2) with i.i.d. Rayleigh fading and input signal set

X of cardinality 2M . The SNR reliability function of the channel is upperbounded by the Singleton

bound

d?
X (R) ≤ δ(N, M, R)

∆
= 1 +

⌊
N

(
1 − R

M

)⌋
(13)

The random coding SNR exponent of the random coded modulation ensemble M(C, µ,X ) defined

3The exponential equality and inequalities notation
.
=, ≥̇ and ≤̇ were introduced in [10]. We write f(z)

.
= zd to

indicate that limz→∞
log f(z)

log z
= d. ≥̇ and ≤̇ are used similarly.
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previously, with block length L(ρ) satisfying limρ→∞
L(ρ)
log ρ

= β and rate R, is lowerbounded by

d
(r)
X (R) ≥





βNM log(2)
(
1 − R

M

)
, 0 ≤ β < 1

M log(2)

δ(N, M, R) − 1 + min
{
1, βM log(2)

[
N
(
1 − R

M

)
− δ(N, M, R) + 1

]}
, 1

M log(2)
≤ β < ∞.

(14)

Furthermore, the SNR random coding exponent of the associated BICM channel satisfies the same

lower bounds (14).

Proof. See Appendix B. �

An immediate consequence of Theorem 1 is the following

Corollary 1 The SNR reliability function of the block-fading channel with input X and of the

associated BICM channel is given by d?
X (R) = δ(N, M, R) for all R ∈ (0, M ], except for the N

discontinuity points of δ(N, M, R), i.e., for the values of R for which N(1−R/M) is an integer.

Proof. We let β → ∞ in the random coding lower bound (14) and we obtain

δ(N, M, R) ≥ d?
X (R) ≥ d

(r)
X (R) ≥

⌈
N

(
1 − R

M

)⌉

where the rightmost term coincides with δ(N, M, R) for all points R ∈ (0, M ] where δ(N, M, R)

is continuous. �

The following remarks are in order:

1. The codes achieving the optimal diversity order d?
X (R) in Theorem 1 are found in the ensem-

ble M(C, µ,X ) with block length that increases with SNR faster than log(ρ). This is due to

the fact that, differently from the Gaussian ensemble (Lemma 1), for a given discrete signal

set X there is a non-zero probability that two codewords are identical, for any finite length

L. Hence, we have to make L increase with ρ rapidly enough such that this probability

does not dominate the overall probability of error. Nevertheless, it is easy to find explicit

constructions achieving the optimal Singleton bound block-diversity δ(N, M, R) for several

cases of N and finite L [3, 5]. Typically, the WER of diversity-wise optimal codes behaves

like Kρ−δ(N,M,R) for large ρ. The coefficient K yields a horizontal shift of the WER vs. SNR

curve (in a log-log chart) with respect to the outage probability curve P X
out(ρ, R) that we

refer to as “gap from outage”.
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Codes found in previous works [3, 4, 5, 6] have a gap from outage that increases with the

block length L. On the contrary, the gap from outage of the class of codes proposed in this

paper is asymptotically independent of the block length. We say that a code ensemble is

good if it achieves vanishing gap from outage as L → ∞. We say that a code ensemble is

weakly good if it achieves constant gap from outage as L → ∞. In Section 4.3 we give a

sufficient condition for weak goodness and argue that the proposed codes are weakly good.

2. For any given coding rate R, we can achieve “full diversity” δ(N, M, R) = N by considering

a signal set large enough. In fact, by letting M ≥ NR we have δ(N, M, R) = N for any

desired rate R < M . This corresponds to the intuitive argument that larger and larger

signal sets approach better and better Gaussian codes.4

3. We can relax the assumption of Rayleigh fading by noticing that in the proofs of Lemma

1 and Theorem 1 only the near-zero behavior of the fading power gain distribution has a

role. For Rayleigh fading, we have Pr(γn ≤ ε) ≈ ε, for small ε > 0. Hence, the above

results hold for all block-fading channels with i.i.d. fading with power gain distribution

with this behavior. More in general, as argued in [10], for a fading distribution with near-

zero behavior Pr(γn ≤ ε) ≈ εD, the SNR reliability function is given by Dδ(N, M, R). For

example, this is the case of independent Rayleigh fading with a D antenna receiver using

D-fold maximal-ratio combining [23].

Fig. 1 shows δ(N, M, R) (Singleton bound) and the random coding lower bounds for the two cases

βM log(2) = 1/2 and βM log(2) = 2, in the case N = 8 and M = 4 (X is a 16-ary signal set). It

can be observed that as β increases (for fixed M), the random coding lower bound coincides over

a larger and larger support with the Singleton upper bound. However, in the discontinuity points

it will never coincide.

In order to illustrate the operational meaning of the above results and motivate the code

construction in the following section, we show in Fig. 2 the outage probability versus SNR of

the block-fading channel with i.i.d. Rayleigh fading with N = 8 blocks, for Gaussian inputs,

4For finite SNR, expanding the signal set without proper shaping incurs shaping loss. However, in terms of SNR

exponent this effect is not seen as shaping involves only a fixed gap from outage. Using the definition introduced

above, we might say that codes found in our ensemble of coded modulation schemes over larger and larger QAM

complex constellations can be weakly good, but cannot be good due to the inherent shaping loss.
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8-PSK and 16-QAM constellations and for the associated BICM channels with Gray mapping5

[11], with spectral efficiencies R = 1, 1.5, 2 bit/complex dimension. In these log-log charts, the

SNR exponent determines the slope of the outage probability curve at high SNR (small outage

probability). We notice that Gaussian inputs always show the steepest slope and that this is

independent of R for high SNR (in agreement with Lemma 1). For R = 1 we observe a slight

slope variation since have that δ(8, 3, 1) = 6 (for 8-PSK) and that δ(8, 3, 1) = 7 (for 16-QAM).

The slope difference will be more apparent for larger SNR values. For R = 1.5, the curves also

show different slopes since δ(8, 3, 1.5) = 5 (for 8-PSK) while δ(8, 4, 1.5) = 6 (for 16-QAM). This

effect is even more evident for R = 2, where δ(8, 3, 2) = 4 (for 8-PSK) and δ(8, 4, 2) = 5 (for

16-QAM). Notice also that, in all cases, the SNR loss incurred by BICM-ML decoding is very

small.

4 Blockwise concatenated coded modulation

In this section we introduce a general construction for MDS coded modulation schemes for the

block-fading channel and we provide bounds and approximations to their error probability under

ML and BICM-ML decoding.

So far, we have considered the ensemble M(C, µ,X ) where C is a random binary linear code.

In this section we consider specific ensembles where C has some structure. In particular, C be-

longs to the well-known and vast family of turbo-like codes (parallel and serially concatenated

codes, repeat-accumulate codes, etc..) and it is obtained by concatenating linear binary encoders

through interleavers. Hence, we shall considered the structured random coding ensemble where

the component encoders for C are fixed and the interleavers are randomly selected with uniform

probability over all possible permutations of given length. For the sake of notation simplicity, we

keep using the notation M(C, µ,X ) for any of such ensembles with given component encoders,

where now the symbol C is a placeholder indicating the set of component encoders defining the

concatenated code.

5All BICM schemes considered in this work make use of Gray mapping.

