
Questionnaires:
a Framework using Mobile Code for Component-Based Tele-Exams

Jakob Hummes Arnd Kohrs Bernard Merialdo
Institut EURECOM

06904 Sophia Antipolis, FRANCE
fhummes,kohrs,merialdog@eurecom.fr

Abstract

Applications for computer supported cooperative work
can gain from component models and frameworks. The
framework for “questionnaires”, which is described in this
paper, offers a pattern to distribute artifacts to a group of
receivers. We use mobile code to ensure highest flexibility
and provide hooks to be able to collaborate with local appli-
cations on the receiver side. The questionnaire framework
is not only interesting for tele-exams, which are described
in detail in this paper, but can also be used to pass artifacts
around in a workflow system.

Our approach supports the whole life-cycle of question-
naires. Standard tools support the design of the questions
and their assembling into a questionnaire using compo-
nents. A questionnaire is distributed to all students in an
exam and recollected at the end of the exam. The applica-
tion for the teacher comprises a component to automatically
evaluate the answered questionnaires and to store them per-
sistently.

1. Introduction

One important domain in computer supported coopera-
tive work (CSCW) is the support of education with comput-
ers. This domain is often labeled as tele-teaching, remote
education, or distance learning.

In the domain of tele-teaching customization is specially
interesting, because teaching scenarios differ from one sce-
nario to the next, while they have similarities. These differ-
ences can in general not all be included as options in mono-
lithic computer-supported teaching applications.

The need for adaptable, customizable and tailorable tools
and applications for CSCW is known for several years
[3, 12]. CSCW toolkits as OVAL [13] or Prospero [3] sup-
port tailoring and are implemented as prototypes, but are
in general not suited to build “real-world” applications or

extending existing frameworks.

Our research is focused on defining reusable frameworks
for CSCW and validating the findings in the domain of tele-
teaching. The approach is based on the observation that
CSCW can benefit from emerging component models for
object-oriented languages by defining highly reusable com-
ponents for cooperative activities. Visual builder tools for
component models facilitate the adaptation and customiza-
tion process to the extent that also end-users can make mod-
ifications to component-based applications.

In order to take advantage of components written for
other purposes, but reusable in cooperative settings, we de-
cided to adopt the general purpose language Java and its
component model JavaBeans, where components become
increasingly available. Java compiles to a platform indepen-
dent byte-code. This is especially from significance, since
CSCW is inherently distributed, and it allows to pass and
execute code on remote computers.

In this paper, we use the term “framework” as defined by
D’Souza and Wills [5] to describe a generic package that of-
fers a recurring pattern and is extensible by offering “plug-
points”. By instantiating and mapping the frameworks to
real problems, the resulting components can be viewed as
cooperative business objects [19].

The next section will draw the requirements for com-
puter supported tele-exams from the identified life-cycle of
questionnaires. Since our approach relies on a component
architecture, the third section will introduce JavaBeans and
present beans for an already developed framework for re-
mote tutoring. The design of the questionnaire framework
will be discussed in greater detail in section 4. Our approach
supports all phases in the life of a questionnaire. Subse-
quently we will show some composed applications as ex-
amples. The paper will then relate our approach to other
relevant publications and finally conclude with an outline
on how further work fits into this approach.



2. Requirements for Tele-Exams

Exams are held in all educational environments to con-
trol the progress of the learners. Exams can differ not only
by their contents, but also by their purpose and how the
questions are being asked. This paper will focus on written
exams, which are distributed at the same time to the learn-
ers and must be returned before a certain amount of time
has been elapsed.

!

?

design exam evaluation

distribution recollection

Figure 1. Life cycle of a questionnaire.

Figure 1 shows a typical life-cycle for questionnaires in
an exam; the figure holds for traditional paper-based exams
as for tele-exams. A professor designs the questions for the
exam. The resulting questionnaire is then copied and dis-
tributed to all students at the beginning of the exam. The
students are filling out the questionnaires. Should they have
questions they may ask a tutor for clarification. The exam
must be written in a given time; when the period has elapsed
all filled questionnaires are recollected. The professor eval-
uates each exam to grade the students afterwards. Finally
all questionnaires are stored persistently.

