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Abstract. The work presented in this paper aims at reducing the semantic gap
between low level video features and semantic video objects. The proposed method
for finding associations between segmented frame region characteristics relies on
the strength of Latent Semantic Analysis (LSA). Our previous experiments [1],
using color histograms and Gabor features, have rapidly shown the potential of
this approach but also uncovered some of its limitation. The use of structural
information is necessary, yet rarely employed for such a task. In this paper we
address two important issues. The first is to verify that using structural informa-
tion does indeed improve performance, while the second concerns the manner in
which this additional information is integrated within the framework. Here, we
propose two methods using the structural information. The first adds structural
constraints indirectly to the LSA during the preprocessing of the video, while the
other includes the structure directly within the LSA. Moreover, we will demon-
strate that when the structure is added directly to the LSA the performance gain
of combining visual (low level) and structural information is convincing.

1 Introduction

Multimedia digital documents are readily available, either through the internet, private
archives or digital video broadcast. Traditional text based methodologies for annotation
and retrieval have shown their limit and need to be enhanced with content based anal-
ysis tools. Research aimed at providing such tools have been very active over recent
years [2]. Whereas most of these approaches focus on frame or shot retrieval, we pro-
pose a framework for effective retrieval of semantic video objects. By video object we
mean a semantically meaningful spatio-temporal entity in a video.

Most traditional retrieval methods fail to overcome two well known problems called
synonymy and polysemy, as they exist in natural language. Synonymy causes different
words describing the same object, whereas polysemy allows a word to refer to more
than one object. Latent Semantic Analysis (LSA) provides a way to weaken those two
problems [3]. LSA has been primarily used in the field of natural language understand-
ing, but has recently been applied to domains such as source code analysis or computer
vision. Latent Semantic Analysis has also provided very promising results in finding
the semantic meaning of multimedia documents [1, 4, 5]. LSA is based on a Singular
Value Decomposition (SVD) on a word by context matrix, containing the frequencies
of occurrence of words in each context. One of the limitations of the LSA is that it does



not take into account word order, which means it completely lacks the syntax of words.
The analysis of text, using syntactical structure combined with LSA already has been
studied [6, 7] and has shown improved results. For our object retrieval task, the LSA
is computed over a visual dictionary where region characteristics, either structurally
enhanced or not, correspond to words.

The most common representation of visual content in retrieval system relies on
global low level features such as color histograms, texture descriptors or feature points,
to name only a few [8–11]. These techniques in their basic form are not suited for object
representation as they capture information from the entire image, merging characteris-
tics of both the object and its surrounding, in other word the object description and its
surrounding environment become merged. A solution is to segment the image in regions
with homogenous properties and use a set of low level features of each region as global
representation. In such a situation, an object is then referred to as a set of regions within
the entire set composing the image. Despite the obvious improvement over the global
approach, region based methods still lack important characteristics in order to uniquely
define objects. Indeed it is possible to find sets of regions with similar low level features
yet depicting very different content. The use of relational constraints, imposed by the
region adjacency of the image itself, provides a richer and more discriminative repre-
sentation of video object. There has only been limited publications employing attributed
relational graph to describe and index into large collection of visual data [12–15] due to
the increased computational complexity introduced by such approaches. Here we will
show that it is possible to achieve significant performance improvement using structural
constraints without increasing either the representation dimensionality or the computa-
tional complexity.

This paper is organized as follows. The concept of adding structure to LSA and a
short theoretical background on the algorithms used, are presented in Section 2. Section
3 provides the experimental results looking at several different aspects. The conclusion
and future directions are discussed in Section 4.

2 Enhancing Latent Semantic Analysis with Structural
Information

As opposed to text documents there is no predefined dictionary for multimedia data.
It is therefore necessary to create one to analyze the content of multimedia documents
using the concept of Latent Semantic Analysis [3]. Here, we propose three distinct
approaches for the construction of visual dictionaries. In the non-structural approach,
each frame region of the video is assigned to a class based on its properties. This class
corresponds to a ”visual” word and the set of all classes is our visual dictionary. In the
case where we indirectly add structure, the clustering process which builds the different
classes (words) takes structural constraints into account. Finally, in the third case where
structure is added directly to the LSA, pairs of adjacent regions classes (as in the non-
structural approach) are used to define words of the structural dictionary. We shall now
detail the steps leading to three different dictionary constructions.



