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Departement of Corporate Communications

2229, route des Cretes
B.P. 193

06904 Sophia Antipolis
FRANCE

Research Report RR-04-098

Cooperative Strategies for File Replication in P2P Networks

October 2004

Anwar Al Hamra

Tel: (+33) 4 93 00 26 26
Fax: (+33) 4 93 00 26 27

Email: alhamra@eurecom.fr
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Abstract. In this report we study the use of P2P networks for file replication. Existing solutions for this service
can be largely classified into tree-based and mesh-based approaches. Our first contribution here is a comparison
between the scaling behavior of both kinds of approaches. Throughout this comparison, we prove that mesh
approaches can be at least as efficient as tree ones.
Our second contribution is a complete analysis of mesh approaches where we identify the main parameters that
influence their performance. Our results and conclusions provide new insights for the design of new cooperative
architectures.

1 Introduction

File replication in P2P networks has attracted a lot of interest lately especially after the great success of some
approaches like BitTorrent. Recent statistics by AlwaysOn Network magazine [1] prove that BitTorrent alone gen-
erates around

�����
of the total P2P traffic, which in turn accounts for ���	��
�� � of the overall European Internet

traffic [7].
Existing approaches for file replication can be broadly classified into tree-based and mesh-based approaches, ac-
cording to the way clients are organized in the network. This report has two main goals. The first one is to com-
pare tree-based and mesh-based approaches. Biersack et al. [2] have analyzed the performance of different tree
approaches, a linear chain (Linear), a simple tree with an outdegree 
 ( ��������� ), and a forest of parallel trees
( ����������� ). ����������� splits the file into 
 parts and sends each part on a distinct tree. A client is an interior node in
a tree and a leaf node in the remaining ones. In their analysis, the authors proved that tree-based approaches can
be highly efficient; the number of clients served scales exponentially in time for ������� � and ��������� � . In this report
we demonstrate that mesh approaches can provide as low service time as tree approaches while being more flexi-
ble and more robust against bandwidth fluctuations and client departures. To do so, we introduce two cooperation
strategies between peers1, namely Least Missing and Most Missing. We evaluate these two strategies analytically as
well as through simulations. Our results prove that the Least Missing architecture achieves a similar performance
to ��������� while benefiting from more flexibility and simplicity. Also, Most Missing scales even better than �����������
while avoiding the penalty of constructing parallel trees.
To the best of our knowledge, there has been scarcely any comparison between the scaling performance of tree
approaches and mesh approaches. We are only aware of one paper by Yang et al. [11] that models the service
capacity of mesh approaches. In this paper, the authors prove that such approaches can scale exponentially in time
but, no particular architecture was given.

The second goal of this report is an analysis of the scaling behavior of mesh approaches. To this purpose
we evaluate extensively the two architectures, Least Missing and Most Missing, under various assumptions of
the system parameters. Based on our results, we present guidelines that help in the design of new architectures
depending on the goals to achieve and the deployment scenario.

1.1 Our Contribution

In this report we introduce two mesh cooperative architectures, Least Missing and Most Missing. The performance
of this type of architectures depends on three key designs:

1 Keep in mind that we use the term peer only in case we want to refer to both, clients and server at the same time.



– Peer selection strategy: which among our neighboring peers will we actively trade with, i.e. serve chunks to
or request chunks from? In this report, we assume that the file is split into � ��� chunks of equal size.

– Chunk selection strategy: which chunk will we preferably serve to, or request from, other peers?
– Network degree: what are the optimal indegree/outdegree of peers that achieve a high connectivity between

peers and speed up the file dissemination? We define the indegree (respectively outdegree) of a peer as the
maximum number of concurrent download (respectively upload) connections at that peer.

As for the peer selection strategy, there are two intuitive but extreme solutions. The first one, referred to as Least
Missing, is to quickly create a few sources for the entire file, which in turn serve the file and create other sources
and so on. The opposite way is to fast upload few chunks to a lot of clients, which allows them to quickly participate
into the file delivery. We call this strategy the Most Missing one. In both strategies we require peers to schedule the
rarest chunks first. Rarest chunks are the least duplicated chunks in the system. However, the motivation behind
the choice of these two strategies is not only because they are simple and intuitive. In fact, Least Missing and Most
Missing are just samples that validate how efficient mesh-based approaches can be. We analytically prove that Least
Missing can simulate a tree distribution (i.e. ������� � ) if we choose correctly the indegree and outdegree of peers.
We also demonstrate that Most Missing can be even more efficient than ����������� , the optimal tree architecture as
found in [2]. Moreover, these two strategies help us to understand the main restrictions as well as the power of
cooperative distribution architectures without complicating the analysis. Through intensive simulations, we isolate
the main parameters that can highly affect the system performance, namely the arrival process of clients, the
network degree, the life time of clients, and the upload and download capacity of peers. A key result is that Most
Missing minimizes the impact of these parameters while the behavior of Least Missing varies significantly from
one scenario to another. Furthermore, we discuss the importance of the chunk selection strategy. We assess the
performance of the two architectures in the case where peers schedule chunks at random instead of rarest ones.
Our conclusion is that random selection of chunks produces a high degradation in the system performance.

Note that there are also technical parameters that might have a significant impact on the system behavior.
One parameter is the available bandwidth in the network. In this report we assume that peers have limited up-
load/download capacities but the network is assumed to have infinite bandwidth. The reason is that we want to
focus on the advantages and the shortcomings related to our architectures and not to external factors. Another im-
portant parameter is the “data management”. Previous work [3, 4, 10, 11] has advised to split the file into various
“chunks”, which permits concurrent downloading from multiple peers. In addition, with this technique, instead of
waiting to finish to download the whole file, as soon as a client finishes downloading a chunk, it can start serving it.
Yet, the choice of the number and the size of the chunks is critical: the larger the number and the smaller the size of
the chunks, the faster the clients participate into the file delivery, which in turn improves the system performance.
However, this improvement would be at the cost of a higher overhead induced by more messages exchanged be-
tween clients. So, the service provider can choose the appropriate values (i.e. number and size of the chunks) based
upon the required goal. We consider here a common chunk size of � ��� KB and a number of chunks of � ����������� ,
which makes a file of

�
	�� � MB. We also consider the case of one single file.
To summarize, our goals in this report are: (i) Support the use of mesh approaches rather than tree ones for

file replication services and (ii) Present a complete analysis that provides guidelines for the conception of new
approaches depending on the scenario and the goals to attempt.

1.2 Notation

Before we go into details, we introduce the parameters that we use in the sequel. We denote by � and � ��� respec-
tively the set and number of all chunks in the file being distributed. ��
 and ��
 represent the set of chunks that
client � has already downloaded and is still missing respectively (with ��
�����
���� and ��
�����
���� ). Similarly,� 
�� � !�"#�� $
� and %&
'� � ()"*�� $
� correspond to the proportions of chunks that client � has already downloaded and is still
missing, respectively. The parameter + up stands for the upload capacity of the server while , up and , down represent
respectively the upload and download capacity of clients. The indegree of peers is represented by the parameter
� 
.- and the outdegree by �0/2143 . One round or one unit of time is the time needed to download the file at rate � ,
where � is a parameter expressed in Kbps. It follows that, for a file that comprises � ��� chunks, 5� $6� unit of time is
needed to download one single chunk at rate � . Finally, the life time (Life) of a client, expressed in min, denotes
the time the client stays online after it has completely downloaded the file. For example, Life � � means that the
client is selfish and disconnects straight after it finishes the download. Table 1 summarizes all the aforementioned
parameters.



Parameter Definition
� Set of all chunks
� ��� Number of all chunks�

Number of clients in the system
� 
 Set of chunks that client � has already downloaded� 
 Proportion of chunks that client � has already downloaded
� 
 Set of chunks that client � is still missing
% 
 Proportions of chunks that client � is still missing
+ up Upload capacity of the server in Kbps
, up Upload capacity of clients in Kbps
, down Download capacity of clients in Kbps
� 
.- Indegree of peers
� /2143 Outdegree of peers
� Parameter expressed in Kbps
One round/One unit of time Download time of the entire file at rate �
Life Life time of clients in min

Table 1. Definition of the parameters used in this report.

1.3 Organization of this Report

The rest of this report is structured as follows. In section 2 we introduce the basic design of our two architectures,
Least Missing and Most Missing. Section 3 summarizes the scaling behavior of Linear, ��������� , and ����������� that we
use in the comparison between tree-based and mesh-based approaches. Such a comparison is performed in section
4. Section 5 describes the experimental setup and the simulations results are given in sections 6 and 7. We discuss
open questions in section 8 and we conclude this report in section 9.

2 The Basic Design

In this section we present the basic design of our two cooperative architectures. Each architecture includes a peer
selection strategy coupled with a chunk selection strategy. We also point out the importance of the network degree
as a key design.

2.1 Peer Selection Strategy

The peer selection strategy defines ”trading relationships” between peers and affects the way the network self-
organizes. In our simplified model we assume that (i) A client can communicate with any other client in the
network and (ii) Each client knows which chunks the other clients in the system hold. Our results should remain
valid in practice given that each client knows about a large enough subset of other clients, e.g. ��� to

	 ��� clients as
we observed in BitTorrent [8].

When a client has some chunks available and some free upload capacity, it uses a peer selection strategy to
locally determine which client it will serve next. In this report, we propose and evaluate two strategies:

– Least missing: Preference is given to the clients that have many chunks, i.e., we serve in priority client � with����� � 
 , � � . This strategy is inspired by the SRPT (shortest remaining processing time) scheduling policy that
is known to minimize the service time of jobs [9].

– Most missing: Preference is given to the clients that have few chunks (new comers), i.e., we serve in priority
client � with

� �	� � 
 , � � . The rationale behind this strategy is to evenly spread chunks among all clients to
allow them to quickly serve other clients. We expect this strategy to engage clients into the file delivery very
fast and keep them busy for most of the time.

These two strategies present two extreme ways to engage clients into the delivery process. We can easily verify
that the Least Missing strategy tries to create fast a few sources with the whole file, which in turn create other few



sources and so fourth. In contrast, the Most Missing strategy seeks to upload rapidly a few chunks to a lot of clients
and hence, makes all clients active.
Recall that our goal here is not to recommend these two strategies. We rather use them to achieve the two goals
that we stated earlier: (i) Support the use of mesh approaches for file replication and (ii) Present guidelines for the
design of new architectures. Moreover, these two strategies pave the way to deduce many of other ones that are
adequate for specific deployment scenarios.

2.2 Chunk Selection Strategy

Once the receiving client � is selected, the sending client � performs an algorithm to figure out which chunk to send
to client � . The mechanism to select which chunk to be served on an active connection aims at modifying the way
the chunks get duplicated in the network. A good chunk selection strategy is a key to achieve good performance.
Bad strategies may result in many clients with non relevant chunks. To avoid such a scenario, we require the
sending client � to schedule the rarest chunk ,�� ��� ��
 � � ��� among those that it holds and the receiving client
� needs. Rarity is computed from the number of instances of each chunk held by the clients known to the sender.
This strategy is inspired from BitTorrent and expected to maximize the number of copies of the rarest chunks in
the system.

