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Abstract — We propose a specular approach to MIMO
channel tracking that yields a parsimonious channel
representation where the time and space components of
the channel variations are separated by singular value
decomposition (SVD). We show that this separation en-
ables simple short-term channel prediction. This is es-
pecially useful for systems using channel state informa-
tion at the transmitter, since the latency necessary to
the feedback process can be mitigated. We validate our
approach through the use of computer simulations.

I. INTRODUCTION

The use of specular models for channel analysis and tracking
has been proposed by various authors seeking to improve the
ability to accurately estimate [1], represent and transmit [2],
or predict [3, 4] Channel State Information (CSI). Specular
methods constitue viable candidates for channel tracking and
prediction, since the insight they provide into the actual chan-
nel structure — namely, separation of the channel variation into
its space and time components — can improve the performance
and decrease the complexity of channel tracking and prediction.
Various methods have been proposed to estimate the underlying
parameters, including MUSIC in [3], ESPRIT in [4] and SAGE
in [1].

In this paper, we propose the use of the singular value
decomposition (SVD) to separate time and frequency com-
ponents, and use auto-regressive (AR) methods to predict
the future evolution of the channel. We show that prediction
can enhance the link quality in systems relying on the CSI
available at the transmitter (CSIT), since duplex systems
mainly rely on a feedback scheme to transmit the channel state
information from the receiver, where the channel estimation
is possible, to the transmitter, where the channel estimate
is needed. Most of the literature on the topic of exploiting
CSIT assumes that the channel state information can be fed
back in a negligible amount of time. This is not necessarily
the case, since sending frequent updates of the CSI increases
the amount of uplink bandwitdh consumed by this scheme.
The ability for the transmitter to extrapolate CSI from past
values can therefore be an important asset in the actual use of
a CSIT-exploiting transmission scheme, since it actually allows
to predict the current channel state. We explore these issues
in the framework of Multiple-Input Multiple-Output (MIMO)
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frequency-selective channels, and compare the performance of
the proposed method to more rudimentary CSIT situations.

II. SPECULAR CHANNEL MODEL

Let us consider a Multiple-Input Multiple-Output (MIMO)
frequency-selective channel, with V; transmit (Tx) and N, re-
ceive (Rx) antennas, as depicted in Fig. 1. In order to improve
channel estimation and reduce MFB loss, it is advantageous to
exploit correlations in the channel, if present. For time-varying
channel, two channel models can be considered according to two
transmission modes:

1. continuous transmission: in this case the vectorized chan-
nel impulse response can be modeled as a (locally) sta-
tionary vector signal; limited bandwidth usually allows
downsampling w.r.t. symbol rate; stationarity can only
be local due to slow fading

2. bursty transmission: in this case, the time axis is cut up
in bursts, the channel (down)samples within each burst
can be rerepresented in terms of Basis Expansion Models
(BEMs); limited bandwidth leads to limited BEM terms.

Both models are equivalent as long as the temporal correlation
structure in the continuous mode gets properly transformed to
intra and inter burst correlation between BEM coefficients.

Figure 1: MIMO transmission with N; transmit and N,
receive antennas.

The impulse response of the channel between Tx antenna 7
and Rx antenna j is denoted by h; (¢, 7), where ¢ is the time
and 7 is the lag. Hence, h; ;(t, ) is the channel impulse response
as seen by the signal received at time ¢. Let us assume that the



impulse response has finite support, and consider its discretized
version

() = [p8 (nTy, 0), RO (0T, T), ... KD (0T, (L — 1)T5)]

(1)
where T is the sampling interval at the receiver, and L is chosen
such that all the channel coefficients outside the lag interval
[0...(L — 1)T;] are zeros. Let us further stack these into a
column vector with N; N, L coefficients

H
h, = [hgg,nf’ RN pGDE (NN 2)

We emphasize the fact that h, consitutes a snapshot of all the
channel coefficients at time nT5.