2.1 Video preprocessing

We consider a video V as a finite set of frames
�
F1 ��������� Fn � , where the preprocessing

is performed on subsampled individual frames. Such an approach implies that video
scenes and/or shots are not taken into account. Every 25th frame of the video V is seg-
mented in regions Ri using the method proposed by Felzenszwalb and Huttenlocher
in [16]. This algorithm was selected for its perceived computation requirement and
segmentation quality ratio. Each segmented region Ri is characterized by its attributes,
feature vectors that contain visual information about the region such as color, texture,
size or spatial information. For this paper, the feature vector is limited to a 32 bin color
histogram of the corresponding region. Other attributes could indeed lead to better re-
sults, however for the scope of this paper we are only interested in identifying whether
structural constraint provide performance improvements.

2.2 Building the basic visual dictionary

The structure-less dictionary is constructed by grouping regions with similar feature
vectors together. There are many ways to do so [17]. Here the k-means clustering algo-
rithm [17] is employed with the Euclidean distance as similarity measure. As a result
each region Ri is mapped to a cluster Cl (or class), represented by its cluster centroid.
Thanks to the k-means clustering parameter k controlling the number of clusters, the
dictionary size may be adjusted to our needs. In this case, each cluster represents a
word for the LSA.

2.3 Incorporating structural information

In an attempt to increase the influence of local visual information, an adjacency graph
is constructed from the segmented regions for each frame. Nodes in the graph repre-
sent segmented regions and are attributed with a vector H. Vertices between two nodes
of the graph correspond to adjacent regions. A segmented frame can therefore be rep-
resented as a graph G �	� V � E 
 consisting of a set of vertices V � � v1 � v2 ��������� vn � and
edges E � � e1 � e2 ��������� em � , where the vertices represent the cluster number labelled re-
gions and the edges the connectivity of the regions. For the discussion below, we also
introduce φQ

i ��� h 
�� i � h 
�� EQ � which denotes all the nodes connected to a given node
i in a graph Q. As an illustration, Figure 1(b) shows a frame containing an object seg-
mented into regions with is corresponding relational graph overlaid.

Indirectly adding structure when building the dictionary
A first approach to add structural information when using LSA is to include the struc-

tural constraints within the clustering process itself. Here we are interested in clustering
regions according to their attributes as well as the attributes of the regions they are adja-
cent to. To this end, we used a clustering algorithm similar to k-medoid with a specific
distance function D � RQ

i � RD
j 
 (1). This distance function between regions RQ

i of graph Q
and RD

j of graph D take the local structure into account.



(a) (b)

Fig. 1. (a) The shark object and (b) its corresponding graph of adjacent regions.

D � RQ
i � RD

j 
�� L2 � Hi � H j 
�� 1�
φQ

i
� ∑

k � φQ
l

min
l � φD

j

L2 � Hk � Hl 
 (1)

where L2 � Hi � H j 
 is the Euclidian distance between histograms Hi and H j. In order to
deal with the different connectivity levels of nodes, the node with the least number of
neighbours is φQ

l . This insures that all neighbour from φQ
l can be mapped to nodes of

φD
j . Note that this also allows multiple mappings, which means that several neighbours

of one node i can be mapped to the same neighbour of the node l.
As a result of the clustering described above, we get k clusters, which are built upon

structural constraints and visual features. Each region Ri belongs to one cluster Cl . Each
cluster represents a visual word for the Latent Semantic Analysis.

Adding structural constraints directly to the words of the dictionary
We now wish to construct a visual dictionary Dν (of size ν) which is containing words

with direct structural information. This is achieved by considering every possible un-
ordered pair of clusters as a visual word W , e.g. C3C7 � C7C3. Note that for example
the cluster pair C1C1 is also a word of the dictionary, since two adjacent regions can fall
into the same cluster Cl despite having segmented them into different regions before.

