
Software Components for Cooperation :
a Solution for the « Get Help » Problem

Jakob Hummes, Arnd Kohrs, Bernard Merialdo
Institute EURECOM, 06904 Sophia-Antipolis

{hummes, kohrs, merialdo}@eurecom.fr

ABSTRACT

In this paper, we study the usage of software components to build cooperative applications. We focus on a
situation arising within tele-tutoring applications: the « Get Help » problem, where students request assistance
from a tutor (among the available tutors) during a laboratory exercise. We analyze the case where students and
tutors are face-to-face, and the case where they are remote users of a distributed system. The Java Beans
component model is used to create and modify distributed applications, which support this interaction. We extend
this environment with beans that support group communication and show how beans can be visually combined to
create a solution for « Get Help » situations in different contexts.

KEYWORDS
tele-teaching, group communication, customization, JavaBeans.

1. INTRODUCTION

The need of radically customizable and tailorable tools and applications for CSCW is known for
several years (Dourish, 1996 ; Malone 1988). In the domain of tele-teaching customization is
specially interesting, because teaching scenarios differ from one scenario to the next, while they have
similarities. These differences can in general not all be included as options in monolithic computer-
supported teaching applications.
Software engineering has recently introduced the component technology, where objects are assembled
to independent subsystems with standardized interfaces. These components can be easily assembled
to create new components or applications. Components for distributed computing are often called
business objects (Sims, 1994) and behave in the analogy of « plug and play ». The standardized
interfaces of components allow to customize and interconnect components with the help of visual
builder tools and to be plugged into frameworks.
One can see the impact of the component technology by the effort taken by standardizing
organizations and leading manufacturers to define and establish component models. The Open
Management Group (1996) is currently reviewing the request for proposals on business objects and
for a CORBA component model, Microsoft has established ActiveX (Chappell, 1997), and JavaSoft
(1996) has launched with JavaBeans a component model for Java.
This paper proposes to use the benefits of component technology to build highly customizable and
reusable groupware. The « get help » problem serves as example for this approach.

2. THE « GET HELP » PROBLEM

The « get help » problem manifests itself in tutoring situations, as in laboratory courses or in hot-line
situations. In the traditional teaching environment of a classroom, students are assigned exercises
during a laboratory course. The students are solving their tasks on computers, while one or more
tutors are in the classroom to instruct, supervise and help the students, if they need assistance. When
one of the students wants assistance, he informs a tutor by raising his hand. Each tutor becomes aware

about the student’s wish. One tutor then moves to the student, offers his help and they solve the
problem cooperatively.
When this situation is to become computer-supported, some questions arise.
• What is known about the student’s problem ?
 In a remote laboratory course, where tutors and students are spatially separated, an analogy for the

hand raising must be found. Additional information can be collected from the application.
• Which tutor is informed about the help request ?
 A computer-supported lab-course could inform all tutors about a request and inform the others,

when one tutor has decided to help this student. If more information is available, the system could
assign a tutor, who is the best suited to solve that particular problem or try to balance the work
between several tutors.

• How can the tutor and the student communicate ?
 In the classroom scenario, the communication is evident : The tutor moves to the student ; they

communicate face-to-face with all possible interactions. In the remote tutoring scenario, the
interaction must be computer supported. The interaction can include symmetric communication
forms, as audio, video, and text-based chat, but also asymmetric forms as messages. An additional
form of interaction would share the application and use tele-pointers.

These questions and the variety of the possible answers give an example that a monolithic application
that wants to support all degrees of freedom is not applicable. This paper presents an approach, how
the degrees of freedom in the « get help » problem can be preserved by using components, which can
be assembled and customized easily to be incorporated in such a tutoring system.

3. COMPONENTS AND EVENTS

The JavaBeans component model uses events as a configurable means for the exchange of messages
between components. Components and events can be manipulated visually in builder tools. In order to
preserve the configurability, events are used to update distributed components with current states of
the tutoring system. Tutoring components are themselves aggregated from finer grained components.
The component that interacts with the student is called StudentBean, the component for the tutor
consequently TutorBean ; optionally a TraderBean can be integrated in the system to offer a more
sophisticated way to find a well suited tutor.
The following events are sufficient to implement the message exchange in a distributed tutoring
system, which offers the needed degrees of freedom to support various customizations, as including
different cooperation components. For this reason the events may additionally carry arbitrary
information.
The NeedTutor event is emitted by the StudentBean. It carries information to identify the student, a
call-back address to set up the cooperation, and an arbitrary object that describes the student’s

problem. The description can be
supplied by the student directly or
derived by the state of the student’s
tele-teaching application. A Cancel
event revokes the request.
The OfferTutoring event is sent by a
TutorBean. It contains information
about the identity of the tutor and the
help method. The help method is
used to lance the facility of
cooperation support, which can
include a textual chat, audio/video
conference, or any other method. The
Finish event indicates that the
cooperation phase is over.
In order to support the integration of
other components, events for
registering and unregistering are
designed. They can be used locally to

Local
Bean

GSNeedTutor NeedTutor

NeedTutor

NeedTutor

group
communication

GR

GR

GR

tutorsstudent

group name

group name

Local
Bean

Local
Bean

Local
Bean

Figure 1 : Beans for group communication (GS : GroupSender,
GR : GroupReceiver).

set the properties of the NeedTutor and OfferTutoring event, but also be distributed to a TraderBean
that implements a strategy to find the best suited tutor. To offer full customization support the
Register event can carry a strategy object, which is taken by the trader to fulfill its task.
Since the JavaBeans component model defines only the interaction between beans in the same virtual
machine we developed group communication beans, which act as access point to distribute an event
to a group. The group communication beans expose the event model to the developer for remote event
communication. Two beans are necessary : The GroupSender forwards an event to all
GroupReceivers, which are configured with the same group name (Figure 1). The group name is a
property of the beans and can easily set within visual builder tools for beans and the events can be
visually connected to and from these beans.

