
Implementation and Validation of a Multicast
Routing Protocol in an Ad Hoc Network Testbed

Shiyi Wu, Christian Bonnet

Department of Mobile Communication
Institut Eurécom Sophia-Antipolis, France
{Shiyi.Wu, Christian.Bonnet}@eurecom.fr

Yukihiro Takatani, Masato Hayashi

Corporate Technology Group, Hitachi Europe SAS
Valbonne, France

{yukihiro.takatani, masato.hayashi}@hitachi-eu.com

Abstract— We present our experiences in implementing
and validating the Multicast Routing protocol with Dy-
namic Core (MRDC) in a real wireless ad hoc network
testbed. The testbed consists of portable PCs and PDAs
to reduce hardware cost and facilitate mobility test. The
architecture of MRDC has been designed and introduced
into the user space of Linux operating system without
modifying the kernel. MRDC creates and maintains a
group shared tree for each multicast session on demand.
Besides the routing functionality, we designed a forwarding
module in this implementation to forward all kinds of
multicast datagram including MBone traffic. Integrating a
simplified IGMP and a multicast tree information collector
into the implementation, we evaluated the bandwidth
utilization of MRDC in a stationary network scenario and
the correctness of MRDC in both topology dynamic and
membership dynamic scenarios in testbed experiments.

Index Terms— Mobile ad hoc networks, multicast rout-
ing, MRDC, testbed.

I. INTRODUCTION

A Mobile Ad-hoc NETwork (MANET) is a collection
of wireless mobile nodes forming a dynamical tempo-
rary network without the use of any existing network
infrastructure or centralized administration. Each node
in the network acts as a router and forwards packets on
behalf of other nodes, which permits nodes communicate
with each other beyond direct wireless coverage range.
In MANET, multicast communication is an important
issue since it can efficiently support a variety of group-
oriented applications such as virtual classroom, remote
conference and distributed games.

The characteristics of MANETs such as frequent
topology change, limited bandwidth and node resources

EURECOM research is partially supported by its industrial part-
ners: ASCOM, Swisscom, FranceTelecom, La Fondation Cegetel,
BouyguesTelecom, Thales, STMicroeletronics, Hitachi Europe and
Texas Instruments.

make conventional multicast routing protocol unsuitable.
That is why many protocols have been proposed during
last few years to support multicast routing in MANETs
(MAODV [1], AMRIS [2], ODMRP [3], etc.). Most of
these multicast protocols are only studied with software
simulations. Software simulation is an excellent choice
for initial design and an estimation of results. But
the limitations of software simulator, such as lack of
realistically duplication of physical layer, make hardware
testing essential [4]. Due to high cost of hardware and
difficulty of development, there exist few implementa-
tions of multicast routing protocol for ad hoc network
exist for the real environment [5], [6].

We scope on Multicast Routing protocol with Dy-
namic Core (MRDC), which is one of on-demand tree-
based multicast routing protocols proposed by Shiyi Wu,
et al [7]. Implementation and evaluation of MRDC in
the network simulator have been performed in their
work, but the implementation in the real environment
has not been done yet. One advantage of MRDC is its
independence of any unicast routing protocol. Implement
a unicast routing protocol for MANET in testbed requires
extra effort and complicates result analysis.

In this paper we present the implementation of MRDC
in a heterogeneous testbed which comprises portable
personal computers (portable PC) and PDAs. Because
PDAs are cheaper and lighter than portable PCs, this
network configuration reduces hardware cost and at the
same time facilitates mobility testing. Diverse compo-
nents introduce extra difficulty in program developing,
installation and validation. Thus, unlike [5] and [6]
which modified kernel, the MRDC implementation is
supposed to run in the user space and a multicast
forwarding module is developed to realize on-demand
fashion and multicast datagram forwarding in user space.
With additional function modules such as a simplified

372

https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/4016444_EWANT_The_emulated_wireless_ad_hoc_network_testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3836028_AMRIS_A_multicast_protocol_for_ad_hoc_wireless_networks?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820237_On-demand_multicast_routing_protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/2385509_Multicast_Operation_of_the_Ad-hoc_On-Demand_Distance_Vector_Routing_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/profile/Shiyi_Wu?el=1_x_100&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/profile/Christian_Bonnet?el=1_x_100&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==


IGMP [8] module and a tree information collection mod-
ule, we evaluated the bandwidth utilization of MRDC
and tested the correctness of the implementation in both
topology dynamic scenarios and membership dynamic
scenarios. We will describe these work in more detail.

