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Blind and Semi-Blind FIR Multichannel
Estimation: (Global) Identifiability Conditions

Elisabeth de Carvalho, Member, |EEE, Dirk Slock, Member, |EEE

Abstract— Two channel estimation methods are often opposed:
training sequence methods which use the information induced
by known symbols and blind methods which use the information
contained in the received signal, and possibly hypotheses on the
input symbol statistics, but without integrating the information
from known symbols, if present. Semi-blind methods combine
both training sequence and blind information and are more
powerful than the two methods separately. We investigate the
identifiability conditions for blind and semi-blind FIR multi-
channel estimation in terms of channel characteristics, received
data length, input symbol excitation modes as well as humber
of known symbols for semi-blind estimation. Two models corre-
sponding to two different cases of a priori knowledge on the
input symbols are studied: the deterministic model in which
the unknown symbols are considered as unknown deterministic
quantities and the Gaussian model in which they are considered
as Gaussian random variables. This last model includes the
methods using the second-order statistics of the received data.
Semi-blind methods appear superior to blind and training
sequence methods, and allow the estimation of any channel
with only few known symbols. Furthermore, the Gaussian model
appears more robust than the deterministic one as it leads to less
demanding identifiability conditions.

Index Terms—channel estimation, blind, semi-blind, multi-
channel, SIMO, identifiability, antenna arrays, oversampling,
space-time, spatiotemporal, Gaussian input.

I. INTRODUCTION

HE development of wireless communications has given

rise to a host of new research problems in digital commu-
nications, but has also refocused attention on some classical
problems. Equalization is one of the main signal processing
issues in digital communications over channels with InterSym-
bol Interference (ISI). In mobile communications, the ISI prob-
lem, due to multipath propagation, is particularly difficult as
the propagation channels characteristics are severely subjected
to pathloss and fading, and propagation characteristics change
rapidly.
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Traditional equalization techniques are based on training.
The sender transmits a training sequence (TS) known at the
receiver which is used to estimate the channel coefficients or to
directly estimate the equalizer. Most of the actual mobile com-
munication standards include a training sequence to estimate
the channel, like in GSM [1]. In most cases, training methods
appear as robust methods but present some disadvantages.
Firstly, bandwidth efficiency decreases as a non-negligible
part of the data burst can be occupied: in GSM, for example,
20% of the bits in a burst are used for training. Furthermore,
in certain communication systems, training sequences are not
available or exploitable, when synchronization between the
receiver and the transmitter is not possible.

Blind equalization techniques allow the estimation of the
channel or the equalizer based only on the received sig-
nal without any training symbols. The first wave of blind
techniques were based on Higher-Order Statistics (HOS).
The introduction of multichannels, or SIMO (Single Input
Multiple Output) models where a single input symbol stream
is transmitted through multiple linear channels and sampled
at the symbol rate, has given rise to a whole bunch of new
blind estimation techniques that do not need higher order—
statistics. The most popular SOS estimation techniques suffer
from a lack of robustness: channels must satisfy diversity
conditions and some blind SOS (Second OS) methods can
fail when the channel length is overestimated. Furthermore,
the blind techniques leave an indeterminacy in the channel
or the symbols, a scale or constant phase or a discrete phase
factor. This suggests that SOS blind techniques should not
be used alone but with some form of additional information.
However, the same is true also for training sequence based
methods, especially when the sequence is too short to estimate
the channel parameters. Semi-blind techniques are a solution
to overcome these problems.

We assume a transmission by burst, i.e. the data is divided
and transmitted by burst, and we furthermore assume that
known symbols are present in each burst in the form of a
training sequence aimed at estimating the channel or simply
some known symbols used for synchronization or as guard
intervals, like in the GSM or the DECT hburst. In this typical
case, when using a training or a blind technique to estimate
the channel, information gets lost. Training sequence methods
base the parameter estimation only on the received signal
containing known symbols and all the other observations, con-
taining (some) unknown symbols, are ignored. Blind methods
are based on the whole received signal, containing known and
unknown symbols, possibly using hypotheses on the statistics
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Fig. 1. Semi—Blind Principle: example of a GSM burst.

of the input symbols, like the fact that they are i.i.d. for
example, but no use is made of the knowledge of some input
symbols. The purpose of semi-blind methods is to combine
both training sequence and blind informations (see Fig. 1) and
exploit the positive aspects of both techniques.

Semi-blind techniques, because they incorporate the in-
formation of known symbols, avoid the possible pitfalls of
blind methods and with only a few known symbols, any
channel, single or multiple, becomes identifiable. Furthermore,
exploiting the blind information in addition to the known
symbols, allows to estimate longer channel impulse responses
than possible with a certain training sequence length, a feature
that is of interest for the application of mobile communications
in mountainous areas. For methods based on the second-
order moments of the data (which we will call Gaussian
methods), one known symbol is sufficient to make any channel
identifiable. In addition, it allows to use shorter training
sequences for a given channel length and desired estimation
quality, compared to a training approach. Apart from these
robustness considerations, semi-blind techniques appear also
very interesting from a performance point of view, as their
performance is superior to that of training sequence and blind
techniques separately. Semi-blind techniques are particularly
promising when TS and blind methods fail separately: the
combination of both can be successful in such cases.