On-line exams are useful to support spatially dispersed
people in remote education scenarios. On-line exams dif-
fer from traditional exams also in the way that the exams
can use the computer to offer capabilities, which are not
available in traditional paper-based exams. Using question-
naires that contain active code add to this advantage more
features as it would be possible in paper-based exams. The
questionnaires offer the students a better and more intuitive
user-interface and let them choose properties, such as the
language for presenting the questions. Animations can be
delivered as well to help better understanding; an example
would be a rotateable 3D view on a molecule for a chem-
istry course.

In order to support exams by computers, not only their
distribution must be solved, but the professor should be
given an environment to easily design the artifacts and to
evaluate and store the results after recollecting the answers.
Consequently, our approach addresses the following re-
quirements:

� The creation of new questionnaires is supported by an
integrated development environment (IDE) and a col-

lection of pre-manufactured question types.

� The questionnaires are distributed within the existing
tele-teaching framework and plug themselves automat-
ically in the student application.

� The student uses the user-interface of the questionnaire
to enter the answers; the interface presents itself indi-
vidually according to the student’s preferences and can
be changed at runtime.

� The filled-in questionnaire returns automatically or on
request to the tutor.

� The tutor application holds the returned questionnaires
and can browse them. A component offers auto-
matic evaluation for special question types like mul-
tiple choice questions.

� Questionnaires can be stored persistently to retrieve
them later.

3. The Component Approach

Our approach to get a highly customizable tele-teaching
system uses the component model JavaBeans for the object-
oriented programming language Java. The system benefits
from the already recognized features of Java, which makes
this language to a de-facto language for the Internet: com-
piled Java classes are executed in a virtual machine, which
abstracts from the actually used platform; distributed envi-
ronments for Java do not only allow to call remote methods,
but also to transmit whole objects consisting of state and
behavior.

The component model JavaBeans adds a standard way to
manipulate Java classes that conform to the Beans specifi-
cation within integrated development environments (IDEs).

3.1. Component model: JavaBeans

A component is an independent “unit of software that
encapsulates its design and implementation and offers inter-
faces to the outside, by which it may composed with other
components to form a larger whole” [5]. Component mod-
els, as JavaBeans, use an event model to facilitate compo-
nent compositions.

JavaBeans is the component standard for Java. The
specification for JavaBeans outlines that “a Java Bean is a
reusable software component that can be manipulated visu-
ally in a builder tool” [20]. Beans are Java classes that fol-
low so called design patterns to let builder tools introspect a
bean and to let a bean being self-descriptive. The standard
distinguishes two extraordinary states in the life-cycle of a
bean: A bean can be manipulated in a builder tool at design-
time or behaves like an ordinary object during run-time.

2



During operation a bean changes its state. Internal state
changes can be made visible to the outside through the event
mechanism. It consists of registration-methods, handler-
methods and event-objects. The event-mechanism allows
the coupling of state transitions of a bean with an action in
another bean. The Beans specification describes how the
coupling has to be implemented, thus it can be automated
through an IDE.

Properties reflect accessible state of a bean. Beans can be
customized during design-time by altering bean properties.
Properties can be bound, thus special events are fired upon
property changes at run-time, which can trigger actions in
other beans.

3.2. Customization and tailoring support

Properties and events can be manipulated within visual
builder tools. The JavaBeans standard offers also additional
associated classes for each bean, which include special cus-
tomizers and property editors to support a more intuitive in-
teraction with the developer. The standard describes further,
how persistence is achieved for the customized beans.

The activity of tailoring is normally defined as an end-
user customization process during run-time, while cus-
tomization at design-time is regarded as a programming
process [17]. IDEs that use the capabilities of Java to load
code at run-time (such as Visual Age for Java) shorten this
distance, by allowing design changes being reflected in the
running application, when the class is used. The here pre-
sented approach restricts itself however to customization at
design-time, but we argue that design-time customization
is common and powerful enough to support different tele-
teaching scenarios, if the frameworks and components are
designed for that goal.

