
Using Data Stream Management Systems
for Traffic Analysis

– A Case Study –

Thomas Plagemann2, 1, Vera Goebel2, 1, Andrea Bergamini1,
Giacomo Tolu1, Guillaume Urvoy-Keller1, Ernst W. Biersack1

1Institut Eurecom, Corporate Communications, 2229 Route des Crêtes
BP 193 F-06904 Sophia Antipolis Cedex, France

{bergamin, tolu, urvoy, erbi}@eurecom.fr
2University of Oslo, Department of Informatics,
Postbox 1080 Blindern, 0316 Oslo, Norway
{plageman, goebel}@ifi.uio.no

Abstract. Many traffic analysis tasks are solved with tools that are developed
in an ad-hoc, incremental, and cumbersome way instead of seeking systematic
solutions that are easy to reuse and understand. The huge amount of data that
has to be managed and analyzed together with the fact that many different
analysis tasks are performed over a small set of different network trace formats,
motivates us to study whether Data Stream Management Systems (DSMSs)
might be useful to develop traffic analysis tools. We have performed an ex-
perimental study to analyze the advantages and limitations of using DSMS in
practice. We study how simple and complex analysis tasks can be solved with
TelegraphCQ, a public domain DSMS, and present a preliminary performance
analysis.

1 Introduction and Motivation

The number of tools for analyzing data traffic in the Internet is continuously increas-
ing, because there is an increasing need in many different application domains. For
example, network operators and service providers need to monitor data traffic to
analyze the provided service level, to identify bottlenecks, and initiate appropriate
counter measures, if possible. This is especially important in the Internet, because the
amount of data traffic continuously increases and the behavior and requirements of
end-users are changing over time, like accepted response time from web servers.
Another application domain is the development and improvement of new protocols
and applications, like overlay networks and peer-to-peer (P2P) file sharing applica-
tions. The complexity of these protocols and applications, as well as the complexity
of the environment they are used in, often impose that a meaningful analysis can only
be done during their operation in the Internet. The typical coarse grain architecture of
these tools consist of two components, first, a packet capturing or flow statistic com-
ponent like TCPdump or NetFlow, and second, an analysis component to examine the
resulting traces and draw certain conclusions.

mailto:erbi}@eurecom.fr
mailto:goebel}@ifi.uio.no

Performing traffic analysis to gain new knowledge is normally an iterative process.
Traffic analysis tools are used to get a better understanding of network dynamics,
protocol behavior, etc. Based on these new insights and influenced by changes in the
Internet, e.g., traffic mix and end-user behavior, new analysis goals are defined for
the next iteration step. For example, in our recent BitTorrent work, we measured the
average throughput of leechers (i.e., clients that have not completed the download) by
analyzing trace files and identified their origin country [4]. We saw that most leechers
are either from the US, Canada, Netherlands, or Australia. Therefore, we analyzed in
the next step the average throughput for these countries.

It is a common practice for this type of research to either change or extend existing
traffic analysis tools, if it can be avoided to develop a new one. Since many tools are
implemented as PERL scripts this often means to study a PERL script and change it.
This is not an easy task, even for the author of the script itself if it is not well docu-
mented, because the variables in PERL scripts do not have meaningful names. In
other words, many problems are solved in an ad-hoc, incremental, and cumbersome
way instead of seeking systematic solutions that are easy to reuse and easy to under-
stand. Obviously, the more iterations a traffic analysis study comprises the bigger are
the advantages of easily reusable tools.

Another problem with today’s tools is the huge amount of data that is generated.
Trace files should be archived in order to use them at a later point in time for further
studies and evaluations. However, the tools themselves do generally not provide any
support for managing these large amounts of data. Therefore, trace files are typically
archived as plain files in the file system. Depending on the amount of trace files and
the discipline of the researcher to annotate trace files, the retrieval of a particular trace
file that is a couple of months old can represent a non-trivial problem.