The rest of the paper is organized as follows, MRDC
is briefly overview in Section II followed by the protocol
implementation description in Section III. Section IV
introduce the performance evaluation of the implementa-
tion in a stationary network scenario and the correctness
of MRDC in both topology dynamic and membership
dynamic scenarios. And concluding remarks are made
in Section V.

II. MRDC OVERVIEW

This section gives a short overview of the Multicast
Routing protocol with Dynamic Core (MRDC). For a
detailed operation of the protocol, readers are referred
to [7].

MRDC is an on-demand, group-shared, tree-based
multicast routing protocol. It is independent of any
unicast routing protocol. The first source of a multicast
session becomes the core of this group, and triggers
multicast tree creation. This strategy reduces routing
overhead for multicast tree maintenance, improves data
transmission efficiency, and is appreciated by MANETs.
Tree structure is complex and difficult to be maintained
in a frequent topology change network. MRDC solves
this problem through local tree recovery and periodical
multicast tree refreshing. Local tree recovery tries to
repair broken tree branch in several hop away. On the
other hand, periodical multicast tree refreshing destroys
old tree and constructs a new tree to remove accumulated
errors and adapt to topology changes. If core node
has no further multicast traffic, it stops periodical tree
refreshing procedure. The multicast tree is automatically
erased after a timeout. The source, which wins the core
competition, becomes core and is engaged in multicast
tree creation and period refreshment. In this way, core
immigrates to another sources.

The control part of MRDC contains two phases: Tree
construction and Tree maintenance. Tree construction
phase begins when a core is selected. Core is the first
active multicast tree member and broadcasts a Core
Advertisement message (CA message) to the rest of the
network. Upon receiving a CA message, node becomes
potential tree member and registers the node from which
comes the message to construct a reverse path to the core.
Group receivers initiate RAR/RAA procedure to join the

multicast tree when receiving CA message. In this pro-
cedure, a Route Active Request message (RAR message)
is unicast along the reverse path toward core. The first
active tree members which receives the RAR message
replies a Route Active Acknowledgment message (RAA
message). RAA message activates the tree membership
of nodes along the path to the original of the RAR
message. Thus, a branch is added into multicast tree.
Tree maintenance phase repairs tree branch broken due to
topology changes and maintains a correct tree structure.
This phase has two procedures: local tree recovery and
periodical multicast tree refreshing. In local tree recovery
procedure, the upstream node monitors the connectivity
of a tree branch. Once a broken branch is detected,
the upstream node broadcasts a Join Invite message (JI
message) to inform the correspond downstream node and
establish a reverse path. Then the downstream node starts
a process similar to RAR/RAA procedure to re-join the
tree. In periodical multicast tree refreshing procedure,
core periodically broadcasts CA message to delete old
tree and invite the other group members join the new
multicast tree.

III. IMPLEMENTATION

A. Implementation Platform

1) Hardware: Ad hoc network nodes are Intel Pen-
tium III based Dell C600 laptops and Intel StrongARM
based compaq iPAQ H3850s equipped with IEEE802.11
wireless network card.

2) Operating System: MRDC was developed on
Linux kernel version 2.4.18 provided by Red Hat 7.3.
All tools and software packages that we used in our de-
velopment originate from software bundle incorporated
within the Red Hat Linux version 7.3 operating system
package. We chose the Linux operating system for its
availability and familiarity.