2.3 Network Degree

Given the peer and chunk selection strategies, one interesting question is how to choose the indegree/outdegree of
a client subject to its upload/download capacity. By maintaining 
 concurrent upload connections, a client � could
serve 
 clients at once and intuitively quickly upload the chunks that it holds. In addition, by serving 
 different
clients simultaneously, the client can fully use its upload capacity and thus, maximize its contribution to the system
resources. However, this intuition is not always correct. The upload capacity of client � would be divided amongst
the 
 different connections. The larger the value of 
 , the lower the bandwidth dedicated to each connection. As a
result, a large value of 
 might slow down the rate at which chunks get replicated in the network. For instance, for
a tree distribution, a small outdegree of 
 ��� is optimal (see ��������� in section 3.2).

Similarly, one could think of maintaining multiple download connections to improve the throughput of clients.
Previous work by Gkantsidis et al. [6] has clearly showed that, in a large deployment of parallel download, more
than

�
concurrent download connections does not benefit the clients. In this report we investigate Least Missing

and Most Missing under many assumptions on the value of the indegree ( � 
 - ) and outdegree ( � / 143 ) of peers. Note
that we assume all peers (clients and the server) to have the same outdegree.

3 Summary of Tree Approaches

Biersack et al. [2] analyze the performance of tree approaches for file replication. Their analysis focuses on three
architectures, Linear, ������� � , and ��������� � . For each of the these architectures, the authors derive an upper bound
on the number of served clients within � rounds under the assumptions that (i) All

�
clients arrive to the system at

time � � � and (ii) All peers have homogeneous bandwidth capacities ( + up � , up � , down � � ). In this section
we briefly outline the basic idea and the scaling behavior of each of the three architectures. In fact, Linear, ������� � ,
and ����������� are needed for the comparison that we perform later on between the tree-based and mesh-based
approaches.

3.1 Linear: A Linear Chain Architecture

The basic idea of the linear chain, referred to as Linear, is quite intuitive. Linear organizes clients in a chain: The
server uploads the file to client

	
, which in turn uploads the file to client � and so on. The authors analyze this

architecture under the following assumptions:

– The server serves sequentially and infinitely the file at rate � . At any point in time, the server uploads the file
to one single client.

– Each client starts serving the file once it receives the first chunk.



The authors consider the case where each client uploads the whole file at rate � to one other client before it
disconnects. Thus, each client contributes to the system with the same amount of bytes it receives from the system.
At time � � � , the server starts serving a first client. At time � � 5� $
� , the first client gets the first chunk and starts

serving a second client. Likewise, once the second client receives the first chunk at time �0���� $
� , it starts serving a

third client and so on. As a result, one obtains a chain that increases by one client each 5� $6� unit of time and by � ���
clients each round. On the other hand, at time � � 	 , the server finishes uploading the file to the first client. If there
are still clients that are not receiving any chunk (i.e. � ����� �

), the server then starts a new chain that increases
also by one client each 5� $
� unit of time. This process at the server repeats each round, which generates ��� 	 chains
within � rounds (figure 1). Basing on the above analysis, one could easily verify that the number of served clients
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Fig. 1. The evolution of the Linear architecture with time. The number of chunks is set to � � ��� � . The black circle
represents the server while the black squares represent the clients.

within � rounds is given by:

��� 
 -	��
 � � � � �
� � � ������� ����� � � � � 	 ��� �� � ����� � � (1)

This result shows that the number of served clients grows linearly with the number of chunks � ��� and quadratically
with the number of rounds � . From eq. (1) they derive the time needed (expressed in number of rounds) to serve

�
clients as follows:

� � 
 -	��
 � � � ����� � � � � � � ��� � � ��� � � ����� � � � ��
�� � �6� ���
����� ���� � ������� � ��� � � 
�� � �6� ���

���6� ��� (2)

In their analysis, the authors distinguish three cases depending on the value of the clients to chunks ratio �� $
� :
� � 
 -	��
 � � � ����� � � �

���������� �������� 
	
� ��! 	� � 	 "$#	% �

� ����& 	
� "$#'% �

� ��� �
	( �

� ���
"$#	% �
� ����) 	

As concerns this architecture, we would like to highlight two main points:



– The main advantage of Linear is that it optimizes the transmission time of the file (peers upload and download
the file at full rate � ). This makes this architecture highly efficient when �� $
� & 	 .

– However, Linear is very slow to engage clients into the file delivery when �� $
� � 	 and thus, clients may wait
for too long before they start receiving the file.

Figure 2 shows what we just explained. As long as the number of clients
�

is smaller than � ��� (i.e. �� $
� & 	 ), the
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Fig. 2. The service time for Linear versus the number of clients
�

for different values of the number of chunks,
� � ����� 	 � � � 	 ��� � 	 ����� .
Linear architecture performs well. When

�
grows significantly relative to � ��� (i.e. �� $
� ) 	 ), the service time can

reach extremely large values. For instance, when � � � � 	 ��� chunks, one needs about one round to reach
� � 	 � �

clients, � rounds for
� � 	 � � , and

	��
rounds for

� � 	 � � .
3.2 Tree � : A Tree Distribution Architecture

In addition to Linear, the authors analyze a simple tree with an outdegree 
 under the following assumptions:

– The server is located at the root of the tree and uploads the file to 
 clients in parallel each at rate �� .
– Each client receives the file at rate �

�
.

– Each interior client in that tree uploads the file to 
 other clients simultaneously as soon as it receives the first
chunk.

Under these assumptions, each interior client contributes 
 times the amount of bytes it receives from the system
while leaf clients upload no chunks at all. Given a download rate of �

�
, the client needs �� $
� unit of time to receive

a single chunk and 
 units of time to receive the entire file. At time � � � , the server starts serving the file to 

clients,

	 � � � � � 
 , each at rate �� . Each of these 
 clients waits �� $6� unit of time before it starts serving 
 new clients.

New clients also wait for �� $6� unit of time before serving the file and so forth. Thereby, each �� $
� unit of time, one

new level is added. Level � includes clients
	 � � � � � 
 , level

	
includes the 
 � clients served by the 
 clients at level

� . More generally, the number of clients engaged at level � is 
 

	 5 (figure 3).
Given how clients are engaged into the tree and that each client receives the file at rate �

� , they derive the
number of served clients at time � as:

���
� ��� � � ���
� 
 � � � � 
�
�������������� ����

� 	 5 (3)

Eq.(3) shows that the number of served clients scales exponentially with time and with the number of chunks � ��� .
And the time needed to serve

�
clients is then:

� � � ��� � � ���
� 
 � � � � 
 �! #" #�$ � � 
 % � 
� � � (4)

By deriving � � � ��� with respect to 
 and equating the result to zero, the authors demonstrate that an outdegree

 ��� is optimal for ������� � .
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Fig. 3. The evolution of the ��������� architecture with time for 
 � � . The client needs two units of time to receive
the whole file at rate �� . The black circle denotes the server while the black squares denote the clients.

3.3 PTree � : An Architecture Based on Parallel Trees

The overall performance of the tree architecture can be greatly improved if one could capitalize the unused upload
capacity at the leaves. This would permit clients to download the file at full rate � instead of at rate �� . The �����������
architecture allows to do this. In ����������� , the file is partioned into 
 parts of equal size. If the entire file is divided
into � ��� chunks, each of the 
 parts will comprise � $
�� disjoint chunks. Then, each part � 
 is transmitted over a
distinct tree � 
 . Each of the 
 trees includes all

�
clients in the system; a client is an interior client in one tree and

a leaf client in the remaining ones.

Figure 4 depicts the basic idea of ����������� for 
 ��� . In ����������� , each client helps in distributing 5� of the file
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Fig. 4. The evolution of ����������� with time. The file is divided into two parts ( 
 � � ).

(only one part). Given a tree � 
 , an interior client serves part � 
 to 
 other clients each at rate �� and thus, clients
upload to the system an amount of bytes equivalent to the full file. The reception of the distinct parts happens in
parallel. Each part is received at rate �

�
and consequently, all clients can fully use their download capacity. Note

that such a distribution architecture was first proposed by Castro et al. [3] under the name of SplitStream to increase
the resilience against churn (i.e., client departures) in a video streaming application.

����������� comprises 
 trees where each tree includes all clients and consists of �
	 �  #" #�$ � � % �

levels and a
height of  #" #�$ � � %

. Throughout each tree � 
 , part � 
 propagates at rate �� and thereby, each level induces a delay
of �� $
� unit of time. This means that all parts will be completely received by all

�
clients at time

� �
�
� ��� � � ���
� 
 � � � � 	 �! #" #�$ � � % � 
� ��� (5)



This result is very important as it shows that all clients finish downloading the file at the same time. From the above
analysis, the number of served clients within � rounds as:

�
�
�
� ��� � � ���
� 
 � � � � 


� 
 � 3�� 5 ��� � ����
� 	 5 � � 	


 � 	� 

� 
 � 3�� 5 ��� � ����

���
(6)

As in ��������� , the number of served clients increases exponentially in time and with the number of chunks � ��� . The
main advantage of ����������� as compared to ��������� , is that clients receive the file at full rate � instead of �� . Note
that, the optimal performance for ��������� � corresponds to 
 � � .

A comparison between the three architectures is given in table 2 where ����������� exhibits the best performance.
The high efficiency of ����������� is due to the fact that it engages clients very fast into the file delivery and keeps

Distribution architecture Number of served clients Service time

Linear � ����� � � � � $
� � � � 	�� � � $
� � � �	� 	�
 � � � � $
�� � � $
�
��������� 
 
 ��� �

�
����� � �� � 	 5 
 �  �" #�$ � � � % � �� $
�

����������� 

� 
 � 3�� 5 ��� � ����

��� 	 �! #" #�$ � � % � �� $
�
Table 2. Summary of the scaling behavior of Linear, ��������� , and ����������� .

them active most of the time.

4 Mesh approaches versus Tree approaches

As stated in the introduction, one of the two goals of this report is to demonstrate that mesh approaches can be at
least as efficient as tree ones. Despite their simplicity, the two architectures Least Missing and Most Missing permit
to do so. The analysis presented in this section shows that (i) Least Missing can simulate a tree distribution as with
��������� while (ii) Most Missing ensures the same keys responsible for efficiency as in ����������� , but in a simpler
way.

4.1 A Comparison between Least Missing and 
������ �
In Least Missing, each peer tries to serve first the neighbor that has the largest number of chunks amongst all other
neighbors. Keep in mind that peers serve the rarest chunks in priority. Despite its simplicity, the number of served
clients with Least Missing can scale exponentially in time as in ��������� . The key idea is to set the indegree of peers
to ��
 - � 	 and the outdegree to � / 1 3 � 
 . For ease of explanation, let us assume that 
 � � ; we analytically
prove that Least Missing with � 
.-&� 	 and � /2143 � � is equivalent to Tree ��� � . In this analysis we make the same
assumptions as in Tree ��� � :

– All peers have equal upload and download capacity + up � , up ��, down � � , where � is a parameter expressed
in Kbps.

