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ABSTRACT
Wireless communications allow for the application of a num-
ber of signal processing techniques. However, in many in-
stances the success of the application depends on the proper
accounting for the interaction of the signal processing prob-
lem with other disciplines such as propagation and chan-
nel modeling, communication and information theory, and
processor circuit architectures. We discuss the incidence of
propagation studies and channel modeling on channel cor-
relation and hence on channel estimation performance (or-
thogonality of pilots) , the interaction between modulation
technique and the ease of training based channel estimation,
the interaction between transmission scheme (continuous or
block-wise) and temporal fading modeling and handling,
modulation and signal processing (linear precoding) for di-
versity exploitation, approximate normal equation solutions
for various signal types (speech vs CDMA, sparse signifi-
cant correlations vs. dense weak correlations), interaction
between channel modeling and CDMA receiver circuit ar-
chitecture, higher-level adaptivity in adaptive filtering (filter
order, temporal variation scale) and robustness in receiver
design with estimated parameters.

1. WIRELESS CHANNEL ESTIMATION

In OFDM systems, the introduction of a cyclic prefix leads
in the frequency domain to a set of parallel memoryless
channels at the various tones/subcarriers. In that case, op-
timal reception for the various tones involves per tone pro-
cessing that may require accurate knowledge of the channel
at the tones. Hence channel estimation is an important issue
in multi-antenna OFDM transmission/reception, especially
if channel knowledge is used at the transmitter.

In order to estimate the channel accurately, it is manda-
tory to pay close attention to all correlations between chan-
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nel coefficients, such as in time, in frequency and in space.
The channel response can be estimated in the time domain
or in the frequency domain. On the one hand, the pilot sym-
bols are available in the frequency domain. On the other
hand, the frequency domain correlation is most easily ex-
pressed in the time domain. This and other considerations
appear to suggest a time domain channel estimation approach.
Such an approach requires frequent transformations between
time and frequency domains, the complexity of which can
be limited by pruning the FFT. The relative contribution of
the various types of side information to be exploited in the
channel estimation is discussed.

The methods to be discussed can be considered as ”rank
reduction” techniques. These techniques can be organized
in terms ofa priori and a posteriori techniques. A pri-
ori rank reduction techniques correspond in fact to (time-
invariant) reparameterizations of the (in general) Multi-Input
Multi-Output (MIMO) channel transfer function in terms of
a reduced set of degrees of freedom. These a priori ap-
proaches correspond to what we shall call here determin-
istic parameter modeling techniques. The a posteriori rank
reduction techniques correspond to Linear Minimum Mean
Squared Error (LMMSE) parameter estimation approaches,
taking into account a priori correlations in the channel coef-
ficients. These a posteriori approaches correspond to what
we shall call here statistical parameter modeling techniques
with ensuing Bayesian parameter estimation. These tech-
niques may be calleda posterioribecause they could be ap-
plied as a second stage to a deterministic estimate resulting
from a first estimation stage. If the correlation matrices to
be used in the second stage are singular with a reduced rank
r, then in fact the second stage incorporates a reduction of
the number of degrees of freedom tor, as the a priori rank
reduction techniques do.

The end result is that without the exploitation of corre-
lation structure in the channel, it is impossible to estimate
the channel correctly so that the effect of channel estima-
tion errors would be negligible. However, with the exploita-
tion of frequential, temporal and/or spatial correlation, it be-



comes very well possible to make the channel estimation
errors negligibly small. The issue in practice is which cor-
relation to exploit (and in which way) to obtain the proper
reduction in channel estimation error at the smallest com-
putational cost.

These considerations on channel estimation are elabo-
rated here in an OFDM setting because this simplifies the
treatment for a frequency-fading channel. However, the
essence of most conclusions holds in a general transmission
setting.

1.1. SIMO OFDM Systems

The availability of multiple receive antennas leads to Sin-
gle Input Multiple Output (SIMO) systems, which we shall
discuss first.

1.1.1. SIMO Systems

Consider a radio system with a single inputxl and multiple,
p, outputs (RX antennas)yi per sample period

y[n]︸︷︷︸
p×1

=
L∑

j=0

h[j]︸︷︷︸
p×1

x[n−j]︸ ︷︷ ︸
1×1

= H(q)︸ ︷︷ ︸
p×1

x[n]︸︷︷︸
1×1

(1)

whereH(q) =
L∑

j=0

h[j] q−j is the SIMO system transfer

function corresponding to thez transform of the impulse
responseh[.]. Equation (1) mixes time domain andz trans-
form domain notations to obtain a compact representation.
In H(q), z is replaced byq to emphasize its function as an
elementary time advance operator over one sample period.
Its inverse corresponds to a delay over one sample period:
q−1x[n] = x[n−1].

1.1.2. OFDM: a Cyclic Prefix based Block Transmission
System

Consider an OFDM system withN samples per OFDM
symbol. The introduction of a cyclic prefix ofK samples
means that the lastK samples of the current OFDM symbol
(corresponding toN samples) are repeated before the ac-
tual OFDM symbol. If we assume w.l.o.g. that the current
OFDM symbol starts at time0, then samplesx[N−K] · · ·
x[N−1] are repeated at time instants−K, . . . , −1. This
means that the output at sample periods0, . . . , N−1, or
hence the output for OFDM symbol period0, can be written
as

Y[0] = H X[0] + V[0] . (2)

where

Y[0] =

 y[0]
· · ·

y[N−1]

 (3)

and similarly for X[0] and V[0], and

H =



h[0] h[L] · · · h[1]
... h[0]

...
...