The component-based approach together with visual in-
tegrated development environments (IDEs) directly sup-
ports our goal to be able to customize an existing ap-
plication and to be able to build new similar applica-
tions by reusing the components. Beans allow even non-
sophisticated Java-programmers to customize applications
in an intuitive way. The easy grasp is achieved by the use of
graphical and form-based editors within the IDEs.

3.3. Mobile Code

The ability to download platform-independent applets
and execute them locally and safely in browsers is one of
the main reasons of the widespread acceptance of Java. In
contrast to Java applets, where code is downloaded by the
browsers and then started by calling an initializing method,
transmittinga configured bean needs also to transfer the cur-
rent state of this object. The serialization API supports mi-
gration of stateful objects.

Transporting a component over a network, however, is
only one issue. To be meaningful, the component must be
plugged in at arrival to collaborate with the framework con-
sisting of other components. The event model of JavaBeans
helps defining such “plug-points”. The arriving component
registers for the events from the local components; the lo-
cal components also register their interests with the mobile
component.

The possible plug-points are hereby defined in Java in-
terfaces. As long as the components conform with the in-
terfaces they can provide different implementations and in-
ternal behavior; the components can still collaborate.

3.4. Beans for group-communication

Since the JavaBeans component model defines only the
interaction between beans in the same virtual machine we
developed group communication beans, which act as ac-
cess point to distribute an event to a group or to subscribe
to a message from a group. The group communication
beans expose the Java event model visually to the devel-
oper for remote event communication. Two beans are nec-
essary: The GroupSender forwards an event to all GroupRe-
ceivers, which are configured with the same group name.
The design for group communication follows the pub-
lisher/subscriber pattern [2], the group name corresponds
to the subscription. The group name is a property of the
beans and can so easily set within a visual builder tool for
beans at design-time or can be exposed as option in the user-
interface to allow changes at run-time.

The beans for group communication are designed on a
higher level than the actually used distributed system for
the implementation. Our implementation uses the agent-
enhanced ORB for Java of Voyager [18]. The design of
the beans guarantees that only the interface to the underly-
ing communication system must be developed in order to
exchange the distributed system. The higher level bean is
not affected thus that the communication system can be ex-
changed without affecting already configured systems that
use these group communication beans.

3.5. Frameworks for Tele-Teaching

Tele-teaching frameworks may support the basic require-
ments for various educational settings. Each teacher, how-
ever, will require special settings for a course or exam.
In order to support different and even not yet known set-
tings the system must be highly adaptable. The components
for tele-teaching, which we have implemented within our
project, are designed to be customizable for experienced
users, such as teachers. They offer comprehensible inter-
faces and do not overwhelm a teacher with functionality.

3



We developed basic frameworks for tele-teaching scenar-
ios. One of these frameworks, which solves the “get help”
problem [9], is also from relevance in tele-exams. For the
this framework, we developed components that allow stu-
dents to request help from one or more tutors. The frame-
work uses the described beans for group-communication.
How the student and the tutor actually interact is not de-
fined within the framework. Instead, different beans sup-
porting the desired interaction can be inserted at designed
plug-points. Currently beans are implemented that offer a
textual chat and the possibility to send an artifact, e.g. an-
swers to frequently asked questions (FAQ).

One implementation for a laboratory course uses the “get
help” framework and can be combined with tele-exams to
control the learning progress of the students by asking the
students to fill out a questionnaire after the lab course. On
the other side, a tele-exam can include the “get help” frame-
work to allow students to ask for clarification.

4. Questionnaires

The design of the questionnaires and the applications
for the students and teacher are based on the requirements
for tele-exams as discussed in section 2. Our question-
naire framework supports exams during the whole life-
cycle, from the design of a questionnaire, over the actually
held exam, to the possibility of automatically evaluate the
answers. This section describes the phases in greater detail.

4.1. Design phase

For the tele-exam, the assembling of question-beans to
questionnaires needs to be as simple as possible. Spe-
cial customizers for all offered question-beans ensure that
a composition at design-time can be done with drag-and-
drop.

