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ABSTRACT

We recently introduced a novel approximation of the intractable
two-dimensional hidden Markov model (2-D HMM), the turbo-
HMM (T-HMM), which consists of a set of interconnected hori-
zontal and vertical 1-D HMMs. In this paper, we consider the ex-
tension of this framework to the continuous state HMM, generally
referred to as the state-space model (SSM). We provide efficient
approximate answers to the three following problems: 1) how to
compute the likelihood of a set of observations, 2) how to find the
sequence of states that best “explains” a set of observations and 3)
how to estimate the model parameters given a set of observations.
The application of this work to the challenging problem of face
recognition in the presence of large illumination variations will il-
lustrate the potential of our approach.

1. INTRODUCTION

While the hidden Markov model (HMM) has been extensively
applied to 1-D problems [1], the complexity of its extension to
2-D grows exponentially with the data size and is hence intractable
in most applications of practical value. We recently introduced a
novel approximation of the 2-D HMM [2], the turbo-HMM (T-
HMM), which consists of a set of interconnected horizontal and
vertical 1-D HMMs that “communicate” through an iterative pro-
cess by inducing prior probabilities on each other.

Although in most applications the state variable is discrete,
some problems are best described with a continuous state HMM,
generally referred to as the state-space model (SSM) [3]. One of
the most famous examples of such a problem is the estimation of
the instantaneous position and speed of an object in the space. An-
other problem, that is investigated in this paper, is the separation of
an image into its reflectance and luminance. However, the growth
in complexity that plagues the 2-D HMM also arises in the case of
the 2-D SSM and approximations are necessary.

The goal of this paper is to extend the T-HMM framework
to the continuous state HMM. We introduce the turbo-SSM (T-
SSM) as an approximation of the 2-D SSM and provide efficient
approximate answers to the three following problems [1]. If O
denotes a set of observations and λ the model parameters,

• How to compute P (O|λ)?

• How to find the state sequence Q that best “explains” O?

• How to adjust λ to maximize P (O|λ)?

This work was supported in part by France Telecom Research and
Development.

The remainder of this paper is organized as follows. In the
next section, we provide a brief review of the approximations un-
derlying the T-HMM framework and consider its extension to the
T-SSM. In the three following sections, we provide answers to the
three previously listed problems. Finally, in section 6, we apply the
T-SSM framework to the challenging problem of face recognition
in the presence of illumination variation and present experimental
results.

2. FROM THE T-HMM TO THE T-SSM

2.1. Approximating a 2-D HMM with a T-HMM

We first introduce a set of notations that will be used throughout
this paper. Let O = {oi,j , i = 1, . . . , I, j = 1, . . . , J} be the
set of all observations. We also introduce oH

i and oV
j for the i-

th row and j-th column of observations, respectively. Similarly,
Q = {qi,j , i = 1, . . . , I, j = 1, . . . , J} denotes the set of all
states, while qH

i and qVj denote the i-th row and j-th column of
states. Finally, let λ be the set of all model parameters, and let λH

i

and λV
j be the respective rows and columns of parameters.

The joint likelihood of O and Q given λ can be expressed as:

P (O, Q|λ) = P (O|Q, λ)P (Q|λ)

=
∏

i,j P (oi,j |qi,j , λ)P (qi,j |qi,j−1, qi−1,j , λ)

Note that the transition probability P (qi,j |qi,j−1, qi−1,j , λ) re-
duces to P (q1,j |q1,j−1, λ) if i = 1, to P (qi,1|qi−1,1, λ) if j = 1
and to the initial occupancy probability P (q1,1|λ) if i = j = 1.

The T-HMM relies on two major approximations. We first
assume that P (qi,j |qi,j−1, qi−1,j , λ) is separable, i.e.:

P (qi,j |qi,j−1, qi−1,j , λ) ∝ P (qi,j |qi,j−1, λ
H

i )P (qi,j |qi−1,j , λ
V

j )

We then modify the condition in P (qi,j |qi,j−1, λ
H
i ):

P (qi,j |qi,j−1, λ
H

i ) ≈ P (qi,j |o
H

i , λH

i )

This leads to the following approximation of the joint likelihood:

P (O, Q|λ) ≈
∏

j

[

P (oVj , qVj |λ
V

j )
∏

i

P (qi,j |o
H

i , λH

i )

]

