
Institut EURECOM
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis

(France)

Research Reporta No 105 — RR-04-105

Can we take this off-line?
How to deal with credentials in federations

without global connectivity

Laurent Bussard, Joris Claessens, Stefano Crosta,
Yves Roudier, and Alf Zugenmaier

May 14, 2004

aThis research was supported by European Union Project ’WiTness – Wireless Trust for
Mobile Business’ [33], by Microsoft, and by the Institut Eurécom.



Can we take this off-line?

How to deal with credentials in federations

without global connectivity

Laurent Bussard∗, Joris Claessens†, Stefano Crosta∗,
Yves Roudier∗, Alf Zugenmaier‡

∗Institut Eurécom †European Microsoft ‡Microsoft Research
Sophia-Antipolis Innovation Center Cambridge (UK)

(France) Aachen (Germany)

May 14, 2004

Abstract
In mobile and pervasive computing environments, not all devices have

universal capabilities. To fulfill a certain task, it is often necessary to
federate devices with specific resources. Because some devices are mo-
bile, devices from different trust domains may have to interact with each
other, and potentially sensitive data may flow from one domain into an-
other. This interaction obviously requires access control and authoriza-
tion. Achieving a secure federation of mobile devices calls for a framework
and mechanisms that allow the specification and enforcement of security
policies across different trust domains, even when some or all of the de-
vices are disconnected and cannot go on-line, for example to perform an
on-line verification of credentials.

The WiTness framework was developed in order to address authoriza-
tion in device federations, particularly providing mechanisms to tackle
specific off-line scenarios involving devices without global connectivity.
Modes for interaction in federations of different administrative trust do-
mains are also defined within the Web Services Security specifications
suite. These modes are generally described assuming a global connectiv-
ity of the entities involved.

This paper shows how the experiences gained from the WiTness frame-
work can be applied to Web Services, and investigates how the Web Ser-
vices Security framework can be used to handle the off-line scenarios WiT-
ness is optimized for.

1 Introduction

Pervasive computing envisions a world in which computers and computing ca-
pabilities are ubiquitous. Users carry devices like PDAs and mobile phones with

2



them; in addition the environment will also be able to support the user by be-
coming “smart”, its capabilities enriched by devices with computing power. Not
all of these devices will have universal capabilities, constraining factors being
notably size, power consumption, communication, and administrative bound-
aries. Often it would make sense to have groups of these devices collaborate to
fulfill a certain task, i.e., to have a temporary federation of these devices.

The federated devices need not be from the same domain. This is actually
the most likely case for a user who just moved to a new location federating his
mobile devices with surrounding devices from the environment. Whenever the
task the federated device is involved in requires the transfer of sensitive data, it
is necessary to ensure the security of the federation. One example of such a task
is access to corporate email from a public terminal. It is necessary to ensure
that access to corporate email is only given to that terminal while an employee
of that corporation is using it, and additionally it is necessary to ensure the
origin of emails sent through that corporate server.

Even though such an architecture requires addressing several interesting se-
curity goals, the one we focus on in this article is access control.

Access control can be based on different factors like the identity of the person
accessing the data, the role of that person, the rights that are assigned to this
person, or even the computing environment. Access control may also be based
on any combination of the above. A flexible way of combining these is to use
credentials such as attribute certificates and security tokens [5].

These attributes can be proven by showing credentials with a challenge-
response protocol. There remains the problem, though, of how does one dis-
tribute, certify, and verify these credentials, i.e., the attributes of users and
devices.

Two mechanisms for federating will be compared in this paper. One of them
is called WiTness for Wireless Trust for mobile business, the other one is the
Web Services standard for federating devices, called WS-Federation. The prob-
lem of disconnectivity addressed by this paper is described in Section 2 and its
impact on both frameworks is then analyzed in Section 3 and 4. Section 5 sum-
marizes the features suitable to answer these specific needs available from both
frameworks and suggests a synthetic solution that might address the discon-
nectivity issues of the scenarios drafted previously. Section 6 finally references
related work about access control for mobile applications.

2 Problem statement

2.1 Disconnectivity

Is it still necessary to deal with disconnected situations? Nowadays, such a
question might seem provocative since workstations and servers that are perma-
nently online are galore, and even in the mobile context, permanent connectivity
can be achieved by using local communication infrastructure (e.g., WiFi access
points) and/or global cellular networks (e.g., GSM, UMTS). Devising a security

3



infrastructure for any interaction thus might likely rely on online authorities or
trusted third parties (TTP).

However, an exclusively online approach, disregarding features indispens-
able to disconnection, is sometimes simply not affordable for building computer
systems, and more critically for securing them:

• Server and/or network problems (crash, DoS attacks, etc.) can temporar-
ily prevent connection.

• The user may experience configuration difficulties preventing him from
using local communication facilities to connect to the outside of the local
network.

• There are places without communication possibilities, like some buildings,
subway trains, etc.

• The price of mobile communications may deter their use at lengths.

• The round trip time to an authority may render some applications im-
practical because of a too slow response time. For instance, unlocking a
door in a building should not take as long as paying with a credit card.

• The complexity and cost for deploying a fully connected environment
might be overwhelming.

• Keeping a device disconnected from a global infrastructure like the In-
ternet might bring the advantage of a more relaxed threat model and in-
creased security if a sensor/appliance is only accessible by a nearby device
rather than remotely and worldwide.

• In case of a disaster such as an earthquake, or worse, a terrorist attack,
public authorities should get access to all necessary information and yet
be protected from malicious behavior.

For all these reasons, even with the ubiquitous and cheap availability of
communication channels, disconnected situations are likely to occur.

2.2 Scenarios addressed

In the rest of this paper, three scenarios will serve as the basis for evaluating
the WiTness and the Web Services Federation frameworks:

• Alice is a user working at company A that wants to access her emails
which are stored at the company server. She wants to use a public termi-
nal provided by company B, which she happens to be visiting. However,
she does not want to enter her password into the public terminal, so she
federates her PDA with this terminal to do the authentication (cf. Fig-
ure 1). For this first scenario, we assume global connectivity, i.e., each
of the entities involved can contact every other entity at any time, even
though the communication bandwidths between entities might be quite
different.

4



• In the second scenario the connectivity model is changed: we require a
backup in case of network disconnection (or corporate server failure). In
this case the public terminal can only be used for accessing emails that are
cached on the personal device. Availability of credentials is required for
getting access to local resources. However, in case of network disruption
the CA may not be on-line all the time during the interaction between the
federated devices, but it is on-line sometime, for instance at the beginning
of the interaction of the public terminal with the personal device. This
might be the case for instance if new rights must be issued by the company
every time a document is accessed by the client visited by a salesperson, yet
mobile phone communications should not or cannot last forever because
of cost or signal propagation issues.

