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Abstract— A memoryless linear precoder is designed for space-time (m)
block codes (STBC) for quasi static non-frequency selective correlated b, Space-time ‘A\ 5
Rayleigh fading multiple-input multiple-output (MIMO) channels. The 2. block | F H MLD [
precoder is designed to minimize a symbol error-based metric as function encoder s(n) y(n) = (n)
of the joint transmit-receiver channel correlation coefficients which are M x B M,. x M;
supposed to be fed back to the transmitter. The correlation may or _ B x1 My x 1 My x 1
may not follow the Kronecker structure. We demonstrate in particular Fig. 1. Block model of the linear precoded STBC MIMO system.
the impact of the precoder on receive correlated channels when the _
Kronecker model does not hold. A numerical optimization method is the knowledge of the full transmit-receive correlation, regardless
proposed that can be used for invertible correlation matrices. Monte of whether the Kronecker structure is valid or not.

Carlo simulations show that the proposed precoder outperforms a system

not having a precoder for highly correlated channels. 2) We show that in the case that correlatibappens to be Kro-

necker basedand the transmit antennas are uncorrelated, then
I. INTRODUCTION the receive antenna correlation does not have any impact on

In the area of efficient communications over non-reciprocal MIMO ~ the precoder design for STBC signals. In contrast, we point
channels, recent research has demonstrated the value of feeding backout that if the transmit antennas are correlated, then the receive
to the transmitter information about channel state observed at the Correlationdoes play a role in the precoder design.
receiver. Clearly, the type of feedback may vary largely, depending ) Finally,_ we exh|b|t_ intuitive, closed-form solutloqs for the pre-
its nature, e.g., required rate, instantaneous, or statistical channel state ¢0der in the special case where only the receive antennas are
information (CSI), leading to various transmitter design schemes, correlated yet the Kronecker structure does not hold. We give a
e.g., [1], [2], [3]. Among those, there has been a growing interest in Practical example for this situation.
transmitter schemes that can exploit low-rate long-term statistical O measure the bit error rate (BER) versus signal to noise ratio (SNR)
in the form of antenna correlation coefficients. So far, emphasis agtem performance by Monte Carlo simulations over correlated non-
been on designing precoders for space-time block coded (STBC) figlquency selective Rayleigh fading channels and provide additional
signals or spatially multiplexed streams that are adjusted basedpenspectives.
the knowledge of the transmit correlation only while the receiving
antennas are uncorrelated [4], [5], [6], [7]- These techniques are well )
suited to downlink situation where an elevated access point (situafédSTBC Signal Model
above the surrounding clutter) transmits to a subscriber placed in &igure 1 shows the block MIMO system model witlf, and M,
rich scattering environment. However, to the best of our knowledg&ansmitter and receiver antennas, respectively. The original bits sent
the corresponding uplink case has not been addressed before nofr@ma the transmitter are denoteld and the decoded bits;. We
case where both transmit and receive antennas exhibit correlatieersider the problem of linearly precoding signals originating from a
except to some extent in [3] where the instantaneous channel sggtace-time block encoder with codeword matrix of size N where
side information feedback case is treated. Although simple modéfsand N are the space and time dimension, respectively, and where
exist for the joint transmit receiver correlation based on the wdlie codewords are mapped from the input bits in some unspecified
known Kronecker structure [2], the accuracy of these models hasy.
recently been questioned in the literature based on measurement cam-codewordS(n) is formed by N successive code vectosgk)

Il. SYSTEM DESCRIPTION

paigns [8]. Therefore, there is interest in investigating the precoding S(n) =[s(Nn) s(Nn—1) --- s(Nn— N +1)], (1)
of STBC signals for MIMO channels thalb not necessarily follow
the Kronecker structure. where it is assumed with little loss of generdlithat

In this paper, we address the problem of linear precoding of STBC E [S(n)sH(n)] — klp, @)
signals launched over a jointly transmit-receive correlated MIMO
channel. Our contributions are three fold: wherex is a positive constant given by the STBC used.

