SPREAD: Scalable Platform for Reliable and Efficient Automated
Distribution

Pablo Rodriguez Sandeep Sibal
Institut Eurecom AT&T Labs Research
rodrigue@eurecom.fr sibal@research.att.com

Abstract

We introduce SPREAD - a new architecture for distributing emantaining up-to-date Web content that si-
multaneously employs three different mechanisms: cliafitiation, server invalidation, and replication. Prox-
ies within SPREAD self-configure themselves to form scalald&ibution hierarchies that connect the origin
servers of content providers to clients. Each proxy autamgsty decides on the best mechanism based on the
object’s popularity and modification rates. Requests abdaiptions propagate from edge proxies to the origin
server through a chain of intermediate proxies. Invalwiagiand replications travel in the opposite direction.
SPREAD'’s network of proxies automatically reconfigure whesxjes go down or come up, or when new ones
are added. The ability to spontaneously form hierarchidm&ed on a modified Transparent Proxying mech-
anism, calledTranslucentProxying, that sanitizes Transparent Proxying. It allowsx@eto be placed in an
ad-hoc fashion anywhere in the network - not jushoatal points within the network that are guaranteed to see
all the packets of a TCP connection. In this paper we (1) destiibarchitecture of SPREAD, (2) discuss how
proxies determine which mechanism to use based on locahaligms, and (3) use a trace-driven simulation
to test SPREAD’s behavior in a realistic setting

Keywords: WWW, Scalable Content Distribution, Consistency

1 Introduction

Due to the explosive growth of the World Wide Web, Internetv@e Providers (ISPs) throughout the world are
installing Proxy caches to reduce user perceived latenayelisis bandwidth consumption. Such Proxy caches are
under the control of the ISP, and usually cache content $ozlient community, irrespective of the origin server.
These Proxy caches are often calkedward Proxy caches to distinguish them frdReversd’roxy caches, which
we discuss next.

More recently, several vendors, such as Akamai [1] and Spedfl7] have begun offering Proxy-based solutions
to Content Providers, as opposed to ISPs. The business meddlk that improving a user’s browsing experience,
is not only in the ISP’s interest, but in the Content Proviglémterest as well. This is becoming increasingly
important, as the number of Content Providers multiply amehgete for the attention of end users. Proxy caches
used in such a scenario are often calRElersd’roxy caches, to underline the fact that they are contrdileand
represent the interests of the Content Provider (or its @g&everse Proxy caches serve content on behalf of the
Content Provider, usually to any arbitrary client on theemet.

In the rest of the paper we use the term Proxy, Cache, and Rragkhie interchangeably, since the Proxying and
Caching functions are co-located in a single entity.

SPREAD can be realized in both the forward proxying and s@roxying contexts. In this paper we consider
the forward proxying context. Applying SPREAD in a reversexying context would need minor alterations,

*During the period of this work, he was at AT&T research labaantern.

which we point out at various points in the paper.

1.1 Object Consistency

One of the tenets of SPREAD is that the system provitesngobject consistency. This means that content
served is always fresh. Technically it is impossible to gnéeeabsolutgreshness, since there is a non-zero delay
between the time a proxy cache receives an object from ainagver, and the instant it serves it to a client. The
termstrongis used to distinguish it frormweakschemes, which improve consistency but do not provide giees.
We believe strong consistency is imperative, especially tiat people have begun to rely on the Web in timely
information for conducting business, and because an isgrgaumber of sites have begun to offer time-sensitive
information.

Forward proxies have been known to be notoriously sloppyhia &rea. While mechanisms exist within the
HTTP protocol for maintaining cache consistency, in pagtiforward Proxy caches administered by ISPs, use
their own time-to-live (TTL) heuristics [8], [22] that arengineered in a rather arbitrary fashion. Historically,
part of the effect (or some say the cause) has been that Gdereriders often misuse or abuse features of the
HTTP protocol, using techniques suchache-busting Regardless of how one sees this tension between ISPs
and Content Providers, we believe that adhering to strongistency mechanisms in accordance with the HTTP
guidelines is important. This is a fundamental design duiden SPREAD.

SPREAD uses three primary mechanisms to achieve strongstensy:

e Client Validation(V): In this mechanism, for every client request that a proxyenezs the proxy always
checks back with the origin server to see if the object codyeish. This is typically accomplished by an
I--Modified-Since (IMSHTTP Request. If the origin server finds the object in the prisesh, the proxy
cache will respond to the client with its cached copy. If thgecot has expired, the client will receive the
master object from the origin server and the cache will keeplgect copy. The only exception to this rule
is if the object has been explicitly marked as cacheable aaMiéx-age, Expires, or an equivalent piece of
metadata has been set to a value by the origin server thabiiedia non-zero time-to-live (TTL). In such a
situation the proxy will not need check back with the sereerdlidate the cached copy of the object for the
stipulated TTL.

e Server Invalidatior(l): With invalidation, a proxy cache first subscribes to an linlation service for that
object (or range of objects) with the origin server, or anrader the origin server that is responsible for
signaling the expire of the object. In this case, the proxgheaassumes that the object is fresh unless an
invalidation message from the origin server is receivedhgyproxy to explicitly expire the object. Using
invalidation, the first client request after the object igalidated experiences high latency since the object
needs to be retrieved from the origin server.

¢ Replication(R): With replication, updated versions of the object are eif¥i pre-loaded in the proxy cache
by usingpush or equivalently gpseudo-puslthat can be implemented with a periodic-pull. As with in-
validation, a proxy cache must express interest in the okpe@ range of objects) a-priori, by subscribing
to the replication service. Using replication, clients ajw experience very small latencies, however, the
bandwidth consumed can be wasteful in cases where thereomesupdates than requests.

To save on bandwidth, instead of sending the entire objeetnmay send just thdiff, or some encoded form of the
changebetween the old and new versions. This may be applied to #ileohAbove mechanisms. The results of this
paper remain valid under such a scenario as well.