... h[L]

h[L]
...

h[L]
...
...

h[0]


. (4)

The matrix H is not only Toeplitz but even circulant: each
row is obtained by a cyclic shift to the right of the previous
row (to be precise, the matrix is a square block matrix of
course). The relation in (4) holds if the channel delay spread
does not exceed the cyclic prefix length:L ≤ K. Note also
that in OFDM, the received data corresponding to the cyclic
prefix time instants (−K, . . . , −1) do not get used.

Consider now applying anN -point FFT to both sides of
(2) at OFDM symbol periodm:

FN,pY[m] = FN,pH F−1
N FNX[m] + FN,pV[m] (5)

or with new notations:

U[m] = H A[m] + W[m] (6)

whereFN,p = FN ⊗ Ip (Kronecker product:A ⊗ B =
[aijB]), FN is the N -point N × N DFT matrix, H =
diag{H0, . . . ,HN−1} is a block diagonal matrix with diag-
onal blocksHk =

∑L
l=0 h[l] e−j2π 1

N kl, thep× 1 channel
transfer function at tonek (frequencyk/N times the sample
frequency). In Orthogonal Frequency Division Multiplex-
ing (OFDM), the transmitted symbols (belonging to a sym-
bol constellation/finite alphabet) are in A[m] and hence are
in the frequency domain. The corresponding time domain
samples are in X[m]. The OFDM symbol period index is
m.

Taking into account the cyclic prefix also, the OFDM
symbol rate is a fraction 1

N+K of the sample rate. In OFDM,
we need to make a subtle difference between the sample
rate that we have introduced above and the sampling rate,
the rate at which the continuous-time signal gets sampled.
At the transmitter, the vector of symbols A[m] gets inverse
Fourier transformed to get the vector X[m] of N samples
for OFDM symbol periodm. A cyclic prefix ofP samples
gets inserted as indicated previously. The resulting discrete-
time signal gets converted into a continuous-time signal via
a lowpass filter (pulse shape) and gets upmodulated to the
carrier frequency. At the receiver the signal gets downmod-
ulated and sampled. This leads to the complex channel im-
pulse response in the baseband model introduced so far. The
sampling frequency employed at the receiver is normally



equal to the sample frequency (no oversampling is used).
This is because typically the OFDM standard puts zero val-
ued symbols on the upper and lower tones (subcarriers) so
that, even with practical transmitter/receiver filters, there
is no excess bandwidth (w.r.t. (with respect to) the sample
rate) to be exploited.

The components of V are considered white noise, hence
the components of W are white also. At tone (subcarrier)
n ∈ {0, . . . , N−1} we get the following input-output rela-
tion

un[m]︸ ︷︷ ︸
p×1

= Hn[m]︸ ︷︷ ︸
p×1

an[m]︸ ︷︷ ︸
1×1

+wn[m]︸ ︷︷ ︸
p×1

(7)

where the symbolan[m] belongs to some finite alphabet
(constellation).

1.1.3. SIMO OFDM Reception

With circular Gaussian complex white noise in (7),wn[m] ∼
CN (0, σ2

w Ip), the maximum likelihood (ML) estimate of
the symbolan[m] (treated as deterministic unknown) from
the received signalun[m] is

ân[m] =
1

HH
n [m]Hn[m]

HH
n [m]un[m] (8)

whereHH
n [m] corresponds to maximum ratio combining.

This ML solution also corresponds to the minimum mean
squared error (MMSE) zero forcing (ZF) linear receiver out-
put, or also to the unbiased MMSE (UMMSE) linear re-
ceiver output.

If the noise is not spatially white (has directional char-
acteristics) due to the presence of (stationary) interferers,
then we may model it aswn[m] ∼ CN (0, Rw(n)) where
Ewn[m]wT

n [m] = 0, Ewn[m]wH
n [m] = Rw(n). In this

case the ML/MMSEZF/UMMSE receiver front-end becomes

ân[m] =
1

HH
n [m]R−1

w (n)Hn[m]
HH

n [m]R−1
w (n)un[m] .

(9)
The implementation of this approach requires however the
estimation ofRw(n) at each subcarrier from e.g.

ŵn[m] = un[m]− Ĥn[m] ̂̂an[m] (10)

in a decision directed mode (̂̂an[m] is the result of a decision
(with or without channel decoding) on̂an[m]). Instead of
estimatingRw(n) at each subcarrier (independently), it can
perhaps be advantageously estimated in the time domain, by
imposing a limited delay spread. Related work appears in
[1].

1.2. Pilot Based Channel Estimation

For channel estimation purposes, pilot tones are available.
These are tones at which the data symbol is fixed and known.

Their power may be larger than the power of unknown data
tones. The details of the distribution of the pilots in time and
frequency are different in every OFDM based standard. If
we letP[m] denote the set of pilot tones in OFDM symbol
m, thenP[m] is often periodic inm.

So, from the pilot tonesn ∈ P[m] we get :

un[m] = Hn[m] an[m] + wn[m]

Ĥn[m] = un[m]/an[m] = Hn[m]− H̃n[m]
= Hn[m] + wn[m]/an[m]

(11)

whereĤn[m] is the brute frequency domain channel esti-
mate with estimation error varianceσ2

H̃
= σ2

w/σ2
P , σ2

P =
pilot symbol variance. We can define an overall brute fre-
quency domain channel estimate

Ĥn[m] =
{

un[m]/an[m] , n ∈ P[m]
0 , n 6∈ P[m] (12)

The brute channel estimate needs to be filtered to obtain a
refined estimatê̂Hn[m] in which the estimation error still
depends on the same noise samples.