The huge amount of data that has to be managed and analyzed together with the
fact that many different analysis tasks are performed over a small set of different
network trace formats, motivates us to study whether Database Management Systems
(DBMSs) might be a useful platform for developing tools for traffic analysis. DBMSs
are designed to separate data and their management from application semantics to
facilitate independent application development. They are designed to handle very
large amounts of data, and to efficiently perform searches, comparisons, ordering,
summarize data, etc. Furthermore, Internet traffic consists of well-structured data, due
to the standardized packet structures, and can therefore easily handled with DBMSs.

Traditional DBMS need to store the data before they can handle it. However, many
application domains would benefit from on-line analysis and immediate indication of
results. Therefore, we focus our attention on a new emerging DBMS technology
called Data Stream Management Systems (DSMSs). In contrast to traditional
DBMSs, DSMSs can execute continuous queries over continuous data streams that
enter and leave the system in real-time, i.e., data is only stored in main memory for
processing. Such data streams could be sensor readings, stock market data, or net-
work traffic [1].

Since DSMSs are a promising technology for traffic analysis, we have performed
an experimental study to analyze the advantages and limitations of using public do-
main DSMSs in practice and report our experiences in this paper. In the following
section, we discuss in more detail our expectations and requirements on using DSMSs

for traffic analysis and describe the approach of our study. We give in Section 3 a
brief introduction to DSMSs and the particular DSMS TelegraphCQ [5], [9] we are
using. In Section 4, our experiments and their results are presented. In Section 5, we
conclude with a general discussion of advantages and limitations and an outlook to
our ongoing and future research in this area.

2 Expectations, Requirements, and Approach

Our main expectation with respect to the use of DSMSs for traffic analysis is that
DSMSs might be a generic platform that simplify the development of analysis com-
ponents, are easily reusable, are self-documenting, allow on-line and off-line analysis
with the same tool, and support management and archival of data. Typical tasks are to
analyze:

• the load of a system, e.g., how often are certain ports, like FTP, or HTTP, of a
server contacted; which share of bandwidth is used by different applications;
which departments use how much bandwidth on the university backbone,

• characteristics of flows, like distribution of life time and size of flows; relation
between number of lost packets and life time of flows; what are the reasons for
throughput limitations, or

• characteristics of sessions, like how long do clients interact with a web server;
which response time do clients accept from servers; how long are P2P clients
on-line after they have successfully downloaded a file.

The above examples indicate an important functional requirement, i.e., the system
should be capable to handle all protocol layers including the application layer. An
important non-functional requirement is introduced by the need for real-time analysis.
A DSMS should be able to handle data with a throughput that is proportional to the
network load. For example, to analyze IP and TCP headers on a fully utilized giga-
bit/s network would require to handle more than 42 megabit/s of data (assuming a
fixed packet size of 1500 bytes and a header size of 64 bytes). However, a more real-
istic assumption is that it is only possible to reduce the data stream by a factor of 4:1
to 9:1 relative to the current network load [6].

DSMSs require like any other DBMS a schema describing the type and structure
of the data to be handled. Therefore, we expect that reuse and changes of DSMS
applications for traffic analysis will be easier than changing PERL scripts. A side
effect of this property might also be that applications can be easier exchanged be-
tween researchers and results from others can be easier reproduced.

The major publications in the research area of DSMSs raise the expectations that
the above requirements can be met by DSMSs. Even quite high performance numbers
are reported for a proprietary DSMS from AT&T, called GigaScope [2]. It has been
successfully used for network monitoring and is able to handle at peak periods 1.2
million packets per seconds on a dual 2.4 Ghz CPU server.

We are interested in whether public domain DSMS technology is already mature
enough to be useful in practice for traffic analysis. Therefore, we used a public-
domain DSMS, called TelegraphCQ [5], and studied how simple and complex analy-

sis tasks can be solved with it.1 Since it is not the goal of this work to develop new
solutions for complex tasks, we investigate how the functionality of an existing tool
can be re-implemented with TelegraphCQ. We selected the tool T-RAT [10], because
we are using and improving it in our ongoing research work [7].