The PDAs used Familiar Linux v0.7 package with
kernel version 2.4.19-rmk6-pxal-hh13 as operating sys-
tem. It is necessary to install packet capture and packet
filtering modules on PDA since these packages are not
available in the installation package bundle. We used
arm-linux-gcc from tool-chain to make cross platform
compilation on red hat 7.3 platform

B. Software Architecture

In this step, MRDC is designed to run in user space
to simplify installation and test in both portable PCs
and PDAs. The implementation architecture of MRDC
is shown in Figure 1. Besides a multicast routing table,
MRDC contains a group list which records all multicast

373

https://www.researchgate.net/publication/247408775_RFC_2236_Internet_Group_Management_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==


groups of which this node is a receiver and/or source.
Because this implementation is aimed to demonstrate
how to support multicast applications, other than MRDC
core module, IGMP module and tree monitoring module
are introduced. MRDC core module is further divided
into two parts: Routing Part (RP) which, as describe in
[7], constructs and maintains multicast tree on demand
and updates multicast routing table, and Multicast For-
warding Part (MFP) which forwards multicast datagram
according to the multicast routing table. IGMP module
performances as simplified router to host part of Internet
Group Management Protocol (IGMP) version 2 [8]. It
detect membership changes on the local host and modi-
fies group list. Tree monitoring module is an additional
functionality. It collects multicast routing information
of a pre-defined group from multicast routing table in
each multicast tree member. Then a tree monitor written
in JAVA runs in a special machine replays the multi-
cast tree structure based on these informations. MRDC
opens three sockets for inside and outside communi-
cation. IGMP module owns an IGMP socket (named
igmp socket) to send and receive igmp packets. MRDC
core module opens a UDP socket (called udp socket) for
inter-node message exchange and a raw socket (denoted
as raw socket) to deliver multicast datagram to local
host. Tree monitoring module shares udp socket for mul-
ticast routing information collection. This architecture
forms a complete multicast detection, creation, delivery
and tree monitoring flow for demonstration. The rest of
this section explains these modules in detail.

RoutingForwarding

Multicast Routing Table

IGMP
Monitoring

Tree

Group List

MRDC Implementation

MRDC core

Socket Layer

User space

Kernel space

igmp_socket raw_socket udp_socket

Fig. 1

MRDC IMPLEMENTATION STRUCTURE

1) Routing Part: A multicast tree creation starts when
multicast forwarding part sniffs a packet addressed to a

multicast group which does not exist in multicast routing
table.

In Routing Part (RP), MRDC creates and maintains
multicast trees on demand. A multicast tree is created
when the first sender sends the first multicast packet.
(We elaborate on how to detect the first sender when we
explain multicast forwarding part.) This node becomes
the core, and routing part starts to create a multicast tree.
The routing information is stored in multicast routing
table. After tree construction, multicast forwarding part
begins to deliver datagram. Nodes can join or leave the
multicast group at any time during the session. The
core maintains the multicast session by refreshing the
tree periodically, but if the source status is timeout
which means no multicast datagram is sent during a
period of time, the core stops this maintenance and a
multicast tree is automatically erased by deleting routing
information from multicast routing table. In addition,
this implementation supports core immigration. Each
multicast source supposes itself is core and begins to
broadcast its own CA message when multicast tree is
erased. When receiving multiple CA messages address-
ing same multicast group, nodes compare core IP address
and choose the biggest one. The source which has the
biggest IP address thus becomes core comptition winner
and continue to send its CA message periodically. While
the other sources stop sending their CA message and join
multicast tree as a normal group member.

2) Multicast Forwarding Part: We met several diffi-
culties during MRDC implementation. i) How to detect
multicast datagram. MRDC cannot get multicast data-
gram directly since it runs in user space. ii) How to
forward multicast datagram. In table-driven unicast case,
routing agent can run in user space and modifies routing
table in kernel. IP forwarding module in kernel forwards
unicast datagram according to the routing table. MRDC
cannot use the same approach because multicasting in
MANETs and multicasting in fixed Internet is differ-
ent. The routing table’s multicast tree states consist of
local interfaces instead of neighbor identities and , the
verification for incoming data is also done on incoming
interface rather the sender. However, one MANET node
can use the same interface talking to any neighbor on the
same wireless channel. The incoming physical interface
verification done by the IP kernel is no longer applicable.
iii) How to detect duplications. Duplication cannot be
avoided since nodes use the same wireless channel to
communicate.