1.2.1. Channel Estimation Noise

We’ll assume that the noise is uncorrelated between tones
in an OFDM symbol and between OFDM symbols. This is
obviously true for white noise but also holds approximately
in the case of mildly colored noise due to the decorrela-
tion property of the Fourier transform and the separation of
OFDM symbols by cyclic prefixes. So we’ll assume that
within one OFDM symbol the noisewn[m] is uncorrelated
between pilot and data tones.

The (refined) channel estimation error leads to noise in-
crease at data tonesn 6∈ P[m]:

un[m] = Hn[m] an[m] + wn[m]

= ̂̂Hn[m] an[m] + ˜̃Hn[m] an[m] + wn[m]
(13)

where ˜̃Hn[m] is the estimation error associated with the re-
fined channel estimate. The relative noise increase (similar
to the misadjustment factor in the analysis of the LMS algo-
rithm) :

M =
σ2˜̃
H

σ2
a

σ2
w

(14)

should be� 1 in order for the channel estimation error to
lead to negligible performance degradation. Without filter-
ing of the brute channel estimate we have:

M =
σ2

a

σ2
P

N

P
� 1 where

σ2
a

σ2
P

is the ratio of data

tone power over pilot tone power andP = number of pi-

lot tones,
N

P
=

# of unknowns
# of equations

: without the exploitation



of any structure, the channel coefficient at every tone is a
priori an independent unknown variable.

With channel estimate filtering one can obtain

M =
σ2

a

σ2
P

N

P
αF,d αF,s αT,d αT,s αS αI � 1 (15)

where any factorα ∈ (0, 1], α = 1 for a filtering aspect
that is not exploited Every factorα corresponds to the ex-
ploitation of particular structure in the channel as will be

analyzed in detail below. In particular,αI =
P

P +
σ2

a

σ2
P

N
′

= reduction factor due toiterative channel estimation and
data detection (N

′
= number of data tones). Indeed, if all

the data gets detected (roughly without error, after channel
decoding) and the channel estimation gets based on the de-
tected data also, then those data act similar to pilots for the
purpose of channel estimation. Note thatP + N

′
< N due

to the fact that a number of tones are left unused (e.g. for
frequency separation between adjacant channels).

1.3. Deterministic Frequency Domain Filtering

αF,d =
L

N
consists of the exploitation of the finite delay

spread (L samples) of the channel impulse response (deter-
ministic channel model). We assume here that this delay
spread can be equal to the cyclic prefix length (worst case
assumption, the CP is normally designed to exceed the de-
lay spread).

The reduction of the channel estimation error variance
by a factorαF,d can be accomplished by transforming the
brute frequency domain channel estimateĤ[m] into the time
domain and windowing the resulting time domain estimate
to keep only the portion within the delay spread (CP). Win-
dowing in the time domain is equivalent to filtering/con-
volution/interpolation in the frequency domain.

The expressionαF,d =
L

N
assumes that the sampling

pattern of the pilot tones is sufficient to avoid aliasing after
delay spread imposition so that the estimation error is only
due to noise (and not approximation error). So in fact we as-
sume that delay spread≤ min {L,P}. If P > L, the pilots
provide a certain amount of oversampling. Whereas with-
out oversampling, the interpolation filter in the frequency
domain (asuming that only the regularly spaced scattered pi-
lots would be used) would have to correspond to the Fourier
transform of a rectangular window, leading to an interpola-
tion filter that is widely spread out; if there is on the other
hand a certain amount of oversampling, it can be exploited
to use interpolation filters that are less spread out. Of course,
one can also consider approximate interpolation filters, such
as e.g. linear interpolation (triangular interpolation filter).

One then has to add a certain approximation error (due to
partial aliasing) to the channel estimation error.

1.4. Statistical Frequency Domain Filtering

The deterministic delay spread (difference between largest
and smallest delays) may be quite large. On the other hand,
the effective delay spreadLeff of the power delay profile
may be much smaller (e.g. when there are no other paths be-
tween the largest and the smallest delay paths). The proper
exploitation of the power delay profile leads toαF,s =
Leff

L
. WhereasL is the (total) delay spread (difference be-

tween maximum and minimum delay),Leff is the effective
number of channel coefficients in the channel power delay
profile. If L > 1, thenLeff ≥ 2 (= 2 for the case of two
paths, corresponding to minimum and maximum delay).

The exploitation of the power delay profile can be ac-
complished by weighting the time domain channel estimate,
not by a rectangular window as in the deterministic exploita-
tion of the delay spread, but by a LMMSE weighting func-
tion that depends on the power delay profile. If all channel
coefficients are considered independent, then this LMMSE
weighting corresponds to

̂̂h[j] =
σ2

h[j]

σ2
h[j] + σ2

h̃[j]

ĥ[j] (16)

Here σ2
h[j] is the variance of channel coefficienth[j] and

hence represents the power delay profile (as a function of
delayj). One can easily estimateσ2

ĥ[j]
= σ2

h[j] + σ2
h̃[j]

by

taking the sample variance of the channel coefficient esti-
mates in the time domain in every OFDM symbol. Also,
when the noise is white,σ2

h̃[j]
is simply a certain multiple

of the noise variance, which can be estimated from the error
signals (received signal minus channel estimate times pilot
data) at the pilot tones.

There could be more statistical information to be ex-
ploited in the channel response than just the power delay
profile. This occurs if the channel impulse coefficients are
correlated, which may be the case if the path delays fall in
between sample instants. To exploit such correlation, one
should not only estimate the channel coefficient powers but
also their correlations (at least between neighboring (in de-
lay) coefficients).

1.5. Deterministic Time Domain Filtering

The channelh[m] evolves as a function of time (OFDM
symbol period)m. Each channel coefficient is a finite band-
width signal though due to the finite Doppler spread. De-
terministic time domain filtering consists of ideal lowpass
filtering with bandwidth equal to the Doppler spread.