• The third scenario is a case where there is no availability of global network
resources during the local interaction of the federated devices. This may
not be particularly relevant in the case of an interaction with a fixed
terminal, but may occur in an ad-hoc network application, e.g., in an
emergency. Here, the CA is on-line only before interaction of the federated
devices. One requirement of this scenario is, however, that the authorities
of the participants involved are known in advance, like say, the police,
firemen, etc.

The main difference between these scenarios that is of interest for comparing
both frameworks is the connectivity model. The following section will in partic-
ular focus on how the distribution and validation of credentials is done in each
of these solutions, and their complementarity because of the different implicit
assumptions they make.

3 An Offline-Oriented Approach: WiTness

This section describes the general characteristics of the WiTness framework
and how the scenarios outlined previously can be securely implemented using
WiTness.

The WiTness project [2] sets out to define a framework for the easy de-
velopment of secure business to employee (B2E) applications in nomadic envi-
ronments. Employees are remotely accessing their corporate application server
from their personal device, be it a laptop, a personal digital assistant (PDA),
or a cell phone. In nomadic context, the operator’s smart card (SIM or USIM
card) is a ubiquitous security module that can be used to ensure business ap-
plication security. In WiTness, each employee has a SIM card that acts as a
security module hosting the cryptographic secrets necessary to authenticate this
employee and to ensure the integrity and confidentiality of data access.

This framework is dedicated to mobile and pervasive computing and thus
assumes 1) restricted computational power and 2) restricted communication
channels. The former imposes that creation and validation of credentials remain
simple in terms of cryptography and XML parsing. The latter requires that the

5



Corp A Corp B

Device a

(User a)

Device b

access control rule:

Allow access if

user x authorized

(e.g. x employee of 

A or B)

Resource

enforces access control rule:

Allow access if:

User x uses device y

user x authorized (e.g. x=a)

device y owned by trusted Corp 

(e.g. y owned by A or B)

trust

sets policy

here: none

owns

sets policy

owns

sets policy, e.g. access rules

federates to access

Figure 1: scenario 1 – the device is used to access a corporate resource through
a public terminal

scheme does not rely on remote third parties during access control, i.e., can be
used off-line. We will therefore focus on an off-line scenario and then show how
connectivity makes the scheme more flexible.

3.1 Security in the WiTness framework

Federations for B2E/B2B applications The personal device embedding
the user security module makes it possible to access corporate services remotely.
However, the personal device can also request local services from the environ-
ment, thereby creating a local federation with devices in its vicinity with which
it collaborates.

Even if federations are an extension of the nomadic access to corporate
servers, we assume that federations are self-standing associations that make it
possible for several devices to communicate. They also extend the nomadic
model of access to fixed corporate servers by making it possible to have a tem-
porary access to these servers through members of the federation or to perform
disconnected-mode or off-line operations using prefetched data.

Federations generally associate devices from different trust domains. For
instance, a personal PDA can be federated with a public terminal in order to
get a more convenient display for reading corporate e-mails. To tackle different
security-levels of involved devices, each device holds its own asymmetric key
pair so that it can be certified by its owner.

WiTness is especially aimed at securing federation based applications and
focuses on providing adaptable credentials that may be used off-line. The fol-
lowing applications are especially targeted as typical B2E and B2B security

6



objectives:

• Artifact based corporate applications where communicating with devices
from the environment in a building are the only way to access to pervasive
services, like opening the lock of a “smart door” or obtaining a coffee from
a “smart vending machine”.

• Extension of personal devices that are often limited in terms of computa-
tional power, memory, communication bandwidth, user interface (display,
keyboard), etc. with better appliances.

• Sharing of documents in a P2P groupware fashion between users from
multiple companies.

• Liability for operations that must be controlled with respect to the busi-
ness partners involved, like for instance a cooperative decision, or the
responsibility of a part of a document during the collaborative edition of
a document. These applications generally involve signature mechanisms.

WiTness Security: off-line Certificates Access control is based on the
rights (authorizations or role) of an employee and on the security level of the
device from where he performs the access to a given resource (also referred
to as Trust level). These rights and security levels are derived from chains of
certificates from the different corporate authorities involved.

For dealing with authorizations, roles, id, security levels, and policy certifi-
cates in an integrated way, a proprietary XML-based certificate format has been
defined.

Existing works prove the interest for an XML format for a certificate struc-
ture. A proposal for an XML format of SPKI certificates was taken into a Draft
[32] for IETF, now expired. ITU-T group is working on specifications X.6xx [34]
to translate ASN.1 into an XML format. Liberty Alliance has chosen SAML
[22] (XML language for authorization assertions) for its Identity Management
infrastructure; the Web Services Security standards fully support XML tokens,
particularly SAML and XrML [23].

In order to satisfy the named requirements due to the mobile environment,
and because many standards are not – or were not at the start of the project
– mature, a new format and a new concept of certificates has been developed.
WiTness certificates are in between SPKI and PKI certificates, and are neither
pure Authorization Certificates, nor Identity Certificates. Figure 2 compares
the X.509, SPKI and WiTness Certificates concepts.

WiTness certificates have been designed as a very flexible data structure
oriented to distributed credentials management easy to deploy and use.

XML Attribute Certificates The WiTness Certificate data structure is
constituted of these sections (quite conventional in a ‘certificate’ semantic):

• Certificate Type, containing application-level information such as ver-
sion, content type, serial number

7



Rights Public Key

Name

(identity)

WiTness

Attribute

CertificateAccess Control List

Attribute Certificate

Id Certificate (X.509)

Authorization Certificate (SPKI)

Figure 2: WiTness Certificate compared to SPKI and X509

• Holder of the certificate

• Issuer of the certificate (the signature on the certificate must correspond
to the Issuer)

• Attributes associated to the holder

• Duration temporal validity for the certificate, in terms of initial and final
validity date.

• Signature over the whole certificate - except the signature itself - made
by the issuer.

Figure 3 provides a graphical description of the XML schema for WiTness
certificates.

The WiTness Certificate has been designed to be generic, extensible and
flexible. The certificate associates to the Holder some Content with the tamper-
proof guarantee of an Issuer through its signature. The Holder proves ownership
of the certificate through the classic challenge-response protocol demonstrating
he knows the private key associated to the public key contained in the public
certificate.