We aim at decomposing the channel according to a specu-
lar model. According to such a model, each impulse response
hi;(t,-) is the superposition of a finite number P of discrete
paths at lag ngi’j) = lg’j)Ts, p = 1...P, resulting from ei-
ther line-of-sight propagation, or one or several reflections. This
model relies upon the fact that the paths between all the Tx-
Rx antenna pairs have most of their characteristics in common,
except for what happens near the antenna arrays. Hence, they
share some properties, namely their speed w.r.t. the reflectors,
and the reflection characteristics (hence their Doppler and gain
are the same whatever antenna pair is considered). Note that we
assume that the lag does not vary over time. Pursuant to this
model, each path coefficient can be decomposed into a product
of three components :
® a space component a,(f’j ), which depends on the physical

properties of path p between Tx antenna ¢ and Rx an-

tenna j, including antennas and reflectors position, and
directions of departure (DoD) and arrival (DoA),

e a time component B, (t) = A,(t)e’>"»t reflecting the
fast fading, which includes the Doppler shift f, due to
reflectors motion and the relative speed of the transmit-
ter w.r.t. the receiver, as well as the short-term (but
usually small-scale) amplitude variations Ap(t). All the
other parameters (including the Doppler frequency) vary
on a slower time scale and correspond to slow fading.

e a gain component 7, which remains constant over time.

Using the discretized version of the time component B,, =
Bp (nTs), the proposed channel model yields

p(i,9)
KD (T, 1T,) = > by Bapd i (1) (3)
p=1 ’

Due to the Doppler shift, the phase of the path complex am-
plitude is varying rapidly. The actual path amplitude is not
varying rapidly unless what we consider to be a specular path
is already the superposition of multiple paths that are not re-
solvable in delay, Doppler and angles. With f, € (—f4, fa), the
Doppler shift for path p, the (fast fading) variation is bandlim-
ited and hence the channel should be perfectly predictible! (not
so due to the slow fading: the slow parameters such as delays
and angles will vary eventually). When only the fast fading is
taken into account as temporal variation, the matrix spectrum
Sun(f) of the vectorized channel can be doubly singular:

1. if A,(t) = A, and P finite: spectral support singularity:
sum of cisoids!

2. if P < N¢N, L: matrix singularity, limited source of ran-
domness (limited diversity)

H When the channel spectral support becomes singular, the chan-

"nel becomes perfectly predictible. Hence channel prediction
should play an important role in channel estimation.

Since we consider the temporal evolution of the channel, let
us gather IV successive channel states in the matrix

H=1h,...hy]. (4)
Using the following notations
a, = O I I L 2) RN )
b, = (Bip..-Brp), (6)
and
A = [a;...ap], (7)
B = [bf..pJ]", (8)
G = diag(yi...vp), (9)
(10)
H can be rewritten, similarly to eq. (3), as
H = AGB, (11)

where B contains the fast fading part.

The important issue here is that the spectral modeling
of the channel coefficient temporal variation should be done
in a transform domain and not on the channel impulse
response coefficients themselves. Since each such coefficient
can be the result of the contributions of many paths, the
dynamics of the temporal variation (with n) of the coefficients
d, = (Br1...0n, p) are necessarily of higher order, compared
to the variation of A, (nT;)e’?" »"Ts which can be of an order
as low as one (when A,(nTs) is constant; the cisoid e/2™ f» "7
is perfectly predictible with first-order linear prediction). Also,
if the impulse response coefficients are modeled directly, then
their (spatial and delay-wise) correlation has to be taken into
account: Sun(f) cannot be modeled accurately as diagonal,
whereas Saq(f) can.

Hence, the elements of d,, are modeled as decorrelated sta-
tionary scalar processes. The channel distribution is typically
taken to be complex Gaussian. If the fast parameters d,, are
not too predictible, then the estimation errors of the slow pa-
rameters A and G should be negligible (change only with slow

fading, hence their estimation error should be small). Since
h, = AGd, , we obtain the spectrum
Sun(f) = AG Saa(f) (AG)" (12)
~——

diagonal

The components of d, can conveniently be modeled as AR
processes, each spanning only a fraction of the Doppler range
(—fa, fa)- In fact, a subsampled version of the fast parameters
d,, could be introduced, with the subsampled rate correspond-
ing to the (maximum) Doppler spread. A stationary (AR)
model can be taken for the subsamples and the other samples
can be obtained by linear interpolation from the subsamples.
This is the case of a BEM with a single basis function: the
interpolation filter response.



III. SPACE AND TIME CHANNEL DECOMPOSITION

Let H denote the estimated channel realizations : H = H+E,
where E is the noise resulting from the estimation process. Let
us recall that any matrix H can be expressed as H = USV ¥
where U and V are square, unitary matrices, and S is a
NyN,L x N real matrix with non-negative values s; on its
diagonal, and zeros elsewhere. This expression constitutes the
SVD [5] of H. If the singular values in S are in non-increasing
order (s; > s;+1), the decomposition is unique in S, but U and
V are only unique up to an orthogonal transform inside each
singular subspace (i.e. inside the singular subspaces spanned
by the vectors associated to one singular value).