(1)

that we will denote PV(O, Q|λ). Each term P (oV
j , qVj |λ

V
j ) cor-

responds to a 1-D vertical HMM. Note that
∏

i P (qi,j |o
H
i , λH

i ) is
in effect a horizontal prior for column j. A symmetric horizontal
quantity PH(O, Q|λ) can be derived. For extensive details on the
two previous approximations the reader can refer to [2].
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2.2. The T-SSM model

We now assume that the approximations that lead to formula (1)
are valid in the continuous case. To keep the mathematical analy-
sis tractable, we choose the emission probabilities, horizontal and
vertical transition probabilities and initial occupancy probabilities
to be Gaussians. In this paper, we will only present results for the
case where the observations and states are uni-dimensional. Using
the state-space formalism, the emission probability (or measure-
ment model) can be expressed by the following equation:

oi,j = fi,jqi,j + ui,j , i = 1, . . . , I, j = 1 . . . J

where ui,j ∼ N (0, σi,j
2) is the measurement noise. The horizon-

tal and vertical transition probabilities (or process models) can be
written as:

qi,j = gH

i,jqi,j−1 + vH

i,j , i = 1, . . . , I, j = 2 . . . J

qi,j = gV

i,jqi−1,j + vV

i,j , i = 2, . . . , I, j = 1 . . . J

where vH
i,j ∼ N (0, sHi,j

2
) and vV

i,j ∼ N (0, sVi,j
2
) are respectively

the horizontal and vertical process noises. Finally, we introduce
the horizontal and vertical initial occupancy probabilities:

qi,1 = µH

i + vH

i,1 , i = 1, . . . , I

q1,j = µV

j + vV

1,j , j = 1, . . . , J

To sum-up, the parameters of our system are fi,j , σi,j
2, gH

i,j , sHi,j
2
,

gV
i,j , sVi,j

2
, µH

i and µV
j .

3. LIKELIHOOD OF A SET OF OBSERVATIONS

The goal of this section is to estimate P (O|λ). Integrating formula
(1) over all states Q, we get:

P (O|λ) =
∫

Q
P (O, Q|λ)dQ

≈
∫

Q

∏

j

[

P (oVj , qVj |λ
V
j )
∏

i P (qi,j |o
H
i , λH

i )
]

dQ

≈
∏

j

∫

qV
j

[

P (oVj , qVj |λ
V
j )
∏

i P (qi,j |o
H
i , λH

i )dqVj
]

We note PV
j =

∫

qV
j

P (oVj , qVj |λ
V
j )
∏

i P (qi,j |o
H
i , λH

i )dqVj . PV
j ’s

can be computed with a modified version of the forward-backward
algorithm as in [2]. However, while in [2] the forward-backward
equations relate the forward and backward probabilities, in the
continuous case these quantities are probability density functions
(pdf’s) and we are interested in the equations that relate the pa-
rameters of these pdf’s.

We introduce the following vertical forward, backward and oc-
cupancy probabilities:

αV

i,j(qi,j) = P (o1,j , ...oi,j , qi,j |λ
V

j )

βV

i,j(qi,j) = P (oi+1,j , ...oI,j |qi,j , λ
V

j )

γV

i,j(qi,j) = P (qi,j |o
V

j , λV

j )

Defining the corresponding horizontal quantities is straightforward.
As the emission, transition and initial occupancy probabilities are
Gaussians, if we also initialize the occupancy probabilities γ’s in

a Gaussian manner, one can show that αV
i,j and βV

i,j have the fol-
lowing form:

αV

i,j(qi,j) =
cαV

i,j

σαV
i,j (2π)

1
2

exp

{

−
(qi,j − µαV

i,j )2

2σαV
i,j

2

}

βV

i,j(qi,j) =
cβV

i,j

σβV

i,j (2π)
1
2

exp

{

−
(qi,j − µβV

i,j )2

2σβV

i,j

2

}

and that γV
i,j is a Gaussian with mean µγV

i,j and variance σγV

i,j

2
.