Holder and Issuer The Holder and the Issuer of the certificate can be either
a simple public key, when the certificate is associated to a new principal, or
the existing issuer certificate from which the new one is generated from. This
allows to have fully contained chains of certificates, since a delegated certificate
can contain the full certificate of its issuer and so on, up to the root certificate
which vouches for all.

In the off-line scenario this permits to validate the origin of a certificate
without accessing any server, in a simple way: no need to rebuild and reduce
SPKI chains; all the needed information is included in the certificate itself.
The drawback of this method, is to have certificates which grows in size as the
delegation levels increase. A reference to a certificate instead of the full XML
certificate can be used for the issuer, if we are sure we can provide the full

8



Figure 3: WiTness Certificate XML Structure

chain in another (off-line) method; the proposed inline method guarantees that
all the information is always accessible from one single data structure. In a
practical scenario, delegation levels should not grow much. The use of logical
chains inside the same domain can help keeping the chain short.

The Holder can be a full certificate too. This permits to stick credentials
to existing certificates, for instance certificates containing identity information,
when required.

Attributes Most of the flexibility of this data structure comes from the very
open Attribute format. An Attribute is defined by its name, value, resource,
and delegation. The content of the attribute must be evaluated at application
level, though some simple rules apply at library level to validate the certificate.
The Name of the attribute, associated with the application-level certificate type,
allows to apply semantic aware validation to the Value for the attribute, and
the optional related Resource.

For instance, an attribute used for Identity information will be in an ‘Iden-
tity’ certificate, and will be named ‘Last Name’, and no related resource. Or
an attribute used for file access rights will be called ‘File Access’, Value: ‘RW’,
Resource: ‘validFileName’ or ‘URL’.

9



The Delegation value indicates how many delegation levels are permitted for
this attribute.

Delegation The WiTness Certificates are designed for a mixed off-line/on-
line use. In order to achieve the goal of dynamic roles and rights attribution
in an off-line scenario, particular care has been put in defining the delegation
mechanism.

Any entity can act as an authority, creating new attributes or delegating
owned attributes, and distributing them to other entities. The value of the Del-
egation field can be zero when the Issuer intends to give no right to delegate, any
positive number to indicate the number of possible delegation levels (1 means
the attribute can be delegated one time only, 2 means two times, etc.), and -1
means no limit. In a chain of certificates, Delegation must be coherent, and
must always decrease (with the exception of the right to unlimited delegation).

Certificate Chains and Validation The crucial point is being able to vali-
date the origin of the Attributes of the certificate, i.e., the entity which signed
the certificate, and then recursively go up in the chain validating all levels up
to a Trusted (root) certificate. At the beginning, the only trusted certificate is
the company certificate used to sign the owned certificates.

This chain is called a ‘physical chain’: the initial root certificate to sign
a delegation certificate to an entity, which then delegated this certificate to
another entity and so on, and since all certificates are generated one after the
other they can be included in the final certificate in a nested structure.

A different kind of chain, called ‘logical chain’ is used to create inter-domain
delegation, and correspond to an agreement between two companies. With a
cross-delegation, we create a logical chain which adds the subject certificate to
the trust certificates set of the entity which trust the signing cross-certificate.
Figure 4 depicts such a scenario where employee α1 of company A uses a device
b1 of company B to access some corporate resource. Both kinds of chains are
necessary: the dashed arrow line represents the cross-certificate which creates a
logical chain from company A to device b1; the continuous lines represent two
physical chains between respectively company A and user α1 and company B
and device b1. In this way, an existing certification tree structure is added to
the valid certificate domain.

Signature The signature section contains the value of a digital signature cal-
culated on the full XML structure, except the signature itself. It guarantees the
integrity of the certificate in respect with the specified Issuer. The signature is
calculated by the issuer with its private key, and can be verified with the issuer
public key contained in the issuer field of the certificate itself.

The WiTness framework has been designed to be run primarily on PDAs
running PocketPC 2002. For limitations mainly due to the computational power
and the Java virtual machine version (the Personal Edition [27], basically version
1.1.8), some development constraints have limited the features implemented in

10



DB

A B

α
1

α
2

a
1

a
2

R
A1

R
A2

DB

β
1

β
2

b
1

b
2 R

B1
R
B2

DB
DB

DepA1 DepA3DepA2 DepB1 DepB3DepB2

Figure 4: Physical and logical certificate chains

the WiTness Certificates Management Library. Implementing the XML DSIG
standard is a desired improvement of the schema.

Off-line Revocation Revocation of certificates is a difficult problem in dis-
connected contexts. Certificate Revocation Lists (CRL) and Online Certificate
Status Protocols (OCSP) enable to check which certificates have been invali-
dated. OCSP assume a way to contact this service: this approach cannot be
deployed in off-line context. CRL can be used in off-line context as long as lists
can be regularly updated. Unfortunately, the disadvantage of CRL is their po-
tential large size, which makes them inappropriate for mobile devices. Another
way to control the rights delegated to a third party is to rely on short-term
[5] or even one-time certificates [3]. In this case, a mechanism for periodically
renewing rights is necessary. It has already been shown [4] that revocation lists
are not a optimum solution of the problem and thus an hybrid approach was
chosen in WiTness: long-term certificates are used to define the roles, rights, or
security levels of employees and devices and short-term certificates are created
when rights are delegated. As in SPKI, the ‘Validity’ field of the certificate
indicates the temporary validity of the credentials. A possible extension of this
scheme is to use certificates for updating policies that are enforced by the se-
curity module. For instance, it could be possible to define a shorter validity
time to be used when delegating rights so that when a user leaves (no more
in Bluetooth range), the terminal looses all delegated rights that are no more
renewed.

11



3.2 Addressing the off-line scenario

One scenario implemented within the WiTness project is the use of a local
terminal for dealing in a user-friendly way with corporate data like e-mails (see
Figure 4). The scenario is as follows: Alice (α1) is an employee of company A
and travels from place to place in a pervasive environment. Alice only carries
a small personal device (a2) that is trusted but has strong limitations (cannot
print, small display, small keyboard, etc.). A PDA was used in a prototype
but the concept can be used for cell-phones, watch, or even e-ring. Due to
those limitations, discovered local facilities are federated to extend the personal
device.

