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ABSTRACT nel coefficients, such as in time, in frequency and in space.

Wireless communications allow for the application of a num- The channel response can be estimated in the time domain
ber of signal processing techniques. However, in many in- Or in the frequency domain. On the one hand, the pilot sym-
stances the success of the application depends on the propdiols are available in the frequency domain. On the other
accounting for the interaction of the signal processing prob- hand, the frequency domain correlation is most easily ex-
lem with other disciplines such as propagation and chan-pressed in the time domain. This and other considerations
nel modeling, communication and information theory, and appear to suggest a time domain channel estimation approach.
processor circuit architectures. We discuss the incidence ofSuch an approach requires frequent transformations between
propagation studies and channel modeling on channel corlime and frequency domains, the complexity of which can
relation and hence on channel estimation performance (or-b€ limited by pruning the FFT. The relative contribution of
thogonality of pilots) , the interaction between modulation the various types of side information to be exploited in the
technique and the ease of training based channel estimatiorchannel estimation is discussed.

the interaction between transmission scheme (continuous or  The methods to be discussed can be considered as "rank
block-wise) and temporal fading modeling and handling, reduction” techniques. These techniques can be organized
modulation and signal processing (linear precoding) for di- in terms ofa priori and a posteriori techniques. A pri-
versity exploitation, approximate normal equation solutions Ori rank reduction techniques correspond in fact to (time-
for various signal types (speech vs CDMA, sparse signifi- invariant) reparameterizations of the (in general) Multi-Input
cant correlations vs. dense weak correlations), interactionMulti-Output (MIMO) channel transfer function in terms of
between channel modeling and CDMA receiver circuit ar- @ reduced set of degrees of freedom. These a priori ap-
chitecture, higher-level adaptivity in adaptive filtering (filter proaches correspond to what we shall call here determin-
order, temporal variation scale) and robustness in receiverstic parameter modeling techniques. The a posteriori rank

design with estimated parameters. reduction techniques correspond to Linear Minimum Mean
Squared Error (LMMSE) parameter estimation approaches,
1. WIRELESS CHANNEL ESTIMATION taking into account a priori correlations in the channel coef-

ficients. These a posteriori approaches correspond to what

In OFDM systems, the introduction of a cyclic prefix leads We shall c_all here stgtistical parameter_modeling techniques
in the frequency domain to a set of parallel memoryless Wlth ensuing Bayesian parameter estimation. These tech-
channels at the various tones/subcarriers. In that case, op?iques may be called posterioribecause they could be ap-
timal reception for the various tones involves per tone pro- Plied as a second stage to a deterministic estimate resulting
cessing that may require accurate knowledge of the channefrom a fII"St estimation stage. If the correlgtlon matrices to
at the tones. Hence channel estimation is an important issud’€ Used in the second stage are singular with a reduced rank
in multi-antenna OFDM transmission/reception, especially 7> then in fact the second stage incorporates a reduction of
if channel knowledge is used at the transmitter. the number of degrees of freedomy{oas the a priori rank

In order to estimate the channel accurately, it is manda- "éduction techniques do.

tory to pay close attention to all correlations between chan- ~ The end result is that without the exploitation of corre-
lation structure in the channel, it is impossible to estimate
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comes very well possible to make the channel estimationand similarly for X0] and V0], and

errors negligibly small. The issue in practice is which cor-
relation to exploit (and in which way) to obtain the proper
reduction in channel estimation error at the smallest com-
putational cost.

These considerations on channel estimation are elabo-
rated here in an OFDM setting because this simplifies the
treatment for a frequency-fading channel. However, the
essence of most conclusions holds in a general transmission

setting.

1.1. SIMO OFDM Systems

The availability of multiple receive antennas leads to Sin-
gle Input Multiple Output (SIMO) systems, which we shall
discuss first.

1.1.1. SIMO Systems

Consider a radio system with a single inpwytand multiple,
p, outputs (RX antennag) per sample period

L
yln] = )  hlj] x[n—j] = H(q) x[n] @)
~ N
px1 - px1 1x1 px1l 1x1
where H (g Zh ¢~ is the SIMO system transfer

function correspondlng to the transform of the impulse
responsé|.]. Equation (1) mixes time domain ardrans-

form domain notations to obtain a compact representation.diag{Ho, ..

In H(q), = is replaced by, to emphasize its function as an

[ h[0] h[Z] h[1] ]
© hlo .
h[z]
H= n[z] )
h[Z]
i h[0] |

The matrix H is not only Toeplitz but even circulant: each
row is obtained by a cyclic shift to the right of the previous
row (to be precise, the matrix is a square block matrix of
course). The relation in (4) holds if the channel delay spread
does not exceed the cyclic prefix length:< K. Note also
thatin OFDM, the received data corresponding to the cyclic
prefix time instants€ K, ... , —1) do not get used.

Consider now applying aiv-point FFT to both sides of
(2) at OFDM symbol periodh:

FnpY[m]

= Fn,HFy' FyX[m]+ Fy,V[m] (5)

or with new notations:

Um] = H Alm] 4+ W[m] (6)

where Fy, = Fn ® I, (Kronecker productA ® B =
[a;;B]), Fn is the N-point N x N DFT matrix, H =
L Hy_ 1} is a block diagonal matrix with diag-
onal blocks Hk =S/ h[l] e 72"~ thep x 1 channel

elementary time advance operator over one sample periodiransfer function at ton (frequencyk /N times the sample
Its inverse corresponds to a delay over one sample periodfrequency). In Orthogonal Frequency Division Multiplex-

¢ 'x[n] = x[n—1].