Introducing the notations µbH
i,j , σbH

i,j

2
and cbH

i,j :

µbH
i,j =

fi,joi,jσ
γH

i,j

2
+ µγH

i,j σ2
i,j

fi,j
2σγH

i,j

2
+ σ2

i,j

σbH
i,j

2
=

σ
γH

i,j

2
σ2

i,j

fi,j
2σ

γH

i,j

2
+σ2

i,j

cbH
i,j =

exp

{

− 1
2

(oi,j−fi,jµ
γH

i,j
)2

(σi,j
2+fi,j

2σ
γH

i,j

2
)

}

(2π)
1
2 (σi,j

2 + fi,j
2σγH

i,j

2
)

1
2

we can estimate µαV
i,j , µβV

i,j , µγV

i,j , σαV
i,j

2
, σβV

i,j

2
, σγV

i,j

2
and cαV

i,j .

• Forward α variable:

– Initialization:

µαV

1,j =
µbH

1,js
V
1,j

2
+ µH

1 σbH
1,j

2

sV1,j

2
+ σbH

1,j

2 σαV
1,j

2
=

sV1,j
2
σbH
1,j

2

sV1,j
2
+σbH

1,j
2

cαV

1,j =

cbH
i,j exp

{

− 1
2

(µbH
1,j−µV

j )2

σV
j

2
+σbH

1,j
2

}

(2π)
1
2 (sV1,j

2
+ σbH

1,j

2
)

1
2

– Recursion:

µ
αV

i+1,j =
g
V

i+1,jµ
αV

i,j σ
bH
i+1,j

2
+ µ

bH
i+1,j(s

V

i+1,j

2
+ g

V

i+1,j

2
σ

αV

i,j

2
)

σ
bH
i+1,j

2 + s
V

i+1,j
2 + g

V

i+1,j
2
σ

αV

i,j
2

σ
αV

i+1,j

2
=

σ
bH
i+1,j

2
(sV

i+1,j

2
+ g

V

i+1,j

2
σ

αV

i,j

2
)

σ
bH
i+1,j

2 + s
V

i+1,j
2 + g

V

i+1,j
2
σ

αV

i,j
2

c
αV

i+1,j =

c
αV

i,j c
bH
i+1,j exp

{

−

1
2

(µbH
i+1,j−gV

i+1,jµαV
i,j )2

σbH
i+1,j

2
+sV

i+1,j
2
+gV

i+1,j
2

σαV
i,j

2

}

(2π)
1
2 (σbH

i+1,j
2 + s

V

i+1,j
2 + g

V

i+1,j
2
σ

αV

i,j
2)

1
2

– Termination: PV
j = cαV

I,j

• Backward β variable:

– Initialization: µβV

I,j = 0 σβV

I,j

2
→ ∞

– Recursion:

µβV

i,j =
1

gV
i+1,j

(

µbH
i+1,jσ

βV

i+1,j

2
+ µβV

i+1,jσ
bH
i+1,j

2

σβV

i+1,j

2
+ σbH

i+1,j

2

)

σβV

i,j

2
=

1

gV
i+1,j

2

(

sVi+1,j

2
+

σbH
i+1,j

2
σβV

i+1,j

2

σbH
i+1,j

2
+ σβV

i+1,j

2

)

• Occupancy probability γ:

µγV

i,j =
µαV

i,j σβV

i,j

2
+ µβV

i,j σαV
i,j

2

σαV
i,j

2
+ σβV

i,j

2 σγV

i,j

2
=

σαV
i,j

2
σ

βV

i,j

2

σαV
i,j

2
+σ

βV

i,j

2

2



Symmetric formulas can be derived for the corresponding hori-
zontal quantities. The steps of the algorithm are very similar to
the steps of the modified forward-backward for the T-HMM. Sup-
pose we start the iterative process with row operations. The γV

i,j

pdf’s have first to be initialized. In the absence of any prior in-

formation, we set µγV

i,j = 0 and σγV

i,j

2
→ ∞, ∀(i, j). Then the

modified forward-backward algorithm is applied successively and
iteratively on the rows and columns until they reach agreement.
We used as a measure of convergence the average Kullback’s sym-
metric divergence [4] between the distributions γH

i,j and γV
i,j . This

algorithm is clearly linear in the size of the data modulo the num-
ber of iterations.