1.2 Our Approach

A novel feature of SPREAD is that its proxidgnamicallychoose between client invalidation, server invalidation,
and replication, on a per-object basis. This is discusset®iail in Section 4. Earlier studies [23], [9] have an-

2

https://www.researchgate.net/publication/243640757_Squid_Internet_Object_Cache_httpwww_nlanr_netSquid?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2677477_Autonomous_Replication_in_Wide-Area_Internetworks?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2854565_World-Wide_Web_Cache_Consistency?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/237110420_Squid_internet_object_cache?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

alyzed the benefits of server invalidation versus clienickion, but their comparisons were in a context where
strong cache consistency was not imperative. More imptiytatheir evaluation had been focused on assessing
stale hit-rate using trace-driven simulations atacroscopidevel. In our work, we evaluate the competing mech-
anisms to keep strong consistency from a more fundamentsp@etive, analyzing the problem at the level of
individual reads and writes of each object, which we beligetds substantial insight. The authors of [13] pro-
pose unicast invalidations instead of adaptive timeate4#hechanisms to keep strong consistency, however, using
unicast communication from the server to the clients makes approach non-scalable. The authors of [24] study
the efficacy of server invalidations using a scalable distion infrastructure, and provide several insights i t
general problem of cache consistency. Our work advancestéite-of-the-art beyond [24] in three major respects.
First, proxies in our systemiynamicallychoose the consistency mechanism based on their own obisarebthe
request rates and update rates of objects. Prior knowlefdipese statistics is not assumed. Second, our analytic
results, help us define the thresholds of the optimal copiwbty at which proxy caches switch from one mech-
anism to another, which in turn helps us in building a smastarall system. A third novel feature of SPREAD
is its ability to spontaneously build content distributimerarchies, without prior knowledge of the existence of
other proxies. If a proxy lies along the natural path from dge=proxy to the origin server, it intercepts com-
munication between them. Communication includes Web riguas well as subscriptions for invalidation and
replication. Such incremental actions by intermediatex@®builds sophisticated multi-level hierarchies rocaed
origin servers. The interception is at the TCP layer. Whikepossibility of using Layer-4 transparent proxying for
building hierarchies has been considered in [12], the sobpach an architecture is limited because of the problem
that all packets of a TCP connection may not always followshme path. If a transparent proxy intercepting a
connection is unable to see all the packets of the connedtioannot sanely proxy the TCP connection, which is
a well known limitation [5]. A partial solution is to deployansparent proxies &bcal pointswithin the network,
which are guaranteed to see all packets of a connection. ni&kes the ad-hoc placement of proxies infeasible.
SPREAD solves this problem by using what we daéinslucenproxying, which guarantees that a proxy that sees
the SYN of a TCP connection, will see all subsequent pacleetgadl. This is accomplished by a novel use of IP
tunneling and TCP-OPTIONS which we will discuss later.

2 SPREAD Architecture

The SPREAD architecture is based on a scalable contenibdistm network that spontaneously builds proxy
caching hierarchies. In SPREAD, edge proxies connect t@seusing a chain of proxies which are on the natural
path from the edge proxy to the origin server (see Figure hy given edge proxy may be a part of multiple proxy
caching hierarchies rooted at different origin serversthis section we discuss the basic principles that enable
this. Unless otherwise mentioned, we assume a forward prg»scenario.

It is important to note that SPREAD is not concerned with hdents reach edge proxies. This is considered
orthogonal to SPREAD. While this is indeed a non-issue incime of forward proxies (which typically have a

fixed or long-term mapping of clients to edge proxies), thesrse proxy scenario is trickier. With the advent of

dynamic DNS tricks, the mapping of clients to edge proxiestwamore fluid.

2.1 SpontaneousHierarchies

A proxy caching hierarchy acts as application-level multicastlistribution tree [20], reducing the bandwidth
usage in the network, the load at origin servers, and alaaciad client latency. In the absence of a proxy caching
hierarchy, origin servers need to directly communicatdnait edge proxies, creating a huge burden on the origin
server and the network. Using reliable multicast betweendtigin server and edge proxies would require an
infeasible large number of multicast groups, and in additadiable multicast is not yet available everywhere and
has unresolved congestion control problems.

Proxy caching hierarchies already exist in the currentrivge[2]. However, current hierarchies are static and

https://www.researchgate.net/publication/3043954_Maintaining_strong_cache_consistency_in_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2594421_Transparent_En-Route_Caching_in_WANs?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/3696256_Maintaining_strong_cache_consistency_in_the_World-Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2244402_A_Scalable_Web_Cache_Consistency_Architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2244402_A_Scalable_Web_Cache_Consistency_Architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2767060_Distributing_Frequently-Changing_Documents_in_the_Web_Multicasting_or_Hierarchical_Caching?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

Requests and
Subseriptions +

Content and *
Invalbidatons

EDGE
PROXY

i

Client &l 7 D

Client IROXY . - Client
Sl [

Figure 1: SPREAD Architecture

require substantial manual configuration and maintenaregenerate caching hierarchies that automatically con-
figure themselves and forward packets to the origin serveoaigh the shortest path routes, a routing architecture
at the application level can also be implemented. Cachedtioen exchange application-level costs and calculate
the best path to every origin server [15]. However, buildingapplication level routing infrastructure is non-trivia
since route changes in the underlying network layer, wilhawt application-level routing. In contrast, SPREAD
uses network layer routing and transparent proxies to ligijoroxy caching hierarchies. Requests travel from the
clients to the origin servers following the shortest netwaath, and intermediate transparent proxies automagicall
pick up the connections for Web traffic (port 80). A transpdigroxy that picks up a connection directly satisfies
the document request if the document is stored in its caahlei®the request travel towards the origin server if
the document is not stored in its cache. As the request sravelards the origin server, the document request may
be intercepted again by other transparent proxies, autoatigtforming a caching hierarchy. Changes in routes
will create new hierarchies spontaneously, which will obeywork level routing. No extra signaling is required
to maintain the hierarchy.

Naively building a hierarchy using transparent proxiedégiant, but has a serious problem. Since routing in an IP
network can lead to situations where multiple paths frorardlto server may have the lowest cost, it can happen
that packets of a connection follow multiple paths. In susit@ation, a transparent proxy may see only a fraction
of packets of the connection. Occasionally itis also pdesiiat routes change mid-way through a TCP connection,
due to routing updates in the underlying IP network. Thidpem limits the scope, requiring transparent proxies
to be deployed exclusively at the edgedairal points within the network where they are guaranteed to debel
packets of the connection. SPREAD addresses this limitdityousing Translucent Proxying, which allows the
placement of Proxieanywheren the network.

https://www.researchgate.net/publication/222475958_Adaptive_web_caching_towards_a_new_global_caching_architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

2.2 Translucent Proxying

Translucent Proxying Of TCP (TPOT) is a more sophisticaiusparent proxying mechanism that allows proxies
to be cascaded and networked together transparently,nalimg split TCP flows. Figure 2(a) provides a high
level overview of the problem of split TCP flows and how Trarzgint Proxying solves the problem. When an edge
proxy intends to connect with an origin server as shown iufg@(b), it issues a SYN packet, which reaches the
intermediate proxy on the left. If the next packet of the T@Rrection should be routed towards the proxy on the
right, we have a situation where the proxy on the left canmoperly proxy the TCP connection. In Translucent
Proxying, the proxy on the left sends back in the ACK, a sigodahe edge proxy providing its IP address. The
edge proxy will then use the IP addresstuanelall remaining packets via the proxy on the left.

Original Server % Original Server g‘

i

Intermediate | &

Intermediate
proxy

ACK A+
tunneling info*

(a) Without Translucent Proxying. (b) With Translucent Proxying.

Figure 2: Translucent Proxying solves the Split Flow problesing IP Tunneling.

Before describing the TPOT protocol, we provide a brief lgagokind of TCP/IP, which will help in better under-
standing TPOT.