13



−10 −5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

P o
ut

Gaussian R=1 bit/s/Hz
8−PSK R=1 bit/s/Hz
8−PSK (BICM) R=1 bit/s/Hz
16−QAM R=1 bit/s/Hz
16−QAM (BICM) R=1 bit/s/Hz
Gaussian R=1.5 bit/s/Hz
8−PSK R=1.5 bit/s/Hz
8−PSK (BICM) R=1.5 bit/s/Hz
16−QAM R=1.5 bit/s/Hz
16−QAM (BICM) R=1.5 bit/s/Hz
Gaussian R=2 bit/s/Hz
8−PSK R=2 bit/s/Hz
8−PSK (BICM) R=2 bit/s/Hz
16−QAM R=2 bit/s/Hz
16−QAM (BICM) R=2 bit/s/Hz

R = 1 bit/s/Hz 
R = 1.5 bit/s/Hz 

R = 2 bit/s/Hz 

Figure 2: Outage probability for N = 8, R = 1, 1.5, 2 bit/complex dimension, Gaussian inputs,

8-PSK and 16-QAM modulations. Thick solid lines correspond to Gaussian inputs, thin solid lines

to 8-PSK, dashed lines to 8-PSK with BICM, dashed-dotted lines to 16-QAM and dotted lines to

16-QAM with BICM.
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4.1 Code construction

Fig. 3 shows the proposed encoder structure that we refer to as Blockwise Concatenated Coding

(BCC). The binary linear code is formed by the concatenation of a binary linear encoder CO of

rate rO, whose output is partitioned into N blocks. The blocks are separately interleaved by the

permutations (π1, . . . , πN) and the result is fed into N inner encoders CI of rate rI . Finally, the

output of each inner encoder is mapped onto a sequence of signals in X by the one-to-one symbol

mapping µ so that the rate of the resulting blockwise concatenated code is R = rOrIM .

We denote by K the information block length, i.e., K information bits enter the outer encoder.

Correspondingly, the length of each outer output block is Lπ = K/(NrO) and the length of the

inner-encoded blocks is LB = Lπ/rI binary symbols. Eventually, the length of the blocks sent to

the channel is L = LB/M modulation symbols (complex dimensions). Without loss of essential

generality, we assume that Lπ and LB defined above are integers.

The codes considered in this work make use of bit-interleaving between the inner encoder and

the mapper [11], denoted in Fig. 3 by the permutations (πµ
1 , . . . , πµ

N). However, we hasten to

say that mapping through interleavers is not necessary for the construction and more general

mappings could be envisaged. In any case, since interleavers and inner encoding are performed on

a blockwise basis, the block diversity of the concatenated code coincides with the block diversity

of the outer code.

It is worthwhile to point out some special cases of the BCC construction. When CO is a

convolutional encoder and CI is the trivial rate-1 identity encoder, we refer to the resulting scheme

as a blockwise partitioned Convolutional Code (briefly, CC). Interestingly, most previously proposed

codes for the block-fading channel (see [3, 4, 5, 6]) belong to this class. When the outer code is a

simple repetition code of rate rO = 1/N and the inner codes are rate-one accumulators (generator

1/(1 + D)) [24], the resulting scheme is referred to as Repeat and Blockwise Accumulate (RBA)

code. When both outer and inner codes are convolutional codes, we will refer to the resulting

scheme as blockwise concatenated convolutional codes (BCCC).

As anticipated in the Introduction, practical decoding of BCCs resorts to BP iterative decoding

algorithm over the code graph [19]. In particular, when either CO or CI are convolutional codes,

the well-known forward-backward decoding algorithm is used over the subgraph representing the

corresponding trellis [25].
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Figure 3: The general encoder for Blockwise Concatenated Coding.

Fig. 4 illustrates the effectiveness of blockwise concatenation with respect to standard turbo-

like codes designed for the AWGN. In particular, we compare the WER of a binary R = 1/2

RBA and BCCC (with convolutional (5, 7)8 outer code and inner accumulators) with that of their

standard counterparts (namely, a Repeat and Accumulate (RA) code and a Serially Concatenated

Convolutional Code (SCCC)), mapped over N = 2 fading blocks with 10 BP decoder decoding

iterations. In all cases, the information block length is K = 1024. We observe a significant

difference in the slope of the WER curve, due to the fact that blockwise concatenation preserves

the block diversity dB of the outer code while standard concatenation does not.

In order to show the generality of the proposed approach to construct MDS BCCs, Figure 5

illustrates the WER performance obtained by simulation with BP decoding of binary r = 1/2

BCCCs (5, 7)8 and (25, 35)8 both with with inner accumulators, the SCCCs with outer (5, 7)8 anf

(25, 35)8 and inner accumulators and best known 4 and 64 states CCs [6] mapped over N = 8

fading blocks with block length of 1024 information bits. In this case, the Singleton bound is

δ(N, M, R) = 5. Notice that since the (5, 7)8 code is not MDS [3, 6], the corresponding BCCC

(and of course the CC itself) will show a different slope and performance degradation at high

SNR. Indeed, we can appreciate a steeper slope of the BCCC with (25, 35)8 and the 64 states CC

since both are MDS codes. We also observe clear advantage of BCCCs over standard CCs at this

block length (this point will be further discussed in depth in section 4.3). Finally, as illustrated

also in the previous figure, the MDS BCCCs remarkably outperform their SCCC counterparts,

which are designed for the ergodic channel.
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4.2 Upper bounds and approximations on ML decoding error proba-

bility

For the sake of simplicity we consider first codes over the QPSK with Gray mapping, or, equiva-

lently, over BPSK. This case is particularly simple since the squared Euclidean distance between

the constellation points is proportional to the Hamming distance between their binary labels. A

tight upper bound on the WER of binary codes mapped over QPSK with Gray mapping and

transmitted over N fading blocks, is given by Malkamaki and Leib (M&L) in [5], and reads

Pe(ρ) ≤ E


min



1,

∑

w1,...,wN

Aw1,...,wN
Q




√√√√κρ

N∑

n=1

γnwn








 (15)

where Aw1,...,wN
is the Multivariate Weight Enumeration Function (MWEF) of C [26] which ac-

counts for the number of pairwise error events with output Hamming weights per block w1, . . . , wN ,

κ = 2 for BPSK and κ = 1 for QPSK, and

Q(x)
∆
=

1√
2π

∫ ∞

x

e−
t2

2 dt (16)

is the Gaussian tail function. Expectation in (15) is with respect to the fading power gains

(γ1, . . . , γN). In order to compute (15), we need to compute a multivariate expectation that does

not break into the individual expectation of each term in the union bound because of the min{1, ·}.
Hence, in practice, we have to resort to Monte Carlo methods.

In [27], Byun, Park and Lee presented a simpler upper bound to (15) in the context of ML

decoding of trellis space-time codes. Unfortunately, the bound in [27] upperbounds (15) only if the

sum over w1, . . . , wN contains a single term. Nevertheless, we shall demonstrate through several

examples that this technique, referred to as the BPL approximation, if applied to full diversity

codes (i.e., codes with blockwise Hamming distance dB = N) yields a very good approximation of

the WER, with the advantage that it is much easier to compute than the M&L bound.

Assuming dB = N , which implies that min wn > 0 for all n = 1, . . . , N , the BPL approximation

takes on the form

Pe(ρ) / E


min



1,

∑

∆p

A∆pQ




√√√√κρ∆
1/N
p

N∑

n=1

γn








 (17)

where ∆p
∆
=
∏N

n=1 wn is the product weight and A∆p is the Product Weight Enumeration Function

(PWEF) of C, i.e., the number of codewords of C with product weight ∆p. By noticing that
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γ =
∑N

n=1 γn is central chi-squared with 2N degrees of freedom and mean N , (17) becomes

Pe(ρ) /

∫ +∞

0

min



1,

∑

∆p

A∆pQ

(√
κρ∆

1/N
p z

)
 fγ(z)dz (18)

where

fγ(z) =
zN−1

(N − 1)!
e−z (19)

is the pdf of γ. In this way, only product weights have to be enumerated and the computation of

(18) requires just a one-dimensional integration, that is easily computed numerically.

Union bound-based techniques are known to be loose for turbo codes and other capacity-

approaching code ensembles such as LDPC and RA codes over the AWGN channel. As a matter

of fact, improved bounding techniques are needed in order to obtain meaningful upper bounds in

the SNR range between the capacity threshold and the cut-off rate threshold [14, 15, 16, 17, 18].

Among those, the tangential-sphere bound (TSB) is known to be the tightest. The TSB can

be simply extended to the block-fading channel for each fixed realization of the fading vector h

(for more details see [28, 29]). Then, an outer Monte Carlo average over the fading is required.

Since the TSB requires the optimization of certain parameters for each new fading realization, the

computation of the TSB is very intensive. A slight simplification is obtained by applying the TSB

technique to the PWEF, as in the BPL approximation. The resulting approximation (referred to

as BPL-TSB) requires only a single variate expectation.