In this paper, we study the identifiability conditions for
semi-blind estimation. A treatment of the estimation perfor-
mance in the form of the Cramer-Rao Bound (CRB) and a
performance comparaison with blind and TS estimation can
be found in [2]. We will concentrate on two different models
corresponding to two different forms of a priori knowledge
on the unknown input symbols. The first model, the determin-
istic model, does not exploit any knowledge and considers
the unknown input symbols as deterministic quantities. In
the second model, the Gaussian model, the unknown input
symbols are considered as (usually white) Gaussian random
variables with known parameters. The Gaussian model could
appear absurd as the input symbols are in fact discrete—valued.
As a first response, it should be noticed that the Gaussian
model includes the methods that are based on the first and
second—order moments of the received signal and hence of the
input symbols. Blind methods that consider the input symbols
as i.i.d. random variables and that are based on the second-
order moments of the received signal, like the prediction [3] or
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the covariance matching methods [4], belong to the Gaussian
category. More arguments for considering a Gaussian model
are given below and in section I11-B. In section 111-C, the two
models are put in perspective and compared to the methods
exploiting the discrete alphabet nature of the input symbols.

Parameters will be called identifiable if they are determined
uniquely by the probability distribution of the data. In the blind
case, the definition differs slightly as blind estimation leaves
some indeterminacies: the deterministic model can estimate
the channel up to a scale factor and the Gaussian model up to
a phase factor. Parameters will be called identifiable if they are
identifiable up to these blind indeterminacies. ldentifiability
conditions for blind and semi-blind channel estimation for
both models are given in terms of characteristics of the
channel, received data burst length, input symbol excitation
modes, as well as number of known symbols for semi-blind
estimation.

Blind identifiability conditions especially for the determin-
istic methods can already be found in the literature [5], [6]
but never in a complete way. They are often only formulated
in terms of channel characteristics, the well known condition
being for the channel to be irreducible, i.e. with no zeros.
As far as the burst length and input symbol excitation modes
are concerned, only sufficient conditions are given. For blind
deterministic methods, we give necessary and sufficient con-
ditions. It has to be mentioned that necessary and sufficient
conditions appear in [5], but including a superfluous condition.

Let us stress that, unlike deterministic methods, blind Gaus-
sian methods can estimate the zeros of a channel: they only
cannot determine if a zero is minimum- or maximum-phase.
This fact is not widely known and the irreducibility condition
for Gaussian methods is sometimes imposed unnecessarily.
Blind Gaussian methods appear thus more robust than blind
deterministic methods.

We show that semi-blind methods can identify any chan-
nel such as irreducible channels, multichannels with zeros,
monochannels, and we determine the number of known sym-
bols required. Only a few known symbols are required, fewer
than required for pure training sequence based estimation. For
an irreducible channel, only 1 known symbol is sufficient in
the deterministic model. Again the Gaussian model appears
more robust as only 1 known symbol (not located at the edges
of the burst) is sufficient for any type of channel! The semi-
blind results are given for known symbols that are grouped; a
small discussion is also provided for the case when they are
dispersed over the burst.

We shall use the following notation and acronyms:

()*, ()T, ()"  Conjugate, transpose, conjugate transpose
()F Moore—Penrose Pseudo—Inverse

tr(A), det(A)  Trace and determinant of matrix A
vec(A) [AT, AT,--- AT T

® Kronecker product

6, 6° Estimate, true value of parameter 6
Ex Expectation w.r.t. the random quantity X
Re(.), Im(.) Real and imaginary part

I Identity matrix with adequate dimension
with respect to
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CRB Cramer—Rao Bound
FIM Fisher Information Matrix
ML Maximum Likelihood

Il. THE MULTICHANNEL MODEL

We consider here linear modulation of a single user signal
over a linear channel with additive noise. The overall channel
impulse response is modeled as FIR. We consider here the FIR
multichannel case [7], [8], [9] which can arise in a number of
ways as indicated in Fig. 2. The discrete-time vector received
signal at symbol rate can be written as:

N—-1
y(k) = > h(i)a(k—i) + v(k) (1)
=0

where the a(k) are the transmitted symbols, y(k) =
[y1(k) - ym (k)] and similarly for v(k) and the N vector
channel impulse response samples h(k). m is the number of
subchannels. In the case of real symbols [10], [11], we can
assume that all quantities are real (see Fig. 2). In all cases, we
can write the channel input-output relationship as

y(k) = HA(k) +v(k), H =[h(0)---h(N-1)],

A(k) = [a(k) - a(k—N+1)]" . @)

The output is a vector signal corresponding to a SIMO (Single
Input Multiple Output) or vector channel, consisting of m
SISO discrete-time channels. Note that monochannels appear
as a limiting case of multichannels for which all the zeros are
in common (except that in the multichannel case, the white
noise variance is identifiable).

Let H(2) = SN h(i)z7% = [Hi(2)---Hp(2)]T be
the SIMO channel transfer function. Consider additive in-
dependent white Gaussian noise wv(k) with ryp(k—i) =
Ev(k)vf (i) = 021,03, and Ev(k)vT(i) = 0 in the
complex case (circular noise). Assume we receive M samples:

Y m(k) = Tar(h) Ape(k) + Var(k) (3)

where Y s (k) = [yT (k) - - -y (k—M+1)]T and similarly for
V m (k). Tar(h) is a block Toeplitz matrix with A/ block rows
and [H 0,5 (a—1)] as first block row:

h(0) R(N-1) 0 -+ 0
Tu=| © @(0) h(J-\f—l)
. . 0
0 - 0 h(0) h(N-1)
4
and .
h= [hT(O) ~-hT(N-1)| . )

The channel length is assumed to be N which implies h(0) #
0 and h(N—1) # 0 whereas the impulse response is zero
outside of the indicated range. We shall simplify the notation
in (3) with £ = M —1 to

Y =T(h)A+V. 6)

v(t) 4
i 2

“ b——

T=symbol period

Discrete—time Channels
at symbol rate (a)

Discrete—time Channels
(b) at symbol rate

Fig. 2. Multichannel model: case of (a) oversampling, (b) multiple antennas
and (c) separation of inphase and quadrature components when the input
symbols are real. Example of a multichannel with 2 subchannels.