1.1.2. OFDM: a Cyclic Prefix based Block Transmission
System

Consider an OFDM system wittv samples per OFDM
symbol. The introduction of a cyclic prefix df samples
means that the lagt’ samples of the current OFDM symbol
(corresponding taV samples) are repeated before the ac-
tual OFDM symbol. If we assume w.l.o.g. that the current
OFDM symbol starts at time, then sampleg[N—K] - - -
x[N—1] are repeated at time instants<, ..., —1. This
means that the output at sample peridds.., N—1, or
hence the output for OFDM symbol perifdcan be written
as

Y[0] = H X[0] +VI0] . 2)

where
y[0]
Y[0] = o A3)
y[IN-1]

ing (OFDM), the transmitted symbols (belonging to a sym-
bol constellation/finite alphabet) are irfzA] and hence are
in the frequency domain. The corresponding time domain
samples are in ¥n]. The OFDM symbol period index is
m.

Taking into account the cyclic prefix also, the OFDM
symbol rate is afractiog,}r—K of the sample rate. In OFDM,
we need to make a subtle difference between the sample
rate that we have introduced above and the sampling rate,
the rate at which the continuous-time signal gets sampled.
At the transmitter, the vector of symbolgsA] gets inverse
Fourier transformed to get the vectofn{ of N samples
for OFDM symbol periodn. A cyclic prefix of P samples
gets inserted as indicated previously. The resulting discrete-
time signal gets converted into a continuous-time signal via
a lowpass filter (pulse shape) and gets upmodulated to the
carrier frequency. At the receiver the signal gets downmod-
ulated and sampled. This leads to the complex channel im-
pulse response in the baseband model introduced so far. The
sampling frequency employed at the receiver is normally



equal to the sample frequency (no oversampling is used).Their power may be larger than the power of unknown data
This is because typically the OFDM standard puts zero val- tones. The details of the distribution of the pilots in time and
ued symbols on the upper and lower tones (subcarriers) sdrequency are different in every OFDM based standard. If
that, even with practical transmitter/receiver filters, there we letP[m] denote the set of pilot tones in OFDM symbol
is no excess bandwidth (w.r.t. (with respect to) the sample m, thenP[m] is often periodic inmn.

rate) to be exploited. So, from the pilot tones € P[m] we get :
The components of V are considered white noise, hence

the components of W are white also. At tone (subcarrier)  Un[m] = Hy[m]an[m] + wy[m]
?oi {0,..., N—1} we get the following input-output rela- ﬁn[m] = up[m]/an[m] = Halm] — ﬁn[m] (11)
i

u,[m] = Hy[m] a,[m] + wy[m] ) = Hy[m] + wn[m]/an[m]

N—— N N N~ =R

px1 px1 - 1x1 px1 whereH,,[m] is the brute frequency domain channel esti-
where the symbok,[m] belongs to some finite alphabet mate with estimation error variane€. = o7, /0%, o =
(constellation). pilot symbol variance. We can define an overall brute fre-
quency domain channel estimate

1.1.3. SIMO OFDM Reception G ] wnml/anfm] , n € Plm] 12
With circular Gaussian complex white noise in (&), [m] ~ " 0 , n & Plm]

CN (0,02 1,), the maximum likelihood (ML) estimate of

the symbola, [m] (treated as deterministic unknown) from 1€ brute channel estimate needs to be filtered to obtain a
the received signal,, [m] is refined estimat@,,[m] in which the estimation error still

depends on the same noise samples.

~ 1

Qn [m] HY [m] Up [m] (8)

H [m]H,[m] " 1.2.1. Channel Estimation Noise

whereH//[m] corresponds to maximum ratio combining. We'll assume that the noise is uncorrelated between tones
This ML solution also corresponds to the minimum mean in an OFDM symbol and between OFDM symbols. This is
squared error (MMSE) zero forcing (ZF) linear receiver out- obviously true for white noise but also holds approximately
put, or also to the unbiased MMSE (UMMSE) linear re- in the case of mildly colored noise due to the decorrela-
ceiver output. _ _ o tion property of the Fourier transform and the separation of

If the noise is not spatially white (has directional char- OFDM symbols by cyclic prefixes. So we’ll assume that
acteristics) due to the presence of (stationary) interferers,within one OFDM symbol the noise,, [m] is uncorrelated
then we may model it asr,,[m] ~ CN(0, R, (n)) where between pilot and data tones.

Ew,[m]wy [m] = 0, Ew,[m]w[[m] = R,(n). In this The (refined) channel estimation error leads to noise in-
case the ML/IMMSEZF/UMMSE receiver front-end becomes crease at data tonesg P[m]:
) = A ] T A 0wl ] = Haf ]+ vl
(9) = H,[m]a,[m] + H,[m] a,[m] + w,[m]
The implementation of this approach requires however the - (13)
estimation ofR?,,(n) at each subcarrier from e.g. whereH,,[m] is the estimation error associated with the re-
N ~ fined channel estimate. The relative noise increase (similar