This leads to αT,d = Doppler spread expressed as a
fraction of the OFDM symbol rate. If the proceesing is go-
ing to be performed in block, corresponding e.g. to a block

of channel coded data, thenαT,d ≥
1
M

, M is the number

of OFDM symbols in the block considered.
The lowpass filtering can e.g. be performed by a first-

order filter with transfer function
1− λ

1− λ z−1
. ThenαT,d =

1− λ

1 + λ
if filter bandwidth> Doppler spread (+ channel dis-

tortion otherwise).
The lowpass filtering can equivalently be done (approx-

imately) by windowing in the frequency domain (by com-
puting the frequency domain response of the evolution of
a channel impulse response coefficient over a number of
OFDM symbols).

1.6. Statistical Time Domain Filtering

Apart from a deterministic Doppler spread (difference be-
tween minimum and maximum Doppler frequencies), there
is also a Doppler profile in which the power may be dis-
tributed unevenly over the Doppler frequencies. This leads
to a reduced effective Doppler spread.

αT,s =
effective Doppler spread

deterministic Doppler spread

For instance, consider the extreme case of a two path chan-
nel with one path having Doppler shift+fD, wherefD is
the Doppler frequency, and the other path having Doppler
shift −fD. Then the deterministic Doppler spread is2fD

whereas the effective Doppler spread is in fact zero (for just
two specular paths).

The exploitation of the statistical information in both
time and frequency domain may be performed jointly by
a (channel impulse response coefficient) delay dependent
Wiener filter in the time domain. A first order filter would

be of the form
γ

1− β z−1
. A first-order filter though does

not allow to capture the details of the Doppler profile, only
its bandwidth. The use of a first-order filter appears to be
insufficient to model the finite bandwidth Doppler profile at
high Doppler speeds.

1.7. Spatial Domain Filtering

The channel impulse responses may be correlated between
the different antennas. One can exploit this correlation to
further reduce the channel estimation variance. This leads
to

αS ≥ 1
p

=
1

# RX antennas
. (17)

The lower bound (reduction byp) is attained when each spa-
tial channel impulse response coefficienth[n] corresponds

to the contribution of only a single path at the correspond-
ing delay. In that case, thep coefficients ofh[n] are pro-
portional to just a single rapidly varying complex path am-
plitude, the direction of thep× 1 vector varies only slowly,
with the physical direction of the path. It appears that the ex-
ploitation of the spatial correlation has not yet been pursued
much in the literature, certainly not in the context of OFDM
systems. However, it requires to estimateL+1 p×p spatial
correlation matrices, one for each channel coefficient delay.
Especially when the spatial correlation gets combined with
the temporal correlation, this requires the estimation of a
channel covariance matrix of sizep (L+1) which represents
a certain complexity for estimation and for its exploitation,
and which also requires the accumulation of quite a bit of
data (instantaneous channel estimates) and hence sufficient
stationarity of the channel evolution (so that the channel cor-
relations only change slowly, this is the slow fading).

1.8. Some Complexity Considerations

Many operations get simplified if the pilots appear in a reg-
ular pattern corresponding to a certain regular subsampling
of the tones, even if the position of the subsampling grid
varies between OFDM symbols.

The complexity of filtering/interpolating the brute fre-
quency domain channel estimate directly in the frequency
domain is proportional toN

′
(the number of data tones)

and the number of pilots involved in one interpolation oper-
ation (= filter length in number of tones spanned, divided by
subsampling factor in pilot tone positioning). If the pilots
appear in a regular pattern, the interpolation is frequency
invariant (except for the two borders).

For the transformation of channel estimates between the
time and frequency domains, no complete FFTs are required
but so-calledprunedFFTs can be used, leading to lower
complexity. For the IFFT to transform the brute frequency
domain channel estimate to a channel impulse response with
finite delay spread, one transforms a subsampled signal (if
pilots appear at a subsampling grid) into a signal with lim-
ited duration (or of which only a limited duration is of inter-
est). (note that due to the (possible) subsampling in the fre-
quency domain, we get a periodic signal in the time domain,
so L ≤ N/(subsamplingfactor) required). So there is
a double pruning aspect. Perhaps choosingL = N/(sub-
samplingfactor) may lead to a particularly interesting (low)
complexity.

For the FFT to transform the finite delay spread impulse
response to the frequency domain at all tones (of which only
the data tones are needed, but they constitute the majority of
the tones), pruning can again be used due to the finite length
of the signal to be transformed.

The filtering in the time domain can be time-invariant
over a block (a block can be made to correspond to a chan-
nel coding block), or can be made adaptive for continuous



processing. In the case of block processing, the filter can
be kept time-invariant at the edges of the block if some date
from neighboring blocks can be used. Or the time-invariant
Wiener filtering should be replaced by time-varying Kalman
filtering if optimality is desired throughout the block and no
data from neighboring blocks can be used. The complexity
is proportional to the order of the FIR Wiener or Kalman
filter.

1.9. Auxiliary Parameters to be Estimated

Channel estimate filtering (refining) requires the estimation
of some additional parameters:

• Noise varianceσ2
w (see higher).

• Channel impulse response delay spread or even power
delay profile: can be obtained by (noncoherently) av-
eraging channel impulse response coefficient estimate
powers in time (and correcting/thresholding for esti-
mation noise variance, see higher).

• Doppler spread and profile, or channel impulse re-
sponse coefficient temporal correlation sequence: can
again be estimated by computing temporal correla-
tions of estimated channel coefficients and correct-
ing the correlation at lag zero for the estimation noise
variance (see below).