The professor needs only to drag and drop questions
within an IDE in a questionnaire container. The ques-
tions can be customized visually in a WYSIWYG fashion.
The connections for the interactions between the questions
and the questionnaire are done automatically. The result-
ing questionnaire and questions implement all needed in-
terfaces to be plugged into the student application and for
the final evaluation by a master copy of the questionnaire
together with the right answers (see figure 2).

4.2. Distribution phase

A questionnaire with the contained questions is for the
system an ordinary Java object. Also a blank questionnaire
contains state (e.g. text, animations, timer). So the distri-
bution takes advantage of the capability of Java to transmit

questionnaire

question

question

question

questionnaire

master

IDE

Figure 2. Composition of a questionnaire.

code. The questionnaire and the contained questions imple-
ment the needed interfaces to be plug-able in the applica-
tions for the students and the teacher. Other beans could
have been used also by the teacher, as long as they conform
with the interfaces.

The introduced beans for group communication are used
to transport events between distributed parts of the system.
The questionnaire is sent to all students at the beginning
of the exam. Figure 3 illustrates how a questionnaire is dis-
tributed. The responsible component in the tutor application
(here: a questionnaire manager, see also figure 5) signals a
GroupSender bean to send the questionnaire to the group,
e.g. all students. The GroupSender serializes the question-
naire and puts it, encapsulated in an event, onto the under-
lying communication system.

All GroupReceivers that are configured to listen on this
event, receive the serialized questionnaire, de-serialize it,
and notify the responsible components. In a student applica-
tion, the questionnaire control registers its interest in some
offered events from the questionnaire, and the questionnaire
registers itself for events from the control. After the regis-
tration phase, the components are plugged, and they may
start collaborating.

4.3. Exam phase

During the exam, students are answering the questions,
by filling out the questionnaire. In our current design, the
questionnaire itself is responsible to offer an appropriate
user-interface. Figure 4 shows the collaboration between
a questionnaire and the control. The student uses the ques-
tionnaire control to manipulate properties of the question-
naire and its questions. Examples are the preferred lan-
guage for the questions or to lock the questionnaire against
unwanted accidental overwriting at browsing the questions.

4



questionnaire

question

question

question

GS
send questionnaireserialize

put serialized questionnaire
onto ORB

get serialized questionnaire from ORB

GR

questionnaire

question

question

question

deserialize

questionnaire manager

notify

register and collaborate

ORB

questionnaire control

student

teacher

Figure 3. Distribution of questionnaires.

questionnaire

question

question

question

questionnaire control

GS

GR

student

Figure 4. Collaboration between a question-
naire and the student application.

The questionnaire control bean has also the possibility
to communicate with other beans. Since also carefully de-
signed exams are sometimes ambiguous, the student needs
the possibility to contact a tutor. While the communication
with the tutor lays outside the scope of this paper, it is note-
worthy to understand that other beans, as beans for the “get
help” problem, can collaborate with the control to retrieve
more information, e.g. the question, which causes the prob-
lem for the student.

An exam is often time constrained. A special bean,
which can be inserted into the questionnaire, manages a
count-down timer. When the time has elapsed, the timer
informs the control that the exam is over and triggers the
GroupSender to send the questionnaire back to the config-
ured address, e.g. the professor’s application. The function-
ality for the collection of the exams is the same as described
for the distributing case. The questions have changed their
states due to the given answers of the students; the serialized
questionnaire, which is sent back to the professor reflects
the new states, i.e. it contains the answers.

4.4. Evaluation phase

The professor uses a questionnaire manager within his
application to evaluate the returned questionnaires, which
are plugged in as in described in the distribution case. The
manager holds all questionnaires and offers for automati-
cally evaluatable questions an evaluator bean, which is con-
nected with the master copy of the questionnaire as obtained
from the design phase (see figure 5), which contains the cor-
rect answers.

The evaluation for each questionnaire is passed to a re-
port generator bean. The report can be edited manually by
the teacher to include corrections of not automatically eval-
uated answers, comments and the final grade of the exam.