Wn[m] = uy[m] — Hy[m] an[m] (10) to the misadjustment factor in the analysis of the LMS algo-
in a decision directed modéx[m] is the result of a decision fithm) : o2 o2
(with or without channel decoding) aiy,[m]). Instead of M= _H ¢ (14)
estimatingR,,(n) at each subcarrier (independently), it can o

perhaps be advantageously estimated in the time domain, byhould be< 1 in order for the channel estimation error to
imposing a limited delay spread. Related work appears inlead to negligible performance degradation. Without filter-

[1]. ing of the brute channel estimate we have:
o2 N o2 :
_ L M= == > 1 where — is the ratio of data
1.2. Pilot Based Channel Estimation op P op
o . ] tone power over pilot tone power arfd = number of pi-
For channel estimation purposes, pilot tones are available. N # of unknowns

lot tones, —

These are tones at which the data symbol is fixed and known: P~ #of equations without the exploitation



of any structure, the channel coefficient at every tone is aOne then has to add a certain approximation error (due to
priori an independent unknown variable. partial aliasing) to the channel estimation error.
With channel estimate filtering one can obtain

o2 N 1.4. Statistical Frequency Domain Filtering
oL P OFdORs OTaOTs s o < 1 (19) The deterministic delay spread (difference between largest
and smallest delays) may be quite large. On the other hand,
where any factorr € (0,1], « = 1 for a filtering aspect  the effective delay spreaf, s of the power delay profile

that is not exploited Every factar corresponds to the ex- may be much smaller (e.g. when there are no other paths be-

ploitation of particular structure in the channel as will be tween the largest and the smallest delay paths). The proper
P

analyzed in detail below. In particula;, = ————— exploitation of the power delay profile leads toar, =
’ L. . .
P+ G—; N # Wheread. is the (total) delay spread (difference be-
op . o . .

= reduction factor due titerative channel estimation and ~ tWeen maximum and minimum delay).;, is the effective
data detectiony’ = number of data tones). Indeed, if all number of channel coefficients in the channel power delay
the data gets detected (roughly without error, after channelProfile. If L > 1, thenL.;; > 2 (= 2 for the case of two
decoding) and the channel estimation gets based on the deaths, corresponding to minimum and maximum delay).
tected data also, then those data act similar to pilots for the ~ The exploitation of the power delay profile can be ac-
purpose of channel estimation. Note ti#at- N' < N due complished by weighting the time domain channel estimate,
to the fact that a number of tones are left unused (e.g. fornotby arectangular window as in the deterministic exploita-

frequency separation between adjacant channels). tion of the delay spread, but by a LMMSE weighting func-
tion that depends on the power delay profile. If all channel

coefficients are considered independent, then this LMMSE

1.3. Deterministic Frequency Domain Filtering weighting corresponds to
L . Y .
arq = — consists of the exploitation of the finite delay 3 U%L[j] -
spread [ samples) of the channel impulse response (deter- hij] = 0‘2[ ) h{j] (16)

ministic channel model). We assume here that this delay Jl hli]

spread can be equal to the cyclic prefix length (worst casepqre
assumption, the CP is normally designed to exceed the dey,once
lay spread).

The reduction of the channel estimation error variance
by a factorar 4 can be accomplished by transforming the
brute frequency domain channel estimBlten] into the time
domain and windowing the resulting time domain estimate
to keep only the portion within the delay spread (CP). Win-
dowing in the time domain is equivalent to filtering/con-
volution/interpolation in the frequency domain.

;QL[-] is the variance of channel coefficiehf;] and
represents the power delay profile (as a function of
delayj). One can easily estima%m = O—}QLU] + 0721@'] by
taking the sample variance of the channel coefficient esti-
mates in the time domain in every OFDM symbol. Also,
when the noise is Whiteu%m is simply a certain multiple

of the noise variance, which can be estimated from the error
signals (received signal minus channel estimate times pilot
data) at the pilot tones.
There could be more statistical information to be ex-
The expressiomvrq = — assumes that the sampling ploited in the channel response than just the power delay
pattern of the pilot tones is sufficient to avoid aliasing after profile. This occurs if the channel impulse coefficients are
delay spread imposition so that the estimation error is only correlated, which may be the case if the path delays fall in
due to noise (and not approximation error). So in fact we as-between sample instants. To exploit such correlation, one
sume that delay spread min {L, P}. If P > L, the pilots should not only estimate the channel coefficient powers but
provide a certain amount of oversampling. Whereas with- also their correlations (at least between neighboring (in de-
out oversampling, the interpolation filter in the frequency lay) coefficients).
domain (asuming that only the regularly spaced scattered pi-
lots would be used) would ha_ve to corre;pond to the Fourier1_5_ Deterministic Time Domain Filtering
transform of a rectangular window, leading to an interpola-
tion filter that is widely spread out; if there is on the other The channeh|[m] evolves as a function of time (OFDM
hand a certain amount of oversampling, it can be exploited symbol period)n. Each channel coefficient is a finite band-
to use interpolation filters that are less spread out. Of coursewidth signal though due to the finite Doppler spread. De-
one can also consider approximate interpolation filters, suchterministic time domain filtering consists of ideal lowpass
as e.g. linear interpolation (triangular interpolation filter). filtering with bandwidth equal to the Doppler spread.