For instance, Alice will print some corporate e-mail on the printer in an
airport lounge or edit some files (RA) by using a public terminal or the laptop
(b1) of Bob (β1) working in another company (B). It is assumed that edited
and printed resources are stored in the personal devices of Alice. The following
access control requirements have been defined:

1. Is employee α1 authorized to access resource RA?

2. Is device b1 trusted enough to edit resource RA?

3. Is α1 authorized to use device b1?

Each question has to be solved locally even when Alice uses the terminal b1

spontaneously, i.e., for the first time and without having planned to do so. The
WiTness framework relies on the credentials defined in section 3.1:

1. Employee α1 has a pair of public and private keys and is certified by her
employer CERTA(α1, attributes) where attributes can be authorizations
or roles. This authorization certificate is used to access resources.

2. Device b1 has its own pair of public and private keys and is certified by its
owner CERTB(b1, attributes) where attributes define ownership and op-
tionally security-levels. To evaluate the security level of the terminal, the
user needs to know whether there is an agreement between her company
and the company owning the terminal. This agreement is another creden-
tial: CERTA(B, attributes) where attributes can define that devices of B
are trustworthy enough to deal with confidential documents but cannot
be used to deal with secret documents.

3. Agreements between corporations can also define rights. For instance,
company B can authorize employees of company A to use public terminal
or company B can authorize any visitor, who went to a front desk, to
use local printers. To use b1, Alice has to prove that she is authorized.
For instance, she could prove that she works for company A and that any
employee of this company is authorized by B to use b1.

To summarize, Alice has to travel with authorization or role certificates
that define her rights to access data, trust root certificates that define which

12



devices can be trusted, and agreements that enable access to services of other
companies. In other words, Alice has to cache a large amount of credentials or
to upload credentials relative to the companies she plans to visit during her trip.
Protocols for automatically uploading credentials on Alice’s PDA according to
corporate security policies have not been developed, yet.

3.3 Going online, or the benefits of transient connectivity

Transient connectivity is obviously a realistic option for many situations and can
improve the usability and in some cases the security of a WiTness secured ap-
plication. When some credential is missing and the user’s device is temporarily
online, it becomes possible to establish a connection to the user’s authority or
any other authority and get this credential. For instance, if Alice meets Bob and
does not have the appropriate credentials to work with him, she could initiate
a communication with her corporation in order to retrieve agreements between
her company and Bob’s. This is clearly a possible enhancement of the initial
framework that requires a protocol for negotiating and exchanging credentials.
Three different situations may occur:

• Initial behavior: all required credentials are available locally and the in-
teraction is done off-line.

• Credentials are missing and a connection is established to get the required
credential.

• Credentials are missing and a connection cannot be established for physical
or policy-related reasons. In this case, either the service access fails or the
service is downgraded, for instance secret data might not be accessible
until a connection is indeed available.

4 An Online-Oriented Approach: Web Services
Security

In this section we show how to implement access control and the exchange of
credentials using the Web Services Security specifications, in particular WS-
Federation and WS-Trust.

Web Services bring the paradigm of service-oriented architecture in practice.
They offer an interoperable framework for stateless, message-based and loosely-
coupled interaction between software components. These components can be
spread across different companies and organizations, can be implemented on
different platforms, and can reside in different computing infrastructures.

There are many and broad definitions of the Web Services concept. In the
scope of this paper, we refer to Web Services as services that expose useful
functionality on the Internet via XML messages which are exchanged through a
standard protocol, called SOAP [10]. The interface of a Web Service is described
in detail in an XML document using WSDL [11]. Finally, a Web Service is

13



registered at a UDDI [12] server, and is as such discoverable. In addition to these
basic features of Web Services, it is essential that Web Services are provided in
a secure and reliable way, and that they support transactions. Specifications for
secure, reliable, and transacted web services have been and are being developed
by IBM, Microsoft, and others [7].

Web Services are currently standardized in different bodies. The core un-
derlying messaging related technologies (such as XML, SOAP, WSDL) are stan-
dardized within the W3C. Other mechanisms (such as UDDI and WS-Security)
are standardized within OASIS. The more recent specifications are proposed as
industry initiatives by IBM, Microsoft, and others.

An important implicit assumption taken in the typical scenarios leveraging
the Web Services Security specifications, is the permanent availability of all
required services. As a natural starting point, we will therefore build up the
email scenario with global connectivity. Subsequently, we will try to transform
the on-line solution into an off-line one, which is still using the Web Services
Security specifications.

4.1 Web Services Security

The Web Services Security architecture and roadmap [13] was proposed by IBM
and Microsoft in April 2002 and provides a comprehensive security framework
for SOAP-based Web Services. The framework supports and integrates various
security models, mechanisms, and technologies in a way that enables a variety
of systems to securely interoperate in a platform- and language-neutral manner.
The Web Services Security roadmap consists of different specifications, each
addressing specific parts of the security framework. The framework and the
specifications are flexible and extensible.

The architecture essentially supports the secure exchange of SOAP messages
in the following way:

• WS-Security [14] specifies how to apply XML Signature [8] and XML
Encryption [9] within a SOAP message in order to provide single-message
authentication (origin authentication and integrity) and single-message
confidentiality. It also specifies how to attach, or refer to, the associated
security tokens in a SOAP message.

• WS-SecureConversation [15] specifies how to establish, and how to ref-
erence to, a security context, and supports a secure conversation with
multiple messages.

• WS-Trust [16] specifies how to request, issue, validate, and exchange secu-
rity tokens. Security tokens are cryptographically protected claims (e.g.,
identity or authorization assertion) and/or cryptographic keys. Security
tokens may be forwardable, delegatable, or proxiable. Security tokens are
issued by a Security Token Service (STS). Security token requests may
be secured using WS-Security (when exchanging one security token for

14



another), or are secured with an explicit challenge/response or other ne-
gotiation protocol (when the requestor does not have a WS security token
yet).

The Web Services Security framework can in fact support any type of se-
curity token. However, security tokens that are to be used across different
domains should be interoperable. The following tokens are currently stan-
dardized and explicitly supported: username/passwords [20] and X.509
certificates [21]; binary security tokens, such as Kerberos tickets [24]; and
XML security tokens, such as SAML assertions [22] and XrML tokens [23].

• WS-Policy provides a framework which allows Web Services to describe
and communicate (publish) their policies. WS-SecurityPolicy [17] specifies
the security policy assertions that can be used in this framework. The
security policy assertions state requirements on the kind of security tokens
used, whether or not a message should be signed or encrypted.