Commutativity of Convolution  We will need the commu-

tativity property of convolution:

T(h)A = Anh @)
where: A, = A1 ® I,,,
a(M-1) a(M-2) a(M—N)
R IOV : ®
a(0) a(~N+1)

Sometimes, we will simplify A,, to A.
Semi-Blind Model
be written as: A = P

The vector of input symbols can
Ak
Ay

known symbols and Ay the My = M+ N —1—Mp unknown

symbols. The known symbols can be dispersed in the burst and

‘P designates the appropriate permutation matrix. For blind

estimation A = Ay, while A = A = Apg for TS based

estimation. We can split both parts in the channel output as

T(h)A =Tk(h)Ak + Tu(h)Ay.

Irreducible, Reducible, Minimum-phase Channels A
channel is called irreducible if its subchannels H;(z) have
no zeros in common, and reducible otherwise. A reducible
channel can be decomposed as:

H(Z) = HI(Z)HC(Z)v )

where Ax are the Mg



where H;(z) of length Ny is irreducible and H.(z) of length
N, = N — Ny + 1 is a monochannel for which we assume
H.(oc) = h.(0) = 1 (monic). A channel is called minimum-
phase if all its zeros lie inside the unit circle. Hence H(z) is
minimum—phase if and only if H.(z) is minimum-phase.

Minimum Zero-Forcing (ZF) Equalizer Length, Effective
Number of Channels The Bezout identity states that for
an FIR irreducible channel, FIR ZF equalizers exist [12]. The
minimum length for such a FIR ZF equalizer is

M = min {M : Tp(h) has full columnrank} .  (10)

One may note that 7a,(h) has full column rank for M >
M. In [13], it is shown that if the m N elements of H are
considered random, more precisely independently distributed
with a continuous distribution, then
M= [E-‘ with probability 1, (11)
m—1
and M = 1 when N = 1. In this case, the channel is
irreducible w.p. 1. One could consider other (perhaps more
realistic) channel models. Consider e.g. a multipath channel
with K paths in which the multichannel aspect comes from
m antennas. Without elaborating the details, it is possible to
introduce an effective number of channels m,. which in this
case would equal (w.p. 1)

me = rank(H) = min{m,N,K} . (12)

With a reduced effective number of channels, the value of M

increases to M = w.p. 1. Note that in the first

Me —

probabilistic channJmodel leading to (11), if m > N, then
in fact m. = N, but this does not change the value of M = 1.
Another type of channel model arises in the case of a hilly
terrain. In that case, two or more random non-zero portions of
channel impulse response are disconnected by delays. If these
delays are substantial, then for the purpose of determining
M, the problem can be approached as a multi-user problem
by interpreting the different chunks of the channel as channels
corresponding to different users. Multi—user results for M [12]
could then be applied.

In general, for an irreducible channel, M < N—1 [14] in
which the upper bound would correspond to m,. = 2. Note
that m, = 1 corresponds to a reducible channel (in which
case M = ox).

We will not define here the notion of input signal excitation
modes, see for example [6], [5] for a complete definition.

I1l. DETERMINISTIC AND GAUSSIAN MODELS
A. Deterministic Model

In the deterministic model, both unknown input symbols and
channel coefficients are assumed to be deterministic quantities.
The data have a Gaussian distribution with:

my(ﬁ) = TK(h)AK + TU(h)AU ny(ﬂ) = Ji_[

Deterministic methods proceed either to the joint estimation
of h and Ay or to the estimation of & with Ay considered as
nuisance parameter (the estimation of 4 and Ay is decoupled

(13)
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from the estimation of ¢2). The estimation is based on the
received signal structure. Many blind algorithms fall into this
category, among which we find:

« The least squares approach based directly on the received
signal by Gurelli et al [15], also called Cross-Relation
(CR) method [5] or Subchannel Response Matching
(SRM) [16], and used for initializing deterministic ML
in [6].

« The (unweighed) subspace fitting approaches initiated by
Moulines et al [17].

« Blocking equalizers determined by linear prediction [8],
[12], [18].

o The deterministic ML approaches in their blind ver-
sion [8], [19], [6], [20], and in their semi-blind ver-
sion [21], [22], [23].

« Two-sided Linear Prediction or Least-Squares Smooth-
ing [24], [25], [26].

B. Gaussian Model

In the Gaussian model, the unknown input symbols are
considered as i.i.d. Gaussian random variables of mean 0 and
variance o2, and the known symbols as deterministic (of mean
Ag and variance 0). This model may appear inappropriate as
the input symbols are in fact discrete-valued. We elaborate
here further on the motivation for introducing this Gaussian
model. The next section will present the advantages of the
Gaussian methods.

The purpose of the Gaussian model is to take into account
the first and second—order moments of the data, which appear
to play a predominant in the multichannel context and are
here:

my(ﬂ):TK(h)AK, ny(a):O'?lTU(h)T[}q(h)-l-O’gI (14)

Already existing blind methods that base channel estimation
on the second-order moments of the data, and in which the
input symbols are considered as i.i.d. random variables, can
be classified into the Gaussian category: certain prediction
approaches [3] or the covariance matching method [4] belong
to the Gaussian category and give better performance than the
deterministic approaches (even when the symbols are actually
discrete valued).

These methods in fact only require the second—order statis-
tics and not the complete distribution. The Gaussian assump-
tion is intended for ML approaches for which knowledge of
the complete distribution is required. The Gaussian distribution
is the simplest distribution, leading to simple derivations and
allowing to incorporate the first and second-order moments of
the data: Y ~ N (my(6),Cyy(6)), the Gaussian hypothesis
for the symbols leads to a Gaussian distribution for Y.