3 Data Stream Management Systems

The fundamental difference between a classical DBMS and a DSMS is the data
stream model. Instead of processing a query over a persistent set of data that is stored
in advance on disk, queries are performed in DSMSs over a data stream. In a data
stream, data elements arrive on-line and stay only for a limited time period in mem-
ory. Consequently, the DSMS has to handle the data elements before the buffer is
overwritten by new incoming data elements. The order in which the data elements
arrive cannot be controlled by the system. Once a data element has been processed it
cannot be retrieved again without storing it explicitly. The size of data streams is
potentially unbounded and can be thought of as an open-ended relation. In DSMSs,
continuous queries evaluate continuously the arriving data elements. Standard opera-
tor types that are supported by most existing DSMSs are filtering, mapping, aggre-
gates, and joins. Since continuous streams may not end, intermediate results of con-
tinuous queries are often generated over a predefined window and then either stored,
updated, or used to generate a new data stream of intermediate results [1]. Window
techniques are especially important for aggregation and join queries. Examples for
DSMSs include STREAM [1], GigaScope [2], and TelegraphCQ [5]. The interested
reader can find an extensive overview on DSMSs in [1] and [3].

TelegraphCQ is characterized by its developers as “a system for continuous data-
flow processing” that “aims at handling large streams of continuous queries over
high-volume highly variable data streams” [5]. TelegraphCQ is based on the code of
the relational DBMS PostgreSQL and required major extensions to it to support con-
tinuous queries over data streams, like adaptive query processing operators, shared
continuous queries, and data ingress operations. We focus in this paper on the exten-
sions visible for user, i.e., data model and query language extensions. The format of a
data stream is defined as any other PostgreSQL table in PostgreSQL‘s Data Defini-
tion Language (DDL) and created with the CREATE STREAM command before a
continuous query can be launched and processed.

Figure 1 illustrates the data flow during processing of a continuous query and
shows also the main components of TelegraphCQ. The Wrapper ClearingHouse
(WCH) is responsible for the acquisition of data from external sources, like the
packet capturing tool TCPdump. The WCH loads the user-defined wrapper function
for the source. The wrapper is reformatting the output of the source into the Post-
greSQL data types according to the DDL definition of the particular stream. There is
always a one-to-one relation between source and wrapper, and between wrapper and
stream. The WCH can manage multiple wrappers respectively streams and fetches the

1 At the beginning of this project (August 2003), we identified TelegraphCQ as the only avail-

able public domain DSMS.

stream data via TCP connections from the wrapper(s). The newly created tuples of
each stream are placed by the WCH into the shared memory infrastructure to make
them available to the rest of the system. The query processing is performed in the
BackEnd and the results are placed in corresponding queues in the shared memory
infrastructure. Finally, the FrontEnd continually dequeues the results and sends them
to the client. In order to reuse results, it is necessary to start TelegraphCQ in such a
way that the standard output is written to a file.

Source1

SourceN

TCQ
Wrapper

TCQ
Wrapper

TCQ
Wrapper
Clearing
House

TCQ
BackEnd

TCQ
FrontEnd

Shared Memory Infrastructure

Client

Data Acquisition CQ
Processing Presentation of results

Fig. 1. Data flow in TelegraphCQ (TCQ) during continuous queries (CQ) processing

All interactions between client and TelegraphCQ are performed through the Front-
End, including processing of DDL statements and accepting queries from the client.
Queries over tables are only directly processed in the FrontEnd. Continuous queries,
i.e., queries over streams (and stored tables) are pre-planned by the FrontEnd and
passed to the BackEnd.