1) We propose a technique reminiscent of [4] in that we minimize Before each code vector is launched into the channel, it is precoded
certain bounds on the pair-wise error probability (PEP) of theith a memoryless matri¥' of size M; x B, so theM, x 1 receive
STBC signal, where the choice of the STBC is given in advancsignal model becomes
The precoder is obtained via an iterative algorithm which uses x(n) = HFs(n) + v(n), 3)

EUT;';CFggZ_r 'S an invited paper to the special session on MIMO {ihere the additive noise on the channéh) is complex Gaussian cir-
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Norway. 1This assumption is exact for orthogonal block codes.



B. Correlated Channel Models to [4], define E = argmindet (Ek,l(n)Eﬁl(n)). For orthogonal
A quasi-static non-frequency selective correlated Rayleigh fadi%gl'BCE (n)EY (;;ﬁﬁg I5. Let 8 = min{Bu.}
channel model [2] is assumed. LBt be the generaM; M, x M; M, AT B0 ) = Pl 2B BER = R Wk LT
positive definite autocorrelation matrix for the channel coefficients. The total block error probability is decided by many terms of the

A channel realization of the correlated channel can then be found%y€ given in Equation (8) for different values fand!. The term
that is used as the optimization in this article is the following:

H pH

vec (H) = RY?vec (Huw), 4 det (R_1 + % ® IMT) 9)
where R/? is the unique positive definite matrix square root [9]his criterion is closely related to the criteria used in [3], [4].
of R, H,, has sizeM, x M, and is complex Gaussian circularly Using Equation (2), the power constraint on the transmitted
distributed with independent components all having unit varianddock Y (n) = FS(n) can be formulated as
and the operatovec(-) stacks the columns of the matrix it is applied K Tr {FFH} =P, (10)
to into a long column vector [9].

Kronecker model: A special case of the model above is a¥hereP is the average power used by the transmitted bibdla).

follows [2] We propose that the optimal precoder is given by the following
_ pl/2 1/2 optimization problem:
H=R/"HwR,", ®) Problem 1:
where the matrice®®?,. and R. are the correlations matrices of the max det (Rfl +FEE"FP g 11‘_42)
receiver and transmitter, respectively, and their sizesidrex M, {FecMixB} 40
and Mf_, x M. The full autocorrelation matrix® of the model (4) is subject to « Tr {FFH} —p
then given by
H T
R=F [Vec (H)vec” (H)| = R; ® Ry, (6)  B. Properties of the Optimal Precoder

" . In this subsection, lemmas characterizing the optimal precoder in
where the operatdr)” denotes transposition amdis the Kronecker . 9 P P
ecial cases are presented.

product. This channel model was used in [4], to fl_ndallnear pr.ECOdsé)rLemma 1. If F is an optimal solution of Problem 1 for an
when R, = I;,.. We address below the precoding problem in the BxB :

. . ; rEhogonaI STBC, then the precod&U, whereU € C is
general case of Equation (4). Unlike Equation (6), the general mo@%{tary is also optimal
considers that the receive (or transmit) correlation depends onal Proof: For an orthogonal STBC, we haseE" — AI. Let F

which transmit (or receive) antenna the measurements are perforrrbeedan optimal solution of Problem 1 aidl € CE*, be an arbitrary

I1l. PRECODING OFSTBCSIGNALS unitary matrix. It is then seen by insertion that the objective function
A. Optimal Precoder Problem Formulation and the power constraint are unaltered by the unitary matrix.ll

Maximum likelihood decoding is assumed at the receiver. The go_all‘e_mma 2: Assume thatB = M; a_nd that (_)nly regelver correla-
is to find the matrixF' such that an upper bound for the pairwiséIon IS present. Le}t%the tOt%I correlation maglx be given by
error probability (PEP) is minimized under an appropriate power ro MrxMy 0t WMeX My

constraint, for given channel correlation properties. R_ Oarxn, Ry, o O, (11)
The receiver is assumed to know the channel maKixexactly : : : ’
and it performs a maximum likelihood decoding (MLD) of blocks of Oat,xar, Ontpxns, - Ry )
) X My X My Iy
length N. The transmitter knows?. where R,, is the receive correlation matrix seen by transmitter

Suppose codewordy.(n) is transmitted whileS;(n) is detected. nymberi and the matrix0y ., has sizek x I containing only zeroes.
Let Exi(n) = Sk(n) — Si(n) be the error matrix of sizé8 X N.  Then, the optimalF' can be chosen diagonal up to a unitary matrix.