Notice at this point the similarity of the SVD of H with
eq. (11). We seek to use the SVD to extract the specular model
parameters from the available channel estimates. Following the
notations of egs. (5) and (6), let us denote by

H
= (u](al’l) .. .uél’NT), uf’l) .. .ufaNt’N”)) (13)

(14)

u,
and v, = (Vip---UNp),

Note that the SVD can not always provide the exact form of
eq. (11), even at high SNR, since it introduces extra constraints
in the form of the unitary requirements for U and V. Obvi-
ously, the presence of the estimation noise E will yield a noise
subspace, and thus S will be larger than G. Actually, separa-
bility can be impaired by two issues :

e if the estimation noise E is strong, the SVD can not sepa-
rate the signal subspace from the noise subspace. In this
case, all the values in U, S and V are unreliable.

e if two paths have the same gain (7, = 74), the SVD can
not discriminate them. In particular, time components
v, and v, will contain a linear mixture of b, and b,.
This will impair the predictability of these time series.
Note that it is not necessary to estimate the dimension of the
noise subspace for the prediction algorithm to work properly:
if sp is a singular value belonging to the noise subspace, any
attempt to predict the time series b, will most definitely
not yield any usable values, but will rather produce noise.
Nevertheless, the small gain s, will ensure that these values
will not harm the predicted channel state. This is particularly
relevant from a design point of view, since there is no need to
dynamically adapt the number of tracked paths.

IV. PREDICTION

One of the interest of a specular channel model (aside from
the low number of variables needed to accurately describe the
channel), is its long-term validity. Since it closely follows the
physical channel structure, and hence separates the spatial
and temporal properties of the channel, prediction of the
time coefficients only (the v, (t)) is sufficient to extrapolate
the channel state at a future time. Since the Doppler effect
produces a phase rotation for each path, auto-regressive (AR)
analysis seems appropriate as a prediction method. Since we
expect only a few singular values to have an impact on the
performance of the predictor, we assume that it is sufficient
to predict the coefficients for a fixed number M of singular
subspaces, associated with the strongest singular values. If
M < P, the channel can not be accurately predicted, whereas
M > P will yield a waste of computing resources.

N successive known channel realizations are used to train
the AR predictor. For each singular value p=1... M, a K-tap
filter (w!? ... wgf)) is obtained as

2

N K
arg (I)ninu Z Un,p — E wgp)vn—i,p (15)
(wi? - wg’) ) T i=1

The predicted values for “future” values of the vn4ip, I > 0,
are recursively computed as

K
-~ P
UN+Lp = E wPdn 41

i=1
dNti-ip = {

Let U’ denote the truncated version of U where only the first
M columns are preserved. Let also S’ denote the M x M matrix
obtained from S by keeping only the first M rows and columns.
Using these notations, and ¥y, = [UnN+1,1...On+1,P], the pre-
dicted channel is reconstructed according to

(16)

where
ifl—i<0
ifl—4>0

UN+1—i,p
UN+1—i,p

(17)

hy , =USvy,, (18)

V. AR PREDICTOR SIMULATION RESULTS

We illustrate the behaviour of our prediction algorithm through
computer simulations. We generated 120 consecutive samples
of a 2 x 2 channel as described in Section II, with P = 3 paths,
and a delay spread of L = 8 samples. The channel estimate
H was obtained through the addition of a -20dB random
white Gaussian noise with i.i.d. coefficients. The training of
the 20-taps AR predictor was done over the first N = 100
samples, and the prediction algorithm was used to generate 20
subsequent samples, that we compared to the ones generated
using the channel model without noise.
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Figure 2: Time series predictors evolution for the first four
singular subspaces



Figure 2 depicts (in solid lines) the temporal evolution in
the complex plane of each of the predicted time-series Un 41,
associated with the four strongest singular values (p = 1...4)
for the first 20 steps (I = 1...20). The reference values, defined
as the four first components of