In Multicast Forwarding Part (MFP), we introduce
the combination of packet capture, packet encapsula-

374

https://www.researchgate.net/publication/247408775_RFC_2236_Internet_Group_Management_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==


Packet
Capture

Data Link Data Link

Original multicast packet
Encapsulated Packet

IP Forwarding IP Forwarding

Packet
Capture

MRDC AP MRDC AP
Send to
local host

Socket LayerSocket Layer

Packet filtered

by iptables

User Space

Kernel Space

Receiver or intermediate nodeSource node

Fig. 2

MULTICAST PACKET FORWARDING IN MRDC IMPLEMENTATION

tion/decapsulation and packet filtering, to solve the above
problems. Figure 2 illustrates this procedure. A multicast
datagram sent by an application is sniffed by packet
capture at data link layer. Packet capture passes the
packet to MRDC. MRDC encapsulates the captured
packet into a MRDC data packet and then broadcasts
it to neighbors through upd socket. Nodes relay MRDC
data packet till group receivers according to MRDC’s
multicast routing table. At last, MRDC in the side of
receiver extracts the datagram from MRDC data packet
and sends it to local application through raw socket. To
detect duplication, MRDC uses the informations stored
in MRDC data packet header. On the other hand, if a
group receiver is in coverage region of a group source,
it receives multicast datagram directly from source. In
order to avoid this phenomenon, the packet filtering
(iptables installed in Linux) is applied to each node. We
will explain in details how they work.

The basic technique used to capture multicast traffic
packets in user space is the same as Unix tcpdump [9].
Since all machines use Linux as operating system, we
use libpcap facility. It listens traffic at data link layer and
sniff packets which are in accordance with a pre-defined
rule set. For example, in this implementation, we want
to capture all multicast datagram sent by a node itself.
If the ip address of node A is 192.168.25.197, the
following rule is set:
(tcp or udp) and ip multicast and src host

192.168.25.197
This rule captures all tcp and upd multicast packets sent
by node A. Then libpcap facility passes the captured
packets to MFP as a raw packet. MFP checks the
destination address in the ip header of captured packet
by consulting multicast routing table. If the destination
address concerns a new multicast group, MFP sets up
group source state in group list, caches the packet and
informs routing part to create multicast tree. Otherwise,
if the destination address concerns an existing group,
MFP refreshes group source state and encapsulates the
captured multicast datagram into a MRDC data packet
and broadcasts it through udp socket. A MRDC data
packet header, as show in Figure 3, has following five
fields. A sequence number is assigned by the source in
order to detect packet duplication.

When a multicast tree member receives a MRDC data
packet, MFP first detects whether the same packet is
received before and drops all duplication. If it is not
the case, MFP decreases ttl by one and broadcasts the
MRDC data packet to its neighbors. At the same time
if the group list indicates that local host is a receiver of
the corresponding multicast group, MFP decapsulates the
MRDC data packet and transfers the multicast datagram
through raw socket.

An important point that we should take into ac-
count is the broadcast characteristic of wireless link.
An application may receive the same multicast datagram

375



0

Type=DATA TTL Reference

31161587

Group

Source

Payload

(Captured multicast datagram)

Fig. 3

MRDC PACKET STRUCTURE

which has been already received if the node is in the
coverage range of the source. Therefore it is necessary to
prepare the packet duplication avoidance mechanism in
the implementation. To filter the packet from source,we
use the Netfilter/iptables facility [10]. It sits in-between
the kernel IP stack and network device drivers and
manipulates every packet in or out of this host according
to pre-defined rules. Rules can be set or changed at any
time through a command interface. For example, if the
wireless interface is eth0, the following rule is set:
iptables -A INPUT -d 224.0.0.0/16 -p udp -i eth0
This rule drops all udp multicast packets coming from
eth0.

According to this architecture, multicast packets are
delivered properly.

3) IGMP Module: IGMP Module periodically sends
igmp membership query message through igmp socket
and listens at igmp socket. It sets up group receiver state
in group list if receiving a membership report message.
On the contrary, it unsets group receiver state if capturing
a igmp leave group message.