1.10. Solutions Proposed in the Literature

[2]: comparison of deterministic and statistical frequency
domain filtering (no temporal filtering, single antenna). Es-
timation/filtering performed in the time domain via weight-
ing matrices

[3]: analysis of the MSE of refined channel estimates
obtained by 2D filtering. For the brute channel estimate,
the use of all data (decision directed) is assumed. For the
design of the 2D LMMSE filter, a fixed power delay pro-
file and a fixed Doppler profile are assumed and the effect
on the MSE due to a mismatch in these two profiles is an-
alyzed. It is concluded that it is more robust to do 2D de-
terministic filtering with an overestimated delay spread and
an overestimated Doppler spread. One should note that this
conclusion is reached because no attempt is made to esti-
mate the power delay and Doppler profiles. In [4], the same
analysis is performed and the same conclusions are reached
when the brute channel estimate is pilot based.

[5]: delay-dependent temporal Wiener filter coefficients
are determined from linear prediction coefficients for the
estimated channel coefficients, plus knowledge ofσ2

w. See
also [6] for related work.

[1]: the 2D channel correlation function is assumed to
be separable: the power delay profile gives the channel co-
efficients at each delay a separate variance, but the Doppler

spectrum is assumed independent of delay (not true). The
Doppler spectrum is estimated via a thresholded periodogram
on the estimated channel coefficients, averaged over the de-
lays.

1.11. Channel Variation within an OFDM Symbol Pe-
riod

Channel variations within an OFDM symbol lead to inter-
carrier interference (ICI) (non-orthogonality of the tones).
For the ICI to be negligible, we need the Doppler spread
fd to be small compared to the intercarrier spacing1/Ts.
It appears that the ICI problem is negligible in WLAN ap-
plications with low mobility. Nevertheless, the following
references deal with ICI.

[7] computes a universal upper bound on the ICI power
PICI ≤ 1

12 (2πfdTs)2 wherefd is the (max) Doppler fre-
quency and1/Ts is the subcarrier spacing. Note that for
the channel estimation noise to have negligible impact, it
suffices thatM� 1. However, for the ICI to have negligi-

ble impact, we require thatPICI �
1

SNR
!

[8] introduce a non-parsimonious time-varying channel
model (matrix) leading to a huge number of parameters to
be estimated and the complexity of the associated equaliza-
tion problem is also forbidding.

[9] perform a statistical Taylor series expansion of chan-
nel coefficients in terms of frequencyf aroundf = 0. The
resulting parameter estimation and equalization problems
are a bit cumbersome but the technique works.

[10] express the variation of the channel impulse re-
sponse coefficients over an OFDM symbol in terms of sub-
carriers. This leads toH becoming a banded matrix instead
of a diagonal matrix, with the number of diagonals being
the Doppler spread expressed in terms of subcarrier spac-
ing. The channel estimation becomes one of estimating one
impulse response per subcarrier component. The tempo-
ral equalization problem gets transformed into an equaliza-
tion problem in the frequency domain with possibly lower
spread.

1.12. Extension to MIMO Channels

In the MIMO transmission case withq transmit antennas,
at tonen in OFDM symbolm we get the following input-
output relation

un[m]︸ ︷︷ ︸
p×1

= Hn[m]︸ ︷︷ ︸
p×q

an[m]︸ ︷︷ ︸
q×1

+wn[m]︸ ︷︷ ︸
p×1

(18)

wherean[m] is a vector ofq symbols belonging to some
finite alphabet (constellation) when we consider a normal
data transmission tone. In the case of a pilot tone, the vec-
toran[m] can have an arbitrary value, with for instance only
a single entry being non-zero. In any case, it is clear from



(18) that from one pilot tone in one OFDM symbol, it is
only possible to soundHn[m] in a single direction, the di-
rection of the vectoran[m]. Therefore, in [11] as in many
other proposals, it is suggested to put and consider jointly
pilot symbols inq consecutive OFDM symbols. If the chan-
nel would be arbitrarily time-varying in time and frequency
it would be impossible to estimate the channel. So it is ab-
solutely indispensable to exploit some type of correlation,
in time and/or frequency and/or space, to estimate a MIMO
channel.

To find the appropriate expression for the misadjustment
factor in the MIMO case, let us go through the following
elementary steps. Assume for a moment that a pilot tone
is activated forq consecutive OFDM sybols and that the
channel would not vary over that time span. Then we can
write with Matlab-type notation

un[m : m+q−1]︸ ︷︷ ︸
p×q

= Hn[m]︸ ︷︷ ︸
p×q

an[m : m+q−1]︸ ︷︷ ︸
q×q

+ wn[m : m+q−1]︸ ︷︷ ︸
p×q

(19)

where the elements inwn[m : m+q−1] are assumed all
i.i.d. circular Gaussian with varianceσ2

w and we assume,
as suggested in [11] also,an[m : m+q−1] to be a multiple
of a unitary matrix (orthogonality of the pilots for different
channel inputs):

aH
n [m : m+q−1]an[m : m+q−1] = q σ2

P Iq .

So q σ2
P is the total transmit power at a pilot tone in one

OFDM symbol. Assumingp ≥ q, the LS estimate, which is
here also the deterministic ML estimate, ofHn[m] is

Ĥn[m] = 1
q σ2

P
un[m : m+q−1]aH

n [m : m+q−1]

= Hn[m] + H̃n[m]
(20)

where

H̃n[m] =
1

q σ2
P

wn[m : m+q−1]aH
n [m : m+q−1] .