Continuous queries over data streams are written in SQL with the SELECT state-
ment, but only a subset of the full SQL syntax is supported. The modified SELECT
statement has the following form:

SELECT <select_list>
FROM <relation_and_pstream_list>
WHERE <predicate>
GROUP BY <group_by_expressions>
WINDOW stream[interval], ...
ORDER BY <order_by_expressions>;

Continuous queries may include a WINDOW clause to specify the window size for
the stream operations. A window is defined in terms of a time interval. Each arriving
data element is assigned by the wrapper a special time attribute (called TIMESTAMP)
and the window borders are continuously updated with respect to the timestamp of
the most recently arriving data element, i.e., evaluation of continuous queries is based
on sliding windows [5]. All other clauses in the SELECT statement behave like the
PostgreSQL select statement with the following additional restrictions in the Tele-
graphCQ 0.2 alpha release [9]: windows can only be defined over streams (not for
PostgreSQL tables); WHERE clause qualifications that join two streams may only
involve attributes, not attribute expressions or functions; WHERE clause qualifications
that filter tuples must be of the form attribute operand constant; WHERE clause may

only contain AND (not OR); subqueries are not allowed; GROUP BY and ORDER
BY clauses are only allowed in window queries.

4 Experiments and Experiences with TelegraphCQ

In this section, we describe some simple, but typical traffic analysis tasks, the design
of a complex analysis tasks, and give some performance bounds for TelegraphCQ.

4.1 Solving Simple Traffic Analysis Tasks

For each of the tasks that are discussed in this subsection, we explain how it can be
solved online with a continuous query in TelegraphCQ, or why it cannot be solved
with a continuous query. For all examples, we assume an input stream that has been
defined with the following DDL statement:

CREATE STREAM p6trace.tcp (ip_src cidr, ip_dst cidr, hlen
bigint, tos int, length bigint, id bigint, frag_off bigint,
ttl bigint, prot int, ip_hcsum bigint, port_src bigint,
port_dst bigint, sqn bigint, ack bigint, tcp_hlen bigint,
flags varchar(10), window bigint, tcp_csum bigint, tcqtime
timestamp TIMESTAMPCOLUMN) type ARCHIVED;

Each tuple in the stream p6trace.tcp comprises IP and TCP header fields and
an attribute for timestamp values that are assigned by the wrapper. The attribute type
cidr defines an attribute to store an IPv4 or IPv6 address in dotted notation.

Task 1. How many packets have been sent during the last five minutes to certain
ports?
This is an example for a join operation between a stream and a table. The port num-
bers of interest are stored in the table services. The TCP destination port field
port_dst in all tuples in the stream p6trace.tcp is compared with those in the
table.

CREATE TABLE services (port bigint, counter bigint);

SELECT services.port, count(*)
FROM p6trace.tcp, services
WHERE p6trace.tcp.port_dst=services.port
GROUP BY services.port
WINDOW p6trace.tcp ['5 min'];

This is also an example for the use of the sliding window. Each new arriving tuple
is advancing the sliding window and the intermediate result of the continuous query
for this window is passed to the client. This is a powerful feature for on-line monitor-
ing, since it makes sure that the client receives always the most recent statistic. The
drawback of sliding windows is the inherent redundancy in the intermediate results.
Assuming that the one minute window covers always n tuples, each tuple will con-
tribute n times to an intermediate result. This increases the amount of output data and

makes it impossible to perform absolute statistics over a stream, like it is necessary
for Task 3.

Task 2. How many bytes have been exchanged on each connection during the last
minute?

SELECT ip_src, port_src, ip_dst, port_dst, sum(length-ip_len-
tcphlen)
FROM p6trace.tcp
GROUP BY ip_src, port_src, ip_dst, port_dst
WINDOW p6trace.tcp [‘1 min’];

From the stream p6trace.tcp, all tuples, i.e., packet headers, that have arrived
during the last minute are grouped according to their source and destination IP ad-
dress and their port numbers. The SELECT statement specifies that all address infor-
mation for each group together with the sum of the payload length of all packets in
this group are returned. The identification of connections in this continuous query is
based on a simple heuristic: during a one minute window all packets with the same
sender and receiver IP addresses and port numbers belong to the same connection.

Task 3. How many bytes are exchanged over the different connections during each
week?