The following examples illustrate the bounds and the approximations described above for

BPSK and QPSK with Gray mapping. The MWEF and PWEF are obtained as described in

Appendix C. In particular, Fig. 6 compares the simulation (with 10 BP decoder iterations) with

the ML bounds and approximations for RBA codes of R = 1/2 with information block length

K = 256, over N = 2 fading blocks. The expectation in the M&L bound and in the TSB are

computed by Monte Carlo. We observe an excellent matching between the performance of BP

decoding and the bounds on ML decoding, even for such short block lengths, in contrast to the

AWGN case. We also notice that the TSB is only marginally tighter than the M&L bound and,

due to its high computational complexity, it is useless in this context. The BPL approximation

predicts almost exactly the WER of the RBA code for all block lengths. Based on such examples

(and on very extensive numerical experiments not reported here for the sake of space limitation) we

conclude that the performance of BCCs on block-fading channels can be predicted very accurately

20



by simple ML analysis techniques.
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Figure 6: WER obtained by BP decoding simulation with 10 iterations and ML bounds and

approximations for binary RBA of R = 1/2 and K = 256 over N = 2 blocks.

For general signal sets X and modulator mappings µ the above bounds are no longer valid since

the squared Euclidean distance between signals depends, in general, on the individual labels and

not only on the labels’ Hamming distance. Assuming bit-interleaving between the inner binary

codes and the modulator mapping, we can make use of the BICM Bhattacharyya union bound

developed in [11], combined with the “limit before average” approach of [5]. We obtain

Pe(ρ) ≤ E

[
min

{
1,

∑

w1,...,wN

Aw1,...,wN

1

2

N∏

n=1

Bn(ρ, µ,X )wn

}]
(20)

where

Bn(ρ, µ,X )
∆
=

2−M

M

M∑

m=1

1∑

a=0

∑

x∈Xm
a

E




√√√√√√√√

∑

x′∈Xm
ā

e−|√ργn(x−x′)+Z|2

∑

x′∈Xm
a

e−|√ργn(x−x′)+Z|2




(21)
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is the Bhattacharyya factor of the BICM channel associated to the n-th fading block, with SNR

γnρ.

The bound (20) holds under the assumption that the mapping µ is symmetrized, as explained

in [11], i.e., that a random i.i.d. scrambling sequence, known both to the transmitter and to

the receiver, chooses at every symbol with probability 1/2 either the mapping µ or its comple-

ment µ̄, obtained by complementing each bit in the labels of µ.6 The factor 1/2 in front of

the Bhattacharyya union bound follows from the fact that, under the symmetrized mapping as-

sumption, the associated BICM channel with inputs cn,k,m and outputs Ln,k,m defined in (5) is

binary-input output-symmetric (see [30]). The expectation in (21) can be efficiently computed by

Gauss-Hermite quadratures.

As shown in [31], the tail of the pdf of the bit-wise posterior log-probability ratio (5) at the

output of the associated BICM channel is very close to the corresponding output of a binary-input

AWGN channel with fading power gain

ζn = −1

ρ
log Bn(ρ, µ,X ) (22)

Moreover, for given fading gain γn we have [31]

lim
ρ→∞

ζn =
d2

min

4
γn. (23)

independently of the mapping µ. Under this Gaussian approximation, we obtain

Pe(ρ) / E

[
min

{
1,

∑

w1,...,wN

Aw1,...,wN
Q




√√√√2ρ

N∑

n=1

wnζn



}]

, (24)

and the corresponding BPL approximation (for full diversity codes)

Pe(ρ) / E

[
min

{
1,
∑

∆p

A∆pQ




√√√√2ρ∆
1/N
p

N∑

n=1

ζn



}]

. (25)

Unfortunately, in this case
∑N

n=1 ζn is no longer chi-squared distributed (from (23) it follows that

it is chi-squared in the limit of high SNR). Therefore, (25) has to be computed via a Monte Carlo

6If the mapping µ and the constellation X are such that, for all label positions m = 1, . . . , M , the log-probability

ratio defined in (5) is symmetrically distributed, that is, pLn,k,m
(z|cn,k,m = a) = pLn,k,m

(−z|cn,k,m = ā), then the

scrambling assumption is not needed.
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average, reducing only slightly the computational burden with respect to (24). We will refer to

(20) as the M&L-Bhattacharyya bound and to (24) as the M&L-GA.

We hasten to say that, although the proposed methods are just approximation, they represent

so far the only alternative to extensive simulation. Indeed, they might be regarded as the analogous

for the block-fading channel to the EXIT chart “analysis” commonly used for fully-interleaved

fading channels and AWGN channels: they are both based on approximating a complicated binary-

input output-symmetric channel by a binary-input AWGN channel, “matched” in some sense to

the former.

In Fig. 7 we show the WER (obtained by simulation with 10 BP decoder iterations) and the

various upper bounds and approximations on ML decoding error probability described above, for

a RBA code of rate r = 1/2 over N = 2 fading blocks and information block length K = 256,

with 8-PSK and 16-QAM (the corresponding spectral efficiencies are R = 1.5 and 2 bit/complex

dimension). We show the BICM outage probability for 8-PSK and 16-QAM for the sake of

comparison. Again, we observe an excellent match between simulation with BP decoding and ML

approximations, for all modulations. We also observe that the BICM Bhattacharyya bound is

looser than the Gaussian Approximation (24).

4.3 Weak goodness of BCC ensembles

As introduced in Section 3, we say that a code ensemble over X is good if, for block length L → ∞,

its WER converges to the outage probability P X
out(ρ, R). We say that a code ensemble over X is

weakly good if, for block length L → ∞, its WER shows a fixed SNR gap to outage probability,

asymptotically independent of L. In this section we give an explicit sufficient condition for weak

goodness in terms of the asymptotic exponential growth rate function [32] of the multivariate

weight enumerator of specific ensembles.

The issue of weak goodness is non-trivial, as illustrated by the following argument. A code

ensemble M(C, µ,X ) such that, for all sufficiently large L, a randomly generated member in the

ensemble attains the Singleton bound with probability 1 is a good candidate for weak goodness.

However, this condition is neither necessary nor sufficient. For example, the ensemble M(C, µ,X )

considered in Theorem 1 has a small but non-zero probability that a randomly selected member is

not blockwise MDS, nevertheless it attains the optimal SNR exponent provided that L grows faster
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than log ρ, and hence it is weakly good. On the contrary, the ensemble of random BCCs with given

outer and non-trivial inner encoders and the ensemble of blockwise partitioned CCs (i.e., BCCs

with convolutional outer encoder and rate-1 identity encoder considered in [3, 4, 5, 6]) that can

be seen as BCCs with convolutional outer encoder and trivial (identity) inner encoder, attain the

Singleton bound with probability 1 provided that the outer code is blockwise MDS. Nevertheless,

simulations show that while the WER of general BCCs with recursive inner encoder is almost

independent of the block length, the WER of CCs grows with the block length. For example,

Fig.8 shows the WER for fixed SNR versus the information block length K, for the ensemble of

R = 1/4 RBA codes and the standard 64-states CCs with generators (135, 135, 147, 163)8 mapped

over N = 4 blocks, and of r = 1/2 BCCs (with outer convolutional encoder (5, 7)8 and inner

accumulators) and the 64-states CCs mapped over N = 8 blocks optimized in [6] with generators

(103, 147)8 for the block-fading channel. The different behavior of the WER as a function of the

block length for the two ensembles is evident.