A semi-blind ML method based on this model was pro-
posed in [21], [27] and shown to give better performance
than ML based on the deterministic model [22]. The blind
optimally weighted covariance matching method [28] based
on an asymptotically large covariance matrix is shown to have
the same asymptotic (in the number of data) performance than
blind Gaussian ML [29]. The Gaussian hypothesis for the
sources is also regularly used in direction of arrival finding
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and the associated ML proved to give better performance than
the deterministic ML methods [30].

In the course of this work, we became aware of [31], [32]
in which a semi-blind Gaussian ML method and correspond-
ing CRBs have been studied. The modeling of the training
sequence information in [31] is inappropriate though: instead
of the training sequence, the information considered is the
training sequence times an unknown zero-mean unit-variance
normal variable.

Unlike in the deterministic case, the input symbols in the
Gaussian model are no longer nuisance parameters for the
estimation of h. The parameters to be estimated jointly are
the channel coefficients and the noise variance.

The Gaussian model has been formulated here in the special
case of semi-blind estimation, in which case symbols are
perfectly known or unknown. It allows however a general
formulation in which any prior knowledge on the input sym-
bols at the level of first and second—order moments can be
incorporated. In this case, the received signal isY = 7 (h)A+
V with V ~ N(0,Cyv) independent of A ~ NV (A%, Caa).
A°, the prior mean for the symbols, represents any prior
knowledge on the symbols (and could be something else than
the knowledge of symbols itself) and the covariance C 44
captures the remaining uncertainty.

C. Classification of Channel Identification Methods According
to the A Priori Knowledge on the Unknown Input Symbols
Exploited

The purpose of this section is to put both deterministic and
Gaussian methods in perspective: see their respective interest
and compare them to the methods exploiting the finite alphabet
of the input symbols. We shall first concentrate on the blind
methods: they can be classified according to the increasing a
priori knowledge on the unknown input symbols exploited as
follows (see Fig. 3):

1) No information exploited: the deterministic methods.

2) Second-order statistics: the Gaussian methods.

3) Higher—order statistics.

4) Finite symbol constellation alphabet: the Finite Alphabet

(FA) methods (see [33], [34], [35], [36] for example, and
[37] for associated semi-blind methods).
5) Complete Symbol Distribution: stochastic methods [38],
[39].
Certain methods are situated in between the categories above;
e.g. optimally weighted subspace fitting is situated in between
the deterministic (subspace fitting) and Gaussian (optimal
weighting) methods. In the higher-order statistics category, we
can also consider techniques based on a partial exploitation of
the finite alphabet, such as constant modulus techniques.

1) Identification Indeterminacies: The different methods
are classified here according to decreasingly severe identi-
fication indeterminacies. As an example, for complex input
constellations, blind deterministic methods can identified the
channel up to a complex scale factor only, h = ah®, with
a € C; in the Gaussian case, the channel can be identified up
to a phase factor h = e/¥h°, with ¢ € R; FA and stochastic
methods can identify the channel up to a discrete—valued phase

factor, h = e/*h°, with ¢ taking a finite number of discrete
values (depending on the symmetry properties of the symbol
constellation).

2) Robustness to Channel Length Overestimation.: Blind
deterministic methods are not robust to channel length overes-
timation: in general, different channel lengths have to be tested
to detect the right one. The blind Gaussian, FA and stochastic
methods will automatically give the right channel order. Note
however that the deterministic semi-blind extension should
profit from the robustness of TS based methods to channel
order overestimation.

3) Performance.: The above classification respects also
the order of increasing performance. The FA methods are
particularly powerful: indeed, a performance bound for FA
methods corresponds to the case in which all the input symbols
would act as training sequence, as discussed in [2]. In [36], it
was explicitely shown that the blind deterministic CRB under
the constraint that the unknown symbols belong to a FA (case
4 in Fig. 3) yields the TS CRB (as if all unknown symbols
form a training sequence).

In view of the different points mentioned above, one may
wonder why we would like to use deterministic methods
instead of Gaussian methods and Gaussian methods instead
of FA methods. Blind deterministic methods possess the
remarkable property of providing, in the noiseless case and
with a finite amount of data, the exact channel (apart from in-
determinacies). This property (which we can call ”consistency
in SNR”) is also true for FA methods but not for Gaussian
methods in general. For a finite amount of data, second-order
statistics cannot be estimated exactly and Gaussian methods
will not allow to estimate the channel exactly up to the
indeterminacies of the Gaussian model (however, they may
allow to estimate the channel exactly up to the indeterminacies
of the deterministic model).

The blind deterministic methods also offer the advantage of
allowing closed—form solutions, or convex cost functions, thus
avoiding local minima. These methods are one-shot methods
(or almost) and so assure a high speed of convergence. For
solving blind Gaussian and FA techniques, in general, iterative
and more computationally intensive algorithms need to be used
with the risk of falling into local minima if not correctly
initialized. This risk is particularly high for the FA techniques:
the exploitation of the finite alphabet leads indeed to highly
multimodal cost functions.

The above discussion was about blind estimation. The asso-
ciated semi-blind versions inherit from their blind counterpart
properties, advantages or disadvantages. It should be noted
that the performance difference between the three classes of
methods gets smaller as more and more symbols are known.
Performance differences are most visible in the case of blind
methods, especially for ill-conditioned channels. Semi-blind
FA methods would be the ideal solution if a good initialization
quality was not so important. When the training sequence is
too short to give a good channel initialization or when blind
methods fail, the initialization could be not good enough for
FA methods to work directly. One can instead proceed in
smaller steps by first using a semi-blind deterministic method
to initialize a semi-blind Gaussian method, which could in
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Fig. 3.

turn be used to initialize a semi-blind FA method.