Each IP packet typically contains an IP header, and a TCP e@grithe IP header contains the packet’s source
and destination IP address. The TCP segment itself coraali®P header. The TCP header contains the source
port and the destination port that the packet is intendedTis 4-tuple of the IP addresses and port numbers of
the source and destination uniquely identify the TCP cotioiethat the packet belongs to. In addition, the TCP
header contains a flag that indicates whether it is a SYN paakd also an ACK flag and sequence number that
acknowledges the receipt of data from its peer. Finally, ® héader might also contain TCP-OPTIONSs that can
be used for custom signaling.

In addition to the above basic format of an IP packet, an IRgtazan also be encapsulated in another IP packet. At
the source, this involves prefixing an IP header with the Idr@sk of an intermediate tunnel point on an IP packet.
On reaching the intermediate tunnel point, the IP headen@iritermediary is stripped off. The (remaining) IP
packet is then processed as usual.

We now describe the TPOT protocol. Consider a sortleat intends to connect with destinatibnhvia TCP, as
shown in Figure 3. Assume that the first (SYN) packet sent gui ko D reaches the intermediary TPOT proxy
T. (5,5,,D,D,) is the notation that we use to describe a packet that is efani@ S to D, and has5, andD,, as
the source and destination ports respectively.

To co-exist peacefully with other end-points that do notwstalk TPOT, we use a special TCP-OPTION “TPOT,”
that a source uses to explicitly indicate to TPOT proxieinithe network, such &g, that they are interested in
using the TPOT mechanism.If does not see this option, it will take no action, and simptywfards the packet on

Source: (S, S_p) Intermediary: (T, T_p) Destination: (D, D_p)

SYN: (S,S_p,D,D_p)

tcp-option: TPOT
] SYN-ACK: (D,D_p,S,S_p

tcp-option: T
DATA: (S,S_p,D,D_p SYN: (_T,T__p,D,D_p)
ip-tunneled via T tcp-option: TPOT

SYN-ACK: (D,D_p,T.T_p)

I

DATA: (T,T_p,D,D_p)

Figure 3: The Translucent Proxying Protocol

to D on its fast-path. 1" sees a SYN packet that has the TCP-OPTION “TPOT” set, it redptn.S with a SYN-
ACK that encodes its own IP addressin the TCP-OPTION field. On receiving this packstmust then send
the remaining packets of that TCP connection, IP tunneléd térom an implementation standpoint this would
imply adding another 20 byte IP header witts IP address as destination address to all packetsstsands out
for that TCP connection. Since this additional header isoresd on the next TPOT proxy, the total overhead is
limited to 20 bytes regardless of the number of TPOT proxisrcepting the connection from the source to the
final destination. This overhead can be further reduced theller compression [14] [10].

In SPREAD we use TPOT both for regular HTTP Requests as weibrasubscriptions and unsubscriptions.
Consider the case of a regular HTTP Request. For a caché’ It able to satisfy a request fro, and the
response is simply served from one or more caches attacHEd lio the case of a cache mis§,communicates
with the destinatior) as shown in Figure 3. Note that the prokysets the TCP-OPTION “TPOT” in its SYN to
D to allow possibly another TPOT proxy along the way to agaoxpithe connection. In Figure 3 we do not show
such a scenario.

A more comprehensive description of the TPOT protocol, #sants, scalability and performance issues, as well
as a prototype implementation may be found in [21].

3 Automated Content Distribution

In this section we describe basic content distribution iRERD. Edge proxies request objects from origin servers
and requests are transparently intercepted by internetie@islucent proxy caches en-route to the origin server.

Proxies periodically calculate the expected number ofestpiper update period for every object, or for a volume
(set of objects). Depending on the number of requests peaitagekriod, proxies may subscribe to invalidation
or replication (see the Performance Optimization sectioi$ the subscription travels to the origin server, an
intermediate translucent proxy en-route intercepts thsstiption (unless the intermediate proxy is overloaded -

https://www.researchgate.net/publication/220212346_TPOT_translucent_proxying_of_TCP?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/242484556_Compressing_TCPIP_headers_for_low-speed_serial_links?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

in which case it lets the subscription pass through). Onéefging a subscription for invalidation, the intermediat
proxy will subscribe itself to such a service, which in turayrbe re-proxied by yet another proxy. Note that it
is possible to limit this recursion by adding a hop-countffig the subscription, which gets decremented at each
proxy. Once the counter hits zero, no other proxy will inegtit.

In the case where an invalidation (I) subscription arriviea proxy, the proxy is forced to subscribe itself, unless
of course it is already subscribed to I, or to Replication{Rince Rimpliesl. In the case where an R arrives at a
proxy, it must subscribe to R, if it is not already subscriteR. As we will see later, one may order mechanisms, in
the increasing order V, I, R. If a child proxy finds a certainama@nism optimal, then a parent must|east use that
mechanism. This assumes that children proxies are selfatgg as per SPREAD’s optimal control policy. This
will be discussed in a later section. Thus when a child prasssribesto | or R, all proxies on the path to the origin
server are also automatically subscribedatdeastthat mechanism. Invalidations and replications themselve
travel in the opposite direction. When an object is updatethe origin server, the server sends invalidations
and/or replicas to proxy caches that are subscribed to | Bréxy caches that receive invalidations or replicas will
themselves propagate the invalidations or replicas ta ol subscribed to | or R at the next tier. The process is
repeated until the invalidation or document replica asiaethe edge proxy. Thus strong consistency is maintained.

3.1 Leases

Subscriptions have leases associated with them. On expg@bscription must be renewed. These leases are set
large enough so that repeated subscriptions do not ovezbuing network. At the same time, they are not so large
that proxies commit themselves so far into the future whenctianging statistics of the request and update rates
suggest another mechanism. This is an implementation,igsatave do not discuss further.

3.2 Statelnformation

Parent Proxies need to keep state information about the@hilProxies that are subscribed to invalidation or
replication. However, the amount of state information iesplito keep track of subscribed Children Proxies is
negligible compared to the disk capacity needed to storectdj Objects are usually subscribed and unsubscribed
infrequently, and therefore, the amount of processingirequs very small [24]. In addition, if multicasting is
used, the load and state information at parent proxy cachesry small since only one object copy needs to be
distributed to a set of Children Proxies. To further reduelbad and the state information, objects can be grouped
into volumes at the cost of a coarser granularity for optatian and control. Here, a whole volume is invalidated
or replicated instead of an individual object.

3.3 Rédliability and Load Balancing

To ensure strong consistency even in the case of proxy cailnesf Parent Proxies periodically sehéart beats

to their Children Proxies. When a Parent Proxy dies, Child#soxies set the corresponding objects that the parent
was responsible for as stale and re-send subscriptionsdewa the origin server. The next (alive) proxies in
the path to the origin servers then pick up the new subsonptand become the new parents. This mechanism
makes SPREAD reliable against even under catastrophigesitah failed proxy or link, gracefully degrades the
performance of SPREAD, without corrupting its correctrnasd guarantee of strong consistency.