(21)
The channel estimation error covariance matrix (seen from
the RX side) is

EH̃n[m]H̃H
n [m] =

σ2
w

σ2
P

Ip = σ2
H̃

Ip (22)

As in (13), the (refined) channel estimation error leads to
noise increase at data tonesn 6∈ P[m]:

un[m] = Hn[m]an[m] + wn[m]

= ̂̂Hn[m]an[m] + ˜̃Hn[m]an[m] + wn[m]
(23)

where ˜̃Hn[m] is the estimation error associated with the re-
fined channel estimate. We assume Ean[m]aH

n [m] = σ2
a Iq

so

E( ˜̃Hn[m]an[m])( ˜̃Hn[m]an[m])H = σ2˜̃
H

σ2
a Ip (24)

whereas
Ewn[m]wH

n [m] = σ2
w Ip . (25)

Hence we obtain the relative noise increase (misadjustment
factor) :

M =
σ2˜̃
H

σ2
a

σ2
w

(26)

which should be� 1 in order for the channel estimation er-
ror to lead to negligible performance degradation. Now, to
obtainσ2

H̃
in (22), we assumed we haveq pilot tones, but in

fact we have on the averageP pilot tones per OFDM sym-
bol. On the other hand, without any correlation, the channel
at each tone can be an independent variable. Hence, with-
out filtering of the brute channel estimate we have:σ2˜̃

H
=

Nq
P σ2

H̃
, which leads, with (26) to

M = q
σ2

a

σ2
P

N

P
� 1 (27)

which isq times the value for the SIMO case. With channel
estimate filtering one can obtain

M = q
σ2

a

σ2
P

N

P
αF,d αF,s αT,d αT,s αS αI � 1 . (28)

The reduction factorsα are unchanged from the SIMO case,
except for the exploitation of spatial information. The cor-
relation between antennas at both TX and RX sides may be
exploited now to obtain

αS ≥ 1
p q

=
1

# RX antennas× # TX antennas
. (29)

The lower bound (reduction byp q) is attained when each
spatial channel impulse response coefficienth[n] corresponds
to the contribution of only a single path at the corresponding
delay. In that case, thepq coefficients ofh[n] are propor-
tional to just a single rapidly varying complex path ampli-
tude, andh[n] is a rank one matrix, proportional to the RX
array response for the path considered times the transpose of
the TX array response. The direction of these array response
vectors varies only slowly, with the physical TX and RX di-
rections of the path. Note that in this extreme correlation
case, the reduction factorαS can beq times smaller than
in the SIMO case, which would offset the fact that the brute
misadjustment isq times larger in the MIMO case compared
to the SIMO case.



1.13. Summary Channel Estimation Challenge

The exploitation of any factorα is equivalent in reducing the
excess noiseM due to channel estimation error. In practice,
it is (largely) sufficient to reduceM toM = 0.1 . From the
previous discussion it is clear that this goal can be reached
in a wide variety of ways. Theoretically,M can be made
much smaller than 1.

Hence the challenge becomes: what is the cheapest way
in terms of computational complexity (which distribution of
α’s) to getM down to e.g. 0.1 ?

2. WIRELESS CHANNEL MODELING AND
ADDITIONAL ESTIMATION CONSIDERATIONS

2.1. Non-Parametric vs. Parametric Channel Models

We have seen that the proper exploitation of correlations
and structure in the channel is crucial to optimize the esti-
mation quality of the channel. The channel structure can be
captured in several ways. Two opposite ways correspond
to non-parametric and parametric type approches. In the
non-parametric approach, one simply uses all correlations
between all channel dimensions. In a parametric approach,
one may stay more closely to a physical description of the
channel, emphasizing the pathwise contributions. Regard-
less of the approach, a compromise needs to be made in
the model complexity to trade off approximation error for
estimation error in the correlation sctructure. For the non-
parametric approach, this may lead to the introduction of
separable correlation models. In the parametric approach,
this leads simply to a limitation of the number of paths ac-
counted for. The crucial question is which approach allows
for the best exploitation of the correlation structure and pre-
dictibility for a given parameterization complexity/cardinality.
One question at the heart of this issue is the degree of spec-
ularity of the channel. These issues are debated in more
detail in [12].

2.2. Stationary Channel Models vs. BEMs

For the purpose of equalizing a time-varying channel, the is-
sue arises as to which model to use to express the temporal
variation. Two appraoches can be introduced: modeling the
(vectorized) channel impulse response as a stationary vec-
tor process, called the stationary model for short, or using
a Basis Expansion Model (BEM) in which the time-varying
channel coefficients are expanded into known time-varying
basis functions, and the unknown channel parameters are
now no longer the channel coefficients but the combination
coefficients in the BEM. The BEM model was introduced
by Y. Grenier around 1980 for time-varying filtering, by E.
Karlsson in the early 1990’s for time-varying channel mod-
eling and by M. Tsatsanis and G. Giannakis in 1996 for

blind time-varying channel estimation. The BEM has also
been revived and generalized in the canonical coordinates
concept of A. Sayeed.

The choice of the channel model interacts with the de-
sign of the modulation format. For instance, a stationary
model may be more appealing for the case of long transmis-
sion packets (e.g. corresponding to a packet of data within
one convolutional coding operation) whereas the BEM model
might be more appealing in the case of shorter packets (e.g.
OFDM symbols), the length of which would correspond to
a potential subsampling period of the channel variation (re-
lated to maximum Doppler spread) appearing in the BEM.
In the case of the stationary model, the stationarity sug-
gests Wiener filtering of brute channel estimates, but the
transients at both edges of the packet may be more prop-
erly treated with a Kalman Filter/Smoother. For the BEM
model, the question arises whether to model potential cor-
relatons between basis expansion coefficients, or just their
variances. In the case of cyclic prefix systems, the channel
may become time-varying within the block. In that case, in-
tercarrier interference (ICI) arises in the frequency domain
[10] and hence equalization becomes complicated in both
time or frequency domain. The domain to be preferred in
that case may be the domain representing the least spread.