5. Composed Applications

This section gives an overview how student and tutor ap-
plications can be built upon the beans presented in the previ-
ous sections. To demonstrate the usefulness of the compo-
nent approach we outline the combination with other coop-
erative beans. Also some implemented question beans are
introduced that are ready to be inserted into questionnaires.

A student uses the questionnaire control during the exam
to receive the questionnaire and set global properties. The
questionnaire control bean is combined with the “get help”
bean to allow the student to ask the teacher during the exam.
Figure 6 shows the questionnaire control, which allows to
hide the questions, toggle a lock for editing and select the
preferred language. The settings can be made before the
questionnaire is received and during the exam. The figure
shows also the bean for getting help by a tutor.

5



questionnaire

question

question

question

questionnaire manager

evalu
ator

master

GS

GR

teacher

report

Figure 5. Collaboration between a question-
naire and the professor’s application for au-
tomatic evaluation.

Figure 6. Student application during develop-
ment.

Figure 7. Tutor application during develop-
ment.

Figure 7 shows the beans for the questionnaire manager
combined with the give help facility used by the professor
or the tutors. The shown questionnaire manager has a button
to send a blank questionnaire to all students. After the an-
swered questionnaires are received, the manager can show
them and they can be compared against the master question-
naire. For automatically evaluatable questions an evaluator
supports the correction. Questionnaires can be saved per-
sistently and retrieved later.

The help facility shows help requests by the students and
can be answered individually. When the tutor chooses a
help request a configured communication tool is used; cur-
rently beans for chatting and sending back a list of answers
of frequently asked questions (FAQ) are implemented. Ad-
ditionally we support the generation of an HTML FAQ from
a chat session during the exam, which can be viewed by
the students with standard Web browsers. To guarantee that
the viewed FAQ shows always the up-to-date contents, we
reused beans developed for the active annotation approach
[8].

As example for the questions we use an exam about the
C language, how it is held at our institute to test the knowl-
edge of new arriving students. Since Eurecom is an inter-
national university in France, the developed questionnaires
support the languages English, French and German. The
design of the question interfaces however allows to offer as
many languages as wanted.

Questions, which implements the interface
Evaluatable can be evaluated automatically. Cur-
rently, two different question types are evaluatable, an

6



Figure 8. Multiple Choice question.

integer value question and a multiple choice question. Both
types are accompanied also with a user-interface, which
supports intuitive input. The multiple choice question type
is presented withCheckBoxes , as shown in figure 8. A
scrollbar supports the choice for a value input, as shown
in figure 9. Of course, also other representations could be
chosen during design-time. Note that the language can not
only be chosen for all questions by using the control, but
also individually for each question.

Figure 9. Integer value question.

Other beans can be included in a questionnaire as long as
they are serializable. They are recognized as question type,
if they implement theQuestion interface. A more gen-
eral question type presents a question and expects a textual
answer; this type is however not automatically evaluatable.
Specialized beans for user identification and a timer are nor-
mally included into an exam to get the student name and to
constrain the time of the exam.

6. Related Work

Hiltz [7] and Turoff [21] describe how to set up a virtual
classroom and their findings using it consequently. They
emphasize that on-line education can be better than tradi-
tional classroom education. We hope that our components
can serve as a basis to create better exams.

The Assiniboine college offers web based courses that
have modules as instructional units [4]. For and aftereach
module, the students are presented short exams to control
the learning progress. To prevent cheating, an exam is dif-
ferently created on the fly out of a pool of questions by
cgi-scripts. Our approach could be extended to support a
unique creation of exams for each student or to automati-
cally present multiple choices in different order. Moreover,
cheating is more complicated within our approach, since
beans can not be saved as easily as Web pages; addition-
ally our approach supports to constrain the time of an exam.