Alternately, when a new proxy surfaces, it joins SPREAD émsentally. While existing subscriptions are not
disturbed (since they are tunneled using TPOT to the egjgtarent), new subscriptions and Web requests that it
sees can be proxied. Existing subscriptions also ultimaged re-proxied once their lease expires.

SPREAD automatically redistributes the load among its paches, since every proxy cache is only responsible
for those objects for which it sees requests, and then agdyrimits children. A last resort for an overloaded proxy
server, is simply to stop intercepting any new Web requesdsabscriptions, effectively going intavisiblemode

https://www.researchgate.net/publication/2244402_A_Scalable_Web_Cache_Consistency_Architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

for all future services.

4 Optimizing SPREAD

To develop an appreciation for why and how SPREAD may opgritzperformance, consider the scenario shown
in Figure 4. An object is considered hotter than anotheri iequested (read) more times than its is updated or
modified (written).

Writes/Updates | | ¥ v v (Cold Object)

Reads/Requests

Writes/Updates | v v 4 v (Warm Object)

Reads/Requests

Writes/Updates ¥ ¥ v v v (Hot Object)
Reads/Requests

Figure 4: Cold, Warm and Hot objects.

Imagine that we want to minimize bandwidth consumption.dtgjects that are so cold, that every request appears
after one or more writes/updates of the object, invalidegiare useless, since every new object request sees a
new object update. Replication, on the other hand, wass more bandwidth since objects are replicated on
every write though they are rarely requested. In such atsiuat appears that client validation is probably the
best policy. Note that what is important is the relative freqcy of reads to writes. Objects that are hot, are
objects for which there are one or more reads per write. lh susituation, replication is always preferred to client
validation. Validation suffers from the problem that theed and future reads in an update/write interval will
each require ali-Modified-Sinceooll, even if the object has not changed. The poll consumedwialth and causes
additional delays. While invalidation performs bettentivalidation, invalidation also wastes some bandwidth due
to invalidation messages that perform no constructivetionavhen compared to replication. Indeed, as we will
see more rigorously later, invalidation is optimal for waahjects whose frequency of reads/requests is on the
same order as the number of writes/updates. Note that iatgifs where not all three mechanisms are supported
by the origin server, SPREAD will simply choose the best frohat is available.

4.1 Analytical Model

We now build a mathematical framework to investigate how mght formulate the problem of deciding which
mechanism to use for a given object. Since these choicedwithade at each proxy, the issue of how a proxy
estimates the various parameters relating to an object isipartant one. These estimation issues will be dealt
with in later sections.

We start with the case of an Edge Proxy that sees requestsrfa arbitrary object. We will extend our analysis
to the case of an Intermediate Proxy (not just an Edge Proxigter sections. We assume that requests for the
object from all the clients connected to an edge proxy cachdPaisson distributed with average request rate
A. The assumption of Poisson arrivals is a reasonable one[B]], We also assume that objects are updated
either periodically in a deterministic fashion, or randgriti an exponential distribution. This assumption will be
discussed in a later section (Section 4.2). The averageteipdaod is denoted.

8

https://www.researchgate.net/publication/200031498_Web_Server_Workload_Characterization_The_Search_for_Invariants?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/221303377_System_Design_Issues_for_Internet_Middleware_Services_Deductions_from_a_Large_Client_Trace?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

We denoteV to be the number of requests for the object per update petdod &ll clients connected to the Edge
Proxy. In the case when the object is updated periodicélé/probability that there is at least one object request
per update period from an Edge Proxy is then given by:

PriN >0} =1-¢e"%

Note that\ A is the average number of requests per update pexiod
When the object is updated exponentially, the probabitii there is at least one object request per update period
from an Edge Proxy is given by:
A-A
AAFT
To determine whether to use validation, invalidation, @lieation, caches need to estimate the average number of

requests per update period on a per-object basis. To ctdihla average number of requests per update period,
caches need to estimate i) the average request rate of ast abgkii) the average update period of an object.

Pr{N >0} =

To estimate the request rate of an object, Edge Proxies aathasaccess logs from client access. The problem
of estimating the request rate for an intermediate proxy aemnvolved (since it may not see direct hits from
clients), and is discussed in Section 4.5. It is of courseipbsfor Edge Proxies to inform intermediate proxies
about their request rates (and in fact this was our initigigl®), but as we shall see later one can do without such
communication.

4.2 Estimating Update Rate

Proxy caches that are subscribed to invalidation (I) oficegibn (R) for an object, see all updates, and can therefore
estimate the update rate in a straight-forward fashion. él@westimating the update period of an object that uses
validation (V) is more complex. Since the proxy can only iesiptheLast-Modifiedtime of an object when it

is requested, information on updates that are never reggi@seé lost. However, proxies can use the difference
between the time of a request (or Date field) and the Last-fiatliime, to infer the average update period of an
object if they know the probability distribution of objegbdates.

We should point out that headers such as the "Expires” healdieh explicitly provide consistency information,
cannot be used here for two reasons. First, our own studyeo¥Mbb and those of others have shown that most
cacheable documents have their Expires headers at a valueffiactively makes the TTL zero anyway. Further,
such protocol headers (even when non-zero) do not proviestie values for update rates, since, these headers
only need to provide a lower bound. In other words, a documdraise TTL is set to 10 seconds (via an Expires
header or some other metadata) may update itself after X) dagt yet be perfectly in line with the HTTP protocol.

Previous work on the distribution of object updates suggesitat objects are approximately updated randomly
following an exponential distribution or periodically [BHowever, these results were performed with client traces
that did not see all server updates. To better study thdllision of object updates we polled different sites once
every minute for a period of 10 days, recording the last-fieditime stamp of the object on every poll. Then we
calculated the update period of an object as the time difterdetween two different last-modified-time stamps.
This experiment gave us the real update pattern of an objéaditva resolution of one minute. Our results confirm
the ones presented in [6]. We found that there are a large auofWeb sites that update their information
periodically, e.g. every 15 or 30 minutes. However, we aamfl a large number of Web sites that update their
Web sites randomly following an exponential distributibmFigure 5 we present the distribution of object updates
for two different news sites. We clearly see that the distiiin of object updates in both sites approximates an
exponential distribution.

Note that Proxy Caches can easily determine if an objectdaiggl periodically or is exponentially distributed by
studying the variance of object updates. Once they havendieted if the object is updated periodically or expo-
nentially, they can use the time difference between obgmiests and the last-modified-time stamps to estimate
the average update period [11].

https://www.researchgate.net/publication/2429700_Rate_of_Change_and_other_Metrics_a_Live_Study_of_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2429700_Rate_of_Change_and_other_Metrics_a_Live_Study_of_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

0.35¢
0.3 0.15
0.25f

0.2f

PDF

0.15¢
0.1f 0.05-

0.05

S

% 2000 4000 6000 8000 16000 % 2000 4000 6000 8000 10000
A (sec) A (sec)
(a) Spanish Newspaper Web Site (b) BBC News Web Site

Figure 5: Distribution of object update intervals. 10 dagdoServers are polled every minute.