A further complication arises if simplified equalization
techniques are employed such as linear equalizers. Starting
from a linear stationary model for the channel, the model
becomes non-linear in principle for the equalizer, the non-
linearity inducing also an increase in variation speed. G.
Leus has introduced [13] linear (and decision-feedback)
equalizers in which the filter coefficients are also made time-
varying by expanding them into a BEM. One amazing result
is that for FIR channels with finite Doppler spread, there
exist zero-forcing FIR equalizers with finite variation band-
width. Due to the nature of BEM’s however, the equalizer
setting will only be valid over a finite time-span.

2.3. Optimization of Information Sources

Pilot signals or training symbols are not the only informa-
tion avaiable to estimate the channel. Other forms of infor-
mation include received signal subspaces, received signal
second-order statistics (induced by white or colored trans-
mitted signals), higher-order statistics, transmitted symbol
constellation (exploited in full or partially, as in constant
modulus techniques; including induced cyclostationarity due
to temporal variation of the input symbol variance). The ex-
ploitation of all these forms of information about the chan-
nel, on top of the pilots can be called semiblind channel
estimation [22]. The question arises which design leads to
the optimal mix of these various forms of information. To
properly answer this question, an information theoretic ap-
proach is required though, and probably the best criterion is
the maximization of the channel capacity. Some initial steps



in this direction were taken in [14]. The effect of channel
estimation error on the Matched Filter Bound was addressed
in [12]. The optimal design of the pilot structure when only
pilot information is used for channel estimation is addressed
e.g. in [23]. One important observation is that in a semi-
blind approach, the question arises as to which minimal
amount of pilot information is required. If the semiblind
approach is defined for instance as based on pilots and the
finite alphabet of the unknown symbols, then a typical sem-
blind solution will be iterative joint estimation/detection of
channel and data. The minimal amount of pilot data is then
the amount that will permit this iterative process to converge
properly.

2.4. Interaction between Multiple Access Format and
Channel Estimation

The advantage of OFDM or Cyclic Prefixed Single-Carrier
(CPSC) systems [21] is that the equalization of a frequency-
selective channel gets simplified significantly due to the trans-
formation of a convolution in time domain to a simple prod-
uct in frequency domain. A major consequence of this or-
thogonality between data in OFDM is the resulting orthog-
onality between data and pilots. This orthogonality simpli-
fies a lot, as shown earlier in this paper, the estimation of
the channel, based fully on all pilot data, the computation
of the channel estimation error, the statistical description of
the estimation error and its effect on the detection of the
data in the form of an increase in additive noise. For non-
orthogonal modulation formats (due to intersymbol inter-
ference (ISI), multiple access interference (MAI), or even
intercarrier interference (ICI)), the handling of all these as-
pects relative to the channel estimation gets significantly
more complex.

3. LINEAR VS. FINITE-FIELD CODING FOR
DIVERSITY EXPLOITATION

Space-time coding (STC) is about preparing signals to trans-
mit so that after passing through the channel, each transmit-
ted bit will have benefitted from all (spatial, frequential and
temporal) diversity sources in the channel. In Single-Input
Multi-Output (SIMO) systems, nothing special needs to be
done at the transmitter to benefit from all (spatiofrequential)
channel diversity. Except in OFDM systems, in which the
frequency diversity gets lost if uncoded symbol streams get
put independently on each subcarrier. Also, if temporal di-
versity is present and needs to be exploited, some temporal
coding needs to be performed.

STC applies to MISO systems, and also to MIMO sys-
tems in which the spatial multiplexing aspect gets added.
Spatial multiplexing is the transmission of multiple data
streams simultaneously and allow their unmixing based on

spatial diversity. Spatial multiplexing in MIMO systems
can be viewed as a limiting case of Spatial Division Multi-
ple Access (SDMA) in which the various users are actually
colocated. The spatial dimension of different directions in
SDMA needs to be replaced with a rich multipath scattering
environment in spatial multiplexing.

Signal coding to exploit different diversity sources is a
mixing operation that disperses the influence of one input
bit/symbol to several output bits/symbols. Signal coding
can be done in two ways (that could be viewed as two ex-
tremes of a continuum of possibilities). One is traditional
channel coding. Consider e.g. recursive convolutional cod-
ing, then an input bit will influence all output bits from the
time of the input bit onwards. Another approach is linear
precoding, which is essentially an operation of linear pre-
filtering of signals before transmission. For instance, CPSC
systems can be viewed as linearly precoded OFDM systems
with the DFT matrix as mixing matrix.

Linear precoding allows for a very precise and possibly
weighted distribution of input signals over diversity sources.
Linear precoding does not give any coding gain though. Fi-
nite field coding provides coding gain, but Singleton has
shown that there is a limit on the number of diversity sources
that can be exploited for a certain coding complexity. There-
fore, the best approach is probably a mix of the two ap-
proaches and optimization issues arise in the design of this
mix, see [15] for some initial work in this direction.