IV. IDENTIFIABILITY DEFINITION

Let 6 be the parameter to be estimated and Y the obser-
vations. In the regular cases (i.e. in the non blind cases), @ is
called identifiable if [40]:

VY, f(Y|0)=f(Y|§) = 6=6. (15

This definition has to be adapted in the blind identification case
because blind techniques can at best identify the channel up to
a multiplicative factor a: a € C in the deterministic model and
|al = 1 in the Gaussian model. The identifiability condition
(15) will be for 6 to equal 6’ up to the blind indeterminacy.
For both deterministic and Gaussian models, f(Y|d) is
a Gaussian distribution: identifiability in this case means
identifiability from the mean and the covariance of Y.

V. IDENTIFIABILITY IN THE DETERMINISTIC MODEL

In the deterministic model, Y ~ N (7 (h)A,02%I) and 6 =
[AT hT]T. Identifiability of @ is based on the mean only; the
covariance matrix only contains information about o2. A and
h are identifiable if:

T(h)A=T(H)A =

Ay = Ay and h =1/

A= lA’ and h = ok’  for blind estimation
(6%

for semi-blind and TS (16)

with o complex, for a complex input constellation, and real,
for a real input constellation. Identifiability is then defined
from the noise-free data which we shall denote by X =
T (h)A.

A. TS Based Channel Identifiability

The TS case could be considered as a limiting case of either
deterministic or Gaussian models in which received signal
containing unknown symbols is not taken into account. We
shall discuss the TS case here under the deterministic model
and not duplicate this discussion for the Gaussian model.

We recall here the identifiability conditions for TS based
channel estimation. From (7), 7 (h)A = Ah: h is determined
uniquely if and only if A4 has full column rank, which
corresponds to conditions (i) — (i:) below.

Necessary and suffi cient conditions [TS] The m~channel
H (z) is identifiable by TS estimation if and only if

(i) Burst Length M > N.
(ii) Number of input symbol modes > N.

Non Convexity

Classification of channel identification methods according to the a priori knowledge on the unknown input symbols exploited.

Condition (¢) is equivalent to: number of known symbols
Mg > 2N-—1. The burst length M is the length of Y,
expressed in symbol periods.

B. Blind Channel Identifiability

The deterministic blind identifiability definition (16) cor-
responds to what is called strict identifiability in [41]. The
authors of [5], [6] define identifiability based on the Cross—
Relation (CR) method: a channel is said CR-identifiable if
the channel can be identified uniquely (up to a scale factor)
by the noise—free CR method. In [6], identifiability is based
on the (complex) FIM matrix: a channel is said identifiable
if the FIM has exactly one singularity. In [6], [41], those
three identifiability forms were found to be equivalent. [5], [6]
give sufficient conditions, and necessary conditions separately
for the channel, the burst length and the symbol modes
for the CR-identifiability (extended to the FIM and strict
identifiability in [6], [41]). In [5], necessary and sufficient
conditions on the channel and the modes (but not on the
burst length though) are also given and a coupled relation
between the channel and the input symbols modes appears,
which usefulness is not guaranteed.

We give here necessary and then sufficient conditions for
deterministic blind identification in terms of channel charac-
teristics, burst length and input symbol modes. Our original
objective was to prove that sufficient conditions [DetB] are
also necessary conditions. We have not been able to prove
this so far, but we strongly conjecture that this is true.

Necessary conditions In the deterministic model, the m-
channel H(z) and the unknown input symbols A are blindly
identifiable only if

(i) H(%) is irreducible.

(ii) Burst length M > N+ {2% .
(iif) Number of input symbol modes > N + 1.
Proof: (7): If the channel is not irreducible, then 7 (h) does
not have full column rank. If A is in the null space of 7 (h),
X = T(h)A = 0 and identifiability is not possible: either
A =0 and h cannot be identified, or A #£ 0 and A’ =0 and
any h' verifies 7 (h')A’ = 0. If A is not in the null space of
T (h), we can find A’ # 0 verifying T(h)A’ = 0 and A" =
A+ A’ linearly independent from A verifies 7(h)A" = X.
The irreducibility condition is also a necessary condition for
the subspace fitting method, which, if the channel is reducible,
can only identify its irreducible part.

(44): Condition (i%) says that the number of equations (= m M)
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should be greater than the number of unknowns: Nm—1
unknowns for H, M+ N—1 for the unknown symbols.
(#37): A proof of condition (747) can be found in [41]. O
Suffi cient conditions [DetB] In the deterministic model,
the m—channel H(z) and the input symbols A are blindly
identifiable if

(i) H(z) is irreducible.
(ii) Burst length M > N + 2M.
(iii) Number of input symbol modes > N + M.
Proof: see Appendix I. |

These conditions express the fact that one should have
enough data with the right properties to be able to completely
describe the signal (or noise) subspace. The proof is based on
subspace fitting results. An alternative proof based on linear
prediction and blocking equalizers has been given in [42].

Note that the sufficient conditions above are sufficient
conditions for the subspace fitting method. A priori, sufficient
conditions for identifiability as in (15) could be weaker than
the sufficient conditions for the subspace fitting method. These
conditions appear to be sufficient for all the deterministic
methods listed in section 111-C except for SRM [6].

Note that when 2M = [Q%W (which happens in the case
m = 2), the burst length condition is necessary and sufficient.

C. Semi-Blind Channel Identifiability

Consider the general case of a reducible channel: H(z) =
Hr(z)H:(z). We first give necessary and then sufficient con-
ditions for semi-blind identifiability in the case of grouped
known symbols. We denote A/ ; as the smallest M for which
Tar(hr) has full column rank.

Necessary conditions In the deterministic model, the m-
channel H(z) and the unknown input symbols A, are semi—
blindly identifiable only if

(i) Burst length M > N+ % .