2500+
600
5 < 20004
= 500F g
< <
£ E
2400 71500
o o
$300 3
a <1000
200¢
500+
100
0 i i ‘ ‘ ‘ ‘ ‘ 0 ‘ i i ‘ ‘
0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500
Sample number Sample number
(a) Spanish Newspaper Web Site (b) BBC News Web Site

Figure 6: Estimation of the average update interval as aiomof the number of samples

Figure 6 shows how rapidly the estimate of the average upaied converges with the number of samples. Each
sample measures the time difference between every requnégha last-modified-time, and computes a simple
average. We observe that after 200 samples, the estimdte af’erage update period converges to 600 seconds in
Figure 6(a), and 1500 seconds in Figure 6(b). This warm+uap ts small enough to make such estimators viable.

4.3 Optimizing Bandwidth

Next, we compute the bandwidth usage by each mechanismiveidgb-to-date content. We define the bandwidth
usageB as the average number of bytes consumed per update peiiiod proxy’s link.

Let S, be the actual size of a Web object. L$t be the size of an HTTP header, which is considered to be the
same as the size of an IMS request. Egthe size of an invalidation message.

The bandwidth usage per Web object for validati®y, invalidationB;, and replicationBr can be easily shown

10

to be:
By = PT‘{N>0}'SO—|-E[N]-S;L
By = PT‘{N>0}-(SO—I—S;L)—I—SZ'
Br = S,
Note that in our analysis we have assumed that the objectdammr-age or expires header set by the server. In a

situation where the server would set a max-age or an expa&ddr different than zero, the analysis would need to
be modified accordingly, though the qualitative resultsufmaper would still hold.

SO: 10 KB, Sh: 300 B, Si: 50 B SO: 10 KB, Sh: 300 B, Si: 50 B
15| — validation 15| — validation
—&— Invalidation —— Invalidation
~ | —— Replication ~ | —— Replication
° °
kel ks}
2 g e
) 10 o 10+ P
© ©
e e)
Q. Q.
] S
@ @
o o
g st s
= =
o o
107 10° 10° 107 10° 10°
AA (requests per update period) AA (requests per update period)
(a) Periodic Updates (b) Exponentially Distributed Updates

Figure 7: Bandwidth usage

Figure 7 shows the bandwidth usage of validation, invaiihatand replication depending on the average number
of requests per update period A. The values forS;, S, and.S, are representative of what is typical for the
Web today. For objects with few requests per update pergplication wastes a lot of bandwidth compared to
validation or invalidation, since the object is preloadetithe caches even when it is not requested by the clients.
On the other hand, validation and invalidation have a lonwdwddth usage since the object is only fetched into the
caches when it is requested by a client. For a large rangdwésdor X - A from about O to 1 requests per update
period, validation uses slightly less bandwidth than iidation since every request finds a new object update and
therefore the overhead of IMS requests to the origin seiwalmost zero. For values above about 1 requests
per update period, replication does well, trailed by indation, which suffers because of the extra invalidations
that are sent out. Validation works poorly, due to the faet #very request generates an IMS request which is
typically much heavier than an invalidation. Figure 7 shéweat the mechanism that consumes the least bandwidth
is different in different regimes of - A, and that the order in which the different policies are optiis V, |, and

R as) - A increases.

4.4 Switching Thresholds

Let the switching thresholds between V and I, and | and R, m@®e by iy ; andTh;r respectively. Table 1
shows the thresholds to switch among the different poliaies edge proxy.

From Table 1 itis easy to prove that for all reasonable vatiies, S, andsS,, we have the property that’hy; <
Thrr. Further, since\ increases as one moves closer to the origin server, we hay@dperty that at any level of
the hierarchy if a given mechanism is optimal for a proxy, itsnbeat leastgood for the parents above. That is:

11

\ Perspective | Thy (req per update period) T'h R (req per update period)

Edge Proxy (Deterministic Update Period) \/% In (225
. 2 .
Edge Proxy (Exponential Update Period) W "

Table 1: Thresholds to switch between validation and in\aionT kv 7, and between invalidation and replication
Thir

¢ if a proxy finds V optimal, then its parent may find V, |, or R opil.
¢ if a proxy finds | optimal, then its parent may find I, or R optima

¢ if a proxy finds R optimal, then its parent will find only R optiin

By the above result, if a proxy subscribes to a certain ppitayust also be in its parent’s best interesatdeast
have that policy in place. Therefore it always makes sengeay subscriptions on behalf of a child proxy. This
clearly validates SPREAD’s design model, even if by sengityi

45 Estimating Request Rate at an Intermediate Proxy

As we discussed earlier, estimating the request rate of gtohat an Intermediate Proxy may be complicated
because it does not see direct hits from clients. Howevegrgige here that given the observations of the previous
section, this can be substantially simplified by breakingthe possibilities into two cases.

e Case 1: Ifanyof the children are in the R state, then, the parent proxyde &l the R state and cannot
go to | until all of its children unsubscribe from R. No deoisineed be made by the proxy, and therefore
estimating request rate is not essential. (Note that wherait child proxy unsubscribes from R, we can
seed the estimator with the estimated request rate froncHilaitto be Z22).

e Case 2: In this case, children proxies are in the | or V state.tltose in the V state the estimation of the
request rate is straightforward, since the proxy sees alré¢iguests (HTTP GETs or IMS requests). For
proxies in the | state, the request rate may be computed inra sgphisticated fashion. Here, the proxy
estimates the time interval between an invalidation andntimeediate following request. For both exponen-
tially distributed and periodic (deterministic) updateipds, we may compute an estimate for the request
rate from that child proxy using standards results for reaidife from the area of Renewal Theory [4]. For
reasons of space we omit a lengthier discussion.

4.6 Latency

In this section we investigate the latency experienced byctients when validation, invalidation, or replication
are used. Let,; be the transmission time of an object when it is retrievednftbe origin server. Let,. andt..

be the transmission time of an object when it is transmittethfthe Parent Proxy and from the Children Proxies
respectively. LetRTT,, be the round-trip-time between the origin server and anyxypache. The expected
latency experienced by a client depends on the tree levetenthe object is hit. Let, be the number of links
traversed to find a object. In this section, we consider a l&rwo-tier caching hierarchy, however, the analysis
can be easily extended for a different number of cache tiEng. exact calculation of the probability distribution
function of I can be found in [20] and has been omitted due to space limitsitiGiven the distribution of we
can calculate the expected latency experienced by a clemafidationTy,, invalidation7, and replicatiorl'r

as:

Tv = Pr{l=cc}-(tee + RTT,5) + Pr{l = pc} - (tye + RTT,s) + Pr{l = os} - t,s

12

https://www.researchgate.net/publication/2767060_Distributing_Frequently-Changing_Documents_in_the_Web_Multicasting_or_Hierarchical_Caching?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

Tr = Pr{l=cc} -tee+ Pr{l=pc} -t,c + Pr{l = o0s} -1,
Th = tep

To consider real values for the latency, we analyzed 10 daysgs on the local proxy at Eurecom, which is

connected to a caching hierarchy through a Parent ProxyVéfaged the latencies during the 10 days of the trace
to obtain the following values:

e Transmission time from the local prox¥.. = 117 msec,
e Transmission time from a Parent Prox},. = 585 msec,
e Transmission time from the origin servef;, = 1183 msec,

¢ Round-Trip-Time to the origin serveRTT,; = 300 msec.