This leads to ar 4 = Doppler spread expressed as a to the contribution of only a single path at the correspond-
fraction of the OFDM symbol rate. If the proceesing is go- ing delay. In that case, the coefficients ofh[n] are pro-
ing to be performed in block, corresponding e.g. to a block portional to just a single rapidly varying complex path am-
plitude, the direction of thg x 1 vector varies only slowly,
with the physical direction of the path. It appears that the ex-
ploitation of the spatial correlation has not yet been pursued
1- much in the literature, certainly not in the context of OFDM
order filter with transfer functioW. Thenar g = systems. However, it requires to estimatel pxp spatial
N _ A _ correlation matrices, one for each channel coefficient delay.
5, iffilter bandwidth> Doppler spread (+ channel dis-  Especially when the spatial correlation gets combined with
tortion otherwise). the temporal correlation, this requires the estimation of a

The lowpass filtering can equivalently be done (approx- channel covariance matrix of sipé L+1) which represents
imately) by windowing in the frequency domain (by com- a certain complexity for estimation and for its exploitation,
puting the frequency domain response of the evolution of and which also requires the accumulation of quite a bit of

a channel impulse response coefficient over a number ofdata (instantaneous channel estimates) and hence sufficient
OFDM symbols). stationarity of the channel evolution (so that the channel cor-

relations only change slowly, this is the slow fading).

1 .
of channel coded data, themr , > —, M is the number

of OFDM symbols in the block considered.
The lowpass filtering can e.g. be performed by a first-

1.6. Statistical Time Domain Filtering
S . 1.8. Some Complexity Considerations
Apart from a deterministic Doppler spread (difference be-

tween minimum and maximum Doppler frequencies), there Many operations get simplified if the pilots appear in a reg-
is also a Doppler profile in which the power may be dis- ular pattern corresponding to a certain regular subsampling
tributed unevenly over the Doppler frequencies. This leadsOf the tones, even if the position of the subsampling grid

to a reduced effective Doppler spread. varies between OFDM symbols.
. The complexity of filtering/interpolating the brute fre-
P effective Doppler spread quency domain channel es}imate directly in the frequency
* " deterministic Doppler spread domain is proportional taV' (the number of data tones)

For inst ider th ¢ f atw th ch and the number of pilots involved in one interpolation oper-
orinstance, consider the extreme case of a o path chanz ;. , (= filter length in number of tones spanned, divided by
nel with one path having Doppler shiftfp, where fp is

. subsampling factor in pilot tone positioning). If the pilots
the Doppler frequency, and the other path having Doppler ; . P
shift — fp. Then the deterministic Doppler spreacifp appear in a regular pattern, the interpolation is frequency

h the effective Doppl dis in fact for i tinvariant (except for the two borders).
whereas the effective Doppler spread is in fact zero (for jus For the transformation of channel estimates between the
two specular paths).

L . . . time and frequency domains, no complete FFTs are required
The exploitation of the statistical information in both 9 y P d

i df d : b ; d iointly b but so-calledpruned FFTs can be used, leading to lower
Ime and irequency domain may be periormed Jointly by complexity. For the IFFT to transform the brute frequency
a (channel impulse response coefficient) delay dependen

h L . . ) . Eiomain channel estimate to a channel impulse response with
Wiener filter in thewflme domf":un. A flrst.order filter would finite delay spread, one transforms a subsampled signal (if
be of the form.————. A first-order filter though does  pijots appear at a subsampling grid) into a signal with lim-

not allow to capture the details of the Doppler profile, only ited duration (or of which only a limited duration is of inter-

its bandwidth. The use of a first-order filter appears to be €st). (note that due to the (possible) subsampling in the fre-
insufficient to model the finite bandwidth Doppler profile at gquency domain, we get a periodic signal in the time domain,
high Doppler speeds. so L < N/(subsamplingfactor) required). So there is

a double pruning aspect. Perhaps chooding N/(sub-
sampling factor) may lead to a particularly interesting (low)
complexity.

The channel impulse responses may be correlated between For the FFT to transform the finite delay spread impulse
the different antennas. One can exploit this correlation to response to the frequency domain at all tones (of which only
further reduce the channel estimation variance. This leadsthe data tones are needed, but they constitute the majority of

1.7. Spatial Domain Filtering

to ] ] the tones), pruning can again be used due to the finite length
ag > = —— (17) of the signal to be transformed.
p  #RXantennas The filtering in the time domain can be time-invariant

The lower bound (reduction k) is attained when each spa- over a block (a block can be made to correspond to a chan-
tial channel impulse response coefficiérit] corresponds  nel coding block), or can be made adaptive for continuous



processing. In the case of block processing, the filter canspectrum is assumed independent of delay (not true). The

be kept time-invariant at the edges of the block if some date Doppler spectrum is estimated via a thresholded periodogram
from neighboring blocks can be used. Or the time-invariant on the estimated channel coefficients, averaged over the de-
Wiener filtering should be replaced by time-varying Kalman lays.

filtering if optimality is desired throughout the block and no

data from neighboring blocks can be used. The complexity 1. 11. Channel Variation within an OFDM Symbol Pe-

is proportional to the order of the FIR Wiener or Kalman rjod

filter.
Channel variations within an OFDM symbol lead to inter-

carrier interference (ICI) (non-orthogonality of the tones).
For the ICI to be negligible, we need the Doppler spread
Channel estimate filtering (refining) requires the estimation fq to be small compared to the intercarrier spacif@s.