On the other hand, group list periodically unsets the
states which are not updated during last period.

4) Tree Monitoring Module: The node whose IP ad-
dress is coincidence with the predefined monitor address
is topology monitor. Monitor consulting the multicast
routing table to check whether a multicast tree exists for
the pre-defined group. If it is the case, monitor broadcasts
a message to the rest of the network. This message is
made up of monitored group, monitor address, sequence
number and last hop fields, When this message prop-
agates in the network, a reverse path to the monitor is
constructed. All members of the corresponding multicast
tree sends the information including the IP address of
their upstream and downstreams to the monitor through
this reverse path. This procedure is executed periodically.

5) Timers: We selected five seconds for multicast tree
refresh interval. IGMP queries membership every eight
seconds query and membership timeout was set to eigh-
teen seconds. Tree monitoring collects tree information
every second.

IV. PERFORMANCE EVALUATION

We created a six node testbed for our multicast exper-
iments. We study the bandwidth utilization of MRDC in
a stationary network scenario and verify the correctness
of the MRDC in topology and membership dynamic
scenarios. During the evaluation, all WaveLan devices
operated on 2.4 GHz bandwidth and communicated at
the capacity of 2 Mb/s with transmission power of 1mW.
The WaveLan devices were operated in an ad hoc mode.

A. Stationary Network Scenario and Results

The experimental network setting is shown in Figure
4. This topology is similar to [6]. Our network consisted
of six nodes among which three are portable PCs (nodes
A, B and C) and other three are PDAs (nodes D, E and
F). All nodes can hear each other in the MAC layer.
A virtual wall is constructed in the network layer via
iptables. For example, a filter is set in node A to drop
all packets coming from nodes D, E and F. A topology
monitoring program developed by Hitachi ran in Monitor
to display the multicast tree based on the informations
collected by tree monitoring module. In this experiment,
a file is multicast from node A to the receivers E and F.
Figure 5 illustrates two multicast tree structures which
were shown by topology monitor during the experiment.
That is because MRDC chooses the first discovered path.
If node F receives first new CA message from node
E, a one branch multicast tree, tree 1, is constructed.
Otherwise, a two branches tree, tree 2, is formed. Table
I shows the measurement results. The total throughput
is far below the full WaveLan data rate of 2 M/s.
There are three reasons. The first, it is due to network
layer multi-hop forwarding while nodes were physically
placed together. Multicast source and relayor shared the
same wireless channel. The second reason is we did not
prevent the original multicast traffic to be injected into
the wireless channel. The third one is that two alternative
multicast tree contain different number of interior nodes.
Tree 1 has three interior nodes while Tree 2 contains
four interior nodes. In the former tree, the bandwidth is
divided by four (one original traffic and three forward
traffic) and in the later tree, the bandwidth is divided by
five. In this MRDC implementation, the MRDC overhead
comes mostly from multicast packet encapsulation while

376

https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==


routing messages such as CA, RAR and RAA messages
can be ignored. IGMP control overhead can be ignored.
However, tree monitoring overhead is high because we
chose a small tree information collection interval. This
small interval permit us to observe tree changes in next
experiments.

In this implementation, MRDC operates in user space.
If we succeed in moving MRDC to kernel, high costly
kernel-to-user crossing for store-and-forward packets can
be avoided, the overhead caused by encapsulation can be
greatly reduced and original traffic will not be injected
into network. We believe consequently the data through-
put can be significantly improved.