– Peers maintain an outdegree �0/ 1430��� and an indegree � 
 - � 	 .
– A client can start serving the file once it receives a first chunk.
– Each client remains online until it delivers twice the number of chunks it receives from the system while the

server stays online indefinitely.
– All

�
clients arrive to the system at time �0� � .



At time � � � , the server starts serving two disjoint chunks, , 5 and , � , to two clients
	

and � , each at rate �� .
The server finishes uploading chunks , 5 and , � to these two clients by time � � �� $6� . Given that this policy favors
clients that have the largest number of chunks, the server will continue uploading to clients

	
and � until they

completely download the whole file. On the other hand, at time � � �� $
� , clients
	

and � have now each one chunk.
So each of them starts serving two new clients, each at rate �� and consequently, � new clients are engaged into the
file delivery. Clients

	
and � will remain uploading the chunks they have to these � new clients. This same process

repeats and one new level is added each �� $
� unit of time. Level � includes � 
 	 5 clients, which are served by the � 

clients located at level � � � 	 � . On the other hand, each client receives the file at rate �� and the reception lasts for �
units of time after the first byte has been received. Hence, the number of clients in the system evolves as in a tree
with an outdegree 
 � � . Figure 5 draws the time at which clients start receiving the file. This above analysis can
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Fig. 5. The evolution of the number of served clients with the Least Missing architecture. All
�

clients arrive to
the system at time ��� � . Each peer has indegree �0
.-�� 	 and outdegree � /2143 � � . We assume homogeneous
upload/download capacities + up � , up ��, down ��� .

be applied to any integer value of the outdegree 
 . The key idea is to set � 
.- � 	 and � / 143 � 
 . We can then verify
that the scenario � 
.- � � / 143 � 	 gives a linear chain (Linear).

Results To validate our analysis, we compare in figure 6 the evolution of the number of served clients over time
for Least Missing, ��������� , and Linear. The results for Least Missing are obtained from simulations2. In contrast,
the results for Linear and ��������� are computed using respectively equations 1 and 3 in sections 3.1 and 3.2. Figure
6 assumes homogeneous upload and download capacity of peers, + up � , up � , down � 	 ��
 Kbps. For � 
.- � 	
and � / 143 � � , Least Missing must act as Tree ��� � (figure 6(a)). Figure 6(a) shows that the overall time needed to
serve

	 ��� clients is very close in both approaches. However, the evolution of the number of served clients with
time is completely different. We can explain this difference between the analytical and the simulation results as
follows. In the analytical model, we assume a perfect synchronization between peers, which is not the case in
our simulator. In the simulator, each client is given an id. Consider a connection over which client

	
delivers to

client � a chunk , 
 . Once the chunk is completely delivered, the connection is released and each of the two clients
updates its list of chunks. In addition, each of the two clients sorts its neighbors in decreasing order of the number
of chunks they hold. Then, each client scans its neighboring list, up to down, until it finds a neighbor to serve.
This algorithm is executed sequentially at the client with the lowest id first. This means that, client

	
sorts its

neighboring list and starts looking for a new neighbor to serve before client � updates the list of chunks it holds. In
this case, client

	
would ignore that client � has already downloaded chunk , 
 and the sorting list of client

	
would

not be exact at
	 ��� � . As a result, in our simulator, Least Missing does not behave as a perfect one and clients that

have the largest number of chunks are not necessarily served first, i.e. least missing clients are not always at the
top of the neighboring list. This feature has been intentionally added to the simulator to account for the lack of
synchronization between peers in real Internet. In practice, when a client receives a chunk, it announces the new
chunk to all its neighbors. Thus, a peer may perform its algorithm and choose the new neighbor to serve before all
the “announcements” of new chunks have been received.

On the other hand, for � 
 - � � /2143 � 	 and under the assumptions of homogeneous upload/download capaci-
ties, the Least Missing policy should have the same behavior as Linear (figure 6(b)). As we can observe from figure

2 Details about the simulator are given in section 5



6(b), the two results are quite close; the slight difference is once again due to the lack of synchronization between
peers.
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Fig. 6. The number of served clients against time. All
�

clients arrive at time ��� � . We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps.

4.2 Most Missing versus
� 
 � ��� �

Having seen how Least Missing can scale exponentially with time, we now investigate the scaling behavior of Most
Missing. In this policy, clients that have the lowest number of chunks are served in priority. Thus, we expect Most
Missing to engage clients into the file delivery as fast as possible and keep them busy for most of the time. In other
words, we believe that Most Missing meets the main key features of ����������� . In this section we study the basic
behavior of Most Missing and we compare it to ����������� . We assume a basic scenario where:

– All peers have equal upload and download capacities, + up � , up � , down � � .
– Peers have equal outdegree and indegree � /2143 � � 
.- � 	 .
– Each client stays online until it receives the whole file and can start serving other clients as soon as it receives

a first chunk.
– All

�
clients arrive to the system at time �0� � .

For this scenario, we conduct a simulation with the parameter values given in table 3. In figure 7 we expose

Table 3. Parameter values.

Arrival Process , up , down + up � 
.- � /2143 Life	 ��� at � � � 	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �

the number of served clients against time. This figure supports our intuition. Most Missing behaves similarly to
����������� ; all clients complete very fast and almost at the same time. If we compare the two architectures in absolute
terms for the parameter values given in table 3, we find that Most Missing needs 3472 seconds to serve all the

	 � �
clients while ����������� lasts a bit longer, 3584 seconds. This result shows that we can achieve a high efficiency
while avoiding the overhead of constructing parallel trees. Note that the service time achieved by Most Missing
(i.e.

� � ��� seconds) is very close to the optimal one; for + up ��, up ��, down � 	 ��
 Kbps and for a file of
� 	�� � MB,

the optimal transmission time of the file is
� ����� seconds.

By serving always most missing clients, this strategy ensures all clients to progress at almost the same speed.
In figure 8 we present a snapshot of the download progress as seen by clients after � � min of the beginning of the
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Fig. 8. Snapshot of the download progress of clients for Most Missing. All
�

clients arrive at time ��� � . Each
peer maintains at most one download and one upload connection ( � 
.- � ��/ 143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the
file (Life � � ).

simulation. As we can see from this figure, all clients are in the same neighborhood; they are about � ��� of the file.
For clarity, when we show a snapshot of the download progress, we batch clients that are close in their download
within intervals of

	 � � . For example, if a client has downloaded � � of the file with ��� � ��� 
�� , we consider
that this client has completed � ��� of the download.

We further investigate the evolution of the chunks in the network for Most Missing. Figure 9(a) draws the
number of copies for each chunk as a function of time and the chunk index while the mean and the deviation of the
chunks are depicted in figure 9(b). At any time � , we compute the mean of the chunks as the sum of the number of
copies over all chunks in the system divided by the number of chunks � ��� . Figure 9(a) shows that, once a chunk is
injected in the system, it gets replicated very fast. As time goes by, the number of copies for each chunk can vary
significantly from one chunk to another. This behavior produces a high heterogeneity in the chunks distribution
especially after half an hour of simulations where the deviation is maximal (figure 9(b)). To explain the quick
replication of chunks with Most Missing, we proceed as follows. For the parameter values displayed in table 3, one
round is equivalent to

� ����� seconds and 5� $
� is equivalent to
	4�

seconds. For sake of simplicity, we assume that the

server starts serving the file at time � � � . The server sends the first chunk , 5 to client
	

at rate � . At time � � 5� $
� ,client
	

receives completely chunk , 5 . Given that the policy tends to serve always rarest chunks to clients that
have the fewest number of chunks, at � � 5� $
� , the server schedules a new chunk , � to a new client � . Similarly,
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Fig. 9. The chunks distribution over time for Most Missing. All
�

clients arrive at time �0� � . Each peer maintains
at most one download and one upload connection ( �0
 - � � / 143 � 	 ). We assume homogeneous upload and
download capacities + up ��, up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the file (Life � � ).

client
	

starts delivering its chunk , 5 to a new client
�
. Let us focus for the moment on chunk , 5 . At time �0� �� $
� ,

client
	

downloads completely chunk , 5 to client
�
. As a result, at time �0� �� $
� , there are two clients (

	
and

�
) that

maintain a copy of the first chunk , 5 . By this time � � �� $
� , these two clients deliver that chunk to two new clients

and so forth. Hence, the number of copies of chunk , 5 in the system doubles each 5� $
� unit of time. After 
� $
� unit(s)

of time, there are � 
 � 5 clients that have the first chunk and only the first chunk. This same analysis can be applied
on chunk , � . Chunk , � was injected in the network by the server at time ��� 5� $
� , i.e. 5� $
� unit of time after the first

chunk , 5 . By time � � 
� $
� , there are � 
 � � clients that have chunk , � and only chunk , � . More formally, at time

� � 
� $
� , chunk � (with � � � ) has � 
 �
�

copies. Figure 10 plots the evolution of the number of copies for the first

four chunks versus time. The first chunk , 5 starts with a single copy at time � � 5� $
� . At time � � �� $
� , there are �

Chunk C1
Chunk C2 Chunk C3

Chunk C4

t=1/|C|

t=2/|C|

t=3/|C|

t=4/|C|

Client

Server

Time

Fig. 10. The theoretical evolution of the number of copies for the first four chunks with time for Most Missing. All�
clients arrive to the system at time � � � . Each peer maintains at most one download and one upload connection

( � 
 - � � /2143 � 	 ). We assume homogeneous upload and download capacities + up � , up � , down � � . Clients
disconnect as soon as they receive the file (Life � � ).

copies, and � copies at time ������ $
� .



We outline that this analysis assumes that there are always new clients that have no chunks at all. We refer
to clients that hold one chunk as the existing clients and the new clients that hold no chunks at all as the new
arrivals. Thus, the above analysis holds true as long as the number of existing clients is less than or equal to the
number of new arrivals. And during this period of time, say the start-up period, chunk , 5 will have the largest
number of copies, then chunk , � , and so on. During this start-up period, existing clients are always serving new
arrivals and no chunks are exchanged amongst them. Therefore, the number of copies for chunks keeps on growing
exponentially. However, once the number of arriving clients becomes less than the number of existing clients in
the system, existing clients can start exchanging chunks and it then becomes very hard to keep track how chunks
propagate. Yet, figure 9(a) shows that the growth in the number of copies for subsequent chunks is as high as during
the start-up period.
In figure 11, we plot the simulation result for the evolution of the number of chunks versus time. We show only
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Fig. 11. The simulation result for the evolution of the number of copies of chunks with time. We consider only the
first four chunks injected by the server. All

�
clients arrive to the system at time � � � . Each peer serves one single

client at a time. We assume homogeneous upload and download capacities + up ��, up � , down � 	 ��
 Kbps. Each
peer maintains at most one download and one upload connection ( � 
.- � ��/ 1430� 	 ). Clients disconnect as soon as
they receive the file (Life � � ).

the first four chunks injected by the server, e.g. chunks , 5 , , � , , � , and , � . This figure confirms our analysis.
During the start-up period, the number of copies of each of these chunks doubles each 5� $
� unit of time, which is

equivalent to
	 �

seconds in this scenario. In addition, each of these chunks is 5� $
� unit of time late as compared to
the antecedent one.