1.9. Auxiliary Parameters to be Estimated

of some additional parameters: It appears that the ICI problem is negligible in WLAN ap-
_ _ ) ) plications with low mobility. Nevertheless, the following
¢ Noise variance;, (see higher). references deal with ICI.

e Channelimpulse response delay spread or even powerP [7]<cor1np2utes; UQI’IIV(;FSGJ up_petLbound O%the ||C| fpower
delay profile: can be obtained by (noncoherently) av- -~ 1¢1 = 12(2mfaT.)” wheref, is the (max) Doppler fre-

eraging channel impulse response coefficient estimate4¢"Y andl/T's is the subcarrier spacing. Note that for

powers in time (and correcting/thresholding for esti- the channel estimation noise to have negligible impact, it
mation noise variance, see higher) suffices thatM < 1. However, for the ICI to have negligi-

. . 1
ble impact, we require tha;c; < SW?!
[8] introduce a non-parsimonious time-varying channel

model (matrix) leading to a huge number of parameters to
be estimated and the complexity of the associated equaliza-
tion problem is also forbidding.

[9] perform a statistical Taylor series expansion of chan-
nel coefficients in terms of frequengyaroundf = 0. The
resulting parameter estimation and equalization problems
1.10. Solutions Proposed in the Literature are a bit cumbersome but the technique works.

[10] express the variation of the channel impulse re-
sponse coefficients over an OFDM symbol in terms of sub-
carriers. This leads t& becoming a banded matrix instead
of a diagonal matrix, with the number of diagonals being
the Doppler spread expressed in terms of subcarrier spac-

e Doppler spread and profile, or channel impulse re-
sponse coefficient temporal correlation sequence: can
again be estimated by computing temporal correla-
tions of estimated channel coefficients and correct-
ing the correlation at lag zero for the estimation noise
variance (see below).

[2]: comparison of deterministic and statistical frequency
domain filtering (no temporal filtering, single antenna). Es-
timation/filtering performed in the time domain via weight-
ing matrices

[3]: analysis of the MSE of refined channel estimates i o
ing. The channel estimation becomes one of estimating one

obtained by 2D filtering. For the brute channel estimate, . | bearri h
the use of all data (decision directed) is assumed. For theMPulse response per subcarrier component. The tempo-

design of the 2D LMMSE filter, a fixed power delay pro- ral equalization problem gets transformed into an equaliza-
file and a fixed Doppler profile are assumed and the effection paoblem in the frequency domain with possibly lower
on the MSE due to a mismatch in these two profiles is an- spread.

alyzed. Itis concluded that it is more robust to do 2D de- .

terministic filtering with an overestimated delay spread and 1.12. Extension to MIMO Channels

an overestimated Doppler spread. One should note that thign the MIMO transmission case with transmit antennas,

conclusion is reached because no attempt is made to estiz; tohen in OFDM symbolm we get the following input-
mate the power delay and Doppler profiles. In [4], the same output relation

analysis is performed and the same conclusions are reached
when the brute channel estimate is pilot based. u,[m] = H,[m] a,[m] +w,[m] (18)
[5]: delay-dependent temporal Wiener filter coefficients N Y Y=
are determined from linear prediction coefficients for the
estimated channel coefficients, plus knowledge Hf See wherea, [m] is a vector ofg symbols belonging to some
also [6] for related work. finite alphabet (constellation) when we consider a normal
[1]: the 2D channel correlation function is assumed to data transmission tone. In the case of a pilot tone, the vec-
be separable: the power delay profile gives the channel co+or a,,[m] can have an arbitrary value, with for instance only
efficients at each delay a separate variance, but the Dopplea single entry being non-zero. In any case, it is clear from

px1 pPXq gx1 px1



(18) that from one pilot tone in one OFDM symbol, it is  \hereH,, [m] is the estimation error associated with the re-

only possible to sound,, [in] in a single direction, the di-  fined channel estimate. We assuma,finjaZ! [m] = 02 I,
rection of the vecton,, [m]. Therefore, in [11] as in many gg

other proposals, it is suggested to put and consider jointly
pilot symbols ing consecutive OFDM symbols. If the chan- E(ﬁn [m] an[m])(ﬁn (m]a,[m))? = o2 021 (24)
nel would be arbitrarily time-varying in time and frequency H

it would be impossible to estimate the channel. So it is ab- whereas

solutely indispensable to exploit some type of correlation, Hi 1 2

in time and/or frequency and/or space, to estimate a MIMO Ewn[mlw, [m] = oy, Ip . (25)

channel. Hence we obtain the relative noise increase (misadjustment
To find the appropriate expression for the misadjustment factor) :

factor in the MIMO case, let us go through the following o202

elementary steps. Assume for a moment that a pilot tone M=-2_ (26)

2
is activated forq consecutive OFDM sybols and that the Tiw

channel would not vary over that time span. Then we can which should bex 1 in order for the channel estimation er-

write with Matlab-type notation ror to lead to negligible performance degradation. Now, to

obtaingZ in (22), we assumed we hayepilot tones, but in

u,[m:m+q-1] = Hy[m] a,[m: m+q—1] fact we have on the averagepilot tones per OFDM sym-

—— —— — . :
pxq pxq axgq bol. On the other hand, without any correlation, the channel
+ wlm s mtg—1] (19) at each tone can be an independent variable. Hence, with-
AnlM a7 out filtering of the brute channel estimate we hav%: =
pXq