We focus first on codes over the BPSK modulation. Therefore, in this case L = LB. Let ω =

(ω1, . . . , ωN) ∈ [0, 1]N be the vector of normalized Hamming weights per block. The asymptotic

exponential growth rate function [32] of the multivariate weight enumerator is defined by

a(ω)
∆
= lim

ε→0
lim

L→∞

1

L
log
∣∣SL

ε (ω)
∣∣ (26)

where SL
ε (ω) is the set of codewords in the length-L ensemble with Hamming weights per block

satisfying

|wn/L − ωn| ≤ ε, n = 1, . . . , N (27)

We have the following results:

Theorem 2 Consider an ensemble of codes M(C, µ,X ) of rate R, where X is BPSK, over a

block-fading channel with N blocks. Let a(ω) be the asymptotic exponential growth rate function

of the ensemble multivariate weight enumerator. For 1 ≤ k ≤ N , let W(N, k) ∈ FN
2 denote the set

of binary vectors with Hamming weight not smaller than N −k +1 and define ŝ to be the infimum

of all s ≥ 0 such that

inf
x∈W(N,δ(N,M,R))

inf
ω∈[0,1]N

{
s

N∑

n=1

xn ωn − a(ω)

}
> 0 (28)

If ŝ < ∞, then the code ensemble is weakly good.
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Proof. See Appendix D. �

As far as higher order coded modulations are concerned, we have the following

Corollary 2 Consider an ensemble of codes M(C, µ,X ) of rate R, where X is a complex signal set

of size 2M , over a block-fading channel with N blocks, where modulation is obtained by (random)

bit-interleaving and decoding by the BICM-ML decoder defined by (6). If the underlying ensemble

of binary codes (i.e., mapping the binary symbols of C directly onto BPSK) is weakly good, then

the ensemble M(C, µ,X ) is weakly good.

Proof. See Appendix D. �

The above results (and the proofs of Appendix D) reveal that the error probability of weakly

good codes in the regime where both the block length and the SNR are large is dominated by the

event that more than δ(N, M, R) fading components are small (in the sense of the proof of Theorem

2). On the contrary, when less than δ(N, M, R) fading components are small, the code projected

over the significant fading components has a finite ML decoding threshold (with probability 1).

Therefore, for large SNR, its error probability vanishes for all such fading realizations. Apart

from a gap in SNR, this is the same behavior of the information outage probability for rate R

and discrete signal set X . This observation provides a partial explanation of the striking fact

that, differently from the case of AWGN or fully interleaved fading, in block fading the error

probability under BP decoding is closely approximated by the analysis of the ML decoder. In

fact, we argue that the two regimes of more or less than δ(N, M, R) small fading components

dominate the average error probability, while the detailed behavior of the decoder in the transition

region between these two extremes is not very important, provided that the probability that a

channel realization hits the transition region is small, i.e., that the transition is sufficiently sharp.

The sharper and sharper transition between the below-threshold and above-threshold regimes of

random-like concatenated codes of increasing block length is referred to as interleaving gain in

[33, 34]. We argue that weak goodness of BCCs in block-fading channels is another manifestation

of the interleaving gain, even if for such channel no waterfall behavior is observed.

In Appendix D we show also that the ensemble of trellis terminated CCs of increasing block

length considered in [3, 4, 5, 6] does not satisfy the condition of Theorem 2. Numerical verification
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of Theorem 2 is needed for a specific code ensemble. In particular, one has to show that

sup
x∈W(N,δ(N,M,R))

sup
ω∈[0,1]N

a(ω)
∑N

n=1 xnωn

< ∞ (29)

Supported by the simulations in Figs. 8, 9 and 10 and by the case of RBAs, where explicit

calculation of the multivariate weight enumerator is possible (see Appendix C), we conjecture that

(29) holds for the family of random BCCs with MDS outer code and inner recursive encoders.

As an example, in Fig. 9 we show the asymptotic WER for the RBA ensemble of rate 1/2 with

BPSK modulation, over a channel with N = 2 fading blocks. The asymptotic WER is computed

via the asymptotic Bhattacharyya M&L bound given by

Pe(ρ) ≤ Pr

(
max

ω∈[0,1]N

a(ω)
∑N

n=1 ωnγn

≥ ρ

)
(30)

as motivated in Appendix D. Simulations (BP iterative decoder) for information block lengths

K = 100, 1000 and 10000 are shown for comparison. This figure clearly shows that the WER of

these codes becomes quickly independent of the block length and shows fixed gap from the outage

probability.

In order to illustrate the weak goodness of BCCs with BICM and high-order modulations,

Fig. 10 shows the asymptotic WER of an RBA code of rate R = 2 bit/complex dimension

with 16-QAM modulation over N = 2 fading blocks. The asymptotic WER is computed via the

asymptotic Bhattacharyya M&L bound given by

Pe(ρ) ≤ Pr

(
max

ω∈[0,1]N

a(ω)
∑N

n=1 ωnζn

≥ ρ

)
(31)

as motivated in Appendix D, where ζn is defined in (22). Simulations (BP iterative decoder) for

information block lengths K = 100, 1000 and 10000 are shown for comparison.

We conclude this section by pointing out an interesting fact that follows as a consequence

of weak goodness and allows the accurate WER evaluation of codes with given block length by

using weight enumerators of codes in the same ensemble but with much smaller block length.

This observation is illustrated by Fig. 11, showing the WER and the BPL approximation for an

RBA code of rate R = 1/4 mapped over N = 4 fading blocks with K = 100. We also show the

simulation of BP decoding with 10 iterations, the BPL approximation computed by truncating

the PWEF to maximum product weight ∆max
p = 10000, and the PBL approximation computed for
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Figure 9: Asymptotic error probability (30) for a binary rate r = 1/2 RBA code mapped over N =

2 fading blocks and corresponding BP decoding simulation with 30 iterations and K = 100, 1000

and 10000.
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Figure 10: Asymptotic error probability (31) for a rate R = 2 RBA code mapped over N = 2

fading blocks with 16-QAM (BICM) and corresponding BP decoding simulation with 30 iterations

for K = 100, 1000 and 10000.
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the PWEF of the same code with information block length K = 20. Interestingly, the truncation

of the PWEF yields too optimistic results, while the approximation based on the complete PWEF

of the shorter code still approximates very accurately the WER of the longer code. This has the

advantage that, in practice, computing the weight enumerator of shorter codes is in general less

computationally intensive.

As a matter of fact, the PWEF of the short code contains much more information on the code

behavior than the truncated PWEF of the long code. This is clearly illustrated by the PWEFs

in Figs. 12(a) and 12(b), showing the (non-asymptotic) exponential growth rate of the PWEF

defined as

F (∆p)
∆
=

1

LN
log A∆p

(32)

as a function of the normalized product weight ∆p = ∆p/L
N
B for the RBAs of rate 1/4, with 20

and 100 information bits (every mark corresponds to one pairwise error event with normalized

product weight ∆p). Truncation at ∆max
p = 10000 corresponds to maximum normalized product

10−4, which means that only the portion for 0 ≤ ∆p ≤ 10−4 of the distribution of Fig. 12(b) is

taken into account in the BPL approximation using the truncated enumerator. This is clearly

not sufficient to describe the RBA product weight enumerator, as opposed to the PWEF of the

shorter code.

4.4 On code optimization

So far we have seen that the BCC coding structure yields weakly good codes for the block-fading

channel. However, most of the shown examples were based on the simple RBA structure. It is

then natural to ask whether more general BCCs can reduce significantly the gap from outage. In

this section we show some examples of other BCC constructions that in some case improve upon

the basic RBA of same rate. Figs. 13 and 14 show the performance of BCCCs with binary rate

r = 1/4, attaining full diversity, with BPSK and 16-QAM BICM respectively for N = 4 fading

blocks, for K = 1024 and 40 BP decoder iterations. The octal generators are given in the legend.

We have also considered the 4 states accumulator given in [35, Ch. 4] with generator (1/7)8. We

observe that in both cases the gap from outage is approximately of 1 dB. We notice from Fig.

13 that using more complicated outer or inner codes does not yield a significant gain. Using the

4 states inner accumulator in an RBA scheme yields almost the same performance that the best
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Figure 11: WER obtained by BP decoding simulation with 10 iterations and BPL approximations

for RBA with rate R = 1/4 and 100 information bits per frame, over N = 4 fading blocks.

32



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalized Product Weight

G
ro

w
th

 ra
te

 P
W

EF

(a) RBA of rate R = 1/4 and K = 20 information bits

(b) RBA of rate R = 1/4 and K = 100 information bits
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BCCC.