The project Nestor [14] uses coarse grained components,
or modules, to offer a computer aided learning environment
[16]. The need of adaptation to specific learning contexts
was recognized and tailoring languages and tools for special
purposes, as the course structure, were developed [15]. The
collaborative learning and research environment (CLARE)
[22] uses a similar approach on top of the extensibility of
Emacs. In contrast to these approaches, we are using com-
ponents in all layers, providing the possibility of adaptation
at all levels. By taking JavaBeans, we can also insert third-
party beans and use the capabilities of off-the-shelf IDEs.

Franze et al. [6] outline the factors to develop successful
courseware. Animations combined with audio and video
support showed the best results. They introduce a Java
based framework JaTeK, which has similarities to our tele-
teaching framework. The here presented questionnaires can
hold Java based animations; and the approach and imple-
mentation could be incorporated in the JaTeK environment.
On the other side, it should be possible to integrate compo-
nents for JaTeK into our environment. We are currently in-
vestigating the Java Media Framework to include real-time
multimedia support for the student–tutor communication.

As was outlined in the section about our GroupSender
and -Receiver components, they do not rely on a specific
middleware. An interesting thought would be to combine
these components with a framework, which implements al-
ready the publisher/subscriber pattern, but offers also col-
laboration services as described in [1].

Mobile agent systems are already available for Java
[11, 18]. We could have used the agent facilities of the
actually used middleware of Voyager [18], but we decided
against, because we do not see the need of independent
agents in the case of questionnaires. By not relying on
a specific agent implementation we are free to change the
middleware easily. However, we are considering the use

7



of agents for monitoring purposes, as to signal to the tutor
the progress of the students. An agent could travel around
the students to gather information and present the collected
material in periodic updates to the teacher.

7. Conclusion and Further Work

We presented questionnaires containing active code to
support tele-exams. We showed that off-the-shelf IDEs can
be used to assemble question components within the Jav-
aBeans component model. By supplying additional cus-
tomizers the creation of a new questionnaire can be done
visually by drag and drop question beans from a palette;
their texts can be entered in the same step. Active code
supports enhanced user-interfaces and offers additional fea-
tures as language selection. The paper presented the sup-
port of the users, teachers and students, for the whole life-
cycle of questionnaires, from the design, over the distribu-
tion through mobile code, to the automatic evaluation of
some question types.

The presented questionnaires are part of a greater tele-
teaching framework, which is being researched and devel-
oped in the ACOST project. Components developed for
tutoring scenarios (“get help”) are reused in the tele-exam
scenario. Our goal is to define and implement components
within this tele-teaching framework specialized on other
topics as well – and then integrate the different frameworks
to a larger whole.

Our current research direction is to implement a generic
awareness and monitoring service, which could also be used
in tele-exams to pass feedback about the progress of the stu-
dents back to the teacher. In other settings these elements
would become more cooperation aware. An example is a
shared workspace, where students are collaborating directly
and need to know, when an artifact by a group member has
been finished.

We chose the tele-teaching domain to validate our frame-
works and components. However, the frameworks are de-
signed to solve common problems in cooperative work. It
remains to show that they can be reused in other settings by
an actual implementation for those areas, as in workflow or
distributed on-line help scenarios.

8. Acknowledgments

The described work is part of the ACOST research
project, which is funded by the research institute CNET
Lannion of France Telecom.

References

[1] R. Aditham, R. Jain, and M. Srinivasan. Interest Based Col-
laboration Framework. InProceedings of the sixth Work-

shops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises[10], pages 75–80.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern–Oriented Software Architecture – A System
of Patterns. John Wiley & Sons, Inc., 1996.

[3] P. Dourish. Open Implementation and Flexibility in CSCW
Toolkits. PhD thesis, University College London, June 1996.

[4] S. Downes. Web-Based Courses: The Assiniboine Model.
Assiniboine Community College, Canada, September 1997.
http://www.assiniboinec.mb.ca/user/downes/naweb/am.htm.

[5] D. F. D’Souza and A. C. Wills.Objects, Components and
Frameworks With Uml: The Catalysis Approach. Object
Technology Series. Addison-Wesley, May 1998. not yet
published.

[6] K. Franze, O. Neumann, A. Schill, and S. Stoecker. An In-
frastructure for Collaborative Teleteaching. InProceedings
of the sixth Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises[10], pages 341–346.