T, which leads, with (26) to
where the elements iw,[m : m+g¢—1] are assumed all

i.i.d. circular Gaussian with varianeg?, and we assume, o2 N

as suggested in [11] alsa,, [m : m+q¢—1] to be a multiple M=q g P > 1 @7)

of a unitary matrix (orthogonality of the pilots for different

channel inputs): which isq times the value for the SIMO case. With channel

" estimate filtering one can obtain

a,

[m : m+q—1]a,[m : m+q—1] = qop I, . ,
o

So qo% is the total transmit power at a pilot tone in one M=q (?5 p AP OFs T4 OT,s A5 A < 1. (28)

OFDM symbol. Assuming > ¢, the LS estimate, which is P
here also the deterministic ML estimate Jdf, [m] is The reduction factors are unchanged from the SIMO case,
N ) except for the exploitation of spatial information. The cor-
H,[m] = 25 un[m:mtq—1]aj[m: m+q—1] relation between antennas at both TX and RX sides may be
— H,[m]+ H, m] exploited now to obtain
(20) 1 1 -
> — = .
where as = pq #RXantennasx # TX antennas (29)
~ 1
H,[m] = 7oz [m : m+q—1]a] [m : m+q—1] . The lower bound (reduction byq) is attained when each
P

(21) spatial channel impulse response coefficlelnf corresponds
The channel estimation error covariance matrix (seen from 0 the contribution of only a single path at the corresponding
the RX side) is delay. In that case, they coefficients ofh[n] are propor-
tional to just a single rapidly varying complex path ampli-
tude, andh[n| is a rank one matrix, proportional to the RX
array response for the path considered times the transpose of
the TX array response. The direction of these array response
As in (13), the (refined) channel estimation error leads to vectors varies only slowly, with the physical TX and RX di-

- - 2
ETL, [mH [m] = % I, = 0% 1, (22)
P

noise increase at data tone P[m|: rections of the path. Note that in this extreme correlation
case, the reduction facters can beq times smaller than
up[m] = Hp[m]an[m] + w,[m] in the SIMO case, which would offset the fact that the brute
= H,[m]a,[m] + H,[m] a,[m] + w,[m] misadjustment ig times larger in the MIMO case compared

(23) to the SIMO case.



1.13. Summary Channel Estimation Challenge blind time-varying channel estimation. The BEM has also
been revived and generalized in the canonical coordinates

The exploitation of any factax is equivalent in reducing the concept of A. Sayeed.

excess noisd1 due to channel estimation error. In practice, The choice of the channel model interacts with the de-

itis (largely) sufficient to reducé{ to M = 0.1. Fromthe  gjon of the modulation format. For instance, a stationary
previous d|sc_u55|on it is clear that t_hIS goal can be reache%odel may be more appealing for the case of long transmis-
in a wide variety of ways. Theoreticaliyt can be made sion packets (e.g. corresponding to a packet of data within
much smaller than 1. ) one convolutional coding operation) whereas the BEM model
_ Hence the challenge becomes: what is the cheapest waynignt he more appealing in the case of shorter packets (e.g.
in terms of computational complexity (which distribution of OFDM symbols), the length of which would correspond to

a’s) to getM downtoe.g.0.1? a potential subsampling period of the channel variation (re-
lated to maximum Doppler spread) appearing in the BEM.
2. WIRELESS CHANNEL MODELING AND In the case of the stationary model, the stationarity sug-
ADDITIONAL ESTIMATION CONSIDERATIONS gests Wiener filtering of brute channel estimates, but the
transients at both edges of the packet may be more prop-
2.1. Non-Parametric vs. Parametric Channel Models erly treated with a Kalman Filter/Smoother. For the BEM

o ~model, the question arises whether to model potential cor-
We have seen that the proper exploitation of correlations re|atons between basis expansion coefficients, or just their
and structure in the channel is crucial to optimize the esti- arjances. In the case of cyclic prefix systems, the channel
mation qu_ality of the channel. The char_mel structure can bemay become time-varying within the block. In that case, in-
captured in several ways. Two opposite ways correspondiercarrier interference (ICI) arises in the frequency domain
to non-parametric and parametric type approches. In the[0] and hence equalization becomes complicated in both
non-parametric approach, one simply uses all correlationstjme or frequency domain. The domain to be preferred in
between all channel dimensions. In a parametric approachynat case may be the domain representing the least spread.
one may stay more closely to a physical description of the A fyrther complication arises if simplified equalization
channel, emphasizing the pathwise contributions. Regard-ecnniques are employed such as linear equalizers. Starting
less of the approach, a compromise needs to be made ifom a linear stationary model for the channel, the model
the model complexity to trade off approximation error for pecomes non-linear in principle for the equalizer, the non-
estimation error in the correlation sctructure. For the non- jinearity inducing also an increase in variation speed. G.
parametric approach, this may lead to the introduction of | a5 has introduced [13] linear (and decision-feedback)
separable correlation models. In the parametric approacheqyalizers in which the filter coefficients are also made time-
this leads simply to a limitation of the number of paths ac- varying by expanding them into a BEM. One amazing result
counted for. The crucial question is which approach allows i5 that for FIR channels with finite Doppler spread, there
for the best exploitation of the correlation structure and pre- gyist zero-forcing FIR equalizers with finite variation band-
dictibility for a given parameterization complexity/cardinality.\yigth. Due to the nature of BEM’s however, the equalizer
One question at the heart of this issue is the degree of SPeCsetting will only be valid over a finite time-span.
ularity of the channel. These issues are debated in more
detail in [12]. 2.3. Optimization of Information Sources
Pilot signals or training symbols are not the only informa-
tion avaiable to estimate the channel. Other forms of infor-
For the purpose of equalizing a time-varying channel, the is- mation include received signal subspaces, received signal
sue arises as to which model to use to express the temporatecond-order statistics (induced by white or colored trans-
variation. Two appraoches can be introduced: modeling themitted signals), higher-order statistics, transmitted symbol
(vectorized) channel impulse response as a stationary veceonstellation (exploited in full or partially, as in constant
tor process, called the stationary model for short, or using modulus techniques; including induced cyclostationarity due
a Basis Expansion Model (BEM) in which the time-varying to temporal variation of the input symbol variance). The ex-
channel coefficients are expanded into known time-varying ploitation of all these forms of information about the chan-
basis functions, and the unknown channel parameters areel, on top of the pilots can be called semiblind channel
now no longer the channel coefficients but the combination estimation [22]. The question arises which design leads to
coefficients in the BEM. The BEM model was introduced the optimal mix of these various forms of information. To
by Y. Grenier around 1980 for time-varying filtering, by E. properly answer this question, an information theoretic ap-
Karlsson in the early 1990'’s for time-varying channel mod- proach is required though, and probably the best criterion is
eling and by M. Tsatsanis and G. Giannakis in 1996 for the maximization of the channel capacity. Some initial steps