4.3 Preliminary Conclusion

In this section we analyzed the basic behavior of our two architectures. We also presented a comparison between
Least Missing and ��������� on one side, and Most Missing and ����������� on the other side. The comparison permitted
to validate our intuition; mesh approaches can be more efficient than tree ones while being simpler, more flexible,
and more dynamics. Note that this comparison does not take into account the challenges of constructing and
maintaining the trees.

We now continue our evaluation of Least Missing and Most Missing and conduct extensive simulations over a
wide set of scenarios. Throughout these simulations, we point out the main parameters that guide the performance
of mesh-based approaches. We present two sets of results: The first one is for an instantaneous arrival of all clients
at time � � � while the second set of results assumes a Poisson arrival of clients. Within each set, we start with a
basic scenario where we assume (i) + up � , up � , down � 	 ��
 Kbps, (ii) Life � � (clients are selfish), and (iii)
� 
.- � ��/ 143 � 	 . This basic scenario allows us to understand the importance of the way peers organize themselves
and cooperate in the system. We then investigate separately the impact of the following parameters:

– Indegree/Outdegree of peers: Our goal here is to see whether parallel upload and download of the chunks
speed up the replication of the file.



– Life time of clients: We study the performance of the system when clients stay for
�

additional min after they
completely retrieve the file. Intuitively, having altruistic clients increases the potential service of the system.
However, the rational behind this scenario is to point out the conditions to guarantee a good scaling behavior
even in worst cases where peers are completely selfish.

– Upload and download capacity of clients: We consider the case of clients with heterogeneous bandwidth
capacities. We would like to understand how we can prevent clients with low bandwidth capacities from highly
damaging the performance of the system.

– Chunk selection strategy: We evaluate the two architectures under a random selection of chunks where the goal
is to prove that scheduling the appropriate chunks is needed for efficiency. To avoid confusion, we assume that
peers schedule always rarest chunks first, unless stated otherwise.

5 Experimental Setup

For the purpose of evaluating our two cooperative architectures, we made use of the simulator developed by Felber
et al.[5]. This simulator allows us to observe step-by-step the distribution of large files among all peers in the
system according to several metrics.

5.1 Simulation Methodology

The simulator is essentially event-driven, with events being scheduled and mapped to real-time with a millisec-
ond precision. The transmission delay of each chunk is computed dynamically according to the link capacities
(minimum of the sender upload and receiver download) and the number of simultaneous transfers on the links
(bandwidth is equally split between concurrent connections).

Once a peer � holds at least one chunk, it becomes a potential server. It first sorts its neighboring clients
according to the specified peer selection strategy. It then iterates through the sorted list until it finds a client �
that (i) Needs some chunks from � 
 ( ��
 � � ���� � ), (ii) Is not already being served by peer � , and (iii) Is not
overloaded. We say that a peer (client or server) is overloaded if it has reached its maximum number of connections
and has less than

	 ��
 Kbps bandwidth capacity left. Peer � then applies the chunk selection strategy to choose the
rarest chunk to send to client � . Peer � repeats this whole process until it becomes overloaded or finds no other
client to serve.

5.2 Deployment Scenarios

We specifically focus on two deployment scenarios that correspond to real-world applications of cooperative con-
tent distribution. In the first scenario, we assume that all clients arrive to the system at the same time. This is a
crucial scenario that may be the case where (i) A critical data, e.g. anti-virus, must be updated over a set of ma-
chines as fast as possible or (i) A flash crowd, i.e. a large number of clients that arrive to the system very close in
time.

The second scenario corresponds to the case where clients arrive progressively to the system. In this scenario,
the distribution continues over several client ”generations”, with some clients arriving well after the first ones have
already left. We model this scenario as a Poisson process with rate � .

5.3 Metrics

Our simulator allows us to specify several parameters that define its general behavior and operating conditions.
The most important ones relate to the content being transmitted (file size, chunk size), the peer properties (arrival
process, bandwidth capacities, life times, indegree and outdegree), and global simulation parameters (number of
initial servers, simulation duration, peer selection strategy, chunk selection strategy). Table 4 summarizes the values
of the main parameters used in our simulations.

We have considered several metrics in our evaluation of the two strategies. We briefly outline below the major
properties that we are interested in:

– Download times: The duration of the file download as experienced by individual clients. In general, shorter
times are better and variance should be minimized.



Parameter Value
Chunk size � ��� KB
Number of chunk � ��� �����
File size

�
	�� � MB
Peer arrival rate: Continuous/Simultaneous
Peer bandwidth (download/upload) Homogeneous/Heterogeneous
Clients life time Selfish/Altruistic
Active connections per peer

	 � �

Number of initial servers
	

Duration of simulation 
 hours
Peer selection strategy Least Missing/Most Missing
Chunk selection strategy Rarest/Random

Table 4. Parameters used in the simulations.

– Download progress: The progress of the file download over time seen by each of the clients. In general, regular
progress is desirable (i.e., clients should not be stalled for long periods of time).

– Chunk distribution: The evolution over time of the frequency of the chunks in the system. The variance of
chunk frequencies should be minimized.

6 Simulation Results: Instantaneous Arrival of Clients

6.1 Basic Results

To better understand how the different system parameters can influence the scaling behavior of each of the two
architectures, we start with a basic scenario and then extend our analysis and consider more complex ones. In the
basic scenario we make the following assumptions:

– All peers (server and clients) have equal upload and download capacities, + up ��, up ��, down � � .
– Each client stays online until it receives the whole file.
– Peers have equal outdegree and indegree � /2143 � � 
.- � 	 .
– All

�
clients arrive to the system at time �0� � .

Actually, this is the same scenario that we considered in section 4.2 when comparing Most Missing to ����������� . De-
spite its simplicity, this scenario provides important insights into how the performance of the system is influenced
by the way peers cooperate in the network. Figure 12 compares Least Missing to Most Missing for the parameter
values given in table 5. This figure exhibits that, overall, Most Missing performs much better than Least Missing.

Table 5. Parameter values.

Arrival Process , up , down + up � 
.- � /2143 Life	 ��� at � � � 	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �

In absolute terms, Most Missing takes 3472 seconds ( � 	 hour) to serve
	 ��� clients. In contrast, to serve the same

number of clients, Least Missing needs a larger time, up to 23728 seconds ( � � hours).
However, from figure 12(b) we can notice that Least Missing optimizes the service time of the first few clients,

which is also clear from figure 13. In figure 13, we see how Least Missing pushes quickly few clients to completion
and maintains the majority of clients early in their download.

We explain the behavior of Least Missing as follows. Theoretically, under the assumptions of � 
 - � � / 1 3 � 	
and , up � , down � + up � � , a perfect Least Missing policy would result in one single linear chain. Such a chain
increases by one client each 5� $
� unit of time. In that chain, the download time of each client is one unit of time.

This works as follows. Assume the server starts delivering the file at time � � � to a first client
	
. By time � � 5� $
� ,
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Fig. 12. The number of served clients against time for Least Missing and Most Missing. All
�

clients arrive at
time � � � . Each peer maintains at most one download and one upload connection ( ��
.- � � /2143 � 	 ). We assume
homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as
they receive the file (Life � � ).
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Fig. 13. Snapshot of the download progress of clients for Least Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � / 143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the
file (Life � � ).

client
	

receives a first chunk and starts serving a second client � and so forth. More formally, client � receives a
first byte of the file by time � � 
 � 5� $
� . In addition, this client � will always have one and only one chunk more than
client � � 	 . This means that, the root of the chain, in our scenario client

	
, has the largest number of chunks, then

client � , etc. At time ��� 	 , the server finishes uploading the file to client
	
. Even though the server becomes free, it

does not initiate a new chain. Indeed, we assume here that the client disconnects once it receives the whole file. So,
at time � � 	 , client

	
leaves the network and client � is left stranded. In addition, client � has the largest number

of chunks amongst all other clients in the system. Therefore, at time � � 	 , the server delivers to client � the last
chunk this client misses. At time � � 	 � 5� $
� , the same process repeats; client � disconnects and the server uploads
to client

�
the last chunk this client misses. As a consequence, the server will be always delivering a last chunk to

the client located at the root of the chain.
As mentioned earlier, there is a lack of synchronization between peers and clients with the largest number of



chunks are not always served first, i.e. a peer may not always serve its successor in the chain. As a result, we obtain
multiple chains that progress in parallel and the performance of Least Missing is better than that of a linear chain.

If we look at the chunk distribution in figure 14, we can notice that the number of copies of the chunks grows
linearly in time.
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Fig. 14. The chunks distribution over time for Least Missing. All
�

clients arrive at time � � � . Each peer maintains
at most one download and one upload connection ( �0
 - � � / 143 � 	 ). We assume homogeneous upload and
download capacities + up ��, up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the file (Life � � ).

Conclusions We compared the two strategies Least Missing and Most Missing under the same basic and homoge-
neous scenario. This scenario has clearly shown how the cooperation strategy between peers guides the behavior of
the system. For instance, Most Missing optimizes the overall service time because it engages rapidly clients into the
file delivery and keeps them busy for most of the time. In contrast, Least Missing minimizes the delay experienced
by the first few clients while the last client to complete notices a high delay. Note that, for � 
 - � � / 143 � 	 , Least
Missing consists of multiple linear chains that progress in parallel and is not very efficient when �� $
� ) 	 , which is
the case here.

6.2 Impact of the Indegree/Outdegree of Peers

Previous work by Yang et al. [11] studies the service capacity of mesh-based approaches. Their analysis proves
that, when all peers have equal bandwidth capabilities and when the network has infinite bandwidth capacity, the
optimal growth in the service capacity of the system is for an outdegree of

	
. In this section, we address this point

and study the impact of the number of incoming/outgoing connections a peer can simultaneously maintain. We
allow each peer to have up to � / 143 � � upload and ��
 - � � download connections (table 6).

Table 6. Parameter values.

Arrivals Process , up , down + up ��
.- � /2143 Life� � 	 � � at �0� � 	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
� � �

Most Missing We first analyze the Most Missing policy with the number of completed clients graphed in figure
15. The results shown in this figure are in accordance with former ones: Clients download the file quickly and
finish at almost the same time. In addition, the chunk distribution over time (figure not shown) exhibits the same
tendency as before, i.e. chunks get duplicated at an exponential rate. What is interesting here is that, having multiple
download/upload connections is not of benefit to the Most Missing policy. This result confirms previous conclusion
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Fig. 15. The number of completed clients against time for Most Missing. All
�

clients arrive at time � � � . We
assume homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as
soon as they receive the file (Life � � ).

[11]: In a homogeneous environment and in uncongested bandwidth network, an outdegree/indegree of
	

is optimal.
Such a value allows the chunks to double their number of copies each 5� $
� unit of time.

To better understand the impact of the indegree/outdegree of peers on Most Missing, we plot in figure 16 the
evolution of the number of copies for one single chunk with Most Missing for � 
.- � ��/ 1430� 	 and � 
 - � � / 1 3 ��

; when � 
.- � ��/ 143 � 	 , the chunk is delivered at full rate � and at rate �
�

when � 
 - � � / 1 3 � � . From figure 16,
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(b) ���������	��

�����

Fig. 16. The evolution of the number of copies of one single chunk in Most Missing. We assume homogeneous
upload and download capacities + up � , up � , down � � .

we can see that, when � 
 - � � / 1 3 � 	 , the chunk can be duplicated over
	��

clients within �� $
� unit of time while

we need �� $
� unit of time when � 
 - � � /21430� � .