F

B
Monitor

C

video source

A

E
D

Virtual Wall

Portable PC

PDA

�����
�����
�����
�����

�����
�����
�����
�����LEGEND

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Receiver

Reveiver

Fig. 4

STATIONARY NETWORK

Node B

Node A

Node D

Node F

Node A

Node B Node C

Node D Node E

Node F

Tree_1 Tree_2

Fig. 5

TREE STRUCTURE IN STATIONARY NETWORK

B. Dynamic Network Scenario and Results

In this test, we removed the virtual wall constructed by
iptables. All nodes were initially in the coverage region
of the others as shown in Figure 6. Vic [11] addressed to
a multicast address ran on node A, D, E and F to form a
video conference group. A web-cam is connected to node
A to serve as a multicast source and send video stream

TABLE I

MRDC IN STATIONARY NETWORK WITH ONE MULTICAST SOURCE

Value % of total

MRDC control packet O/H 0.26 kb/s 0.07%
MRDC data packet header 15.75 kb/s 4.11%
Total MRDC O/H 16.01 kb/s 4.18%
IGMP O/H 0.04 kb/s 0.01%
Tree Monitoring O/H 1.29 kb/s 0.34%
Avg. # of multicast tree branch 1.4 N/A
Effective data throughput 365.36 kb/s 95.47%
Total throughput 382.7 kb/s 100%

to the conference group. Because vic sends multicast
packets at regular intervals to announce membership to
other vics, although there is only one video source at
application level, each vic is a multicast source at the
point view of MRDC. Thus this conference group is a
multiple source scenario for MRDC. We configured IP
address of wireless nodes to satisfy @A < @B < @C <

@D < @E < @F . We ran vic first on node D and then
on nodes A, E and F. This running sequence resulted in
that node D became core. Figure 7 demonstrates the tree
structure.

video source

A

C

Monitor

F

B

D

E
PDA

Group member

LEGEND

Portable PC

Fig. 6

DYNAMIC NETWORK

Node A Node E Node F

Node D

Fig. 7

INITIAL MULTICAST TREE STRUCTURE

This test contains two parts: topology dynamic part
and membership dynamic part to test correctness and
efficiency of MRDC implementation. In topology dy-
namic part, we moved node F outside of the coverage
range of node A and D but still in the coverage of
node B. During the movement, node F firstly receives

377



video stream directly from node A. Then multicast tree
structure changes (see Figure 8) and node F get video
stream through the relay of node B. In membership
dynamic part, we kept node F outside of the coverage
range of A and D but in the coverage of node B and
stopped vic on node D. Tree monitoring showed that
tree structure changed, and after a short transient time,
F became core and node D disappeared. Then, we re-ran
vic on node D. This node joined the tree as a leaf node
as shown in Figure 9.

Node A Node E

Node D

Node B

Node F

Fig. 8

MULTICAST TREE STRUCTURE AFTER MOVEMENT

Node F

Node A Node E Node D

Node B

Fig. 9

FINAL MULTICAST TREE STRUCTURE

During this test, the video transmission rate was
around 300kb/s. The replayed video was fluent in both
portable PCs and PDAs and the error rate shown in vic
in most of time was smaller than 10%.

V. CONCLUSION

We presented our experience on implementation
of MRDC (Multicast Routing protocol with Dynamic
Core), a tree-based on-demand multicast routing protocol
for MANET, in a testbed which consisted of portable
PCs and PDAs. MRDC does not depend on any unicast
routing protocol. The hybrid network configuration re-
duce hardware cost of the testbed and facilitates mobility
test since PDAs are smaller and cheaper than portable
PCs. The main parts of MRDC, including tree construc-
tion and maintenance, have been successfully imple-

mented in the user space of Linux operating system. We
also designed a forwarding module to solve the problems
of multicast datagram forwarding and realize on-demand
fashion when program runs in user space. Besides these,
IGMP module and tree monitoring module have been
designed and integrated in the MRDC implementation
to form a complete solution for multicast application
supporting and topology monitoring. We evaluated the
bandwidth utilization of this implementation in a sta-
tionary network scenario and showed that if we do not
consider encapsulation overhead, MRDC creates a little
control overhead for multicast traffic delivery. Then, we
used a MBone traffic - vic to test MRDC with node
movement and membership changes. The results prove
that MRDC correctly deal with topology dynamic and
membership dynamic.

The success of MRDC implementation in user space
encourages us to bring these functionalities into kernel
and test the scalability of MRDC. We also plan to
compare the performance of MRDC with other ad hoc
multicast implementation in our testbed.