Dν � � W1 ��������� Wν �
� C1C1 
�� W1 � � C1C2 
�� W2 ��������� � Ck Ck 
�� Wν

The size ν of the dictionary Dν is also controlled by the clustering parameter k but this
time indirectly.

ν � k ��� k � 1 

2

� k (2)



To be able to build these pairs of clusters (words), each region is labelled with the
cluster number it belongs to (e.g. C14). If two regions are adjacent, they are linked in an
abstract point of view, which results in a graph Gi as described previously. Every Graph
Gi is described by its adjacency matrix. The matrix is a square matrix (n � n) with both,
rows and columns, representing the vertices from v1 to vn in an ascending order. The
cell (i, j) contains the number of how many times vertex vi is connected to vertex v j.
The matrices are symmetric to theirs diagonals.

In this configuration, the LSA is also used to identify which structural information
should be favoured in order to obtain good generalisation results. Moreover, we be-
lieve that this should improve the robustness of the method to segmentation differences
among multiple views of the same object (leading to slightly different graphs).

2.4 Latent Semantic Analysis

The LSA describes the semantic content of a context by mapping words (within this
context) onto a semantic space. Singular Value Decomposition (SVD) is used to create
such a semantic space. A co-occurrence matrix A containing words (rows) and contexts
(columns) is built. The value of a cell ai j of A contains the number of occurrence of the
word i in the context j. Then, SVD is used to decompose the matrix A (of size M � N,
M words and N contexts) into three separate matrices.

A � USVT (3)

The matrix U is of size M � L, the matrix S is of dimension L � L and the matrix V
is N � L. U and V are unitary matrices, thus UTU � VTV � IL where S is a diagonal
matrix of size L � min � M � N 
 with singular values σ1 to σL, where

σ1 � σ2 � ����� � σL S � diag � σ1 � σ2 ��������� σL 

A can be approximated by reducing the size of S to some dimensionality of k � k, where
σ1 � σ2 ��������� σk are the k highest singular values.

Â � UkSkVT
k (4)

By doing a reduction in dimensionality from L to k, the sizes of the matrices U
and V have to be changed to M � k respectively N � k. Thus, k is the dimension of the
resulting semantic space.To measure the result of the query, the cosine measure (mc) is
used. The query vector q contains the words describing the object, in a particular frame
where it appears.

qTÂ � qTUkSkVT
k � � qTUk 
�� SkVT

k 
 (5)

Let pq = qTUk and pj to be the j-th context (frame) of � SkVT
k 


mc � pj � q 
�� pq � pj�
pq
� � � pj

� (6)

The dictionary size ought to remain ”small” to compute the SVD as its complexity is
O � P2k3 
 , where P is the number of words plus contexts (P � N � M) and k the number
of LSA factors.



3 Experimental Results

Here, our object retrieval system is evaluated on a short cartoon (10 minutes duration)
taken from the MPEG7 dataset and created by D’Ocon Film Productions. A ground
truth has been created by manually annotating frames containing some objects (shown
in Figure 2) through the entire video. The query objects are chosen as diverse as possible
and appear in 30 to 108 frames of the subsampled video. The chosen granularity of the
segmentation results in an average of about 35 regions per frame. Thus the built graphs
remain reasonable small, whereas the number of graphs (one per frame) is quite large.

A query object may be created by selecting a set of region from a video frame.
Once the query is formed, the algorithm starts searching for frames which contain the
query object. The query results are ordered so that the frame which most likely contains
the query object (regarding the cosine measure mc) comes first. The performance of
our retrieval system is evaluated using either the standard precision vs. recall values or
the mean average precision value. The mean average precision value for each object is
defined as followed: We take the average precision value obtained after each relevant
frame has been retrieved and take the mean value, over all frames retrieved. We have
selected 4 objects (Figure 2) from the sequence. Some are rather simple with respect
to the number of regions they consist of, while others are more complex. Unless stated
otherwise, the plots show the average (over 2 or 4 objects) precision values at given
standard recall values [0.1, 0.2, . . . , 1.0].