(i) Number of grouped known symbols Mg > 2N.—1.
Proof: Condition (i) says that the number of equations
(= mM) should be greater than the number of unknowns:
Nym unknowns for H;, N.—1 unknowns for H. and
M+N—1—Mg for the unknown symbols. H.(z) and the am-
biguous scale factor can only be identified thanks to the known

symbols: condition (i) gives the minimal number of grouped
known symbols necessary to identify those parameters. O

Suffi cient conditions [DetSB] In the deterministic model, the
m-channel H(z) and the unknown input symbols Ay are semi—
blindly identifiable if
(i) Burst length M > max(N;+2M ;, N.—N;+1)
(if) Number of excitation modes of the input symbols: at least
Nr+M, that are not zeros of H(z) (and hence H.(z)).
(iif) Grouped known symbols: number Mg > 2N.—1, with
number of excitation modes > N..
Proof: See Appendix IlI. |
For an irreducible channel, 1 known symbol is suffi-
cient. For a monochannel, 2N—1 grouped known symbol
are sufficient. If 2V—1 grouped known symbols containing

N independent modes are available, condition (ii) becomes
superfluous.

Identifiability is also guaranteed with the same number of
known symbols in the case where the known symbols are not
grouped. We shall omit the details of the proof here, but to
give some elements of the proof, it can be shown that FIM
regularity holds under conditions very similar to [DetSB],
which implies local identifiability. In order to have global
identifiability, the burst length should be larger however.

In case the known symbols are dispersed and all equal to
0, the sufficient conditions still hold (except that (iii) can be
relaxed to My > 2N.—2) but the channel is now identifiable
up to a scale factor only. When those zero known symbols
are not sufficiently dispersed however so that at least N, of
them are grouped, it is easy to find configurations in which
identification cannot be guaranteed, even up to a scale factor.

D. Semi-Blind Robustness to Channel Length Overestimation

A major disadvantage of the deterministic methods is their

non robustness to channel length overestimation. Semi-blind
allows to overcome this problem. We consider again a re-
ducible channel: H(z) = H;(2)H.(2).
Suffi cient conditions [DetSBR] In the deterministic model,
the m—channel H(z) and the unknown input symbols A, are
semi-blindly identifiable when the assumed channel length N’
is overestimated if

(i) Burst length M > max(N7+2M,;,2(N'—N;+1)—N).

(if) Number of input symbol excitation modes: at least
Ny+M, that are not zeros of H.(z).

(iii) Known symbols: My > 2(N'—Nj)+1, grouped.
Number of known symbol modes > N'—Ny+1.

Proof: See Appendix IV. |

These results are also valid (with probability one), with
the same number of known symbols but now arbitrarily
distributed.

VI. IDENTIFIABILITY IN THE GAUSSIAN MODEL
A. Gaussian Model

The parameters to be estimated are the channel coefficients
and the noise variance: § = [h* ¢2]". Recall that identifia-
bility is identifiability from the mean and covariance matrix,
so identifiability in the Gaussian model implies identifiability
in any stochastic model, since such a model can be described
in terms of the mean and the covariance plus higher—order
moments.

B. Blind Channel Identifiability

In the blind case, my (6) = 0, so identifiability is based on
the covariance matrix only. In the Gaussian model, the channel
and the noise variance are said identifiable if:

Cyy(h,0%) = Cyy (W, 02) = 1 = e/%h, 0> =02, (17)

When the signals are real, the phase factor is a sign, when
they are complex, it is a complex unitary number.

Blind identifiability conditions based on the second-order
statistics of the noise—free outputs of a FIR multichannel



driven by a white stationary input sequence were given in [43],
[44]. Only conditions on the channel are given: in [43], [44],
a channel is said blindly identifiable up to a phase factor if the
channel is irreducible. In fact, it is possible to identify blindly
the channel based on the second-order moments even for a
reducible channel, it is only not possible to determine if the
zeros are minimum or maximum-phase. We give conditions
on the channel and the correlation sequence length. (The
conditions on the input symbols are that they are white).
1) Irreducible Channel:
Suffi cient conditions [GaussB1] In the Gaussian model, the
m~channel H(z) is identifiable blindly up to a phase factor if
(i) H(z) is irreducible.

(ii) Burst length M > M + 1

Proof: When condition (i7) is verified, Ty (h) is (strictly)
tall and o2 can then be uniquely identified as the minimal
eigenvalue of Cyy(#). H(z) can then be identified up to a
phase factor from the denoised covariance matrix Cyy (6) —
oI by linear prediction [9]: under conditions (i) and (i),
one can find P(z), the multivariate prediction filter of order
M and h(0) (the first coefficient of H) up to a phase factor
from the denoised covariance matrix, and they are related to
H(z) via the relationship:

(18)

This relationship allows to recover uniquely H(z) from P(z)
up to a phase factor. |

Note that if the noise variance was known, condition (i7)
would be M > M. These conditions are also sufficient con-
ditions for the covariance matching method and the Gaussian
ML method. Note that not all the non-zero correlations (time
0 to N — 1) are needed for identification but only the first
M+1.

Identifiability could also have been established from a
spectral factorization point of view. The spectral factorization
of Syy(z) = 02H(z)H'(2) is unique provided that H(z) is
irreducible and gives H(z) up to a unitary constant (o2 being
known). This point of view however requires the knowledge
of the whole non-zero correlation sequence.

2) Reducible Channel: Let H(z) be a reducible channel:
H(z) = Hi(2)H.(2).

Suffi cient conditions [GaussB2] In the Gaussian model, the
m~—channel H is identifiable blindly up to a phase factor if

(i) He(2) is minimum-phase.

(i) M > max(M;+1, N.—Ny+1).