There are two basic deficiencies in the current TelegraphCQ prototype that make it
impossible to solve this task with a continuous query. The first deficiency is that a
GROUP BY clause can only be used together with a WINDOW clause. It is obvious
that the window size must be much smaller than one week, because all incoming data
is kept in main memory until the entire window has been computed. The sliding win-
dow imposes that the payload of each packet would contribute several times to inter-
mediate results when the inter arrival time of packets is smaller than the window size.
In order to calculate a correct final result that summarizes all intermediate results, it is
necessary to remove the redundant information from all the intermediate results. In
other words, to calculate absolute statistics with continuous queries, non-overlapping
windows (also called jumping or tumbling windows) are needed, but this type of win-
dows is not supported in TelegraphCQ.

The second deficiency relates to connection identification. The simple heuristic we
used for Task 2 to identify connections cannot be used, because the same quadruple
of sender and receiver IP addresses and port numbers can identify many different
connections during a week. In other words, a simple GROUP BY clause over a set of
attributes (in this example the four address fields) is not sufficient. Additional rules
are needed to distinguish different connections with the same attribute values. For
example, we could define a connection as released if for T time units no packets have
been sent, i.e., packets with the same address quadruple that are sent after such a
break belong to a new connection. However, the important aspect of this example is
not the particular approach of how connections are identified. Instead, it illustrates a
problem that is common to many traffic analysis tasks that cannot be solved by a
continuous query in TelegraphCQ. The basic problem is that associations, like flows,
sessions etc., must be recognized and each packet must be related to a single associa-
tion such that statistics for each association can be calculated. For the identification of

associations, the address fields in packets are typically used together with certain
rules that are depending on the protocol. Before a packet stream is analyzed it is not
known which associations with their particular attribute values will be seen. Instead,
this information has to be extracted from the data stream. Afterwards, it is possible to
assign packets to their associations, based on the attribute values. The traditional
solution is to maintain a data structure to store data about associations. Each packet in
the data stream can contribute in two ways to the data that is stored in the data struc-
ture. First, it is used to analyze whether it belongs to a new association that has to be
inserted in the data structure and second, it is used to update the statistic for the par-
ticular association it belongs to. With the SQL SELECT statement it is not possible to
maintain a data structure to store intermediate results. Therefore, the only on-line
solution is to analyze the data stream two times, first to identify associations and
second to calculate association statistics. Since DSMSs do only allow a single pass
over the data stream, it is only possible to perform such a task in a continuous query
with subqueries. Since TelegraphCQ does not support subqueries, this type of task
cannot be solved on-line in TelegraphCQ.

Task 4. Which department has used how much bandwidth on the university backbone
in the last five minutes?
To solve this task, a wrapper has to capture all packets from the backbone. A join
operation has to be performed between a predefined stored table that contains the IP
addresses that are used in the different departments and the stream p6trace.tcp
from the wrapper. The best solution would be to define for each department the exist-
ing IP address range and check with the PostgreSQL operator “>>” which address
range contains the IP address of the packet in the data stream. The corresponding
DDL statement to create such a table is as follows:

CREATE TABLE departments (name varchar(30), prefix cidr,
traffic bigint);
SELECT departments.name, sum(length-hlen-tcp_hlen)
FROM p6trace.tcp, departments
WHERE departments.prefix >> p6trace.tcp.ip_src
GROUP BY departments.name
WINDOW p6trace.tcp ['5 min'];

Unfortunately, the current TelegraphCQ prototype produces incorrect results if a
“>>” operator is used in a join. However, it works correctly if a “=” operator is used.
To solve the task, it is therefore necessary to store all IP numbers that are used by the
departments in a stored table:

CREATE TABLE departments (name varchar(30), ip_addr cidr,
traffic bigint);

SELECT departments.name, sum(length-hlen-tcp_hlen)
FROM p6trace.tcp, departments
WHERE departments.ip_addr = p6trace.tcp.ip_src
GROUP BY departments.name
WINDOW p6trace.tcp ['5 min'];

The major disadvantage of this solution is that all IP addresses must be enumerated
and can lead to a very large table.