Least Missing The performance of a perfect Least Missing, on the other hand, should be independent of the value

 of the indegree/outdegree of peers as long as we assume homogeneous scenario with + up � , down � , up � �
and ��
 - � � /2143 � 
 . For ease of explanation, we assume peers with an outdegree 
 � � , i.e. � 
.-)� � / 143 � � .
At time � � � , the server starts serving two clients

	
and � each at rate �� . By time � � �� $
� , clients

	
and � obtain

each a first chunk. Now, client
	

can start serving its chunk to two clients. Given that the policy is Least Missing
first, client

	
seeks for clients that hold the largest number of chunks and that have free download capacity. One

candidate is client � . Actually, at ��� �� $
� , only clients
	

and � hold each one chunk while other clients hold no
chunks at all. Thereby, client

	
uploads its chunk to client � . Client

	
can still have one more upload connection

and a new client
�

is then served. The upload capacity of client
	

is equally divided amongst clients � and
�
. This

makes the overall download rate of client � equal to � and thus, the time client � takes to completely download the



file is one round3. Similarly, client � uploads its chunk to client
	

and to a new client � each at rate �� . As a result,
at time � � �� $
� , two new clients start receiving the file. Note that the server will be always uploading to clients

	
and � , which in turn will be always uploading to clients

�
and � (see figure 17). As a result, we obtain two chains

r/2r/2

r/2

r/2 r/2r/2

client 1 client 2

client 3 client 4
r/2

r/2

Server

Fig. 17. The theoretical evolution of Least Missing for � 
 - � � / 1 3 � � . We focus only on the first four clients in
the system.

that increase each by one client every �� $
� unit of time. This would give us the same result as if we had one single

chain that increases by one client each 5� $6� unit of time, which corresponds to 
 � 	 . This analysis can be applied
to any integer value of 
 and therefore, Least Missing with 
 � � is equivalent to Least Missing with 
 � 	 .

We recall that the above analysis holds true only for a perfect Least Missing. However, the simulation results
show completely different tendency. Figure 18 plots the number of completed clients versus time. As we can
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Fig. 18. The number of completed clients against time. All
�

clients arrive at time � � � . We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the
file (Life � � ).

conclude from this figure, for � 
 -&� � / 143 � �
, the time needed to serve

	 ��� clients is halved as compared to the
scenario where � 
.- � � / 143 � 	 ; 11680 seconds instead of 23728 seconds.

Moreover, from figure 19, we find that the expansion of the number of copies for one of the first
�

chunks, say
chunk , 5 , injected by the server at time � � � , follows a tree with an outdegree 
 � �

. For instance, within ��� �
seconds, that chunk , 5 has

����� � copies. In a tree with an outdegree 
 � � , with
�

levels, we can reach up to
��� � �

3 Client � maintains two download connections at rate � � each. One connection to the server and the second one to client � .
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Fig. 19. The chunks distribution over time for Least Missing. All
�

clients arrive at time � � � . We assume
homogeneous upload and download capacities + up ��, up ��, down � 	 ��
 Kbps. Each peer maintains at most�

download and
�

upload connections ( �0
.- � � /2143 � �
). Clients disconnect as soon as they receive the file

(Life � � ).

copies within ����� seconds. While the analysis gets complicated for subsequent chunks, our intuition is that, as the
outdegree of peers increases, Least Missing engages clients faster into the file delivery and its performance gets
better. To validate our intuition, we run a new set of simulation with incoming and outgoing connections of peers
of � 
.- � ��/ 143 � � . What we would like to see is that the number of completed clients is somewhere between that
of ( ��
 - � � /2143 � 	 ) and that of ( ��
 - � � / 1 3 � � ), which is the case in figure 20.
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Fig. 20. The number of completed clients against time for Least Missing. All
�

clients arrive at time � � � . We
assume homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as
soon as they receive the file (Life � � ).

Conclusions In this section we investigated the impact of the network degree on our two architectures. As ��
 - and
� /2143 go from

	
to
�
, the performance of Most Missing slightly degrades while the performance of Least Missing

doubles. Even though, we argue that parallel download and upload of the chunks can offer many advantages in real
environments. Mainly, it allows clients to fully use their upload and download capacities, which makes the system
more robust against bandwidth fluctuations in the network and client departures. In addition, parallel connections
ensures a good connectivity between peers in the system.



6.3 Impact of the Life Time of Clients

The way clients behave in the network has a high impact on the system performance. So far we have focused on
the case of selfish clients that disconnect once they are done. However, in real Internet we expect to observe both
kind of clients, selfish and altruistic. Actually, we do not expect clients to stay intentionally to help into the file
distribution, but just because not all of them monitor with high attention their download progress and disconnect
once it is finished. In this section we assume that clients stay online for

�
additional min (Life � � ). Other parameter

values that we consider in this section are given in table 7.

Table 7. Parameter values.

Arrivals Process , up , down + up � 
.- � /2143 Life� � 	 � � at �0� � 	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �

Most Missing As in previous sections, we start with the Most Missing strategy. In this strategy, we have seen that,
under the assumption of instantaneous arrivals, all clients finish at almost the same time. Thus, clients need not
to stay in the system after they complete their download simply because there remain no clients to be served and
consequently, Most Missing is very insensitive to the parameter Life (figure 21).
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Fig. 21. The number of completed clients against time for Most Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connections ( � 
 -)� � /2143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps.

Least Missing Let us now see what happens with Least Missing in case we allow clients to stay and help with
the file delivery. We have seen how this strategy serves clients progressively over several hours. When we assume
altruistic clients with Life � � , the system will have a greater potential service and its performance increases. From
figure 22 we can see that the performance of Least Missing becomes much better; 9920 seconds to serve

� � 	 � �
clients instead of 23728 seconds for Life � � . From figure 23, as compared to the case with Life � � (figure ??)
on the other hand, we can see that the chunk distribution becomes steeper, i.e. chunks get replicated faster in the
system.

Conclusions In this section we saw that the life time of clients can significantly influence the performance of the
system when all clients arrive to the system at time � � � . This is the case for the architectures that serve clients
sequentially like Least Missing. In contrast, for strategies like Most Missing where clients finish at almost the same
time, this parameter has no effect. Thus, to minimize the influence of the behavior of clients, the system must
engage clients into the file delivery very early and hold them in the system as long as possible.
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Fig. 23. The chunks distribution over time for Least Missing. All
�

clients arrive at time � � � . Each peer maintains
at most

	
download and

	
upload connections ( � 
 - � � / 1 3�� 	 ). We assume homogeneous upload and download

capacities + up � , up � , down � 	 ��
 Kbps. Clients stay online
�

additional min after they have received the file
(Life � � ).

6.4 Impact of the Bandwidth Heterogeneity of Clients

So far, we have assumed peers with homogeneous bandwidth capacities. However, in real Internet, the server has
more upload capacity than clients. In addition, most ISPs provide clients with asymmetric bandwidth capacities;
usually, the download capacity of a client is larger than its upload capacity. Moreover, clients typically have het-
erogeneous bandwidth capacities, ranging from dial-up modems to broadband access. In this section we account
for this heterogeneity and consider two classes of clients:

� � � with , up � 	 ��
 Kbps and , down � �
	 � Kbps and
the other

� � � with , up � � � Kbps and , down � 	 ��
 Kbps. The server has a higher capacity of + up � 	 ����� Kbps.
The values that we consider here are just to give new insights into how the heterogeneity of clients can change the
performance of the system. Table 8 outlines the remaining parameter values.

Table 8. Parameter values.

Arrivals Process , up , down + up � 
 - � / 1 3 Life� � 	 � � at �0� � 	 ��
 � � � Kbps
�
	 � � 	 ��
 Kbps

	 � � � Kbps
	 	 �



Most Missing When we assume two sets of clients with different upload capacities, we expect clients to progress
uniformally. The reason is that, on average, all clients receive a similar service; each client is served half of the
time by clients that have an upload of

	 ��
 Kbps and the other half of time by clients with
� � Kbps. As a result,

clients with low upload capacity would delay the download progress of the clients with the higher upload capacity.
However, what we learn from figure 24 is completely different. Figure 24 shows two batches of clients: The
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Fig. 24. The number of completed clients against time for Most Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � /2143�� 	 ). The upload and download
capacities are + up � 	 � � � Kbps, , up � 	 ��
 � � � Kbps, and , down � � 	 � � 	 ��
 Kbps. Clients disconnect as soon as
they complete their download (Life � � ).

first batch of clients completes the download after 3472 seconds of simulations while the second batch finishes
after 6636 seconds. The first batch of clients corresponds to clients that have the higher bandwidth capacities
( , up � 	 ��
 Kbps and , down � �
	 � Kbps) while the second batch represents clients that provide , up � � � Kbps
and , down � 	 ��
 Kbps. This result is extremely important as it shows that Most Missing offers to its clients
a service proportional to their upload capacity. This is a desirable property as clients that upload the best must
receive the best service. If we observe the download progress of clients after � � min of simulations, we notice
clearly two big batches of clients, the first one with the large bandwidth capacity at about � ��� of the file while
the second one at almost half the distance (figure 25). This above behavior of Most Missing is not really intuitive.
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Fig. 25. The download progress of clients against time for Most Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � /2143�� 	 ). The upload and download
capacities are + up � 	 � � � Kbps, , up � 	 ��
 � � � Kbps, and , down � � 	 � � 	 ��
 Kbps. Clients disconnect as soon as
they complete their download (Life � � ).



We can imagine that Most Missing sorts clients by classes according to their upload capacities and only clients
that belong to the same class cooperate among each others. Indeed, we believe that such a behavior is somehow
influenced by the properties of our simulator. Basically, the condition � 
.- � ��/ 1430� 	 means that each peer has at
most one download and one upload connection. However, to avoid having unused bandwidth, we allow a peer to
have additional download (or upload) connections provided it has at least

	 ��
 Kbps of free download (or upload)
bandwidth. Thus, the clients that have a high upload/download capacity would benefit from having more download
connections and will progress faster than the other ones.

Finally, if we look at the evolution of the number of chunks in figure 26, we notice a sudden fall that is due to
the departure of the first batch of clients. Even though, the number of chunks in the system keeps on expanding
fast.
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Fig. 26. The chunks distribution over time for Most Missing. All
�

clients arrive at time � � � . Each peer maintains
at most one download and one upload connection ( � 
.- � ��/ 143 � 	 ). The upload and download capacities are
+ up � 	 � � � Kbps, , up � 	 ��
 � � � Kbps, and , down � �
	 � � 	 ��
 Kbps. Clients disconnect as soon as they complete
their download (Life � � ).