4. APPLICATIONS FOR THE TUTORING SYSTEM

The tutor interface to
the tutoring system
could be assembled as
shown in Figure 2, the
student application
visually assembled as
in Figure 3. Both
examples contain
visible, i.e. graphical
user-interface, beans
and invisible beans that
are only visible in the
builder tool at design-
time. The beans named
GroupSender and
SendToStudent, are
configured
GroupSender beans ;
PersonalReceiver and
GroupReceiver are
configured
GroupReceiver beans.
In these examples the
NeedTutor event is sent
to a group, which can
be reconfigured at run-
time, and defaults to
the name « Tutors ».

The IDE allows to easily modify an existing application: for example, if we want a FAQ to be
searched automatically for already answered questions before sending the question to the tutor, we
simply have to insert a new bean ConsultFAQ, as indicated in Figure 3.
When a tutor picks a request for help, the NeedTutor event is forwarded to a ChatPreparer bean,
which issues an OfferTutoring event. The ChatPreparer in the tutor application and the
ChatAnswerer in the student application manage the configured cooperation facility : a (here not
shown) chat bean for a text-based conference. To change the cooperation mechanism only these beans
must be exchanged. We have also implemented a bean pair for asymmetric cooperation. The
StudentBean can be further extended to pass a help request to the tutor only in the case, if the answer
is not already given in the FAQ.
Note that only a few connections and beans need to be assembled to include the beans for the « get
help » problem in an application. In order to put a trader into the system only other group names for
the sender and receiver must be given and a strategy object must be configured with the register
event.
We used the developed beans to support a « get help » facility in a tele-exam, where exams are

Register
Register

NeedTutor

NeedTutorOfferTutoring

GroupName

Figure 2 : Simple tutor application in the IDE.

Register

NeedTutor

NeedTutor

NeedTutor

OfferTutoring

GroupName

Register

GroupName

NeedTutor

NeedTutor

ConsultFAQ

Figure 3 : Student application in the IDE.

distributed on-line from the tutor to the students. The tutor is additionally supported with a facility to
generate a FAQ on the WWW from the student questions, which is straightforward, since the
information can be retrieved from the chat beans easily.
Alternatively, the FAQ can be queried automatically by a configuration as suggested in Figure 3.
Then a request is filtered and only sent to a tutor, if the question is not yet answered in the FAQ. As
filtering strategy a simple keyword analysis could be taken.

5. CONCLUSION

The presented work shows a generic computer-supported approach to solve the « get help » problem :
How can users call for help from other users. The problem is found in a variety of tutoring situations,
as in laboratory courses in a university, but also in hot-line services. The actual cooperation that takes
place after the requester has found a tutor is not part of the problem ; however, a generic solution
must provide the possibilities to plug in different forms of cooperation tools.
The paper argues by looking at tele-teaching scenarios that a monolithic application cannot offer all
possible options. The suggested solution bases on software component technology and we provide
Java beans, which are visually customizable by off-the-shelf IDEs. The JavaBeans event model is
extended by beans for group communication to pass remote events.
The shown examples underline that the approach can be inserted easily in tele-teaching applications
also by non-programmers using a visual builder tool. Migrating from a tutoring system with
cooperation support for a symmetric chat to an asymmetric cooperation by transmitting a file requires
only the exchange of two beans. More sophisticated strategies to find a specialized tutor is supported
by a trader. The beans for the « get help » problem were integrated into a tele-exam in our institute to
show the inter-working with other components.
The presented beans solve one problem in tutoring situations. Their power will be shown, when more
applications use them and more sophisticated beans for cooperation support will exist.

7. ACKNOLEDGEMENTS

The described work is part of the ACOST research project, which is funded by the research institute
CNET Lannion of France Telecom.

8. REFERENCES

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerland, and Michael Stal. A System of
Patterns. John Wiley & Sons, 1996.

Chappell, David and David S. Linthicum. ‘ActiveX demystified’ in Byte, pp. 56-64, September 1997.

Dourish, P., Open implementation and flexibility in CSCW toolkits. Ph.D. Thesis, University College
London, 1996, ftp://cs.ucl.ac.uk/darpa/jpd/dourish-thesis.ps.gz.

JavaSoft, Java Beans 1.0 API specification, JavaSoft, Oct. 1996, http://java.sun.com/beans

Malone T.W., K.R. Grant, K-Y Lai, R. Rao, and D. Rosenblitt, ‘Semistructured messages are
suprisingly useful for computer-supported coordination’. In Irene Greif (ed.), Computer-
supported cooperative work - A book of readings. Morgan Kaufman, 1988, p. 311-331.

Object Management Group, Common facilities RFP-4 : Common Business Objects and Business
Object Facility,1996, http://www.omg.org/library/schedule/CF_RFP4.htm

Sims, O. Business objects - Delivering cooperative objects for client-server. McGraw-Hill, 1994

9. RESUMEE

Dans cet article, nous proposons l'utilisation d'un modèle de composants logiciels pour la construction
d'applications coopératives. Nous étudions un scénario issu d'une application de télé-enseignement,
celui de la demande d'assistance. Nous montrons comment l'environnement Java Beans, grâce à une
extension de communication de groupe que nous avons développée, permet de créer une application
distribuée répondant au scénario. De plus, l'environnement de programmation visuel permet
facilement de générer des variantes selon les différentes fonctionnalités souhaitées.