From these examples, and several other numerical experiments not reported here for the sake

of space limitation, it seems that, while some room is left for code optimization by searching over

the component code generators, the improvements that may be expected are not dramatic and

probably do not justify the decoding complexity increase (similar conclusions can be drawn from

the results of [3, 4, 5, 6]).
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Figure 13: WER (simulation with 40 BP decoding iterations) of several BCCs of rate R = 1/4

over BPSK, for N = 4 fading blocks and K = 1024.
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Figure 14: WER (simulation with 40 BP decoding iterations) of several BCCs of rate R = 1/4

over 16-QAM (BICM), for N = 4 fading blocks and K = 1024.
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5 Conclusions

In this paper we determined the SNR reliability function of codes over given finite signal sets

over the block-fading channel. Random coding obtained by concatenating a linear binary random

code to the modulator via a fixed one-to-one mapping achieve the same optimal SNR reliability

function provided that the block length grows rapidly enough with SNR. Pragmatic BICM schemes

under suboptimal BICM-ML decoding achieve the same random coding SNR exponent of their

non-BICM counterparts (under optimal ML decoding).

Driven by these findings, we have proposed a general structure for random-like codes adapted to

the block-fading channel, based on blockwise concatenation and on BICM (to attain large spectral

efficiency). We provided some easily computable bounds and approximations to the WER of these

codes under ML decoding and BICM-ML decoding. Remarkably, our approximations agree very

well with the simulated performance of the iterative BP decoder at any SNR and even for relatively

short block length.

The proposed codes have WER almost independent of the block length (for large block length),

showing a fixed SNR gap from outage probability. We introduced the concept of “weak goodness”

for specific ensembles of codes having this behavior for large block length and large SNR, and

we provided a sufficient condition for weak goodness of specific code ensembles in terms of their

asymptotic multivariate weight enumerator exponential growth rate function.

Finally, we showed via extensive computer simulation that, while some improvement can be

expected by careful optimization of the component codes, weakly good BCC ensembles have very

similar behavior and only marginal improvements can be expected from careful optimization of

the component encoders.
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APPENDIX

A Proof of Lemma 1

Consider a family of codes for the block-fading channel (2) of given block length L, indexed by their

operating SNR ρ, such that the ρ-th code has rate R(ρ) = r log ρ (in nat), where r ∈ [0, 1], and

WER (averaged over the channel fading) Pe(ρ). Using Fano inequality [10] it is easy to show that

P G
out(ρ, R(ρ)) yields an upper bound on the best possible SNR exponent. Recall that the fading

power gains are defined as γn = |hn|2, for n = 1, . . . , N , and are i.i.d. exponentially distributed.

Following in the footsteps of [10] we define the normalized log-fading gains as αn = − log γn/ log ρ.

Hence, the joint distribution of the vector α = (α1, . . . , αN) is given by

p(α) = (log ρ)N exp

(
−

N∑

n=1

ρ−αn

)
ρ−

PN
n=1 αn (33)

The information outage event under Gaussian inputs is given by {∑N
n=1 log(1 + ργn) ≤ Nr log ρ}.

By noticing that (1 + ργn)
.
= ρ[1−αn]+, we can write the outage event as

A =

{
α ∈ R

N :

N∑

n=1

[1 − αn]+ ≤ rN

}
(34)

The probability of outage is easily seen to satisfy the exponential equality

P G
out(ρ, R(ρ))

.
=

∫

A∩RN
+

ρ−PN
n=1 αndα (35)

Therefore, the SNR exponent of outage probability is given by the following limit

dout(r) = − lim
ρ→∞

1

log(ρ)
log

∫

A∩RN
+

exp

(
− log(ρ)

N∑

n=1

αn

)
dα (36)

We apply Varadhan’s integral lemma [36] and we obtain

dout(r) = inf
α∈A∩RN

+

{
N∑

n=1

αn

}
(37)

The constraint set is the intersection of the region defined by
∑N

n=1 αn ≥ N(1− r) and the region

defined by αn ∈ [0, 1] for all n = 1, . . . , N . For all r ∈ [0, 1], the infimum in (37) is given by

dout(r) = N(1 − r) (38)
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In order to show that this exponent is actually the SNR reliability function for any L ≥ 1, we have

to prove achievability. We examine the average WER of a Gaussian random coding ensemble. Fix

L ≥ 1 and, for any SNR ρ, consider the ensemble generated with i.i.d. components with input

probability PX = NC(0, 1) and rate R(ρ) = r log ρ. The pairwise error probability under ML

decoding, for two codewords X(0) and X(1) for given fading coefficients is upperbounded by the

Chernoff bound

P (X(0) → X(1)|h) ≤ exp
(
−ρ

4
‖H(X(0) − X(1))‖2

F

)
(39)

By averaging over the random coding ensemble and using the fact that the entries of the matrix

difference X(0) − X(1) are i.i.d. ∼ NC(0, 2), we obtain

P (X(0) → X(1)|h) ≤
N∏

n=1

[
1 +

1

2
ργn

]−L
.
= ρ−L

PN
n=1[1−αn]+ (40)

(in general, the bar denotes quantities averaged over the code ensemble). By summing over all

ρrNL − 1 messages w 6= 0, we obtain the ensemble average union bound

Pe(ρ|h) ≤̇ ρ−L
PN

n=1[1−αn]++LNr (41)

Next, we upperbound the ensemble average WER by separating the outage event from the non-

outage event (the complement set denoted by Ac) as follows:

Pe(ρ) ≤ Pr(A) + Pr(error,Ac) (42)

Achievability is proved if we can show that Pr(error,Ac) ≤̇ ρ−N(1−r) for all L ≥ 1 and r ∈ [0, 1].

We have

Pr(error,Ac) ≤̇
∫

Ac∩RN
+

exp

(
− log(ρ)

(
N∑

n=1

αn + L

(
N∑

n=1

[1 − αn]+ − rN

)))
(43)

By using again Varadhan intergral lemma we obtain the lower bound on the Gaussian random

coding exponent

d
(r)
G (r) ≥ inf

α∈Ac∩RN
+

{
N∑

n=1

αn + L

(
N∑

n=1

[1 − αn]+ − rN

)}
(44)

where Ac is defined explicitly by
N∑

n=1

[1 − αn]+ ≥ rN
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It is easily seen that for all L ≥ 1 and r ∈ [0, 1] the infimum is obtained7 by

αn = 1, for n = 1, . . . , k − 1

αk = 1 + brNc − rN

αn = 0, for n = k + 1, . . . , N (45)

where k = N − brNc, and yields d
(r)
G (r) ≥ N(1 − r). Since this lower bound coincides with the

outage probability upper bound (38), we obtain that d?
G(r) = N(1 − r) and it is achieved by

Gaussian codes for any L ≥ 1. Any fixed coding rate R corresponds to the case r = 0, from which

the statement of Lemma 1 follows.

7This solution is not unique. Any configuration of the variables αn having k − 1 variables equal to 1, N − k − 1

variables equal to 0 and one variable equal to 1 + brNc − rN yields the same value of the infimum. Moreover, for

L = 1 also the solution αn = 0 for all n yields the same value.
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B Proof of Theorem 1

We fix the number of fading blocks N , the coding rate R and the (unit energy) modulation signal

set X . Using Fano inequality [10] it is easy to show that P X
out(ρ, R) yields an upper bound on

the best possible SNR exponent attained by coded modulations with signal set X . The outage

probability with discrete inputs is lower bounded by

PX
out(ρ, R)

a
≥ Pr

(
1

N

N∑

n=1

JX (γnρ) < R

)

= Pr

(
1

N

N∑

n=1

(
M − 2−M

∑

x∈X
E

[
log2

∑

x′∈X
e−|√ργn(x−x′)+Z|2+|Z|2

])
< R

)

= Pr

(
1

N

N∑

n=1

(
M − 2−M

∑

x∈X
E

[
log2

∑

x′∈X
e
−

˛

˛

˛

√
ρ1−αn (x−x′)+Z

˛

˛

˛

2
+|Z|2

])
< R

)
(46)

where Z ∼ NC(0, 1), and the last equality follows just from the definition of the normalized log-

fading gains αn = − log γn/ log ρ. The inequality (a) is due to the fact that we have a strict

inequality in the probability on the right. Since the term,

0 ≤ log2

(
∑

x′∈X
e
−

˛

˛

˛

√
ρ1−αn (x−x′)+z

˛

˛

˛

2
+|z|2

)
≤ log2

(
|X |e|z|2

)
=

log |X | + |z|2
log 2

(47)

and

E

[
log |X | + |z|2

log 2

]
< ∞ (48)

we can apply the dominated convergence theorem [37], for which,

lim
ρ→∞

E

[
log2

(
∑

x′∈X
e
−

˛

˛

˛

√
ρ1−αn (x−x′)+Z

˛

˛

˛

2
+|Z|2

)]
= E

[
lim
ρ→∞

log2

(
∑

x′∈X
e
−

˛

˛

˛

√
ρ1−αn (x−x′)+Z

˛

˛

˛

2
+|Z|2

)]
.