2.2. Stationary Channel Models vs. BEMs



in this direction were taken in [14]. The effect of channel spatial diversity. Spatial multiplexing in MIMO systems
estimation error on the Matched Filter Bound was addressedcan be viewed as a limiting case of Spatial Division Multi-
in [12]. The optimal design of the pilot structure when only ple Access (SDMA) in which the various users are actually
pilot information is used for channel estimation is addressed colocated. The spatial dimension of different directions in
e.g. in [23]. One important observation is that in a semi- SDMA needs to be replaced with a rich multipath scattering
blind approach, the question arises as to which minimal environment in spatial multiplexing.

amount of pilot information is required. If the semiblind Signal coding to exploit different diversity sources is a
approach is defined for instance as based on pilots and thenixing operation that disperses the influence of one input
finite alphabet of the unknown symbols, then a typical sem- bit/symbol to several output bits/symbols. Signal coding
blind solution will be iterative joint estimation/detection of can be done in two ways (that could be viewed as two ex-
channel and data. The minimal amount of pilot data is then tremes of a continuum of possibilities). One is traditional
the amount that will permit this iterative process to converge channel coding. Consider e.g. recursive convolutional cod-
properly. ing, then an input bit will influence all output bits from the
time of the input bit onwards. Another approach is linear
precoding, which is essentially an operation of linear pre-
filtering of signals before transmission. For instance, CPSC
systems can be viewed as linearly precoded OFDM systems
The advantage of OFDM or Cyclic Prefixed Single-Carrier with the DFT matrix as mixing matrix.

(CPSC) systems [21] is that the equalization of a frequency-  Linear precoding allows for a very precise and possibly
selective channel gets simplified significantly due to the transaeighted distribution of input signals over diversity sources.
formation of a convolution in time domain to a simple prod- Linear precoding does not give any coding gain though. Fi-
uct in frequency domain. A major consequence of this or- nite field coding provides coding gain, but Singleton has
thogonality between data in OFDM is the resulting orthog- shown that there is a limit on the number of diversity sources
onality between data and pilots. This orthogonality simpli- that can be exploited for a certain coding complexity. There-
fies a lot, as shown earlier in this paper, the estimation of fore, the best approach is probably a mix of the two ap-
the channel, based fully on all pilot data, the computation proaches and optimization issues arise in the design of this
of the channel estimation error, the statistical description of mix, see [15] for some initial work in this direction.

the estimation error and its effect on the detection of the
data in the form of an increase in additive noise. For non-
orthogonal modulation formats (due to intersymbol inter-
ference (I1SI), multiple access interference (MAI), or even
intercarrier interference (ICI)), the handling of all these as-
pects relative to the channel estimation gets significantly
more complex.

2.4. Interaction between Multiple Access Format and
Channel Estimation

4. ROBUST RECEIVER DESIGN BASED ON
UNCERTAIN PARAMETERS

Consider a LMMSE receiver (RX). It's computation requires
knowledge of the channel, and the interference plus noise
covariance matrix or the total signal covariance matrix. The
signal covariance matrix is in principle straightforward to
3. LINEAR VS. FINITE-FIELD CODING FOR estimate, by replacing statistical averaging with temporal
DIVERSITY EXPLOITATION averaging. In CDMA systems however, if the spreading
factor is 256, then a LMMSE RX based on only one symbol
Space-time coding (STC) is about preparing signals to trans-period of data involves a covariance matrix of st56 x 256
mit so that after passing through the channel, each transmitif no oversampling is used. To estimate such a matrix cor-
ted bit will have benefitted from all (spatial, frequential and rectly, an amount of data (here in symbol periods if the cy-
temporal) diversity sources in the channel. In Single-Input clostationarity is at symbol period) is required that is at least
Multi-Output (SIMO) systems, nothing special needs to be several times the dimension of the matrix. For most CDMA
done at the transmitter to benefit from all (spatiofrequential) systems, this becomes impossible since the channel cannot
channel diversity. Except in OFDM systems, in which the be assumed to be time-invariant over a thousand symbol
frequency diversity gets lost if uncoded symbol streams getperiods. Not to mention the computational complexity in-
put independently on each subcarrier. Also, if temporal di- volved because the matrix needs to be inverted. Therefore,
versity is present and needs to be exploited, some temporah number of recent approaches (e.g. by Xiaodong Wang or
coding needs to be performed. Michael Honig) have focused on projecting the signal vec-
STC applies to MISO systems, and also to MIMO sys- tor on a subspace first to reduce the dimensionality of the
tems in which the spatial multiplexing aspect gets added. problem (the PE technique to be discussed later leads to one
Spatial multiplexing is the transmission of multiple data possible choice for the subspace).
streams simultaneously and allow their unmixing based on  Another approach involves taking the theoretical expres-