Note that we do not obtain one estimate of P (O|λ) but two: a
horizontal one PH(O|λ) =

∏

i PH
i and a vertical one PV(O|λ) =

∏

j PV
j . Combining these two scores is a classical problem of de-

cision fusion. One can show that the optimal estimate of P (O|λ)
based on a divergence criterion is:

P (O|λ) ∝
√

PH(O|λ)PV(O|λ) (2)

4. MOST LIKELY SEQUENCE OF STATES

The goal of this section is to find the sequence of states Q∗ that
“best” explains the set of observations O:

Q∗ = arg max
Q

P (Q|O, λ) = arg max
Q

P (O, Q|λ)

We first describe a direct answer to this problem that does not make
use of the T-SSM framework and explain the shortcomings of this
approach. We then provide an approximate solution based on the
T-SSM framework.

4.1. A direct solution

If we assume that the transition probabilities of the 2-D SSM are
separable, the joint likelihood P (O, Q|λ) can be written as a prod-
uct of emission probabilities and horizontal and vertical transi-
tion probabilities. To find the best sequence of states Q∗, we set
∂ log P (O, Q|λ)/∂qi,j = 0, ∀(i, j) and obtain a system of I × J
linear equations with I × J unknowns.

If equations are ordered correctly, this is a banded system with
bandwidth min(I, J). Hence, the complexity of solving this sys-
tem is in O((I × J) × min(I, J)2) [5]. While this is much lower
than the case of a general linear system, whose complexity is in
O((I × J)3), it might be too demanding if I and J are large.

Finally, if sHi,j
2
� σi,j

2 and sVi,j
2
� σi,j

2 this system of
equations is ill-conditioned [5], i.e. a very small perturbation on
the observations oi,j (due to noise) or on the parameters (due to
estimation errors) might lead to completely different solutions.

4.2. An approximate solution

Because of the complexity of the previous approach and to its po-
tential instability, we explored an alternative approach based on
our modified forward-backward algorithm, as applied to the T-
SSM. We define γi,j(qi,j) = P (qi,j |O, λ). To find the states that
best explain the observation data, we choose the sequence of lo-
cally optimal states:

q∗i,j = arg max
qi,j

γi,j(qi,j)

Although choosing the sequence of locally optimal states may not
lead to the sequence of globally optimal states, this approximation
is valid in the case where the best sequence of states accounts for
most of the total probability, i.e. in the case where the distribution
of state sequences is sharply peaked.

However, we do not have access to γi,j but to its estimates γH
i,j

and γV
i,j . As both γH

i,j and γV
i,j are Gaussians, we can assume that

γi,j is Gaussian with mean µγ
i,j and thus q∗

i,j = µγ
i,j . Using one

more time a criterion based on the Kullback-Leibler divergence,
the optimal combination rule is:

µγ
i,j =

σγV

i,j

2
µγH

i,j + σγH

i,j

2
µγV

i,j

σγV

i,j

2
+ σγH

i,j

2

Moreover, one can show from the equations derived in the previ-
ous section that |µγH

i,j − µγV

i,j | converges toward 0. While we have

not shown that µγH

i,j and µγV

i,j actually converge, we found experi-
mentally that it was the case.

5. MODEL PARAMETERS ESTIMATION

The goal of this section is to adjust the model parameters λ to
maximize P (O|λ). Let the Q function be defined as [1]:

Q(λ, λ′) =

∫

Q

P (O, Q|λ′) log P (O, Q|λ)dQ

If λ′ is the initial estimate, then it was proven that the maximiza-
tion of Q with respect to λ leads to an increased likelihood. In-
troducing QH(λ, λ′) =

∫

Q
P (O, Q|λ′) log PH(O, Q|λ)dQ and

QV(λ, λ′) =
∫

Q
P (O, Q|λ′) log PV(O, Q|λ)dQ and using ap-

proximation (2), we get:

Q(λ, λ′) ≈
1

2

[

QH(λ, λ′) + QV(λ, λ′)
]

+ C

where C is a constant which is independent of λ. The parameter
estimation is done by setting ∂Q(λ, λ′)/∂λ = 0.

6. EXPERIMENTAL RESULTS

We recently introduced a novel approach to face recognition which
consists in modeling the set of possible transformations between
face images of the same person [6]. The global face transformation
is approximated with a set of local transformations under the con-
straint that neighboring transformations must be consistent with
each other. Local transformations and neighboring constraints are
embedded within the probabilistic framework of the T-HMM. At
any position on the face, the system is in a state where each state
represents a local transformation. Emission probabilities model
the cost of local transformations and transition probabilities relate
states of neighboring regions and implement the consistency rules.