The probability of transmitting the blocl§(n) and decoding the Proof: Let the eigenvalue decomposition &, be given by
block S;(n) for a given channel is R, =V, A VY, ' (12)
Pr{Si(n) — Si(n)|H} '
— — where V., € CM*Mr s unitary andA,, € R s diagonal
_0 \/Tr{HFEk,l(n)Ek,l(n)F H'} ) with positive diagonal element;, . It follows that the eigenvalue
202 ’ decomposition ofR = VAV is given by the matrices
Equation (7) follows from [2]. Let the operatodet(-) denote 0 A:/:OM Oﬂi}jMT 81;31
the determinant of the matrix it is applied to. If the statistics of V= e ! N B (T
the channelH are taken into consideration and the expression : : . :
for the @-function given in [10] is used, then the probability L Omexnt, Ongxna, oo Vg oy |
Pr{Sk(n) — Si(n)} can be found: and
Pr{Si(n) — Si(n)} [ A Onpxn,. o+ Onoxna, ]
P Onr, x M, Ar, <o Omyx o,
1 / 2 df _ A= : : : : - (14
0 1 FEkwl(n)EkH’l(n)FH . . . .
det (R) det (R + T 4oZsn20 ® IJ\I,.) | Onroxnm,.  Onroscar, - ATMt—l ]
(8) The objective function of Problem 1 can now be rewritten as:
The performance measure that used in this article is an upper bound det (Afl + LVH (FFH ® IM,.>) . (15)
for the pair-wise error probability given by Equation (8). Analogous 40 ’



Block element number(k,!) of size M, x M, of the second that F' can be chosen diagonally. Let the diagonal elementd’of

term within the determinant of Equation (15) can be expressB8 fo and fi, satisfying f§ + ff = P/r = 1. Here, it is assumed
(FFH) VH Ve/ (40 ) Let the second term within the thatf; € R. Let the elements iR, bee denoted by; ; while those

determrnant of Equatron (15) be denotetd By using Hadamard's IN B, by 0i; andp;; = 0i = 1.

inequality [11] ondet (A +A) this determinant is maximized Lemma 5: To make certain that all diversity branches provide

J\l,fl My—1 ]M,*l
when A is diagonal. From the structure o and due to the fact @n equal gain ;0 (1 + 32500 s lpii)f6 = ity (1 +
that the matriced/ ., are unitary, it follows thatF F*7 is diagonal. 377 ., lei;|*) f must hold under the energy constraint.
Hence,F is diagonal up to a unitary matrix. [ | Proof: The total transfer matrix may be written & F =

Lemma 3: Let B = M, and let the total correlation matrix be[foho fihi] where the two column vectors dif = [ho ha] are
given by Equation (11). The diagonal element numhbsfrthe optimal related to the two column vectors @, = [hw, hw,] by ho =
diagonal producF F¥ is denotedh. Let eigenvalue numbérof the  Rr,*h., andh, = R}/*h.,, . To work directly with the coefficients
correlation matrixR., be denoted\,, . The optimization problem of R,,, we pre-multiply column number of the total transfer matrix
that must be solved is the following: Find such that the following by Ri{Q to arrive at the two column vectoig, = foR.,hv, and

product is maximized: g, = iRy huy,.
My =1 Mr—1 Qi With Alamouti coding the total gain is observed as the
H H ( k) (16) sum of absolute channel coefficients squared: = gig, +
. =0 k= 9191 = Jihiy Re g + [T R By = 1+ C wheren =
subject to - s e P+ 3000 L 1pidl S 4 30T ey [P (1 +
K Z a; =P, a; >0. 17) Z;”TO‘];Z loi,;1?)fi. ¢ contains several cross-interference terms of
i—0 the form A, , ks, ,, such thatE[¢] = 0. In order to make certain
Proof: Under the assumptions in the lemma, the determinatitat the expected value of all channels experience equal gain, the
on Equation (15) can be written as lemma follows from the expression gf ]
M1 . Example 2: Assuming M, = 2 with p;; = p € R and
[T det (A7! +ailn,) 0i; = 0 € R, lead toy = f2((1 + pH)lhweol> + (1 +
s s P P4 20 o o + i Pavo)) 4 FE (L0 o+
H det (A H det (Inm, + i Ar;) | . (18) (I+e )|h“’1’1| +2Q(h;k”1 oftwna +h“’1v1hw1~°).)' Thrs_grvesE[.y] N
- Pl ! ‘ 212 (1+p )+ 212 (1+ 0 ) and the equal-gain requirement imposes
The first product in the last line of this equation is a constant add (1 + p*) = f(1 + ¢*). The explicit closed-form solution is
the second factor can be rewritten to Equation (16). The povmereforefo = Qj:ﬁrgg, fi= IJE’jr o