• WS-Federation [18] describes how to manage and broker trust relation-
ships in a heterogeneous federated environment including support for fed-
erated identities, attributes, and pseudonyms. A federation consists of
multiple Web Services domains, each with their own STS, and with their
own security policy. WS-Federation specifies scenarios using WS-Trust
for example to allow requesters from the one domain to obtain security
tokens in the other domain and subsequently get access to the services in
the other domain. Additionally, mechanisms are defined for single sign-
in and sign-out, sharing of attributes based on authorization and privacy
policies, and integrated processing of pseudonyms (aliases used at different
sites/federations).

One implementation of these specification is in the Web Services Enhance-
ments toolkit (WSE) [26]. The current version supports WS-Security, WS-
SecureConversation, WS-Trust, WS-SecurityPolicy, and Kerberos tokens.

4.2 Web Services and WiTness federation scenarios

Web Services are an ideal framework for service-oriented business processing
between organizations and individuals. Web Services are obviously also an al-
ternative and standardized approach to enable federations of devices to interact
with each other, within the different WiTness scenarios discussed in this paper.

Note that the term ‘federation’ has a different meaning in the context of
WiTness and Web Services. Federation in WiTness primarily refers to the
notion of two or more devices that are close to each other, and whose features
and services are jointly used to achieve a single purpose. Federation in Web
Services refers to the fact that services are exposed and accessed across different
trust domains. The Web Services notion of federation is clearly also present in
WiTness when the federated devices belong to different trust domains with
different security policies.

15



A very recent Web Services specification is particularly relevant to WiTness
federations, as it defines a multicast discovery protocol to locate services that
are exposed by nearby devices [25]. In the remainder of the paper however,
we assume that devices already know which nearby services are exposed, and
how they can be contacted. We focus on the security and authorization issues,
and investigate how the Web Services Security specifications can support the
WiTness scenarios.

4.3 Securing the on-line scenario

When implementing the email scenario using Web Services, a first idea may
be to use the federated device as an active SOAP message intermediary, which
may have the additional functionality of displaying parts of the messages that it
relays. Unfortunately, this approach cannot be used because the user interacts
with the federated device, so the user input actually goes into the federated
device which therefore becomes an originator of SOAP messages.

Therefore it seems natural to closely follow the WS-Federation Active Re-
questor Profile [19]: the first request is initiated by the personal device and
includes transferring control of the public terminal to the owner of the personal
device. The detailed scenario is shown in Fig. 5:

STSB STSA

ResourceFederated

Device

Personal

Device

12

3

4

5

6

7

8

9

10

OnBehalfOf

DelegateTo

get TPA

get TPB 

using TPA 

use TPB
has TFB

use TFB

use TPA and TFB 

to get TFPA

pass TFPA

+ any info needed to 

expose web service, 

such as address in 

local namespace of 

fed. dev.

+ command, such as 

‘initialize’, ‘continue’, 

‘logoff’

use TFPA

policy
parts encrypted with TPA

parts encrypted with TFPA

TFPA includes TPA

encrypted with TPA

check TFPA

Figure 5: possible realisation of the on-line scenario with Web Services.

1. The personal device fetches a security token TPA from its own security
token service STSA. TPA is fetched using WS-Trust, for example with

16



a username and password in domain A. TPA proves that the device is
operated in domain A, and may also indicate the owner and relevant
security features of the device.

2. Using TPA, the personal device then performs a WS-Trust token exchange,
and gets a security token TPB from the security token service STSB of
domain B.

3. The user steps in front of the public terminal and uses the personal device
to log on. In particular, the functionality of the public terminal (federated
device) is exposed via a set of web services (we assume that these have
been discovered by the personal device). The security policy of these web
services mandates that requests should be signed with tokens issued in
domain B. The logon request by the personal device is signed with TPB .

4. The response of the federated device is signed with a token TFB . The
response indicates success or failure of the logon attempt, and may include
any info needed for the personal device to expose web services to the
federated device.

5. The personal device then submits TFB signed with TPA to STSA to re-
quest a security token TFPA for the federated device making use of the of
the DelegateTo feature of WS-Trust. TFPA is a security token associated
with the private key of the federated device, and asserting that the feder-
ated device is performing actions on behalf of the owner of the personal
device. TFPA includes TPA to indicate the user on which behalf the fed-
erated device operates, and should also assert the authorization level of
the federated device; this authorization level will depend on the security
features that are asserted in TFB .

Note: alternatively, the federated device could request a security token
OnBehalfOf the personal device; the disadvantage would then be that the
personal device does not authenticate itself to STSA; the advantage would
however be that the federated device authenticates itself; in the proposed
scenario with DelegateTo, the token TFB is validated by STSA, but STSA

cannot check if the federated device claiming to be TFB is really present.

6. TFPA is passed on to the federated device, along with the command to
initialize the federated device, and start working.

7. The user can now switch to the user interface provided by the public
terminal, and access the email server in domain B. The email server is
exposed by a web service, and access requests are secured with TFPA.

8. The email server can check the validity of TFPA by contacting STSA (using
WS-Trust validation). The server can now enforce a policy, which may
for example mandate that – depending on the authorization assertions in
TFPA – certain parts of an email should not be available in cleartext in,
and displayed on, the public terminal.

17



9. Depending on the policy and the sensitivity of the requested email, certain
parts of the email are transmitted to the public terminal encrypted under
TPA, the less sensitive parts encrypted under TFPA. The terminal is
only able to decrypt the parts encrypted under TFPA, as it only has that
corresponding private key.

10. The sensitive parts of the email can be forwarded by the federated device
to, and decrypted and displayed by, the personal device. Forwarding is
done upon request by the user through the user interface of the federated
device. Forwarding is done as a request to a web service exposed by the
personal device.

11. When finishing the session, the personal device sends a sign out message
to STSA, from then on all further attempts to verify the token TFPA will
fail.

The realization proposed above very closely follows the Web Services Security
specifications in the standard. Exchange of security tokens and communication
of policy is performed as specified in WS-Federation, WS-Trust, and WS-Policy.
The web services themselves that must be exposed by the federated device,
personal device, and the email server, are of course scenario and application-
specific, and their interface needs to be agreed upon. The feature of multipart
encryption of emails, and the implementation and behavior of the federated
device accordingly is also scenario and application-specific. Last but not least,
it is important to note that the Web Services Security specifications do not
mandate the format and contents of the security tokens, particularly TFPA.