Proof: Under condition (ii), 7 (hy) is strictly tall and o2
can be identified as the minimal eigenvalue of Cyy (). The
irreducible part H; can be identified up to a scale factor
thanks to the deterministic method described in section V-B
[12] provided that M > M; + 1: let b}, = ah; be this
estimate of hy. (TH(h)T (1)) TH (k) [Cyy(6) — 021]
Ty (THR)T(RY) T = 02T (@ h) T (e *he).
a~'H.(z) can now be identified up to a phase factor by
spectral factorization provided that «H.(z) or hence H.(z) is
minimum-phase and 7 (h.)T# (h.) contains the N, non-zero
correlations, i.e. M + Ny —1> N.or M > N.—N;+1. O
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3) Monochannel Case: In the monochannel case, the noise
variance o2 cannot be estimated and so neither h. However,
if we consider o2 as known, the channel can be identified
by spectral factorization. The sufficient conditions are for the
monochannel to be minimum-phase and the burst to be at least
of length N.

C. Semi-Blind Channel Identifiability

In the semi-blind case, identifiability is based on the mean
and the covariance matrix.

1) Identifiability for any Channel: In the semi-blind case,
the Gaussian model presents the advantage to allow identifica-
tion from the mean only. my (8) = Tk (h)Ax = Axh: if Ax
has full column rank, A can be identified. The difference with
the training sequence case is that in the identification of H
from my () = Tk (h) Ak, the zeros due to the mean of Ag
also give information, which lowers the requirements on the
number of known symbols. For one non-zero known symbol
a(k) (with 0 < k < M—N, i.e. not located at the edges),
the non-zero part of Ax is a(k)In.,,. The Gaussian model
appears thus more robust than the deterministic model as it
allows identification of any channel, reducible or not, multi
or monochannel, with only one non-zero known symbol not
located at the edges of the input burst.

Suffi cient conditions [GausSB1] In the Gaussian model, the
m-channel H(z) is semi-blindly identifiable if
(i) Burst length M > N.
(i) At least one non-zero known symbol a(k) not located at
the edges (0 < k£ < M —N).

2) Identifiability for an Irreducible Channel:
Suffi cient conditions [GausSB2] In the Gaussian model, the
m-channel H(z) is semi-blindly identifiable if
(i) H(z) is irreducible.
(ii) At least 1 non-zero known symbol (located anywhere)
appears.
Proof: Let us assume that Y contains a block of at least
M +1 samples y(k) that contain only unknown symbols (this
implies a condition on the burst length which we do not specify
above because it depends on the number of known symbols
and their position). Then h can be identified blindly up to
a unitary constant from the corresponding covariance matrix
as indicated in section V-B: k' = e/“h. This unitary scale
factor can then be identified thanks to the mean 7, (h')my =
e 7% A one non-zero element of this quantity suffices to
identify ¢. O

VII. CONCLUSIONS

In this paper, we have introduced the principle of semi-blind
FIR channel estimation (see also [32], [37] where the semi-
blind concept has been introduced independently) and pointed
out its advantages w.r.t. training sequence and blind estimation.
Two models were studied, the deterministic and Gaussian
models, which include numerous already existing blind and
semi-blind methods. Their respective interest was presented
and compared to methods exploiting the finite alphabet of the
input symbols. Identifiability conditions for the two models
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were given in terms of channel characteristics, burst length,
input symbol excitation modes and number of known symbols
for semi-blind estimation in the case of grouped known
symbols. The semi-blind approach appears more robust than
blind estimation, as it allows the estimation of any channel
with only a few known symbols. In the deterministic case, 1
known symbol is required for an irreducible channel, 2N, — 1
for a reducible channel and 2N — 1 known symbols for a
monochannel (notations of section Il). The Gaussian model
only requires 1 known symbol (not located at the edges of
the burst) and is hence more robust than the deterministic
model. This Gaussian model appears especially interesting in
the multiuser context (SDMA) [45].

APPENDIX |
PROOF OF SUFFICIENT CONDITIONS [DETB]

To show that conditions [DetB] are sufficient, it is sufficient
to prove that h and A can be uniquely identified from the mean
X = T(h)A by a blind method: we prove identifiability by
the signal subspace fitting approach.

The signal subspace is defined as the column space of
T (h), for T(h) tall, and the noise subspace as its orthogonal
complement. The signal subspace can be formed from X.
Indeed, let X' of size m(M+1) x (M—M) and A of size
(M+N) x (M—M) defined as:

(M~1) (M)
X = : R
x(M—-M-1) z(0) (19)
a(M—1) a(M)
Av = : : ;
a(M—M—N) a(—N+1)
and related as
X =Tu(h)A. (20)

Conditions (74) and (i7) are necessary and sufficient for A to
have full row rank: (i) indicates that .A should have at least as
many columns as rows and (ii7) that the rows are independent.
Given that A has full row rank, the column space of A" equals
the column space of Tas4+1(h), so we can write in particular:

Py = Pry .o (21)
where Py = X(XHX)TxXH and P{ = I — Py are
the projection operators on the column space of X and its
orthogonal complement. We are searching for a pair h, A
so that X = Tpr(h)A or X = Tapr41(h)A. The matrices
Tars1(h) and A have the same dimensions as Ta+1(h) and
A. So the rank of X' equals the column dimension of Tas41 (h)
and also the row dimension of .4 which hence have full column
rank and row rank respectively. Hence

PiTasi(h)A=0 = PE T (h) =0 &

. (22)
range{TMH(h)} c range { Ta+1(h)} .

Now, in Appendix II* (with M = M+1 here) it is shown that
this implies h = ah where « is some complex scalar. Now
also A can be estimated up to a scale factor:

— RN N
A= (TH(h)T(h)) TH(h)X = A/a (ie. the output of
the MMSE zero-forcing equalizer built from 7;).