—— Validation
—— |nvalidation
—— Replication

—— Validation
—— [nvalidation
—— Replication

Latency (sec)
o
[«2)

I
~
.

Latency (sec)
o
[22)

o
~
:

0.2r 0.2
0—3 ‘—2 ‘—1 ‘0 ‘1 ‘2 0—3 ‘—2 ‘—1 ‘0 ‘1 ‘2
10 10 10 10 10 10 10 10 10 10 10 10
A A (req per update period) A A (req per update period)
(a) Periodic Updates (b) Exponentially Distributed Updates

Figure 8: Expected Latency

We considered the case of a caching hierarchy #4itkhildren caches and a single parent cache. Based on these
values Figure 8 shows the latency experienced by a clienvdbdation, invalidation, and replication. Using
replication, clients always experience small latenciasesithe Edge Proxy always has the object replicated to it.
This, as we have seen earlier, may be extremely wasteful mdviath. As the number of requests per update
period increases, the probability of finding an object atxj@e closer to the client increases, thus, reducing the
latency experienced. Invalidation offers better latestien validation since client requests do not need to contac
the origin server every time. However, for invalidation t@yide similar latencies as replication, the number of
requests per update period needs to be very high (i.e. apdr08 requests/update period). For such popular
objects, using invalidation to reduce client’s latency a$ tne best option since replication generates slightly les
traffic in the network (see Figure 7), providing very smatklacies forall receivers.

4.7 Multicast Extensions

In this section we consider the case when the network suppaurtticasting. If multicasting is available, Parent
Proxies may decide to multicast invalidations and replicatheir Children Proxies instead of sending them via
unicast. For validation, objects and IMS messages ardluistd via unicast. For invalidation, the actual object is
fetched via unicast by the Children Proxies, however, idedion messages are multicast to all proxy caches. For
replication, object updates are pushed via multicast fioepiarent proxy cache to all Children Proxies.

13

The decision to use multicast or unicast depends on thecasttgain;’ = 00—7: that is the multicast cost’, .
divided by the unicast cost,,., which is a function of the network topology, the number ofl@n Proxies and
their location. Several studies have shown that the multigain in a wide range of network topologies can be
approximated by7=M ~%2, whereM is the number of receiving proxies [18]. Therefore, it is egb for a Parent
Proxy to know the number of subscribed Children Proxies toredge the multicast gain and therefore decide
whether to turn on multicast or not.

The bandwidth usage in the network of validatiBg, invalidation B;, and replicationBr to deliver one byte
from a Parent Proxy to the Children Proxies with multicast is

By = Pr{N>0}-S, Cu+E[N]-Sp-Co
B[PT‘{N>0}(SO‘|’Sh)Cuc+SZCmc
BR = So'Cmc

SO= 10 KB, Sh= 300 B, Si= 50B SO= 10 KB, Sh= 300 B, Si= 50B
—— Validation —— Validation
—— |nvalidation —— |nvalidation
_~2500| —— Replication : 2500, —— Replication
3 3
& 2000} 82000}
2 2
© ©
e) e)
S1500f 21500
@ @
o o
?, 1000 ?, 1000+
2 2
500+ 500+
o i i o - i i
107 10° 10° 107 10° 10°
M (requests per update period) M (requests per update period)
(a) Periodic Updates (b) Exponentially Distributed Updates

Figure 9: Bandwidth usage with multicast enabled

To study the effect of a multicast distribution we analyze thse where the network connecting the Parent Proxy
with its M children proxy caches is a fulb-ary tree with heigh#d [19] (a full O-ary tree has proved to be a good
model for network topologies, providing very realisticuéis [16]). In Figure 9 we present the bandwidth usage
inside the network for validation, invalidation, and regliion when multicast is enabled.

Comparing Figures 7 and 9 we observe that the relative paeoce of validation is not modified since validation

does not benefit from the fact that multicast is enabled. Wea@bserve that the relative performance of invalidation
is slightly smaller since invalidation messages are nowicagted. For replication, the bandwidth savings are very
high, since the cost of replication is small. Of course, thdtivast gain depends on the network topology and the
number of receivers; however, even in the worst case a rasttiistribution performs no worse than unicast, and
the relative performance of validation, invalidation, aeglication would then be the same as the one in Figure 7.

5 Trace-driven Smulation

Based on the switching thresholds calculated in Sectionwlednow perform a trace driven simulation to get a
feel for how SPREAD will behave in a real-life setting. Totlead, we analyze log traces from one access node

14

https://www.researchgate.net/publication/3718576_Performance_modelling_of_reliable_multicast_transmission?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2519651_Scaling_of_Multicast_Trees_Comments_on_the_Chuang-Sirbu_scaling_law?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

(POP) at AT&T Worldnet (Bridgeton) over a period of 10 days|lected in May 1999. The total number of
requests in the trace is roughly 10 million. From the logs wieaet all the cacheable requests that contain last-
modified information. We then extract objects of type tetxthand image/gif to study how the control algorithm
we use in SPREAD will perform. These two object types countiin overwhelming majority (over 90%) of
the accesses. For every single object in the log-file we astithe average request rate and the average update
period. To calculate the average update period we use tmage/éime difference between every request for the
same object and the last-modified-time, which is the aveuggate period in the case of exponentially distributed
update periods, and is equal to the half of the average ujpesited for periodic updates. In reality, a SPREAD
proxy would continuously monitor the request and updatesidtowever, using the average update period during
the trace was a suitable approximation for the purpose o$imoulation study.

In Figure 10(a) we show the distribution of objects of typetfietml that have a certain number of requests per
update period. We see that most objects have a value whigniseatrated betweer)~* requests per update
period andL0* requests per update period.

10"
10°
10°
3
10 £
: x
g, 8107
T10°F I
10%
10'
0
L L L 10 L L L
10° 10° 10° 10° 10° 10°
A A (req per update period) A A (req per update period)
(a) Distribution of text/html. (b) Distribution of image/gif.

Figure 10: Distribution of requests per update periodA .

Combining the results presented in Figure 10(a) and TableTan calculate the percentage of objects that would
use validation, invalidation, or replication to minimizestbandwidth usage.