[7] S. R. Hiltz. Teaching in a Virtual Class-
room[TM]. In International Conference on Com-
puter Assisted Instruction ICCAI’95, March 1995.
http://www.njit.edu/njIT/Department/CCCC/VC/Papers/Teaching.html.

[8] J. Hummes, A. Karsenty, and B. Merialdo. Active Anno-
tations of Web Pages. In R. Alton-Scheidl, R. Schmutzer,
P. P. Sint, and G. Tscherteu, editors,Voting, Rating, Anno-
tation – Web4Groups and other projects: approaches and
first experiences, volume 104 ofSchriftenreihe der̈Osterre-
ichischen Computer Gesellschaft. Oldenbourg Verlag, Wien,
München, 1997.

[9] J. Hummes, A. Kohrs, and B. Merialdo. Software compo-
nents for cooperation: A solution for the ”get help” problem.
In COOP’98: Third International Conference on the Design
of Cooperative Systems, Cannes, France, May 1998.

[10] IEEE. Proceedings of the sixth Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
Cambridge, MA, June 1997.

[11] D. B. Lange, M. Oshima, G. Karjoth, and K. Kosaka. Aglets:
Programming Mobile Agents in Java. In T. Masuda, Y. Ma-
sunaga, and M. Tsukamoto, editors,Worldwide Computing
and Its Applications – International Conference Proceed-
ings, volume 1274 ofLecture Notes in Computer Science,
pages 29–42, Tsukuba, Japan, March 1997. Springer.

[12] T. W. Malone, K. R. Grant, K.-Y. Lai, R. Rao, and D. Rosen-
blitt. Semistructured Messages are Suprisingly Useful for
Computer–Supported Coordination. In I. Greif, editor,
Computer–Supported Cooperative Work – A Book of Read-
ings, pages 311–331. Morgan Kaufmann Publishers, 1988.

[13] T. W. Malone, K.-Y. Lai, and C. Fry. Experiments with Oval:
A Radically Tailorable Tool for Cooperative Work.ACM
Transactions on Information Systems, 13(2):175–205, 1995.

[14] M. Mühlhäuser, editor.Cooperative Computer–Aided Au-
thoring and Learning. Kluwer Academic Publishers, 1994.

[15] M. Mühlhäuser and M. Richatz. Instructional Strategies and
Processes. In M¨uhlhäuser [14], chapter 12.

[16] M. Mühlhäuser and J. Schaper. The Nestor Reference Ar-
chitecture. In Mühlhäuser [14], chapter 5.

[17] A. Mørch. Three levels of end-user tailoring: Customiza-
tion, integration, and extension. In M. Kyng and L. Mathi-
assen, editors,Computers and Design in Context, chapter 3,
pages 51–76. The MIT Press, Cambridge, MA, 1997.

8



[18] ObjectSpace Inc., Dallas, Texas.ObjectSpace Voyager– The
Agent ORB for Java – Core Technology User Guide, July
1997. http://www.objectspace.com/voyager.

[19] O. Sims.Business Objects – Delivering Cooperative Objects
for Client–Server. IBM McGraw–Hill series. McGraw–Hill,
1994.

[20] Sun Microsystems Inc., JavaSoft, 2550 Gracia Avenue,
Mountain View, CA 94043.Java Beans 1.0 API specifica-
tion, October 1996. http://java.sun.com/beans.

[21] M. Turoff. Designing a Virtual Classroom[TM].
In International Conference on Computer As-
sisted Instruction ICCAI’95, March 1995.
http://www.njit.edu/njIT/Department/CCCC/VC/Papers/Design.html.

[22] D. Wan and P. M. Johnson. Computer Supported Collabora-
tive Learning Using CLARE: the Approach and Experimen-
tal Findings. InACM Conference on Computer Supported
Collaborative Work, pages 187–198, North Carolina, Octo-
ber 1994. Chapel Hill. file://ftp.ics.hawaii.edu/pub/tr/ics-tr-
93-21.ps.Z.

9