3.1 Impact of the number of clusters

To show the impact on the number of clusters chosen during video preprocessing, we
have built several dictionaries containing non-structural visual words (as described in
Section 2.2). Figure 3(a) shows the precision/recall curves for three cluster sizes (32,
528, 1000). The two upper curves (528 and 1000 clusters) show rather steady high pre-
cision values for recall value smaller than 0.6. For 32 clusters the performance results
are weaker. Using 528 clusters always delivers as good results as using 1000 clusters
which indicates that after a certain number of clusters, the performance cannot be im-
proved and may even start to decay. This is due to the fact that for large k the number
of regions per cluster become smaller, meaning that similar content may be assigned to
different clusters.

Fig. 2. The 4 query objects.
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Fig. 3. (a) Retrieval performance w.r.t. number of clusters. (b) Retrieval performance for 4 objects
queries with indirectly added structure and without.

3.2 Comparing indirectly added structure with the non-structural approach

In the following experiment, we compared the retrieval results either using a structure-
less dictionary and a dictionary where we added the structural information within the
clustering process as explained in Section 2.3. In both methods we use a cluster size of
528 (which also results in a dictionary size of 528) and we select the k (factor kept in
LSA) so that we get best results (in this case k=25). Figure 3(b) shows the precision at
given recall values for both cases. The curves represent an average over all 4 objects.
It shows that adding structural information to the clustering does not improve the non-
structural approach, it even is doing slightly worse for recall values above 0.5.

3.3 Comparing directly structure enhanced words with non-structural words

For a given cluster size (k=32) we compared two different ways of defining the visual
words used for LSA. In the non-structural case, each cluster label represents one word,
leading to a dictionary size of 32 words. In the structural case, every possible pair of
cluster label is defining a word (as explained in Section 2.3), so that the number of words
in the dictionary is 528. Note that by building those pairs of cluster labelled regions,
there might be some words which never occur throughout all frames of the video. In the
case of a cluster size of 32, there will be 14 lines in the co-occurrence matrix which are
all filled with zeros. Figure 4 shows the results for both approaches when querying for
four objects and two objects. The group of two objects contains the most complex ones.
The structural approach clearly outperforms the non-structural methods. Even more so,
as the objects are most complex. The structural approach is constantly delivering higher
precision values than the non-structural version, throughout the whole recall range.
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Fig. 4. Retrieval performance for 2 and 4 objects queries with directly added structure and with-
out.

3.4 Structure versus non-structure for the same size of the dictionary

Here we are looking at both, the direct structural (as explained in Section 2.3) and the
non-structural approach, in respect of a unique dictionary size. To this aim, we choose
528 clusters (which equals 528 words) for the non-structural method and 32 clusters
for the structural, which results in 528 words as well. In this case we feed the same
amount of information to the system for both cases, however the information is of dif-
ferent kind. Figure 5(a) shows the precision/recall values when we look at 2 different
objects. The results show that there is no significant improvement of one approach over
the other. Overall the non-structural approach is only doing slightly better. However,
when looking at one particular object (the shark in this case, see Figure 5(b)), the struc-
tural approach is doing constantly better (except for very high recall values 0.9 to 1.0).
As mentioned previously, the shark is a highly complex object and therefore it is not
surprising that the structural method delivers better results than the non-structural one.

4 Conclusion And Future Work

In this paper we have presented two methods for enhancing a LSA based video object
retrieval system with structural constraints (either direct or indirect) obtained from the
object visual properties. The methods were compared to a similar method [1] which did
not make use of the relational information between adjacent regions. Our results show
the importance of structural constraints for region based object representation. This is
demonstrated in the case where the structure is added directly in building the words, by
a 18% performance increase in the optimal situation for a common number of region
categories. We are currently investigating the sensitivity of this representation to the
segmentation process as well as other potential graph structures.
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