Least Missing As we have seen so far, the Least Missing policy is similar to a linear chain. Therefore, we expect
this policy to behave very badly in a heterogeneous environment like the one we consider in this section. The reason
is that clients are served sequentially, which means that the rate at which chunks propagate in the system is highly
affected by the lowest upload capacity of peers. Figure 27 confirms what we just mentioned. From this figure,
we can see how the performance of Least Missing has significantly dropped and, in contrast to Most Missing, the
service of clients with high bandwidth capacity is highly damaged by the low upload capacity of other clients. If
we take a closer look at figure 27, we notice a very short service time of the first client with Least Missing, around

���� seconds. Our explanation is that this client, with for sure a high download capacity of , down � �
	 � Kbps, was
the first to join the server and received the file at full download rate. We can easily verify that, receiving ����� chunks
of � ��� KB each over a connection of

�
	 � Kbps takes 
���� seconds. Overall, we can conclude the same tendency
for Least Missing; few clients progress fast while the majority do slowly (figure 28).

What is new for Least Missing is that this scenario reveals a higher number of chunks in the system (figure
29) as compared to the basic scenario with homogeneous bandwidth capacities ( + up ��, up ��, down � 	 ��
 Kbps,
figure 14). But this does not mean a larger potential service capacity because most of existing chunks are shared
by almost all clients, and these clients are waiting for new chunks to be injected by the server.

Conclusions In this section we addressed the influence of the bandwidth heterogeneity of clients on the system
performance. We saw how clients with low bandwidth links can slow down significantly the dissemination of the
file when clients are served sequentially, which is the basic tendency of Least Missing. In such an architecture,
clients may wait for too long to receive new chunks. In contrast, Most Missing leverages better the heterogeneity of
clients. This strategy keeps all peers working most of the time, which ensures a high service capacity of the system
and consequently, allows clients to progress fast.
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Fig. 27. The number of completed clients against time. All
�

clients arrive at time � � � . Each peer maintains at
most one download and one upload connection ( � 
 - � � /2143 � 	 ). Clients disconnect as soon as they complete
their download (Life � � ).
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Fig. 28. Snapshot of the download progress of clients for Least Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � /2143�� 	 ). The upload and download
capacities are + up � 	 � � � Kbps, , up � 	 ��
 � � � Kbps, and , down � � 	 � � 	 ��
 Kbps. Clients disconnect as soon as
they complete their download (Life � � ).

6.5 Impact of the Chunk Selection Strategy: Random rather than Rarest

In their basic version, Most Missing and Least Missing require peers (server and clients) to serve rarest chunks first,
i.e. the least duplicated chunks in the system. In this section we investigate a possible simplification of the system.
We allow peers to schedule chunks at random as follows. The sending peer � selects a chunk , 
 � � � 
 �&� � � at
random among those that it holds and the receiving client � needs. Under this assumption, we refer to Most Missing
as Most Missing Random and to Least Missing as Least Missing Random. Our goal through Most Missing Random
and Least Missing Random is to see whether this feature can be integrated to the system without sacrificing a lot
of performance. To this purpose, we run new simulations with the parameter values given in table 9.

Table 9. Parameter values.

Arrival Process , up , down + up � 
.- � /2143 Life	 ��� at � � � 	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �
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Fig. 29. The chunks distribution over time for Least Missing. All
�

clients arrive at time � � � . Each peer maintains
at most one download and one upload connection ( � 
.-�� � / 143 � 	 ). The upload and download capacities are
+ up � 	 � � � Kbps, , up � 	 ��
 � � � Kbps, and , down � �
	 � � 	 ��
 Kbps. Clients disconnect as soon as they complete
their download (Life � � ).

Most Missing We can notice the first impact of the chunk selection strategy in figure 30 where the number of
served clients with Most Missing has completely a different scaling tendency. This figure shows that around �������
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Fig. 30. The number of completed clients against time for Most Missing. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � / 143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they complete
their download (Life � � ).

clients finish at almost the same time, within 4160 seconds of simulation. Then, the number of completed clients
increases slowly. Indeed, it increases by one client each 5� $
� unit of time, which is equivalent to

	 �
seconds under

the parameter values of table 9. To explain this behavior of Most Missing Random, we graph the chunks distribution
over time in figure 31. If we take a closer look at this figure, we can observe that, after 4160 seconds of simulation,
all chunks are widely distributed in the system except one single chunk. In other words, all clients in the system
have each 199 chunks and they are all waiting for one rarest chunk to be scheduled from the server. Let us denote
this rarest chunk by , � . At time � � � 	4� � seconds, the server schedules chunk ,�� to client

	
. After

	4�
seconds,

client
	

receives completely chunk ,�� . Given that Life � � , by receiving chunk , � , client
	

completes its set of
chunks and disconnects straight away. The server then delivers again this chunk , � to a second client � and so on.
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Fig. 31. The chunks distribution over time for Most Missing Random. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � � / 143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they complete
their download (Life � � ).
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Fig. 32. The mean and deviation of the number of chunks against time for Most Missing Random. All
�

clients
arrive at time ��� � . Each peer maintains at most one download and one upload connection ( ��
 -)� � / 1 3 � 	 ).
We assume homogeneous upload and download capacities + up � , up ��, down � 	 ��
 Kbps. Clients disconnect as
soon as they complete their download (Life � � ).

As a result, one client completes each
	 �

seconds and, instead of 3472 seconds to serve
	 � � clients as with the

rarest selection case, during 
 hours, Most Missing Random serves no more than 3733 clients.
To confirm our analysis, we show in figure 33 a snapshot of the download progress of clients after � � min (i.e.

� � ��� seconds) of simulations. After � � min, around ��� � of clients have completed their download and 
�� � are
waiting for chunk , � .

We give the following simplified scenario (figure 34) that helps to understand better why random selection of
chunks can really block the clients in the system. Consider the case where there are only

� � � clients that want
to download a file that comprises only two chunks, , 5 and , � . At time �0� � , the server starts serving chunk , 5 to
client

	
. After 5� $6� unit of time, the chunk is completely delivered and the server starts serving a new client � . Given

that the chunk selection is done at random, it is possible that the server schedules to client � the same chunk , 5
and not a new one. Meanwhile, client

	
uploads its chunk , 5 to a new client

�
. At time �� $6� , the system includes

�

clients that hold chunk , 5 and four clients with no chunks at all. By that time, the server starts serving a new chunk
, � to a new client � . Similarly, clients

	
, � and

�
upload their chunks to

�
new clients

�
,
�
, and � . As a result, we

land up with
�

clients that maintain chunk , 5 and one single client with chunk , � . At time �� $
� , there are no new
comers and existing clients can start exchanging their chunks. For sake of simplicity, assume that clients

	
and �



55 65 75 85 95 100
0

20

40

60

80

100

download progress of clients (% of the file)

pe
rc

en
ta

ge
 o

f c
lie

nt
s

Most−Missing−Random,N=104,P
in

=P
out

=1,S
up

=C
up

=C
down

=128,Life=0

snapshot after 75 min

Fig. 33. The download progress of clients against time for Most Missing Random. All
�

clients arrive at time
� � � . Each peer maintains at most one download and one upload connection ( � 
 - � � / 1 3 � 	 ). We assume
homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as
they complete their download (Life � � .
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Fig. 34. The distribution of the chunks over the different clients during the first �� $
� unit of time in Most Missing
Random. We assume that the number of clients is

� � � and the number of chunks is � ����� � .

exchange their chunks, , 5 and , � respectively. At the same time, the server serves chunk , � to a client, say client
� . Remaining clients,

�
,
�
,
�
, and � , can not cooperate because they hold all the same chunk , 5 and thus remain

idle. By time � � �� $
� , clients
	
, � , and

�
, complete their set of chunks and disconnect (Life � � ). As a result, at

time � � �� $
� , the system would comprise four clients (
�
,
�
,
�
, and � ) that are all waiting for the same chunk , � and

each 5� $6� unit of time, the server delivers that chunk to one client.

Least Missing In a linear chain architecture like Least Missing, the chunk selection strategy should not have impact
on the performance of the system. The reason is that, the server keeps on serving the root of the chain, which in
turn serves the next client and so on. Thus, each peer serves its chunks, one after the other to its successor in the
chain. However, as already stated, the lack of synchronization between peers prevents Least Missing to behave as a
perfect one and therefore, we expect the impact of the chunk selection strategy on Least Missing to be pronounced.
As we can point out from figure 35, choosing the appropriate chunk to be scheduled is also a key performance
for the Least Missing policy. When selecting rarest chunks first, Least Missing serves

	 � � clients within around �
hours. In contrast, within 
 hours, Least Missing with random selection of chunks does not serve more than 1598
clients. Thus, simplifying the system would give a very bad performance. To further confirm our analysis, we give
the chunks distribution in figure 36(a). From figure 36(a) we can observe that the number of chunks increases for all
chunks except one, which corresponds to the line on the right of the figure, which is the rarest chunk. Furthermore,
from the simulation results (figure 36(b)), we know that at time ��� 	 � ��� � seconds, there are 1791200 chunks
distributed over 9000 clients, which makes

	 ���
chunks per client. This means that, at time ��� 	 � ����� seconds, all

clients miss the same chunk , � and are waiting for it to be scheduled by the server.
These

� ����� clients “stuck” in the system can be seen better through the snapshot of the download progress of
clients after

�
� �
hours (

� 
���� seconds) of simulationsin (figure 37). This figure is after
� � �

hours (
� 
���� seconds) of
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Fig. 36. The chunks distribution over time for Least Missing Random. All
�

clients arrive at time � � � . Each
peer maintains at most one download and one upload connection ( � 
.- � ��/ 143 � 	 ). We assume homogeneous
upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients disconnect as soon as they complete
their download (Life � � ).
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Fig. 37. The download progress of clients against time for Least Missing Random. All
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simulations.

Conclusions As we stated at the beginning of this report, the chunk selection strategy is a main factor that draws
the performance of the system. In this section we evaluated Least Missing and Most Missing, under the assumptions
that peers schedule chunks at random and not rarest ones first. Our results showed a similar behavior in both
architectures: A large fraction of clients are stuck in the system because they are all waiting for one rarest chunk
to be served by the server.

6.6 Conclusions and Outlook

Conclusions We evaluated the performance of the Most Missing and Least Missing architectures under various
assumptions on the system parameters. We started with a simple and basic scenario where we assumed (i) + up �, up � , down � 	 ��
 Kbps, (ii) Life � � (clients are selfish), and (iii) � 
 - � � /2143�� 	 . This scenario provided
basic insights into how the cooperation between peers influences the performance of the system. We saw that Most
Missing minimizes the overall service time as it engages clients into the delivery process very rapidly and keeps
them busy during all their stay in the network. In contrast, Least Missing achieves a similar behavior to a linear
chain; it serves quickly the first few clients in the system while the last client to be served experiences a high service
delay. We also looked at the influence of different factors on the behavior of the two architectures. To summarize:

– The indegree/outdegree of peers: In a homogeneous environment and unconstrained bandwidth network, par-
allel upload and download of the chunks is not of benefit for Most Missing while it improves greatly the
efficiency of Least Missing; as the indegree and outdegree of clients increase from

	
to
�
, the time to serve

	 � �
clients with Least Missing drops by

� � � .
– The life time of clients: Most Missing minimizes the impact of the life time of clients as it holds them in the

system as long as possible. In contrast, having altruistic clients is essential for Least Missing to achieve good
results. When clients stay for

�
additional min in the system, the performance of Least Missing doubles.