(49)

Since for all z ∈ C with |z| ≤ ∞ and s 6= 0 we have that

lim
ρ→∞

e
−

˛

˛

˛

√
ρ1−αns+z

˛

˛

˛

2
+|z|2

=

{
0 for αn < 1

1 for αn > 1

we have that, for large ρ and αn < 1, JX (ρ1−αn) → M and for αn > 1, JX (ρ1−αn) → 0. Hence, for

every ε > 0, we have the lower bound

Pout(ρ, R) ≥̇ Pr

(
1

N

N∑

n=1

11{αn ≤ 1 + ε} <
R

M

)

=̇

∫

Aε∩RN
+

ρ−PN
n=1 αndα (50)
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where we define the event

Aε =

{
α ∈ R

N :
1

N

N∑

n=1

11{αn ≤ 1 + ε} <
R

M

}
(51)

Using Varadhan’s lemma, we get the upperbound to the SNR reliability function as

d?
X (R) ≤ inf

ε>0
inf

α∈Aε∩RN
+

{
N∑

n=1

αn

}
(52)

It is not difficult to show that the α achieving the inner infimum in (52) is given by

αn = 1 + ε, for n = 1, . . . , N − k

αn = 0, for n = N − k + 1, . . . , N (53)

where k = 0, . . . , N − 1 is the unique integer satisfying k
N

< R
M

≤ k+1
N

. Since this holds for each

ε > 0, we can make the bound as tight as possible by letting ε ↓ 0, thus obtaining δ(N, M, R)

defined in (13).

In order to show that this exponent is actually the SNR reliability function, we have to prove

achievability. We examine the average WER of the coded modulation ensemble obtained by

concatenating a random binary linear code C with the signal set X via an arbitrary fixed one-to-

one mapping µ : FM
2 → X . The random binary linear code and the one-to-one mapping induce a

uniform i.i.d. input distribution over X . The pairwise error probability under ML decoding, for

two codewords X(0) and X(1) for given fading coefficients is again upperbounded by the Chernoff

bound (39). By averaging over the random coding ensemble and using the fact that the entries of

each codeword X(0) and X(1) are i.i.d. uniformly distributed over X , we obtain

P (X(0) → X(1)|h) ≤
N∏

n=1

BL
n (54)

where we define the Bhattacharyya coefficient [38]

Bn = 2−2M
∑

x∈X

∑

x′∈X
exp

(
−ρ

4
γn|x − x′|2

)
(55)

By summing over all 2NLR − 1 messages w 6= 0, we obtain the union bound

Pe(ρ|h) ≤ exp

(
−NLM log(2)

[
1 − R

M
− 1

NM

N∑

n=1

log2

(
1 + 2−M

∑

x6=x′

e−
1
4
|x−x′|2ρ1−αn

)])

= exp (−NLM log(2)G(ρ, α)) (56)
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We notice a fundamental difference between the above union bound for random coding with

discrete inputs and the corresponding union bound for random coding with Gaussian inputs given

in (41). With Gaussian inputs, we have that the union bound vanishes for any finite block length

L as ρ → ∞. On the contrary, with discrete inputs the union bound (56) is bounded away from

zero for any finite L as ρ → ∞. This is because with discrete inputs the probability that two

codewords coincide (i.e., have zero Euclidean distance) is positive for any finite L. Hence, it is

clear that in order to obtain a non-zero random coding SNR exponent we have to consider a code

ensemble with block length L = L(ρ), increasing with ρ. To this purpose, we define

β
∆
= lim

ρ→∞

L(ρ)

log ρ
. (57)

By averaging over the fading and using the fact that error probability cannot be larger than 1, we

obtain

Pe(ρ) ≤̇
∫

RN
+

ρ−
PN

n=1 αn min {1, exp (−NL(ρ)M log(2)G(ρ, α))} dα (58)

We notice that

lim
ρ→∞

log2

(
1 + 2−M

∑

x6=x′

e−
1
4
|x−x′|2ρ1−αn

)
=

{
0 for αn < 1

M for αn > 1

Hence, for ε > 0, a lower bound on the random coding SNR exponent can be obtained by replacing

G(ρ, α) by

G̃ε(α) = 1 − R

M
− 1

N

N∑

n=1

11{αn ≥ 1 − ε} (59)

We define the event

Bε =
{
α : G̃ε(α) ≤ 0

}
(60)

Hence, from (58) and what said above we obtain

Pe(ρ) ≤̇
∫

Bε∩RN
+

ρ−
PN

n=1 αn dα +

+

∫

Bc
ε∩RN

+

exp

(
− log(ρ)

[
N∑

n=1

αn + NβM log(2)G̃ε(α)

])
dα (61)

By applying again Varadhan’s lemma we obtain a lower bound to the random coding SNR exponent

given by

d
(r)
X (R) ≥ sup

ε>0
min

{
inf

α∈Bε∩RN
+

{
N∑

n=1

αn

}
, inf
α∈Bc

ε∩RN
+

{
N∑

n=1

αn + NβM log(2)G̃ε(α)

}}
(62)
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It is not difficult to show that the α achieving the first infimum in (62) is given by

αn = 1 − ε, for n = 1, . . . , N − k

αn = 0, for n = N − k + 1, . . . , N (63)

where k = 0, . . . , N − 1 is the unique integer satisfying k
N

≤ R
M

< k+1
N

.

For the second infimum in (62) we can rewrite the argument in the form

NβM log(2)

(
1 − R

M

)
+

N∑

n=1

[αn − βM log(2)11 {αn ≥ 1 − ε}] (64)

We distinguish two cases. If 0 ≤ βM log(2) < 1, then

αn − βM log(2)11 {αn ≥ 1 − ε} (65)

attains its minimum at αn = 0. Hence, we obtain that the infimum is given by NβM log(2)
(
1 − R

M

)
.

If βM log(2) ≥ 1, then (65) attains its absolute minimum at αn = 1 − ε, and its second smallest

minimum at αn = 0. The number of terms αn that can be made equal to 1 − ε subject to the

constraint α ∈ Bc
ε ∩ R

N
+ is given by bN(1 − R/M)c. Hence, the infimum is given by

NβM log(2)

(
1 − R

M

)
+ (1 − ε − βM log(2))

⌊
N

(
1 − R

M

)⌋
(66)

Both the first and the second infima are simultaneously maximized by letting ε ↓ 0. By collecting

all results together, we obtain that the random coding SNR exponent is lower bounded by (14).

The random coding SNR exponent of the associated BICM channel is immediately obtained

by using again the Bhattacharyya union bound [11]. In particular, for two randomly generated

codewords C(0),C(1) ∈ C

P (C(0) → C(1)|h) ≤ 2−LMN

N∏

n=1

(1 + Bn(ρ, µ,X ))LM (67)

where Bn(ρ, µ,X ) is defined in (21). The error probability averaged over the random BICM

ensemble can be upperbounded by

Pe(ρ|h) ≤ exp

(
−NLM log(2)

[
1 − R

M
− 1

N

N∑

n=1

log2 (1 + Bn(ρ, µ,X ))

])

= exp (−NLM log(2)G′(ρ, α))

(68)
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It is not difficult to see that

lim
ρ→∞

log2 (1 + Bn(ρ, µ,X )) =

{
0 for αn < 1

1 for αn > 1

Hence, for ε > 0, a lower bound on the random coding SNR exponent can be obtained by replacing

G′(ρ, α) by G̃ε(α) defined in (59). It then follows that the random coding SNR exponent of the

associated BICM channel satisfies the same lower bound of the original block-fading channel.
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C Weight Enumerators

Throughout this work we used extensively the multivariate weight enumerating function (MWEF)

of binary codes partitioned into N blocks. In this Appendix we focus on their calculation.