XN+I = ((US)TQN.H)Hy (19)

where ' denotes the peudoinverse operator, are also plotted (in
dashed lines) for comparison. The origin of each line (which
corresponds to I = 1), is materialized by a circle. Note that
the values corresponding to the training data do not appear on
these plots. The first plot shows that the time values describing
the evolution of the first (i.e. strongest) singular value of the
channel is accurately predicted by the AR model. The time
series from the second and third subspaces are accurately
predicted near the beginning of the the time series, and are
shown to slowly diverge when the prediction time increases.
The precision decreases when the subspace number grows since
the associated singular values are in decreasing order, thus
decreasing the effective SNR of the time series. The fourth
subspace is a noise subspace, since the actual channel has 3
paths only. Hence, its time series lacks the predictability of
the previous ones: the AR predictor generates random-looking
values. Note that, as we already noticed, these values are
associated with a relatively small singular value, and hence
generate little perturbation on the predicted channel values.

VI. CAPACITY SIMULATION RESULTS

In order to evaluate the prediction performance of our
method, we computed the ergodic mutual information of the
channel with different levels of channel knowledge at the trans-
mitter (but perfect channel knowledge at the receiver). Namely,
we consider the following situations

e No channel information at the transmitter.

o Perfect instantaneous channel knowledge at the transmit-
ter.

e QOutdated channel knowledge at the transmitter. This
corresponds to the case of a transmitter using CSI that
was gathered through a feedback loop. This model takes
into account the fact that the channel evolves during the
time it takes for the receiver to estimate the channel and
to transmit it back. Despite this temporal lag, the CSI
is assumed to be known perfectly (i.e. we do not take
into account estimation noise and bandwidth issues on
the channel feedback link).

e Predicted CSIT with pure AR predictor. This setup as-
sumes that the transmitter has knowledge of outdated
and noisy channel information, and that AR prediction is
applied independently to each channel coefficient.

e Predicted CSIT with specular method. This setup as-
sumes that the transmitter has knowledge of outdated
and noisy channel information, but uses the proposed
specular decomposition algorithm to extrapolate the cur-
rent channel state.

Since the channel has a non-zero delay spread, the ergodic
mutual information is computed in the frequency domain.
The transmitted signal covariance is adjusted according to the
available channel state information. When none is available,
the transmitted signal is assumed to be spatially white and
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Figure 3: Ergodic mutual information vs. prediction time

with a flat power spectrum density, since this setting maximizes
the expectation of the achieved mutual information in the
case of a channel with ii.d. random coefficients with equal
variance [6]. When some CSI is available at the transmitter,
the mutual information is maximized over all possible Tx
covariance matrices using a waterfilling algorithm [7]. This
mutual information is evaluated at a SNR of 0 dB. In these
simulations, the spatial characteristics of the actual channel
are randomly generated assuming a uniform law for directions
of departure and arrival of the rays. The Doppler spectrum
is a phase rotation of random frequency, randomly chosen
1

within gth of the total transmission bandwidth. The other

characteristics of the channel are as described in Section V.

Figure 3 depicts the evolution of the ergodic mutual infor-
mation versus prediction time (i.e. the number of interpolated
channel samples since the last known channel), for various levels
of CSIT. It shows that the performance of using outdated CSIT
drops sharply with time, whereas methods using predictors
remain closer from the theoretical limit provided by the perfect
instantaneous CSIT case, although the performance of the
predictors decreases with the prediction length. The specular
model outperform the pure AR predictor method, thanks
to a better insight on the channel structure. The mutual
information without CSIT is also plotted for reference.

VII. NOTE ON COMPLEXITY

The specular method proposed in this paper involves a lower
number of predictors than the pure AR prediction method :
while the former only has a limited number of coefficients to
track (4 in the example simulation), the latter involves the
use of one predictor per coefficient to track (32 in this case).
The SVD operation, on the other hand, is rather complex.
Nevertheless, the SVD needs not be completely recomputed if
our method is applied to a sliding temporal window (where,
at each time instant, a new channel measurement is available,
whereas the oldest one is discarded). In this case, the SVD can
be updated [8] with a much lower complexity than it would
take to recompute it from scratch.



VIII. CONCLUSION

We showed that decoupling the spatial and temporal variations
of the channel coefficients can lead to an efficient specular
channel tracking and prediction method. We evaluated the
performance of such a scheme using the SVD and AR predic-
tion for MIMO frequency-selective channels. We believe that
a whole class of algorithm relying on spatial and temporal
decoupling is available, with variations including using another
prediction method, or a decomposition other than the SVD.
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