– The bandwidth heterogeneity of clients: The main challenge here is how to prevent clients with low upload
capacity from damaging the performance of the system. We have seen that Least Missing performs very badly
under these conditions and clients may stay idle for too long before they receive new chunks. In contrast, by
occupying all clients all the time, Most Missing ensures a high service capacity of the system and allows the
clients to progress fast.

– The chunk selection strategy: Giving high priority to rarest chunks is a key design to ensure efficiency. When
we allow peers to serve chunks randomly, clients get stuck in the system because they all miss the same rarest
chunk and wait for the server to schedule it.

Outlook In the results that we have presented so far, we have assumed that all
�

clients access the system at the
same time. We now continue our evaluation of the two architectures and consider the case where clients arrive to
the system according to a Poisson process with rate � . As before, we start with a basic and homogeneous scenario.
In this scenario we highlight the influence of the arrival process on the behavior of the two architectures. We then
validate our conclusions through more complex scenarios.

7 Simulation Results: Poisson Arrival of Clients

7.1 Basic Results

We now extend our analysis and study the scenario of continuous arrival of clients. We assume that clients arrive
to the system according to a Poisson process with rate � ��� � clients/min. The parameter values that we consider
in this basic and homogeneous scenario are presented in table 10.

Most Missing One would expect clients in Most Missing never to complete their download under a continuous
arrival of clients: Existing clients will be always serving new ones and will never progress. Yet, this intuition is not
correct. As we explained in the case of instantaneous arrivals, there is a start-up period where existing clients serve
always new comers. But as soon as the number of new arrivals becomes less than the number of existing clients,
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Fig. 38. The number of completed clients against time for Most Missing. Each peer maintains at most one download
and one upload connection ( � 
 - � ��/ 143 � 	 ). We assume homogeneous upload and download capacities + up �, up � , down � 	 ��
 Kbps. Clients disconnect as soon as they receive the file (Life � � ).

existing clients start exchanging chunks amongst them and their download progress. Still, it would be interesting
to figure out whether continuous arrivals delay the download progress of clients. For this purpose, we plot in figure
38(a) the number of served clients versus time. This figure shows that Most Missing is also very efficient under
a continuous arrival of clients. As stated before, with the parameter values presented in table 10, in best cases, a
client takes

� ����� seconds to retrieve the whole file. Given that the simulation has lasted for 
 hours, only clients
that arrive to the system

� ����� seconds before the end of the simulation can be served. As a result, during 
 hours
of simulation and with an arrival rate of � � ��� clients/min, at most, 
 � � � ��� � � � ������

	�
 � 	 � � ��� clients can be served.

During these 
 hours, Most Missing has served 10153 clients out of
	 � � ��� clients, i.e. more than 99

�
of clients

have completed their download. From figure 38 we can also make out that the number of served clients jumps
suddenly to around

� ��� and it then increases progressively. To understand the reason, we zoom in figure 38(b) over
a sub-set of clients. From this figure we can conclude a very important feature: Most Missing batches clients that
arrive close in time and serves them together. In addition, except for clients that arrive at the beginning, the batches
are not too long and consequently, this strategy does not really delay the download progress of clients. In fact,
figure 39 shows that the residence time for the majority of clients is close to

� ����� seconds, which is the optimal
download time of the file4. The reason why the clients that arrive first in the system stay longer than subsequent
ones can be explained as follows. At the beginning, the system has few clients and few chunks and consequently,
a small upload capacity. Thus, a client may not find always servants for the chunks it needs. As time goes by, the
upload capacity of the system and thus its potential service increases and clients can find more servants and can
then progress faster. The above mentioned batches can also be seen from figure 40 where we give a snapshot of the
download progress of clients after � hours of simulations. This figure shows how clients in progress are distributed
over different batches, with each batch comprises similar number of clients.

As concerns the chunks evolution over time, figure 41(a) reveals once again that the chunks propagate in the
system at a high speed. As compared to an instantaneous arrival of clients, we notice a new behavior here: Chunks
that are injected later catch faster with earlier ones and consequently, the deviation drops faster to zero (figure

4 We define the residence time of a client as the time elapsed between the moment the client joins the network and the moment
it leaves the network.
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Fig. 40. Snapshot of the download progress of clients for Most Missing. Clients arrive to the system according
to a Poisson process with rate � ��� � clients/min. Each peer maintains at most one download and one upload
connection ( ��
.- � � / 143 � 	 ). We assume homogeneous upload and download capacities + up � , up � , down �	 ��
 Kbps. Clients disconnect as soon as they receive the file (Life � � ).

41(b)). This behavior is logic because, under a Poisson arrival with rate � � � � clients/min, the start-up period5 is
shorter and the exponential expansion of the number of chunks lasts for a shorter time.

Least Missing We now evaluate the Least Missing policy. What might seem surprising here is that, in case of a
Poisson arrival of clients, Least Missing and Most Missing have almost the same performance (figure 42). Within

 hours of simulation, Least Missing serves 10163 clients and Most Missing serves 10153 clients. Under the
parameter values of table 10, a perfect Least Missing (i.e. a single linear chain) serves only 1600 clients within 

hours. This result shows again that the behavior of Least Missing is not for a perfect one and it is highly dependent
on the scenario itself. What is also interesting in figure 42 is that, at the beginning, the number of served clients
follows the curve for Least Missing under an instantaneous arrival of clients. It then increases suddenly at around
� � � � � hours and catches up with the curve of the Most Missing. In fact, due to the lack of synchronization
between peers, this strategy delivers few chunks to clients that are not least missing. As time goes by, these non

5 Recall that the start-up period is the initial phase where the number of new comers is larger than the number of existing
clients in the system.
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Fig. 41. The chunk distribution over time for Most Missing. Clients arrive to the system according to a Poisson
process with rate � � � � clients/min. Each peer maintains at most one download and one upload connection
( ��
 - � � / 1 3 � 	 ). We assume homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps.
Clients disconnect as soon as they receive the file (Life � � ).
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Fig. 42. The number of completed clients against time. Each peer maintains at most one download and one upload
connection ( ��
 - � � /2143 � 	 ). We assume homogeneous upload and download capacities + 1 � ��, 1 � � , � /�� - �	 ��
 Kbps. Clients disconnect as soon as they receive the file (Life � � ).

least missing clients become an important potential service and allow new comers to get the chunks faster. This
explains why clients that join the system a bit late notice less download time (figure 43).

The improvement in the performance of Least Missing can also be seen if we observe the chunk distribution
over time in figure 44. As compared to an instantaneous arrival of clients (figure 14), figure 44 shows that the
number of copies of the different chunks increases faster.

Conclusions In this section we investigated the influence of a continuous arrival of clients on the system behavior.
We assumed that clients arrive to the system according to a Poisson process with rate � � � � clients/min. The
results that we obtained are similar to those for the scenario with instantaneous arrivals. Most Missing optimizes
always the average service time over all clients. To achieve such a service, Most Missing forces clients that arrive
first to the system to stay for a bit longer than those that arrive later on. We can imagine that, by doing so, the
system tries to capitalize an initial service capacity.

The Least Missing strategy, on the other hand, optimizes as before the service time of the first few clients. What
is new here is that the performance of Least Missing is much better than before. The reason is that, due to the lack
of synchronization, the system serves many clients that are not least missing and with time, these non least missing
clients increase the service capacity of the system, which benefits clients that arrive afterwards.
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Fig. 44. The chunks distribution over time for Least Missing. Clients arrive to the system according to a Poisson
process with rate � � � � clients/min. Each peer maintains at most one download and one upload connection
( ��
 - � � / 143 � 	 ). We assume homogeneous upload and download capacities + 1 � ��, 1 � � , � / � - � 	 ��
 Kbps.
Clients disconnect as soon as they receive the file (Life � � ).

7.2 Impact of the Indegree/Outdegree of Peers

For instantaneous arrival of clients, we have seen that, parallel download and upload of the chunks is not of benefit
to Most Missing while it improves greatly the performance of Least Missing. The simulations that we conducted
under a Poisson arrival of clients (with the parameter values as depicted in table 11) have exhibited the same
tendency (figure 45).

Table 11. Parameter values.

Arrivals Process , 1 � ,�� /�� - + 1 � � 
 - � / 1 3 Life
� � � � clients/min

	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
� � �

The only difference is that, in case of Least Missing, the two curves for ( � 
.- � � / 143 � 	 ) and ( ��
 - � � /2143 � � )
are identical after � hours. From section 6.2 we know that large indegrees/outdegrees allow Least Missing to engage
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clients fast into the file delivery, which improves the system performance. But from section 7.1 we also know that,
under Poisson arrivals, clients that arrive late to the system receive a very good service. Thus, this improvement
due to large indegrees/outdegrees concern only clients that arrive early to the system. This explains why after �
hours of simulations, we notice no change between Least Missing with � 
 - � ��/ 143 � 	 and Least Missing with
� 
.- � � / 1 3 � � . Figure 46 summarizes what we just explained. The residence time of clients within the first few
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Fig. 46. The residence time of clients for Least Missing. Clients arrive to the system according to a Poisson process
with rate � ��� � clients/min. Each peer maintains at most

�
download and

�
upload connections ( � 
 - � ��/ 1430� � ).

We assume homogeneous upload and download capacities + up � , up ��, down � 	 ��
 Kbps. Clients disconnect as
soon as they receive the file (Life � � ).

hours decreased while it did change for subsequent clients.

7.3 Impact of the Life Time of Clients

The life time of clients is not an important parameter for Most Missing under the scenario where all peers arrive to
the system at the same time. The reason is that all clients finish at almost the same time and no need to have volun-
teer clients because there remains no clients to be served. However, when clients arrive to the system progressively,
as under a Poisson arrival, the delivery process continues over many client generations. Thus, one would expect
that having additional sources for the full file helps new comers to progress fast. Yet, Most Missing proves once
again that it does not need altruistic clients. In figure 47 we plot the number of served clients versus time for both
Most Missing and Least Missing approaches. The parameter values used here are showed in table 12.
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Fig. 47. The number of completed clients against time. Clients arrive to the system according to a Poisson process
with rate � � ��� clients/min. Each peer maintains at most one download and one upload connection ( � 
 - �
� /2143 � 	 ). We assume homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps.

Table 12. Parameter values.

Arrivals Process , 1 � , � /�� - + 1 � ��
 - � / 1 3 Life
� � � � clients/min

	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �

As compared to figure 38(a), figure 47 shows clearly that forcing clients to stay for
�

additional min in the
system to help other clients is not necessary for Most Missing. This can be the case only when all existing clients
in the system are fully using their download and upload capacities during all their residence time in the system.

On the other hand, figure 47 confirms the previous results: The performance of Least Missing increases with
the life time of clients. However, as for � 
 - � � / 1 3 � �

, this improvement in the performance is just for clients
that arrive early to the system. After � hours of simulations, there already exist a lot of clients in the system that
can serve new comers and therefore, the advantage of Life � � is discounted.