While [6] focuses on discrete geometric transformations to
model facial expressions, [7] considers continuous feature trans-
formations to compensate for illumination variations. The idea
is that the illumination cannot vary in an arbitrary manner over
the face and, thus, that the illumination variation should be con-
strained. In this section, we summarize extensive experimental
results presented in [7] (while this paper used the T-SSM, it did
not give any detail about its mathematical framework).
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The states of the system are doubly indexed and can be split
into geometric and illumination parts. A central idea in our ap-
proach is to apply iterative passes to find successively the geomet-
ric and feature transformations that best explain the transformation
between the two face images. The geometric transformations are
estimated using the T-HMM framework and the feature transfor-
mations using the T-SSM framework.

[7] shows that, if we apply a log transform in the pixel domain
and if the feature extraction step involves only linear operators,
such as the convolution, then the illumination is additive in the
feature domain. In all the following experiments, a log transform
was applied in the pixel domain before the feature extraction. [7]
also introduces the Log-Mean Normalization (or LM-Norm) which
consists in applying a log in the pixel domain before the feature
extraction and a mean normalization in each feature component. If
the illumination was constant in each feature component across the
whole face, LM-Norm would be a simple approach to removing
the undesired additive illumination term. It will thus serve as a
baseline for our novel illumination compensation algorithm.

We now detail our model of illumination variation. Due to
the additive nature of the illumination term, we choose fi,j = 1.
Moreover, we assume that gH

i,j = gV
i,j = 1, ∀(i, j) and that the

initial occupancy probabilities are maximally non-informative, i.e.
sHi,1

2
→ ∞ , ∀i and sV1,j

2
→ ∞ , ∀j. The transition probabilities

variances, i.e. sHi,j
2
’s and sVi,j

2
’s which model the speed of vari-

ation of the illumination are the only parameters than need to be
trained in our illumination variation model. In the following, we
will assume that sHi,j

2
= sVi,j

2
= s2 , ∀(i, j).

We used two face databases to assess the performance of our
novel approach: the FERET database [8] to train the system and
the YALE B database [9] to test it. 500 individuals were extracted
from the FAFB set of FERET which contains frontal views that
exhibit large variations in facial expressions but very little vari-
ability in terms of illumination. We also used the 200 individuals
in the FAFC set which contains frontal views that exhibit large
variations in illumination conditions and facial expressions. The
YALE B face database contains the images of 10 subjects under
different poses and illumination conditions. We used only the set
which contains frontal face images. We divided the database into
the four traditional subsets S1, S2, S3 and S4 according to the an-
gle the light source makes with the axis of the camera (less than
12◦, between 12◦ and 25◦, between 25◦ and 50◦ and between 50◦

and 77◦). For each person, the 7 images in S1 were successively
used as the enrollment image and the images in S2, S3 and S4 were
used as test images which made a total of 26,600 comparisons.

We performed three tests. The first experiment, which will
be referred to as the baseline, is based only on the model intro-
duced in [6] which does not make use of any feature transforma-
tion. LM-Norm was performed on the features and the system
was trained on the FAFB and FAFC data. In the second and third
experiments, we used the illumination compensation approach in-
troduced in [7]. We first trained the geometric transformation part
of the system only on the FAFB data as described in [6]. Then
using the FAFC data, the illumination transformation part of the
system was trained. The difference between the second and third
experiments, is in the use of the direct solution described in 4.1 or
of the approximate solution based on the T-SSM described in 4.2.

Results are presented on Figure 1. The average identification
rates are respectively 84.4% for the LM-Norm baseline, 89.1% for
the variant of our system that uses the direct solution and 90.8% for
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Fig. 1. Performance of the baseline system with LM-Norm com-
pared to the direct (c.f. 4.1) and T-SSM (c.f. 4.2) variants of the
illumination compensation algorithm.

the variant that uses the T-SSM solution. We believe these results
show the potential of the T-SSM framework.

7. CONCLUSION

In this paper, we extended the discrete state T-HMM to the contin-
uous state T-SSM. We provided efficient approximate answers to
the three following problems: 1) how to compute the likelihood of
a set of observations, 2) how to find the sequence of states that best
“explains” a set of observations and 3) how to estimate the model
parameters given a set of observations. This work was applied to a
face recognition system to compensate for illumination variations.

Future work on the T-SSM will concentrate on alleviating the
constraint of Gaussian emission and transition probabilities.
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