sion of the LMMSE RX, hence of the received signal covari- problems, or find approximate Gauss-Newton adaptive fil-
ance matrix. This expression involves essentially the chan-ters. These familiar approximation techniques involve

nel impulse response, a potentially simple parameterization _ _ ) _

of the noise plus interference covariance matrix and pernaps ~ ® Making the matrix Toepliz, to allow Fast Levinson-
a few other parameters (signal power). Estimates for these style solutions

various parameters can be produced. The classical approach
is then to take the theoretical expression of the LMMSE RX
and substitute the theoretical parameters by their estimated
values. In CDMA systems however, the estimation error o making the matrix banded, in a moving average mod-
on these parameters may be significant and hence the effect eling operation

of this estimation error on the performance of the LMMSE

RX may be far from negligible. Hence, the design of robust e making the matrix inverse banded, in an autoregres-
LMMSE RXs is called for. Robust estimation is a domain sive modeling operation

in the realm of automatic control that has existed for quite a ) . .
while now. However, applications of these ideas to LMMSE Another approximate technique has recently become quite
RX design are spurious. popular in communications and is based on quite classical

iterative techniques from numerical analysis to solve linear

systems of equations. The technique consists in splitting

5. HIGHER-LEVEL ADAPTATIVITY ISSUES IN the matrix to be inverted into its diagonal and off-diagonal
ADAPTIVE FILTERING parts and putting the off-diagonal part on the RHS. The re-

_ L ) L sulting iterative solution for the system of equations corre-
Classical adaptive filters work with a certain filter order and sponds to expanding the matrix to be inverted as a polyno-

a certain stepsize or forgetting factor. A lot of work has mial in the matrix itself, hence the name Polynomial Ex-
k_)een done.on the optimal filter order selection and the Qp'pansion (PE) coined by Moshavi [18], and reinvented many
timal stepsize selection. However, most of the work on fil- yines since. The technique corresponds to conjugate gradi-
ter order selection assumes a constant optimal filter. And gt tochniques and the multi-stage Wiener Filter introduced

most of the work on stepsize selection assumes a stationby Scharf, Goldstein and Reed, and applied to CDMA by
ary (and possibly known) optimal filter variation. Recently, Honig. The PE techniques are extremely well suited to

some work has appeared on the dynamic filter order SeIeC'CDMA applications because in CDMA, the matrices to be

tion in autoregressive signal models, based on a maximumy,ereq are typically very strongly diagonally dominated,

a pogtepon (MAP) appfoa‘:h- i with all non-diagonal elements being non-zero (and of com-
Similarly to dynamic model order selection, one can yarapie variance) but small: the non-diagonal elements typ-

consider the dynamic selection of tracking capacity by COM- 41y, correpond to correlations between different spreading

bining the outputs of several adaptive filters, running at dif- .qas see [19] for application to the uplink and [20] for
ferent time scales, as e.g. in [16]. The introduction of application to the downlink.

multiscale BEMs based on wavelets might be of interest The application of PE to the computation of the out-

here. Certain results by Niezwiecki [17] might also be use- 4 of 5 | MMSE equalizer leads to an iterative algorithm
ful here. These reults show that, at slow variation, the RLS that is in fact simply a turbo equalizer in which the non-

filter estimates obtained by RLS algorithms with different |ine 4 getection operations in the feedback are removed (the
time scale/forgetting factor are essentially related by a sim- ¢, .« is true for LMMSE multi-user detection (MUD) vs
ple filtering operation directly on the "faster” adaptive fil- 1., MUD, also known as Parallel Interference Cancella-

ter coefficients to obtain the "slower” adaptive filter coeffi- o, (p|c)). The advantage of an iterative implementation of
cients. This author believes that the issues of dynamic fllterthe LMMSE equalizer via PE (or a nonlinear turbo equal-

order and t@me s_cale sel_ectio_n, V_VhiCh are issues of h_igher'izer) is that only filtering operations with the channel or
level adaptlwty in adaptive filtering, have_ no_t yet g_alr_1e_d its matched filter are required. This means a simplification
the attention that they deserve when considering optimizing,, handling time-varying channels, and quite simply a sim-

adaptation performance. plification because no other filters need to be computed or
adapted. This leads to further simplifications in CDMA sys-
6. APPROXIMATE MATRIX INVERSION tems in which sparse (specular) channel models can be used
TECHNIQUES IN SPACOM advantageously to replace the channel matched filtering de-
spreading cascade by a pathwise despreading maximum ra-
Over the years, a number of different approximate matrix tio combining cascade (as in the RAKE receiver), exchang-
inversion techniques have arisen in signal processing, toing an increase in the number of despreading operations
approximately solve the normal equations of least-squares(additions/subtractions with special purpose hardware) for

e making (furthermore) the matrix circulant, to allow
diagonalization via the DFT
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