C.1 MWEF of BCCs

To compute the MWEF, we assume that blockwise concatenation is performed through a set of N

uniform interleavers [33, 34]. Then, we can compute the average multivariate weight enumeration

function according to the following

Proposition 1 Let CBCC be a blockwise concatenated code mapped over N fading blocks con-

structed by concatenating an outer code CO mapped over N blocks with input multivariate-output

weight enumeration function AO
i,w1,...,wN

, and N inner codes CI with input-output weight enu-

meration functions AI
i,w, through N uniform interleavers of length Lπ. Then, the average input

multivariate-output weight enumeration function of CBCC , ABCC
i,w1,...,wN

, is given by,

ABCC
i,w1,...,wN

=
∑

`1,...,`N

AO
i,`1,...,`N

N∏

n=1

AI
`n,wn

N∏

n=1

(
Lπ

`n

) . (69)

Proof. Define the Cartesian product code CP = CI × . . . × CI = (CI)N with multivariate-input

multivariate-output weight enumeration function AP
i1,...,iN ,w1,...,wN

. Then,

ABCC
i,w1,...,wN

= E

[
AP

`1,...,`N ,w1,...,wN

∣∣∣i
]

=
∑

`1,...,`N

P (`1, . . . , `N |i)AP
`1,...,`N ,w1,...,wN

(70)

where E[.] denotes expectation over all uniform interleavers and P (`1, . . . , `N |i) is the probability

of having an error event of input weights `1, . . . , `N of CP given the input weight i of CO and it is

given by,

P (`1, . . . , `N |i) =
AO

i,`1,...,`N

N∏

n=1

(
Lπ

`n

) . (71)
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By construction,

AP
`1,...,`N ,w1,...,wN

=

N∏

n=1

AI
`n,wn

(72)

and thus we obtain (69). 2

Remarkably, in the case of RBAs the function ARBA
i,w1,...,wN

can be written in closed form in a

way similar to [24] for RA codes in the AWGN channel. We obtain

ARBA
i,w1,...,wN

=

N∏

n=1

(
Lπ − wn

bi/2c

)(
wn − 1

di/2e − 1

)

(
Lπ

i

)N−1
(73)

The MWEF of the BCC is eventually obtained as

Aw1,...,wN
=
∑

i

Ai,w1,...,wN
.

In order to evaluate the approximations (18) and (25), we need the PWEF which can be

trivially obtained from the MWEF.

C.2 Asymptotic MWEF of BCCs

Following in the footsteps of [32], we can derive the asymptotic exponential growth rate of the

MWEF ABCC
i,w1,...,wN

. Define the asymptotic exponential growth rate functions of the input-output

MWEFs

aO(ι, δ1, . . . , δN)
∆
= lim

ε→0
lim

Lπ→∞

1

Lπ

log
∣∣SLπ ,O

ε (ι, δ1, . . . , δN )
∣∣ (74)

aI(δ, ω)
∆
= lim

ε→0
lim

L→∞

1

L
log
∣∣SL,I

ε (δ, ω)
∣∣ (75)

aBCC(ι, ω1, . . . , ωN)
∆
= lim

ε→0
lim

L→∞

1

L
log
∣∣SL,BCC

ε (ι, ω1, . . . , ωN)
∣∣ (76)

where SLπ ,O
ε (ι, δ1, . . . , δN) is the set of codewords in the (per block) length-Lπ outer code with

input Hamming weight satisfying |i/K − ι| ≤ ε and output Hamming weights per block satisfying

|wn/Lπ − δn| ≤ ε for all n = 1, . . . , N , where SL,I
ε (δ, ω) is the set of codewords in the length-L

inner code with input Hamming weight satisfying |i/Lπ − δ| ≤ ε and output Hamming weights

satisfying |w/L−δ| ≤ ε, and where SL,BCC
ε (ι, ω1, . . . , ωN) is the set of codewords in the (per block)

length-L BCC code with input Hamming weight satisfying |i/K − ι| ≤ ε and output Hamming

weights per block satisfying |wn/L − ωn| ≤ ε for all n = 1, . . . , N .
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Assuming that we can compute (e.g., extending the methods of [32] to the case of mul-

tivariate weight enumerators) the functions aO(ι, δ1, . . . , δN) and aI(δ, ω), the desired function

aBCC(ι, ω1, . . . , ωN) for the BCC scheme is readily obtained via Proposition 1. By definition,

notice that Lπ = rIL and K = rIrONL. Moreover,

lim
Lπ→∞

(
Lπ

Lπδn

)
= eLπh(δ) = eLrIh(δ) (77)

where h(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function. Therefore, from (69)

we find the asymptotic input-output growth rate of the BCC as

aBCC(ι, ω1, . . . , ωN) = max
δ∈[0,1]N

{
rIa

O(ι, δ1, . . . , δN) +

N∑

n=1

aI(δn, ωn) − rI

N∑

n=1

h(δn)

}
(78)

Finally, the asymptotic output growth rate defined in (26) is given by

aω1,...,ωN
= max

ι∈[0,1]

{
F BCC

ι,ω1,...,ωN

}
. (79)

For the case of RBA codes we can write explicitly the asymptotic input-output growth rate as

aRBA(ι, ω1, . . . , ωN) =
N∑

n=1

[
(1 − ωn)h

(
ι

2(1 − ωn)

)
+ ωnh

(
ι

2ωn

)]
− (N − 1)h(ι) (80)

and thus, the asymptotic output growth rate is given by,

aRBA(ω1, . . . , ωN) = max
0≤ι≤℘

{
a(RBA(ι, ω1, . . . , ωN)

}
(81)

where

℘ = min
n=1,...,N

{2(1 − ωn), 2ωn}.

As an example, in Fig. 15 we plot the (non-asymptotic) growth rate of the MWEF for a rate

r = 1/2 RBA code of information block length K = 100 mapped over N = 2 fading blocks,

computed using (26) and (73). In Fig. 16 we plot the asymptotic growth rate of the same RBA

ensemble. Notice that, already for block length as shows as 100 information bits, the finite-length

growth rate and its corresponding asymptotic counterpart are indeed very similar.
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Figure 15: Exponential growth rate of the MWEF for a rate r = 1/2 RBA code of information

block length K = 100 mapped over N = 2 fading blocks.
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Figure 16: Asymptotic exponential growth rate aRBA
ω1,...,ωN

for a rate r = 1/2 RBA code mapped

over N = 2 fading blocks.
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D Proofs for section 4.3

Proof of Theorem 2. Let F (ω) and a(ω) denote the exponential growth rate and the asymp-

totic exponential growth rate of the considered code ensemble over the BPSK modulation. For

each length L, the conditional error probability given the fading vector h can be upperbounded

by the Bhattacharyya union bound as

Pe(ρ|h) ≤
∑

ω∈[0,1]N

exp

(
−L

(
ρ

N∑

n=1

ωnγn − F (ω)

))

= exp (−LGL(ρ, γ)) (82)

where we define the fading power gain vector γ = (γ1, . . . , γN) and let

GL(ρ, γ)
∆
= − 1

L
log





∑

ω∈[0,1]N

exp

(
−L

(
ρ

N∑

n=1

ωnγn − F (ω)

))


The limit of the above exponent for L → ∞ is given by

G∞(ρ, γ) = inf
ω∈[0,1]N

{
ρ

N∑

n=1

ωnγn − a(ω)

}
(83)

Let γ0 > 0 be an arbitrary small quantity. We define the set

Γγ0,δ(N,M,R) =

{
γ ∈ R

N
+ :

N∑

n=1

11{γn ≤ γ0} ≥ δ(N, M, R)

}
(84)

The set Γγ0,δ(N,M,R) contains the “bad fading vectors”, i.e., the fading vectors having δ(N, M, R)

or more small components (smaller than γ0).