7.4 Impact of the Bandwidth Heterogeneity of Clients

Given that Least Missing has basically similar tendency to a linear chain, the performance of the system can be
highly damaged by the clients with the lowest bandwidth capacity. This result was the case under an instantaneous
arrival of clients and we show here that it holds true under continuous arrivals. Figure 48 demonstrates that Least
Missing performs very badly in heterogeneous environments. Table 13 points out the values that we consider for
the different parameters in this section.

Table 13. Parameter values.

Arrivals Process , up , down + up ��
 - � / 143 Life
� ��� � clients/min

	 ��
 � � � Kbps
�
	 � � 	 ��
 Kbps

	 ����� Kbps
	 	 �

In contrast to Least Missing, Most Missing leverages more efficiently the clients heterogeneity. From figure
48 we can see that the overall performance of the system is quite close to the homogeneous scenario. The main
difference is that the time at which the first batch of clients is served has doubled. In other words, the system
increases the initial phase where it tries to capitalize an important service capacity. However, once the number of
active clients in the system (i.e. the service capacity) becomes quite high, the initial batch is served and next clients
experience similar performance to the homogeneous scenario. As a result, only clients that arrive at the beginning
notice a high download time while the remaining clients receive a very good service.
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Fig. 48. The number of completed clients against time. Clients arrive to the system according to a Poisson process
with rate � � ��� clients/min. Each peer maintains at most one download and one upload connection ( � 
 - �
� /2143 � 	 ). Clients disconnect as soon as they complete their download (Life � � ).

7.5 Impact of the Chunk Selection Strategy: Random rather than Rarest

We now evaluate the two strategies Most Missing Random and Least Missing Random under a Poisson arrival
of clients for the parameter values outlined in table 14. The scaling behavior of the two architectures (figure 49)

Table 14. Parameter values.

Arrivals Process , 1 � ,�� /�� - + 1 � � 
 - � / 1 3 Life
� � � � clients/min

	 ��
 Kbps
	 ��
 Kbps

	 ��
 Kbps
	 	 �

confirm once again the importance of the chunk selection strategy as a key design for the system.
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Fig. 49. The number of completed clients against time. Clients arrive to the system according to a Poisson process
with rate � � ��� clients/min. Each peer maintains at most one download and one upload connection ( ��
 -��
� /2143 � 	 ). We assume homogeneous upload and download capacities + up � , up � , down � 	 ��
 Kbps. Clients
disconnect as soon as they complete their download (Life � � ).



7.6 Conclusions

In this section we addressed the impact of the arrival process of clients on the system behavior. To this purpose, we
assessed the performance of Most Missing and Least Missing when clients arrive according to a Poisson process
with rate � � � � clients/min. As a summary, we have seen that Most Missing tends always to optimize the average
service time seen by clients while Least Missing provides a good service for the clients that arrive first to the
system. In addition, the broad conclusions that we drew concerning the impact of the different parameters on the
two architectures remain valid. For instance, the indegree/outdegree of peers is key for the performance of Least
Missing while Most Missing is very insensitive to this parameter. Similarly for the life time of clients. On the
other hand, Most Missing handles better than Least Missing the bandwidth heterogeneity of clients and finally, the
selection strategy is an essential feature for both approaches.

8 Open Questions

We have seen so far how the performance of the system is affected by the way clients organize and cooperate.
From the scenarios that we considered, we can easily conclude that there is no “optimal strategy” as each strategy
provides various trade-offs and may prove adequate for specific goals and deployment scenarios. The two strategies
that we considered in this report represent two extreme ways for cooperation between peers. However, the impor-
tance of the analysis that we gave is two fold. First, it highlights the main factors that influence the performance
of the system. Second, it provides new insights into where to apply what rule, which helps in the design of new
cooperative architectures depending on the goal and the environment conditions. Moreover, these two strategies
pave the way to conclude many of other strategies as a combination. One combination is the Most Adaptive strat-
egy proposed in [5]: Clients that have many chunks serve clients that have few chunks, and vice-versa, with more
randomness introduced when download tend to be half complete.

This strategy gives good chances to new comers without artificially slowing down clients that are almost com-
plete.

In our analysis, we mainly carried on the performance aspect of mesh approaches. Yet, there are still many
important aspects that must be addressed:

– P2P architectures today suffer from free riders, i.e. clients that access the service and give nothing in return.
One interesting question would be to prevent such a practice.

– Another challenging question is whether we could ensure efficiency and fairness at the same time. By fairness
we mean that clients that help the most in the file delivery should receive the best service.

– The two architectures that we studied include no optimizations at all. One optimization would be to serve first
the clients that provide a high upload capacity, which would help the system to engage faster clients into the
file delivery and improves its performance. Yet, this kind of optimizations includes the challenge of how to
find the clients with the largest upload capacities. One can use similar solution to the one proposed by Slurpie
[10], where each client reports to the server the information about the connection it is using.

9 Conclusions and Future Work

9.1 Summary

File replication in P2P networks is becoming an important service in the current Internet. Existing approaches
for file replication can be largely classified into tree and mesh approaches. Tree approaches can be very efficient
and scale exponentially in time. However, we believe that constructing and maintaining the trees in a dynamic
environment like P2P networks is a very challenging problem. In contrast to tree approaches, mesh approaches are
very flexible and more robust against bandwidth fluctuations and client departures.

In this report we achieved two main goals. The first one was to prove that mesh approaches can be at least as
efficient as tree approaches. To do so, we introduced two new cooperation architectures, namely Least Missing and
Most Missing. Each architecture includes a peer selection strategy coupled with a chunk selection strategy. The first
architecture, Least Missing, favors clients that have many chunks and the second one gives more priority to clients
that have few chunks. In both cases, rarest chunks are scheduled first. We analytically proved that Least Missing



can simulate a tree distribution with an outdegree 
 in a simpler way. The key idea is to set the indegree of peers
to � 
.- � 	 and the outdegree to �0/2143 � 
 . We also showed via simulations that Most Missing achieves similar
performance of ����������� while avoiding the overhead of constructing multiple trees. We outline that, along this
report, we assumed a network with no bandwidth constraints and the only constraint is the upload and download
capacity of peers. The rational behind such an assumption is that we wanted to focus on the advantages and
shortcomings related to our architectures and not to external factors. We also assumed that each client in Least
Missing and Most Missing knows all other clients in the system.

The second goal of this report was to perform a complete analysis that provides guidelines for the design of
new architectures. We started our analysis with a basic scenario where we assumed that:

– All peers (server and clients) have equal upload and download capacities, + up ��, up ��, down � � .
– Each client stays online until it receives the whole file.
– Peers have equal outdegree and indegree � /2143 � � 
.- � 	 .
– All

�
clients arrive to the system at time �0� � .

The condition of instantaneous arrival of clients represents a crucial scenario that may be the case where (i) A
critical data, e.g. anti-virus, must be updated over a set of machines as fast as possible or (i) A flash crowd, i.e.
a large number of clients that arrive to the system very close in time. Our basic scenario provided new insights
into the basic tendency of each of the two architectures. The impact of the peer selection strategy on the system
performance was clear: Most Missing optimizes the average download time overall clients while Least Missing
provides a very good service to a few clients at the expense of a larger download time for the remaining ones.

We then isolated the main parameters that can influence the system performance. Our conclusions are:

– The indegree/outdegree of peers can have a strong to little effect on the scaling behavior of the system. As � 
 -
and � /2143 go from

	
to
�
, the performance of Most Missing slightly degrades while the performance of Least

Missing doubles. Even though, we argue that parallel download and upload of the chunks can offer many
advantages in real environments. Mainly, it allows clients to fully use their upload and download capacities,
which makes the system more robust against bandwidth fluctuations in the network and client departures. Also,
parallel connections achieve a good connectivity between peers in the system.

– The behavior of clients can not be predicted in advance, some clients disconnect straight after they receive the
file and some others stay and help into the file delivery. In this report we evaluated the gain in performance in
case of altruistic clients that stay in the networks for

�
additional min after they complete their download. Our

results showed that this behavior is suitable for architectures that serve clients sequentially like Least Missing.
In contrast, for strategies like Most Missing where clients stay as long as possible and finish at almost the same
time, this parameter has no effect.

– The bandwidth heterogeneity of clients can dramatically affect the performance of the system especially when
clients are served sequentially, which is the basic tendency of Least Missing. In such an architecture, clients
may wait for too long to receive new chunks. Most Missing, on the other hand, minimizes the impact of the
clients heterogeneity. By keeping all peers busy most of the time, clients can always find servants to download
the chunks they miss and could progress fast.

– The chunk selection process is a key design to ensure efficiency. Both architectures, Most Missing Random
and Least Missing Random have resulted in a very low performance: A large fraction of clients are stuck in the
system because they all miss the same rarest chunk and are waiting to receive it from the server.

– We validated our results under both, instantaneous and Poisson arrival of clients. What is new under a Poisson
arrival is that Most Missing forces clients that arrive first to the system to stay for a longer time than subsequent
ones. The reason is that, at the beginning, the system comprises few clients with few chunks and has a limited
upload capacity. Thus, clients do not always find servants for the chunks they miss. As time goes by, the system
incorporates more clients and its potential service grows significantly, which benefits clients that arrive later
on. This same result applies also to Least Missing.

Our analysis and conclusions highlight the main parameters the system designer must take into account. In addition,
the range of scenarios that we considered helps the design of an efficient cooperative architecture depending on
the goals to achieve and the environment conditions. Note that our results are not only limited under instantaneous
and Poisson arrival of clients, but they also apply when the arrival process is bursty. Actually, the more bursty the
arrivals, the closer we become to the instantaneous scenario. In contrast, the less bursty, the closet we are to the
Poisson scenario.



9.2 Future Work

In the above discussion, we made some assumptions in order to simplify the analysis. As a future work, one could
look at the following scenarios:

– The results that we gave so far are for a static network where we assumed no failures and that the bandwidth
over each link is equally divided amongst the different connections which share that link. One interesting
extension would be to evaluate the two architectures, Most Missing and Least Missing, in real network. The
goal behind this extension is to figure out how far the network characteristics prevent the system to meet its
goals.

– In our simulator, we assumed that each client has a perfect knowledge of the network. One natural extension
would be to limit the number of neighbors a client can communicate with, i.e. consider a local view of the
system. We do not expect such an assumption to change dramatically the tendency of the two architectures.
We believe that a small list of neighbors, ��� � 	 ��� per client as in BitTorrent [4], is enough to perform a
cooperation strategy between clients.

– Our analysis assumed no early departure of clients, which is not the case in practice. Clients in P2P networks
can fail or disconnect at any moment. For the Least Missing strategy, this factor has no impact because clients
are served in a chain; the parent of a failed client automatically reconnects to the next client in the chain. In
Most Missing the scenario is a bit different. When a client disconnects, the system looses a potential server
but at the same time, this failed client would not require any further chunks from the system. Therefore, the
overall upload to download capacity of the system would not change significantly.

– In all scenarios, we assumed that clients either disconnect straight after the reception of the file or stay for
�

additional min. In the evaluation that we performed for BitTorrent [8], we learned that the distribution of the
life time of clients can vary significantly, from � min to

�
hours. Thus, one extension would be to evaluate the

two architectures for a similar distribution.
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