Table 2 shows the percentage of objects requiring everynselie the case of periodic updates, and the value of
the switching points in terms of requests per update pefldd ¢ andT'hr) for a sample HTML document of
size 10KB.

\ Perspective | Threshold (req per updateperio) V. | | | R |
Bandwidth (Periodic) Thy=0.7,Thrr=3.6 18.4% | 19% | 62.2%
Bandwidth (Exponential Distribution) Thy=0.55,Thrr=29 16% | 52% | 32%

Table 2: Percentage of objects that require validationifwpglidation (1), and replication (R). Periodic and Expo-
nentially distributed Updates

From Table 2, we see thatin the case of periodic updates, 1896 objects would require invalidation to minimize
bandwidth usage, and 63% would require replication. In teewmf exponentially distributed update periods we
also calculated the percentage of objects that would reqsich scheme, and see that the percentage of objects
that would require invalidation increases to 86%.

15

In the Optimization section, we calculated the bandwiddgesn a proxy’s link for a single document with varying
requests per update periad A, and the average client’s latency for a simple two-tier edlsterarchy. Next, we
calculate the total average bandwidth usage and the explkaténcy for validation, invalidation, replication, and
SPREAD. We sum up the bandwidth useddbyobjects, and scale the bandwidth we obtain per update pettod
per second - by dividing the result by the object’s updatéplei.

Table 3 summarizes the results for bandwidth usage, andthesponding client latency.

| Perspectve | V | I | R |SPREAD|
Bandwidth (KB/sec) 1.6 | 5.3 | 803 1.4
Client Latency (sec) 0.58 | 0.28 | 0.11 0.26

Table 3: Bandwidth consumption and resulting Latency fdidaion (V), invalidation (1), replication (R), and
SPREAD for HTML documents. Periodic Updates.

From Table 3 we see that the bandwidth needed to deliver alidents with validation is quite small since most
of the documents in the trace have few requests per updatmpénvalidation, on the other hand, has a higher
bandwidth usage than validation, since invalidation mgssare sent for documents that are never requested.
Replication has the highest bandwidth usage since all dentsrare being replicated, and many are not requested.
SPREAD, has the minimum bandwidth usage since proxies aiicaily select validation, invalidation, or repli-
cation to optimize bandwidth. The benefits in terms of bawmidvdf SPREAD compared to validation are not
very high since there are not many hot documents in the ttaateproduce a large number of IMS requests (the
bandwidth usage of validation would be much higher in thee@dsmore popular documents). However, the la-
tency experienced by the clients with SPREAD is about h&lfdkency experienced with validation. Even though
SPREAD is not optimized to minimize latency we see that thenley offered by SPREAD is smaller than for val-
idation or invalidation. As SPREAD proxies subscribe taaligiation or replication to minimize bandwidth usage,
the latency reduces, since the origin server is not cordasieoften. Of course, replication has the lowest latency
at the cost of high bandwidth usage. We have also calculbtedame parameters than in Table 3 for the case of
exponentially update periods, and the results for expaalgntipdate periods do not differ much from those for
periodic updates.

Next, we also study the case for objects of type image/gié (Ggure 10(b)). GIF objects tend to change less
frequently, and therefore the number of requests that a ®jécbreceives before it is updated is much higher
than for HTML objects (Figure 10(a)). Table 4 shows the tbahdwidth usage by GIF objects using validation,

| Perspectve | V | I | R |SPREAD|
Bandwidth (KB/sec) 7.6 | 2.4 | 72 1.6
Client Latency (sec) 0.45| 0.14| 0.11 0.12

Table 4: Bandwidth consumption and resulting Latency fdidaion (V), invalidation (1), replication (R), and
SPREAD for GIF images. Periodic Updates.

invalidation, replication, and SPREAD. From Table 4 we $e validation performs worse than it does for HTML
documents, since validation results in a higher number & yieries to the origin server (since GIFs see more
requests per update). Replication performs better thaweis for HTML documents for the same reason. This also
causes SPREAD to improve on invalidation much more thandivvdth HTML. As before, we see that though
SPREAD is tuned to optimize bandwidth, it has an averagedstevhich is very close to that achieved with
replication.

Finally, in Table 5 we add the total bandwidth usage and tatleauhe average latency for text/nhtml and image/gif
objects to see how the various schemes perform. We see #gaatidwidth savings and the reduction in latency for
SPREAD compared to validation, invalidation, and replmagtre much more relevant than for either text/html or

16

| Perspective | V | | | R [SPREAD|
Bandwidth (KB/sec) 9.2 | 7.7 | 875 3
Client Latency (sec) 0.49| 0.18| 0.11 0.16

Table 5: Bandwidth consumption and resulting Latency fdidedion for validation (V), invalidation (1), replica-
tion (R), and SPREAD for HTML documents and GIF images. Ricit/pdates.

for image/gif objects alone. That is, while one of the med$ias may be suited for one type of object, e.g. valida-
tion to reduce bandwidth usage for text/html or invalidatior image/gif, SPREAD does well overall, distancing
itself from the other mechanisms when a mix of objects aresictaned.

6 Conclusionsand Future Work

In this paper we introduced SPREAD, a new architecture fotext distribution. SPREAD uses a network of prox-
ies that automatically configure themselves and make aatons decisions on how to maintain cache consistency.
They dynamically choose between client validation, seimealidation and replication to optimize bandwidth us-
age. One key component of SPREAD is that it uses a new clagsw$gdarent proxies called Translucent proxies.
Translucent proxies can be cascaded and networked todetheparently, without requiring them to be placed at
focal points in the network.

SPREAD is also showing promise as a base platform for a lsggefsother wide-area applications for which
self-organization, scalability and robustness are ingrart To explore this further, we are currently pursuing the
use of SPREAD for reliable multicast and, for broadcastimgtent.systems.

7 Acknowledgments

We thank Anja Feldmann for collecting and providing traacesf AT&T Worldnet.

8 Vitae

Pablo Rodriguez Pablo Rodriguez is a senior graduate student at the InEfi#&@ECOM, finishing up his thesis
on Scalable Content Distribution in the Internet. He haslzestive in the areas of Web caching and replication,
satellite dissemination of Web documents, caching infuastires for delivering up-to-date content, and scalable
broadcasting solutions.

Sandeep Sibal Dr. Sandeep Sibal is a Senior Technical Staff Member in thermet and Networking Systems
Center at AT&T Labs — Research. His general interests argémriet technologies and services, and he is currently
working on topics in Content Distribution and Layer-4 presi

References

[1] “FreeFlow: How it Works. Akamai, Cambridge, MA, USA. N&©99".
[2] “National Lab of Applied Network Research (NLANR)”, Ipt#/ircache.nlanr.net/.

[3] M. F. Arlitt and C. L. Williamson, “Web ServerWorkload @nacterization: The Search for Invariants”, In
Proceedings of the ACM SIGMETRIO®w York, May23-26 1996.