constraint reformulation follows directly by inserting the diagonal Example 3: Assume no cross Correlation at all, i.gs; = 0i,5 =
matrix product FF™ into Equation (10). Sincen; is diagonal 1V i= j, otherwise0, gives f§ = f7, i.e., equal power scaling.
element numbei of a positive semi-definite matrix, it must be non- Example 4: Assume full cross-correlation as seen from the second

negative. B emitter only, i.e,p;; =0V j # 4 and g” =1V 4,j. This results
Example 1: Let the assumptions of Lemma 3 be valid. et = in f§ = M, ff or & = 3, [T = 3747
M, =2 with R,, = I> and R, = 12x2, where the matrixl; «; IV. OPTIMIZATION ALGORITHM

has sizek x [ containing only ones. In this casy,, = Ar,, =1and | et the matrixk ., be the commutation matrix [11] of siZ€ x kl.
Ary, =2 and Ay, = 0. If the optimization problem in Lemma 3 is The constrained maximization Problem 1 can be converted into an
solved, itis found thaiy = 2/3 anday = 1/3. This makes intuitive nconstrained optimization problem by introducing a Lagrange mul-

zense since more power is poured into the channel exhibiting M@Ffier 1. This is done by defining the following Lagrange function:
iversity.

Lemma 4: Let the correlation model of the channel follow the

-1 o o A, / H
Kronecker model in Equation (6) and assume that an orthogonal£ =det (R +FEE"F"© )7“ Tr{FF }

402
STBCis used. IR; = I, then the optimal precoder is independent (29)
of the receiver correlation matriR,.. Since the objective function should be maximized, should be
Proof: See [12]. B positive.
C. An Analytical Solution for Receiver Correlation Lemma 6: The precoder that is optimal for Problem 1 must satisfy

In this subsection, we show that a closed-form solution can be
found if only receiver correlations are present. The solution isvec (F) = uK 5, (IM,, ®
constructed upon the premise that, on average, the gain coming - o
i i _ FEE"F
from all diversity branches should be equal, regardless whether the % vec ((R Ly ® IM,,) ) . (20)

* ;T T
E*E"F I
402

channels are correlated or uncorrelated. This is the same criterion 402
behind complex orthogonal block codes where symbols are algRere(-)* means complex conjugation and the matkixs given by
spread with equal energy across all channels, and guarantee an equal
gain coming from all channels. This has shown to be optimal from r _ (IM2 ® vecT (IM,,.)> (Ing, @ Kntyr, © Ins),  (21)
an SNR point of view [13]. ’

For simplicity, in the derivation we assume = N = M; = 2, andpy is a positive scalar chosen such that the power constraint in
P/k =1, and the Alamouti code [14] being employed. An extensioBquation (10) is satisfied
to more than two transmitters may be derived in a similar fashion. Proof: The necessary condition for the optimality of Problem 1
Since M, = 2, the correlation matrix®, in Equation (11), contains is found by setting the derivative of the Lagrangian in Equation (19)
two correlation matriceR,, and R,,. From Lemma 2, we know equal to zero. By finding the derivative [11], [15] with respect to
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Fig. 2. Scenario 1: BER versus SNR performance of the proposed systemFig. 3. Scenario 2: BER versus SNR performance of the proposed system

— and a system not employing a precodex —. In the upper plotM,. =4  — and a system not employing a precodex —. In the upper plotM,. = 4

and in the lower plotM, = 6. and in the lower plotM, = 6.
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