REFERENCES

[1] E. M. Royer and C. E. Perkin. Multicast operation of ad-
hoc on-demand distance vector routing protocol. In ACM/IEEE
MobiCom 1999, August 1999.

[2] C. W. Wu, Y. C. Tay, and C. K. Toh. Amris: A multicast
protocol for ad hoc wireless networks. In IEEE MILCOM’99,
Atlantic City, NJ, USA, November 1999.

[3] Sung-Ju. Lee, Mario Gerla, and Ching-Chuan Chiang. On-
demand multicast routing protocol. In IEEE WCNC’99, pages
1298–1302, New Orleans, LA, USA, September 1999.

[4] Sagar Sanghani, Timothy X Brown, Shweta Bhandare, and
Sheetalkumar Doshi. Ewant: The emulated wireless ad hoc
network testbed. In IEEE WCNC2003, volume 3, pages 1844–
1849, March 2003.

[5] Lusheng Ji, Mary Ishibashi, and M. Scott Corson. An ap-
proach to mobile ad hoc network protocol kernel design. In
IEEE WCNC’99, pages 1303–1307, New Orleans, LA, USA,
September 1999.

[6] Sang Ho Bae, Sung-Ju Lee, and Mario Gerla. Multicast protocol
implementation and validation in an ad hoc network. In ICC
2001, volume 10, pages 3196–3200, Helsinki, Finland, June
2001.

[7] Shiyi Wu and Christian Bonnet. Multicast routing protocol with
dynamic core. In IST 2001, pages 274–280, Tehran, Iran, Sep.
2001.

[8] Fenner and W. Internet group management protocol version 2.
RFC 2236, November 1997.

[9] tcpdump. URL: http://www.tcpdump.org/.
[10] R. Russell. Linux 2.4 packet filtering howto. URL:

http://netfilter.samba.org/documentation/.
[11] A video conference application. URL: http://www-

nrg.ee.lbl.gov/vic.

378

View publication statsView publication stats

https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/242439930_Routing_protocol_with_Dynamic_Core_MRDC_1?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/4016444_EWANT_The_emulated_wireless_ad_hoc_network_testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/4016444_EWANT_The_emulated_wireless_ad_hoc_network_testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/4016444_EWANT_The_emulated_wireless_ad_hoc_network_testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/4016444_EWANT_The_emulated_wireless_ad_hoc_network_testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3905382_Multicast_Protocol_Implementation_and_Validation_in_an_Ad_hoc_Network_Testbed?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3836028_AMRIS_A_multicast_protocol_for_ad_hoc_wireless_networks?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3836028_AMRIS_A_multicast_protocol_for_ad_hoc_wireless_networks?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3836028_AMRIS_A_multicast_protocol_for_ad_hoc_wireless_networks?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820240_An_approach_to_mobile_ad_hoc_network_protocol_kernel_design?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820237_On-demand_multicast_routing_protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820237_On-demand_multicast_routing_protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/3820237_On-demand_multicast_routing_protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/2385509_Multicast_Operation_of_the_Ad-hoc_On-Demand_Distance_Vector_Routing_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/2385509_Multicast_Operation_of_the_Ad-hoc_On-Demand_Distance_Vector_Routing_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/2385509_Multicast_Operation_of_the_Ad-hoc_On-Demand_Distance_Vector_Routing_Protocol?el=1_x_8&enrichId=rgreq-e87fbc065b86371a42e20ce27b49bdde-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYxNDcyNTtBUzoxMDQ3NzM4NDM5NDc1MjFAMTQwMTk5MTQzOTIwMQ==
https://www.researchgate.net/publication/241614725

	I Introduction
	II MRDC Overview
	III Implementation
	III-A Implementation Platform
	III-A.1 Hardware
	III-A.2 Operating System

	III-B Software Architecture
	III-B.1 Routing Part
	III-B.2 Multicast Forwarding Part
	III-B.3 IGMP Module
	III-B.4 Tree Monitoring Module
	III-B.5 Timers


	IV Performance Evaluation
	IV-A Stationary Network Scenario and Results
	IV-B Dynamic Network Scenario and Results

	V Conclusion
	References