17

https://www.researchgate.net/publication/200031498_Web_Server_Workload_Characterization_The_Search_for_Invariants?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/200031498_Web_Server_Workload_Characterization_The_Search_for_Invariants?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

[4] D. R. Cox, “Renewal Theory”, 1962.

[5] P. Danzig and K. L. Swartz, “Transparent, scaleabld;dafe Web caching”, Technichal report, Network
Appliance. Santa Clara, CA, USA, 1999.

[6] F. Douglis, A. Feldmann, B. Krishnamurthy, and J.MogtRate of change and other metrics: A live study
of the World Wide Web”, InProceedings of the USENIX Symposium on Internet Techresegid Systems
December 1997.

[7] S. Gribble and E. Brewer, “System Design Issues for m¢Middleware Services: Deductions from a Large
Client Trace”, InProceedings of the USENIX Symposium on Internet Techred@gid SystemBecember
1997.

[8] J. Gwertzman, “Autonomous Replication in Wide-Areadmtetworks”, M.S. Thesis, Harvard, Cambridge,
MA, April 1995.

[9] J. Gwertzman and M. Seltzer, “World-Wide Web Cache Cstasicy”, InProc. 1996 USENIX Technical
ConferenceSan Diego, CA, January 1996.

[10] V. Jacobson, “Compressing TCP/IP Headers for Low-8perial Links”, RFC 1144, 1990.
[11] L. Kleinrock, Queuing Systems, Volume I: TheoWiley, 1975.

[12] P. Krisnan, D. Raz, and Y. Shavitt, “Transparent En-edDaching in WANs”, InWork-in-progress in the
4th International Caching WorkshoBan Diego, March 1999.

[13] C. Liu and P. Cao, “Maintaining Strong Cache Consisyeincthe World-Wide Web”, InProceedings of
ICDCS May 1997.

[14] B. N. M. Degermark and S. Pink, “RFC 2507: IP header caapion”, Feb 1999.

[15] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Flogald V. Jacobson, “Adaptive Web Caching: towards
a new global caching architecture”, 8nd International WWW Caching Workshalune 1998.

[16] J. Nonnenmacher and E. W. Biersack, “Performance Midpbf Reliable Multicast Transmission”, In
Proc. IEEE INFOCOM'97Kobe, Japan, April 1997.

[17] F. Overview, “Sandpiper, Thousand Oaks, CA, USA. 0QZ9

[18] G. Phillips, S. Shenker, and H. Tangmunarunkit, “Sugibf Multicast Trees: Comments on the Chuang-Sirbu
Scaling Law”, InACM SIGCOMM’99 volume 29, Harvard University, Massachusetts, USA, Seb&r
1999.

[19] P. Rodriguez, E. W. Biersack, and K. W. Ross, “Automddetivery of Web Documents Through a Caching
Infrastructure”, Technical Report, EURECOM, June 1999.

[20] P. Rodriguez, K. W. Ross, and E. W. Biersack, “DistribgtFrequently-Changing Documents in the Web:
Multicasting or Hierarchical Caching"Computer Networks and ISDN Systems. Selected Papers afithe 3
International Caching Workshgpp. 2223-2245, 1998.

[21] P. Rodriguez, S. Sibal, and O. Spatscheck, “TPOT: Twmest Proxying of TCP”, Technical report TR
00.4.1, AT&T Research Labs, 2000.

[22] D. Wessels, “Squid Internet Object Cache: http://walanr.net/Squid/”, 1996.

[23] K. Worrel, “Invalidation in large scale network objecaches”, Master's Thesis, University of Colorado,
Boulder, 1994.

18

https://www.researchgate.net/publication/243640757_Squid_Internet_Object_Cache_httpwww_nlanr_netSquid?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2677477_Autonomous_Replication_in_Wide-Area_Internetworks?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2677477_Autonomous_Replication_in_Wide-Area_Internetworks?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2429700_Rate_of_Change_and_other_Metrics_a_Live_Study_of_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2429700_Rate_of_Change_and_other_Metrics_a_Live_Study_of_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2429700_Rate_of_Change_and_other_Metrics_a_Live_Study_of_the_World_Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2594421_Transparent_En-Route_Caching_in_WANs?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2594421_Transparent_En-Route_Caching_in_WANs?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/3718576_Performance_modelling_of_reliable_multicast_transmission?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/3718576_Performance_modelling_of_reliable_multicast_transmission?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2519651_Scaling_of_Multicast_Trees_Comments_on_the_Chuang-Sirbu_scaling_law?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2519651_Scaling_of_Multicast_Trees_Comments_on_the_Chuang-Sirbu_scaling_law?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2519651_Scaling_of_Multicast_Trees_Comments_on_the_Chuang-Sirbu_scaling_law?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/222475958_Adaptive_web_caching_towards_a_new_global_caching_architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/222475958_Adaptive_web_caching_towards_a_new_global_caching_architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/3696256_Maintaining_strong_cache_consistency_in_the_World-Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/3696256_Maintaining_strong_cache_consistency_in_the_World-Wide_Web?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2854565_World-Wide_Web_Cache_Consistency?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2854565_World-Wide_Web_Cache_Consistency?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/220212346_TPOT_translucent_proxying_of_TCP?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/220212346_TPOT_translucent_proxying_of_TCP?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2767060_Distributing_Frequently-Changing_Documents_in_the_Web_Multicasting_or_Hierarchical_Caching?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2767060_Distributing_Frequently-Changing_Documents_in_the_Web_Multicasting_or_Hierarchical_Caching?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2767060_Distributing_Frequently-Changing_Documents_in_the_Web_Multicasting_or_Hierarchical_Caching?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/242484556_Compressing_TCPIP_headers_for_low-speed_serial_links?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/267108455_Queueing_systems_Vol_I_Theory?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/221303377_System_Design_Issues_for_Internet_Middleware_Services_Deductions_from_a_Large_Client_Trace?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/221303377_System_Design_Issues_for_Internet_Middleware_Services_Deductions_from_a_Large_Client_Trace?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/221303377_System_Design_Issues_for_Internet_Middleware_Services_Deductions_from_a_Large_Client_Trace?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=

[24] H. Yu, L. Breslau, and S. Shenker, “A Scalable Web Cacbadstency Architecture”, IProceedings of
ACM SIGCOMM’99 Cambridge, sep 1999.

19

https://www.researchgate.net/publication/2244402_A_Scalable_Web_Cache_Consistency_Architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2244402_A_Scalable_Web_Cache_Consistency_Architecture?el=1_x_8&enrichId=rgreq-3373348961ca55b6d7e2bdd0475568e3-XXX&enrichSource=Y292ZXJQYWdlOzI2MjI0NDY7QVM6MTAxOTM0MDYxMDY0MTk1QDE0MDEzMTQzODI1MjQ=
https://www.researchgate.net/publication/2622446