4. ROBUST RECEIVER DESIGN BASED ON
UNCERTAIN PARAMETERS

Consider a LMMSE receiver (RX). It’s computation requires
knowledge of the channel, and the interference plus noise
covariance matrix or the total signal covariance matrix. The
signal covariance matrix is in principle straightforward to
estimate, by replacing statistical averaging with temporal
averaging. In CDMA systems however, if the spreading
factor is 256, then a LMMSE RX based on only one symbol
period of data involves a covariance matrix of size256×256
if no oversampling is used. To estimate such a matrix cor-
rectly, an amount of data (here in symbol periods if the cy-
clostationarity is at symbol period) is required that is at least
several times the dimension of the matrix. For most CDMA
systems, this becomes impossible since the channel cannot
be assumed to be time-invariant over a thousand symbol
periods. Not to mention the computational complexity in-
volved because the matrix needs to be inverted. Therefore,
a number of recent approaches (e.g. by Xiaodong Wang or
Michael Honig) have focused on projecting the signal vec-
tor on a subspace first to reduce the dimensionality of the
problem (the PE technique to be discussed later leads to one
possible choice for the subspace).

Another approach involves taking the theoretical expres-



sion of the LMMSE RX, hence of the received signal covari-
ance matrix. This expression involves essentially the chan-
nel impulse response, a potentially simple parameterization
of the noise plus interference covariance matrix and perhaps
a few other parameters (signal power). Estimates for these
various parameters can be produced. The classical approach
is then to take the theoretical expression of the LMMSE RX
and substitute the theoretical parameters by their estimated
values. In CDMA systems however, the estimation error
on these parameters may be significant and hence the effect
of this estimation error on the performance of the LMMSE
RX may be far from negligible. Hence, the design of robust
LMMSE RXs is called for. Robust estimation is a domain
in the realm of automatic control that has existed for quite a
while now. However, applications of these ideas to LMMSE
RX design are spurious.

5. HIGHER-LEVEL ADAPTATIVITY ISSUES IN
ADAPTIVE FILTERING

Classical adaptive filters work with a certain filter order and
a certain stepsize or forgetting factor. A lot of work has
been done on the optimal filter order selection and the op-
timal stepsize selection. However, most of the work on fil-
ter order selection assumes a constant optimal filter. And
most of the work on stepsize selection assumes a station-
ary (and possibly known) optimal filter variation. Recently,
some work has appeared on the dynamic filter order selec-
tion in autoregressive signal models, based on a maximum
a posteriori (MAP) approach.

Similarly to dynamic model order selection, one can
consider the dynamic selection of tracking capacity by com-
bining the outputs of several adaptive filters, running at dif-
ferent time scales, as e.g. in [16]. The introduction of
multiscale BEMs based on wavelets might be of interest
here. Certain results by Niezwiecki [17] might also be use-
ful here. These reults show that, at slow variation, the RLS
filter estimates obtained by RLS algorithms with different
time scale/forgetting factor are essentially related by a sim-
ple filtering operation directly on the ”faster” adaptive fil-
ter coefficients to obtain the ”slower” adaptive filter coeffi-
cients. This author believes that the issues of dynamic filter
order and time scale selection, which are issues of higher-
level adaptivity in adaptive filtering, have not yet gained
the attention that they deserve when considering optimizing
adaptation performance.

6. APPROXIMATE MATRIX INVERSION
TECHNIQUES IN SP4COM

Over the years, a number of different approximate matrix
inversion techniques have arisen in signal processing, to
approximately solve the normal equations of least-squares

problems, or find approximate Gauss-Newton adaptive fil-
ters. These familiar approximation techniques involve

• making the matrix Toepliz, to allow Fast Levinson-
style solutions

• making (furthermore) the matrix circulant, to allow
diagonalization via the DFT

• making the matrix banded, in a moving average mod-
eling operation

• making the matrix inverse banded, in an autoregres-
sive modeling operation

Another approximate technique has recently become quite
popular in communications and is based on quite classical
iterative techniques from numerical analysis to solve linear
systems of equations. The technique consists in splitting
the matrix to be inverted into its diagonal and off-diagonal
parts and putting the off-diagonal part on the RHS. The re-
sulting iterative solution for the system of equations corre-
sponds to expanding the matrix to be inverted as a polyno-
mial in the matrix itself, hence the name Polynomial Ex-
pansion (PE) coined by Moshavi [18], and reinvented many
times since. The technique corresponds to conjugate gradi-
ent techniques and the multi-stage Wiener Filter introduced
by Scharf, Goldstein and Reed, and applied to CDMA by
Honig. The PE techniques are extremely well suited to
CDMA applications because in CDMA, the matrices to be
inverted are typically very strongly diagonally dominated,
with all non-diagonal elements being non-zero (and of com-
parable variance) but small: the non-diagonal elements typ-
ically correpond to correlations between different spreading
codes. See [19] for application to the uplink and [20] for
application to the downlink.

The application of PE to the computation of the out-
put of a LMMSE equalizer leads to an iterative algorithm
that is in fact simply a turbo equalizer in which the non-
linear detection operations in the feedback are removed (the
same is true for LMMSE multi-user detection (MUD) vs.
turbo MUD, also known as Parallel Interference Cancella-
tion (PIC)). The advantage of an iterative implementation of
the LMMSE equalizer via PE (or a nonlinear turbo equal-
izer) is that only filtering operations with the channel or
its matched filter are required. This means a simplification
for handling time-varying channels, and quite simply a sim-
plification because no other filters need to be computed or
adapted. This leads to further simplifications in CDMA sys-
tems in which sparse (specular) channel models can be used
advantageously to replace the channel matched filtering de-
spreading cascade by a pathwise despreading maximum ra-
tio combining cascade (as in the RAKE receiver), exchang-
ing an increase in the number of despreading operations
(additions/subtractions with special purpose hardware) for



a reduction in the number of complex multiplications from
chip rate to symbol rate. Similar considerations exist for the
dual operation in PE of respreading and filtering with the
channel.

Many challenges persist around the application of PE
techniques, one important one being the performance and
optimization of PE techniques in time-varying environments.
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