4.4 Taking it off-line

As in Section 3, the solution for the case with temporary unavailability of con-
nection to the corporate servers can be solved with the same architecture as the
case with complete unavailability. Looking at the detailed scenario described
above, we can identify the following steps which may be problematic in an
off-line scenario:

• Step 1 assumes the personal device to be able to contact its own STS. In
an off-line scenario, the personal device may not be able to communicate
with a service in a remote domain. The personal device should therefore
already possess the required TPA that can be validated and trusted by an
STS in another domain.

• Step 2 assumes the personal device to be able to contact the STSB of
the federated device. While the personal device will be “closer” to the
STSB of the visiting domain than to its own remote STSA, a limited
personal device may only be able to communicate with the physically
nearby federated device. This is more problematic: it assumes that the
personal device has already the required TPB that can be validated and

18



STSB STSA

ResourceFederated

Device

Personal

Device

12

3

4

6

7

8

9

10

get TPA

get TPB 

using TPA 

use TPB
has TFB

use TFB

pass TFPA

use TFPA

policy
parts encrypted with TPA

parts encrypted with TFPA

encrypted with TPA

limited lifetime

of TFPA

policy

5 DelegateTo

use TPA and TFB 

to get TFPA

STSPA

Figure 6: possible realization of the off-line scenarios with Web Services. The
grayed out boxes are the security token servers that are unavailable. The re-
source is now a locally cached copy of the emails.

trusted by a federated device in another domain. In other words, federated
devices must be able to directly validate TPA, or the personal device must
carry a set of TPBs for each of the domains trusted by A.

• Step 5 assumes the personal device again to be able to contact its own STS,
which may not be possible in an off-line scenario. This could be solved
by introducing an STSPA running on the personal device, and capable of
issuing delegatable security tokens.

Obviously, STSPA should be prevented from misuse, for example by the
user of the personal device. Its private key should be stored and oper-
ated in a secure environment (e.g., smart card or trusted platform), and
moreover it should only return delegation tokens TFPA with authorization
assertions that are compliant to the presented TPA and TPB . In addition,
STSPA should issue tokens that can be linked up to STSA but that are
specific to the personal device. We will discuss in the next section how
the WiTness framework can provide a solution in this context.

• Step 8 assumes the email server to be able to contact its STS, which may
not be possible in the off-line case. A solution would be to significantly
limit the lifetime of TFPA. The user cannot sign out anymore in an off-line
scenario, and a limited lifetime of TFPA prevents a federated device from
keeping on using the valid TFPA to access a resource on behalf of the user.

• The scenario assumes that the email server is consulted on-line. Emails or
other information may be stored off-line on the personal device, and the
user may want to view thes

19



• Step 2 assumes the personal device to be able to contact thee cached files
on the federated device. This would require the security policy description
be embedded in, or attached to, the files, or be present within the personal
device. It also requires the security policy enforcement to be performed
within the personal device.

In conclusion, enabling off-line applications is possible by not only working
with a local copy of the corporate resource, but also with a local security token
service, and/or one or more locally cached security tokens. In the next section
we will discuss the drawbacks and trade-offs that this implies, and in particular
we will show how the WiTness framework can be of benefit here.

5 Synthesis: Combining WS Federations and a
WiTness approach

When looking at the proposed solutions in the two frameworks, the most appar-
ent difference are the connectivity models. This is reflected in the much more
complex structure of the certificates used in the WiTness framework. The Web
Services Security specifications do not explicitly support tokens which are equiv-
alent to WiTness certificates. However, the Web Services Security specifications
in principle support any type of XML tokens, so using WiTness credentials
within Web Services should be straightforward.

There is also a more fundamental difference. The WiTness framework is
much more a development framework for implementing security within the ap-
plication, offering modules and interfaces for security, while the approach that
Web Services take is the one of a middleware: the security functionality should
be transparent to the application. A policy is required to make the application
secure.

It seems to be desirable to see if it is possible to combine these approaches
to get the best of both worlds: the application designer can choose whether to
rely on the transparent security mechanisms as provided by the current Web
Services Security specifications, or whether to implement security mechanisms
using an application layer framework, if a seperate security policy seems not
expressive enough or too cumbersome.

5.1 Disconnected vs Connected Access Control

In general, disconnected access control schemes are more difficult to manage
than connected models. Indeed, the fact that disconnected security cannot
rely on some trusted third party when creating new credentials (e.g., rights
delegation) and when validating credentials makes security more complex.

In this paper we defined credentials that can be validated and delegated
locally, i.e., without requiring any communication with a centralized author-
ity such as a Certification Authority (CA) or a central Security Token Service
(STS).

20



Topic On-line Off-line
Cache one authentication credential. All right, role, or security

level credentials.
Delegation Tokens are always signed by

a remote STS.
Any entity should be able to
act as a STS.

Granularity Get the expected token. Delegate the appropriate sub-
set of a cached credential.

Management Centralized, up to date. Distributed, no direct revoca-
tion.

Depreciated
Mode

Always get appropriate cre-
dentials.

Cannot always get appropri-
ate credentials.

Table 1: Comparison between on-line and offline models

Certificates [28, 5] are generally thought as disconnected credentials. How-
ever, to check whether a certificate has been revocated a connection is often
needed [1] and thus it becomes a connected model. Electronic cash [3] may
also be seen as a disconnected credential dedicated to specific type of rights. In
comparison, Kerberos’ tokens are connected credentials. The security relies on
a permanent way to access the ticket granting server. Web services federations
(WS-Federation) extend this model and generally rely on a permanent connec-
tion with some STS during delegation and validation phases. We will show how
it is possible to define disconnected instantiations of this model.

Section 4.4 shows what is required to offer web services in a disconnected
scenario. The main difference is that any device requires to be able to generate
new security tokens. Indeed, when disconnected, it is no more possible to request
a specific security tokens when required. Moreover, it is not possible to request
in advance and store all possible tokens because spontaneous interactions cannot
be planned. Like this, each device has to offer a Security Token Service in order
to create appropriate tokens on demand. The delegation mechanism presented
in Section 3 seems a natural way to assure that such an embedded STS will not
provide more rights than what it is allowed.

The main differences between on-line and off-line approaches in terms of
rights delegation management are described below and summarized in Table 1.

• The storage of credentials is necessary in an offline model, the number of
credentials that have to be available on the personal device can be im-
portant when there are numerous inter-corporation agreements and when
users have multiple roles and rights. All credentials representing rights,
roles, or security-levels of an entity have to be cached by this entity. On
the contrary, in an online model, only one credential is required for au-
thentication of requests in order to obtain a given credential.