APPENDIX |1
CHANNEL IDENTIFIABILITY FROM THE SIGNAL SUBSPACE

Theorem 1 (Subspace Fitting): Let h and A’ be causal
channel impulse responses of length N and N’ respectively.
If h is irreducible, then for M > M

range { 7as(h')} C range {Tas(h)} =

{ H'(z) =H(2)a(z) , N'>N
R =0 , N' <N

where a(z) is a scalar polynomial of order N'—N.

Proof: range {7 (h')} C range{7as(h)} implies that there
exists a transformation matrix 7' of size (M+N-1) x
(M+N'-1) such that Tar(h') = Tar(h)T. So Tar(h) T is
block Toeplitz and hence

(23)

Tv—1(h)TveN—21:M+N=2=Tar—1(h)To: M4 N—1,2: M+ N1

which ImpIIeS that Tl:M+N72,1:M+N72 =
To:m4+N-1,2:m+N-1 Since  Tar—q1(h) has full column
rank. Hence 7' is Toeplitz.

Now, Tas(h) and Tas (k') are not only block Toeplitz but
also banded. So in particular,

0= [T (W) mt1:mamr1 = Tavr—1(h) To:mr4N—11

which implies To.pr4nv-11 = 0 since Ta—1(h) has full
column rank, and

0=[Tm(h")1:mm—1),m+n8' =1 =Tnr 1MW) Tipr 4N 2, M+ N1

which implies Th.ar4 N—2.ar4+nv—1 = O since again Tas_1 (h)
has full column rank. Since T is also Toeplitz, this implies that
T is zero if N’ < N and is banded with N'—N+1 nonzero
diagonals if N/ > N. Hence in this last case, the coefficients
of T specify a scalar polynomial «(z) of order N'—N such
that H'(z) = H(2) a(2).

To summarize the proof in words, a linear transformation
that transforms a linear time-invariant (LTI) filter into a LTI
filter can only be a LTI filter. If furthermore the filters are FIR
and causal, then the transforming filter can only be causal and
FIR of order equal to the difference of the orders of the filters.

APPENDIX |11
PROOF OF SUFFICIENT CONDITIONS [DETSB]

The semi-blind problem can be decomposed into a blind
problem and a TS problem. Conditions for identifying the part
of H(z) that can be identified blindly up to a scale factor, i.e.
H:(z), and then conditions for identifying by TS the rest, i.e.
the parameters in H.(z) and the scale factor, are derived.

Consider the m(M ;+1) x (M—M,) data matrix X =
TM1+1(hI)TM1+NI(hc)A- Then PX = PTMIJrl(hI) if and

1The proof in Appendix Il is a shorter alternative to the proof in Appendix
A of [17], generalized to an extended range of signal space dimension M.
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only if Tas,4n,(he)A has full row rank. Condition (i) ex-
presses that the number of columns of this last quantity should
be greater than its number of rows, plus the fact that in general
M > Mg—N+1, which gets combined with condition (ii).
Let p be the number of modes of A (which are assumed to
be unrepeated, the extension to the cgse of higher multiplicity

being straightforward [6]): a(k) = Z a;zF. 1t can be shown
=1

that .4 can be decomposed as

1 1
2;1 e Zp_l
A= My MoMs= ;
7(MI-+N71) 7(MI.+N71)
Zl ... p 24)
(cn 0O -+ -« 07 'Z{\/[fl Z{\/[fz ZIM’_ (
: . 0 My
\‘0 0 ap_ _Z;)M_l ZZJ)M_Q Z]TI_
so that we can write
T(hC)A = B1BQM2M3 with (25)
1 1
21_1 .. 251
T (he) My = BBy = :
M, —Nr+1 —M,—Ny+1
21 P 26
( H.(z1) 0 0 (26)
0 HC(ZQ)
: .., .., .., O
L 0 <o 0 Hel(zp) |

If p > M; + Ny, the rank of 7 (h.)A is determined by the
rank of B- and has full row rank if rank(Bs) > M ;+ Ny, i.e.
A has at least M ; + Ny modes which are not zeros of H.(z).
So under conditions (i) and (ii), we can identify h; = ah;
by subspace fitting. )

Now (TH(EI)T(EI)) TH(h))X = T(he)A/a. Under
conditions (¢) and (éi7) h. and the scale factor a get identified
by TS estimation.

APPENDIX IV
PROOF OF SUFFICIENT CONDITIONS [DETSBR]

Assume a channel 2’ of length N’ and a symbol sequence
A’ satisfy Tas(h)A = X = Ty (h')A'. The sequence A’ is of
length M+ N'—1, with its training sequence part synchronized
to that of A (A% = Ak). The channel ' may be reducible so
that it can be decomposed in general as H'(z) = H’(2)HL(z)
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with N;+N/—1 = N'. To the irreducible A/, corresponds a
minimum ZF equalizer length M. Consider

Assume for a moment that the conditions are satisfied for
T (he)A to have full row rank; we shall see below what this
entails. Then (27) implies

range{ X'} =range{ Tas: +1(hr) } Crange{ Tas 41 (h7)}. (28)
According to Appendix I, this implies

hr=0 ,N}>N[
hy=ahr ,Nj=N;
hr reducible |, N; < Ny

(27)

(29)

Hence necessarily k), = a hy and M, = M, so that 7 (h.)A
has full row rank under conditions (i) — (ii). Since Tar, (hr)
has full column rank, (27) implies 7 (h.)A = aT(h’C}A’. Let’s
denote iy = [T 0---0]" and Ay = [AT 0---0]", hy and
A, being of the same length as k. and A’ respectively. Then
we can also write

T (ha)Aq = T (ah,) A’ (30)

where the LHS is known. From this we can identify aH’.(2)
with 2N!—1 = 2(N'—Ny)+1 grouped known symbols and we
get aH.(z) = Ha(2) = Hc(2). We conclude H'(2) = H(z).
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