Using fading statistical independence, the property of the fading cdf Pr(γn ≤ γ0)
∆
= p0 =

γ0 + o(γ0) (e.g., valid for Rayleigh fading) and standard bounds on the tail of the binomial

distribution, we can write

Pr(Γγ0,δ(N,M,R)) =

N∑

k=δ(N,M,R)

(
N

k

)
pk

0 (1 − p0)
N−k

≤ K1γ
δ(N,M,R)
0 + o(γ

δ(N,M,R)
0 ) (85)

for a suitable constant K1 > 0.
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Using (82), (83), (84) and (85), indicating by fγ(z) the pdf of γ we can write, for sufficiently

large ρ and L,

Pe(ρ) ≤ E [min {1, exp(−LGL(ρ, γ))}]

≤
∫

Γγ0 ,δ(N,M,R)

fγ(z)dz +

∫

Γc
γ0,δ(N,M,R)

exp(−LGL(ρ, γ))fγ(z)dz

≤ K1γ
δ(N,M,R)
0 +

∫

Γc
γ0,δ(N,M,R)

exp(−LG∞(ρ, γ))fγ(z)dz + εL + o(γ
δ(N,M,R)
0 ) (86)

where εL → 0 as L → ∞.

Recall that W(N, k) ⊂ {0, 1}N is the set of binary vectors of length N with Hamming weight

not smaller than N −k +1. For any γ ∈ Γc
γ0,δ(N,M,R) there exists x ∈ W(N, δ(N, M, R)) such that

γ0x ≤ γ (componentwise). In fact, it is sufficient to replace each γn < γ0 in γ by 0, and each

γn ≥ γ0 in γ by γ0. Since by definition there are at most δ(N, M, R)− 1 components of γ smaller

than γ0, the resulting vector has Hamming weight at least N − δ(N, M, R) + 1 and therefore (up

to the scaling by γ0) it belongs to W(N, δ(N, M, R)).

For γ ∈ Γc
γ0,δ(N,M,R), it follows from the observation above that G∞(ρ, γ) is lowerbounded by

G∞(ρ, γ) ≥ inf
x∈W(N,δ(N,M,R))

inf
ω∈[0,1]N

{
ργ0

N∑

n=1

xnωn − a(ω)

}
∆
= G∞,LB(ρ, γ0) (87)

Define ŝ as in Theorem 2 (eq. (28)) and suppose that, for the given ensemble, ŝ is finite. Then,

we let γ0 = ŝ/ρ and, continuing the chain of inequalities (86),

Pe(ρ) ≤ K1γ
δ(N,M,R)
0 + exp(−LG∞,LB(ρ, γ0))

∫

Γc
γ0,δ(N,M,R)

fγ(z)dz + εL + o(γ
δ(N,M,R)
0 )

≤ K1

(
ŝ

ρ

)δ(N,M,R)

+ ε′L + o(ρ−δ(N,M,R))

≤ Kρ−δ(N,M,R) + ε′L + o(ρ−δ(N,M,R)) (88)

where ε′L → 0 as L → ∞. This shows the weak goodness of the ensemble.

Proof of Corollary 2. For ensembles of BICM codes with random bit interleaving we use the

Bhattacharyya union bound with Bhattacharyya factor Bn(ρ, µ,X ) defined in (21). Following the

same approach as in the proof of Theorem 2, we see that the upper bound to the error probability

takes on the same form of (86) – (88) provided that we replace γn by ζn defined in (22). For large
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ρ, we have that ζn → d2
min

4
γn where dmin is the minimum Euclidean distance of the normalized

signal constellation X (see (22) and [31]). The scaling by the constant factor d2
min/4 (independent

of ρ and of L) involves at most a scaling of the SNR threshold ŝ. Therefore, weak goodness of the

underlying binary code implies weak goodness of the corresponding BICM ensemble with random

bit interleaving.

Trellis terminated CCs do not satisfy Theorem 2. For simplicity, we consider trellis ter-

minated CCs of rate k/N , such that in each trellis transition the N coded bits are sent to the N

fading blocks (this defines the blockwise partitioning of the CC codeword). Then, output blocks

of length L correspond exactly to trellises of L trellis sections. Let

F L
ε (ω)

∆
=

1

L
log
∣∣SL

ε (ω)
∣∣ (89)

define the length-L MWEF exponential growth rate, such that a(ω) defined in (26) is given by

limε→0 limL→∞ F L
ε (ω).

A simple error path in the trellis is a path that leaves state 0 and remerges for the first time to

state 0 after a certain number of trellis sections, while it coincides with the all-zero path everywhere

else. Take a fixed Hamming weight β < ∞ such that there exist a simple error path of length

`(β) (independent of L) in the code having Hamming weights per block |wn − β| ≤ εL/2, for all

n = 1, . . . , N . Such simple error path exists for any trellis terminated CC with given encoder. For

example, we can take the minimum-length event corresponding to the free Hamming distance of

the code. It follows that, for all ε > 0, sufficiently large L and ω such that |ωn − β
L
| ≤ ε/2, the

lower bound
∣∣SL

ε (ω)
∣∣ ≥ L − `(β) (90)

holds. In fact, SL
ε (ω) must contain all the simple error events of length at most `(β) starting at

the L − `(β) + 1 distinct positions in the length-L trellis.

By continuity, we can write the sufficient condition of Theorem 2 as

ŝ = lim
ε→0

lim
L→∞

sup
x∈W(N,δ(N,M,R))

sup
ω∈[0,1]N

F L
ε (ω)

∑N
n=1 xnωn

(91)

For any x ∈ W(N, δ(N, M, R)), take ω in a box of side ε around the point β
L

1 ∈ [0, 1]N . The

lower bound (90) implies that

ŝ ≥ lim
ε→0

lim
L→∞

1
L

log L + O( 1
L
)

βN
L

+ ε
(92)
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which clearly shows that trellis terminated CCs cannot satisfy Theorem 2.

More in general, any code ensemble such that the MWEF Aw1,...,wN
increases linearly with the

block length L for some Hamming weight vector w such that ‖w‖∞ ≤ β < ∞ cannot satisfy

Theorem 2. These code ensembles have an infinite ML decoding threshold [16] in the standard

AWGN channel.

Asymptotic union bounds (30) and (31). The M&L Bhattacharyya union bound for a code

over the BPSK signal set can be written as

Pe(ρ) ≤ E


min



1,

∑

ω∈[0,1]N

e−L(ρ
PN

n=1 γnωn − F (ω))






 . (93)

Since min(1, f(x)) is continuous in x for continuous f and min(1, f(x)) ≤ 1, we can apply the

dominated convergence theorem [37] and write,

lim
L→∞

E


min



1,

∑

ω∈[0,1]N

e−L(ρ
PN

n=1 γnωn − F (ω))








= E


min



1, lim

L→∞

∑

ω∈[0,1]N

e−L(ρ
PN

n=1 γnωn − F (ω))








= E


min



1, lim

L→∞

∑

ω∈[0,1]N

e−L(ρ
PN

n=1 γnωn − a(ω))






 (94)

The factor multiplying L in the exponent of the RHS of (94) is positive for a given channel

realization γ if

ρ̂
∆
= max

ω∈[0,1]N

a(ω)
N∑

n=1

γnωn

< ρ (95)

Conditioning with respect to γ we have that, in the limit of large L, Pe(ρ|γ) → 0 if ρ > ρ̂ while

Pe(ρ|γ) ≤ 1 otherwise. It follows that in the limit for L → ∞ the M&L Bhattacharyya bound

takes on the form (30).

In the case of BICM codes with random bit interleaving (under the symmetrized mapping

assumption), we can use the same M&L Bhattacharyya bound by replacing γn with ζn defined in

(22), and (31) follows.
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