• Spontaneous collaboration with unknown entities implies some form of
delegation. In offline schemes, any entity has to act as a CA to delegate

21



a subset of its rights. Only required rights should be delegated and thus
the granularity in terms of validity time and delegated attributes has to
be as precise as possible. Online scenarios make it possible to request the
STS to create a new credential for another entity.

• Rights management is more difficult in a disconnected mode because poli-
cies are distributed and certificate revocation lists cannot be used. Each
time an entity is online, it is necessary to synchronize its rights with cor-
porate security policies and to update cached credentials.

• Because it is not always possible to have the required credential locally
and because an online connection can be impossible (or not desired), some
otherwise authorized interactions may fail or be done in a depreciated
mode.

The right part of Figure 7 presents the construction of a chain of certificates
in WiTness: Alice A is authorized by her company CA to access some resource
R and can delegate this right. In an off-line context, A authorizes a federated
device FD to access R. The left part of Figure 7 shows how those credentials
could be integrated in Web Services: the first credential defines the trust rela-
tionship between STSCA

and STSA and the whole chain is the security token
provided to FD, i.e. TFPA in Figures 5 and 6.

STSCA

STSA

STSCB

Personal

Device
Resource R

Federated

Device FD

token

trust

Off-line WSS WiTness

CERTCA(A can access R, deleg)

CERTCA(A can access R, deleg)

CERTA(FD can access R, no deleg)

delegation

Figure 7: Basic example showing how WiTness credentials could be used as WS
security tokens.

5.2 Application and Middleware Approach

For instance, in the WiTness scenario [2], users access information through a
public terminal, which they federate with their personal security device. As
parts of the information they want to access are sensitive, these parts will be
encrypted such that the public terminal cannot display them. They can only

22



be decrypted and displayed on the personal secure device. For this scenario,
WiTness provides the authorization framework that focuses on certificates. It
also offers the reuse of these certificates in a natural way for the encryption and
decryption of the multipart encrypted email. WiTness provides a very flexible
application-layer security framework which enables the development of fully cus-
tomized, scenario specific, solutions. It may however be difficult to guarantee
interoperability, particularly across different platforms, as there is for exam-
ple no standardized secure messaging infrastructure which can be relied upon.
Developing new applications may also be difficult for non-security experts.

This paper shows that it is possible to build the same federated scenario,
whereby all of the messaging (interfaces) is done over Web services using the Web
services security specifications. This should in principle guarantee interoperabil-
ity. Web services security implementations also intend to make development of
secure applications as transparent as possible. However, the specification of the
multipart encryption is an example that shows that part of the security must
still be handled at the application-level, on top of the web services. Web ser-
vices security tokens can give input to that, but the real decision on what to do
with the data is done within the application. It may not be feasible to realize
security within the application, purely by relying on the interaction of the ap-
plication with the security services through a configured security policy. Direct
and customized invocation of security mechanisms from within the application
may still be required.

6 Related Work

This section describes some related work which is relevant in the context of this
paper.

XACML [29] defines an XML schema for an extensible access control lan-
guage. It provides a common language for expressing security policies within
an enterprise, and allows a consistent security policy across different applica-
tions and components within the enterprise. While XACML focuses more on
policy enforcement across technologies (e.g., firewalls, email servers, etc) within
an enterprise, WS-(Security)Policy deals with describing the (security) policy
associated with web services endpoints, and with communicating this policy
across enterprise boundaries.

The Next-Generation Secure Computing Base (NGSCB) [30] combines com-
puter hardware platform enhancements with trustworthy computing capabilities
and services. NGSCB provides strong process isolation, sealed storage, attesta-
tion, and secure i/o paths to the user. Within the WiTness federated scenarios,
NGSCB could provide an increased trust assurance, and the security policy
could grant NGSCB-enabled devices a higher security level.

The Liberty Alliance [31] specifications intend to provide a federated net-
work identity management infrastructure. While Liberty Alliance focuses on a
dedicated and specific identity infrastructure, the WS-Federation and the Web
Services Security specifications constitute a generic security framework, enabling

23



authentication and authorization for web services across organizations, enter-
prises and individuals.

The Security Assertion Markup Language (SAML) is an XML-based frame-
work designed to solve three main use cases: Single sign-on (SSO), distributed
transaction (dealing with transport of cross-domain authorization), and autho-
rization service (dealing with authorization). It exchanges security information:
XML-encoded security assertions, XML-encoded request/response protocol, and
rules on using assertions with standard transport and messaging frameworks.
There are three kind of assertions: authentication, attribute, and authorization
decision. Different kind of assertions can be defined.

Other ongoing research work shows that Web services seem promising in
mobile environments and even in pervasive computing environments. Mobile
web services address the access to web services from mobile environments and
pervasive web services focus on the discovery of services. Authors of [6] propose
that a reference to a dedicated web service be attached to physical objects (train
ticket, room, etc.). Barcodes are proposed but RFID tags or infrared beacons
could also be envisioned. Once a user get the address of the service he can
access it by establishing a connection with the server. Our work does not focus
on RFID tags but on Personal Area Networks and thus it goes one step farther
by proposing that physical objects could embed web servers in order to suit
disconnected interactions.

7 Conclusions

The main starting point of the research presented in this paper is the compar-
ison of the WiTness framework and the Web Services Security specifications
in the context of offline federations. We took example scenarios illustrating
situations ranging from an environment in which authorities are ubiquitously
reachable to an environment in which they are most of the time unreachable.
We then evaluated how these scenarios could be realized with Web Services and
within the WiTness framework. We showed that the scenarios can be realized
with the WiTness framework and with the Web Services specifications. Both
approaches have different interesting characteristics, and can learn from each
other. The Web Services Security specifications may particularly benefit from
supporting offline usable credentials as implemented in WiTness. The WiTness
framework may benefit from the Web Services specifications as a standardized,
secure messaging framework.

Federation capabilities, understood both in terms of personal area federa-
tions of devices as in the WiTness framework, and in terms of federations of
authorities as in WS-Federation, are an essential feature for future developments
of mobile and ubiquitous computing. From the assumption made in this paper,
that offline situations will remain to occur in the future, we can conclude that
the development and support of disconnected, i.e., offline usable, credentials
and associated protocols is an important field of investigation in this context.
This should be studied more, in particular also taking into account as much

24



contextual information as possible, as is increasingly available in mobile and
ubiquitous computing environments.

The Web Services specifications provide a standardized, secure messaging
framework on top of which secure and interoperable applications can be build
in a transparent way. However, the WiTness scenarios show that a large amount
of security functionality remains to be provided within the application, and can-
not be handled by the Web Services specifications as such in a straightforward
manner. This suggests that further standardization may be needed at the Web
Service application level. For example, specific security-related Web Services
may need to be developed.

In summary, a trend that seems to be emerging from our comparison of both
frameworks is that application level security will develop on top of a generic
model for negotiating trust between authorities and will make it possible to
adapt the credentials used to specific applications.

References

[1] Petra Wohlmacher, Digital certificates: a survey of revocation methods,
in Proceedings of the 2000 ACM workshops on Multimedia (International
Multimedia Conference), pp. 111–114, 2000.

[2] L. Bussard, Y. Roudier, R. Kilian Kehr, and S. Crosta, Trust and autho-
rization in pervasive B2E scenarios, in Proceedings of the 6th Information
Security Conference (ISC03), LNCS, Springer, 2003.

[3] D. Chaum, A. Fiat, M. Naor, Untraceable Electronic Cash, Proceedings of
Crypto’88, LNCS 403, Springer Verlag, pp. 319–327, 1988.

[4] R.L. Rivest, Can We Eliminate Certicate Revocation Lists? in proceedings
of Financial Cryptography ’98.

[5] Network Working Group, Request for Comments 2693: SPKI Certificate
Theory, September 1999.

[6] P. Robinson and S. Hild, Controlled Availability of Pervasive Web Services
In proceedings of 23rd International Conference on Distributed Computing
Systems Workshops (ICDCSW’03), 2003.

[7] IBM and Microsoft. Secure, Reliable, Transacted Web Services: Archi-
tecture and Composition. September 2003. http://msdn.microsoft.com/
webservices/?pull=/library/en-us/dnwebsrv/html/wsoverview.asp

[8] IETF/W3C. XML Signature Syntax and Processing. W3C Recommen-
dation 12 February 2002. http://www.w3.org/TR/xmldsig-core/. IETF
RFC 3275. March 2002. http://www.ietf.org/rfc/rfc3275.txt

[9] W3C. XML Encryption Syntax and Processing. W3C Recommendation 10
December 2002. http://www.w3.org/TR/xmlenc-core/

25



[10] W3C. SOAP Version 1.2. W3C Recommendation 24 June 2003. http://
www.w3.org/TR/soap/

[11] W3C. Web Services Description Language (WSDL) 1.1. W3C Note 15
March 2001. http://www.w3.org/TR/wsdl

[12] OASIS. Universal Description, Discovery and Integration. UDDI Version
3.0.1. 14 October 2003. http://uddi.org/pubs/uddi_v3.htm

[13] IBM and Microsoft. Security in a Web Services World: A Pro-
posed Architecture and Roadmap. April 2002. http://msdn.
microsoft.com/webservices/?pull=/library/en-us/dnwssecur/
html/securitywhitepaper.asp

[14] OASIS. Web Services Security: SOAP Message Security 1.0 (WS-
Security 2004). March 2004. http://www.oasis-open.org/committees/
download.php/5941/oasis-200401-wss-soap-message-security-1.0.
pdf

[15] IBM, Microsoft, RSA Security and VeriSign. Web Services Secure
Conversation Language (WS-SecureConversation). December 2002.
http://msdn.microsoft.com/webservices/?pull=/library/en-us/
dnglobspec/html/ws-secureconversation.asp

[16] IBM, Microsoft, RSA Security and VeriSign. Web Services Trust
Language (WS-Trust). December 2002. http://msdn.microsoft.com/
webservices/?pull=/library/en-us/dnglobspec/html/ws-trust.asp

[17] IBM, Microsoft, RSA Security and VeriSign. Web Services Se-
curity Policy Language (WS-SecurityPolicy). December 2002.
http://msdn.microsoft.com/webservices/?pull=/library/en-us/
dnglobspec/html/ws-securitypolicy.asp

[18] BEA, IBM, Microsoft, RSA Security and VeriSign Web Ser-
vices Federation Language (WS-Federation). July 2003. http:
//msdn.microsoft.com/webservices/?pull=/library/en-us/
dnglobspec/html/ws-federation.asp

[19] BEA, IBM, Microsoft, RSA Security and VeriSign WS-Federation:
Active Requestor Profile. July 2003. http://msdn.microsoft.
com/webservices/?pull=/library/en-us/dnglobspec/html/
grfWS-FederationActiveRequestorProfile.asp

[20] OASIS. Web Services Security: UsernameToken Profile 1.0. March
2004. http://www.oasis-open.org/committees/download.php/5942/
oasis-200401-wss-username-token-profile-1.0.pdf

[21] OASIS. Web Services Security: X.509 Certificate Token Profile.
March 2004. http://www.oasis-open.org/committees/download.php/
5943/oasis-200401-wss-x509-token-profile-1.0.pdf

26



[22] OASIS. Security Assertion Markup Language (SAML). http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=security

[23] OASIS. based on the assumptions made in this paper. eXtensible
Rights Markup Languaderatingge (XrML). http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=rights

[24] IBM and Microsoft. Web Services Security Kerberos Binding. Decem-
ber 2003. http://msdn.microsoft.com/webservices/?pull=/library/
en-us/dnglobspec/html/ws-security-kerberos.asp

[25] BEA, Canon, Intel and Microsoft. Web Services Dynamic Discovery (WS-
Discovery). February 2004. http://msdn.microsoft.com/webservices/
?pull=/library/en-us/dnglobspec/html/ws-discovery.aspbased on
the assumptions made in this paper.

[26] Microsoft. Web Services Enhancements for Microsoft .NET (WSE). http:
//msdn.microsoft.com/webservices/building/wse/

[27] SUN. Java Personal Edition http://java.sun.com/products/
personaljava/ Java 2 Micro Edition http://java.sun.com/j2me/

[28] ITU-T. Recommendation X.509: The Directory - Authentication Frame-
work, 1988.

[29] OASIS. eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml.

[30] Microsoft. Next-Generation Secure Computing Base (NGSCB).
http://www.microsoft.com/resources/ngscb/.

[31] Liberty Alliance. http://www.projectliberty.org/.

[32] Paajarvi XML format for SPKI certificates IETF Draft 2000, expired.

[33] WiTness, Wireless Trust for Mobile Business, IST-2001-32275,
http://www.wireless-trust.org

[34] ITU-T ASN.1 encoding rules: XML encoding rules, ITU-T standard,
December 2001, http://www.itu.int/rec/recommendation.asp?type=
folders&lang=e&parent=T-REC-X.693

27