4.2 TCP Rate Analysis with TelegraphCQ and PostgreSQL

T-RAT [10] aims to identify the reasons for rate limitations, e.g., congestion, re-
ceiver buffer constraints, of TCP flows. For simplicity reasons, we focus our descrip-
tion just on the first important steps of the T-RAT algorithm (Fig. 2.a) and how they
could be performed in TelegraphCQ and PostgreSQL (Fig. 2.b). The initial step is to
identify connections in a TCPdump trace file based on matching IP addresses and
port numbers of source and destination. This is not possible on-line. Therefore, in
TelegraphCQ a continuous query is used to put the relevant data from a TCPdump
wrapper into table T1. The remaining process has to be done off-line in PostgreSQL.
First, query Q1 is used to generate table T2 with all connections. Afterwards, query
Q2 relates in table T3 all packets to their connections. In order to partition the set of
packets in each connection in flights (based on 27 RTT candidates), query Q3 has to
join table T3 and the table with the RTT candidates. The join operation in Q3 cannot
be solely expressed in SQL and requires an external C function. The next query Q4
requires also an external C function to classify the flights into the different protocols
states “slow start”, “congestion avoidance”, and “unknown”, and to find the best fit
which indicates the best RTT for the particular connection.

T1:
TCPdump
trace

T2:
Connections

Q1

T3:
Connections
with packets

Q3

Predefined
RTT candi-
dates

Q2

T4:
Flights

Q4

T5:
RTT

TCPdump trace

Identify connections

Partition connections
into flights

Find losses

Relate flights to
connection states

Select best fit

RTT

(a) (b)

Fig. 2. Structure of the original T-RAT algorithm (a) and its design in Telegraph CQ (b)

The main insights from this design exercise are the following: With TelegraphCQ
it is not possible to perform this task in a continuous query, because to identify con-
nections and flights it would be necessary to handle dynamic tables in continuous
queries with subqueries. Both are not supported in the current release. The main func-
tionality of T-RAT has to be performed off-line with PostgreSQL. T-RAT is using
complex heuristics which cannot be expressed in SQL. However, the extensibility of
TelegraphCQ, respectively PostgreSQL, allows to increase the expressiveness of
queries with external functions. Thus, T-RAT and other complex analysis can be

performed off-line with TelegraphCQ, even if the main functionality is then hidden in
external functions instead of SQL statements.

In general, it should be noted that DSMSs are not appropriate for all problems, and
that DSMSs require a new way of designing tools for traffic analysis. A developer
should especially pay attention to the question which functionality should be per-
formed in a continuous query and which should be performed off-line.

4.3 Performance Evaluation

In order to get a first idea about the performance of TelegraphCQ we performed some
experiments in a subnetwork at Institute Eurecom which is based on a 100 Mbit/s
Ethernet. The load in this subnetwork is close to zero and its impact on our results can
be ignored. We used a simple workload generator to generate a well-defined load for
the wrapper and TelegraphCQ. A client streams a fixed amount of data with fixed
rates to a server via a TCP connection. This enables us to use the same wrapper and
stream definition, i.e., p6trace.tcp, as defined in Section 4.1. The size of all
TCP packets is equal to the maximum segment size. Due to practical reasons, the
wrapper, TelegraphCQ, and the server are running on the same machine, a Pentium 4
machine with a 2Ghz CPU, 524 MB RAM, and a 100 Mb/s Ethernet card.

The basic idea of our performance experiments is to increase the network load un-
til TelegraphCQ is no longer able to handle all data. This load indicates an upper
performance bound for TelegraphCQ. We use two mechanisms to recognize whether
TelegraphCQ could handle all data or not. First, we log the data that is forwarded
from the wrapper to TelegraphCQ, and second, TelegraphCQ itself summarizes how
much data it handled. We compare these results with the (amount of) data the work-
load generator streamed on the network.

Figure 3 shows how the query type and the number of attributes that are handled in
the query impact the performance. With a projection, i.e., a simple query that selects a
certain number of attributes, TelegraphCQ can handle in maximum 3.6 megabyte per
second (MB/s) network traffic for one attribute and 2.7 MB/s for 16 attributes. The
upper performance bound for an aggregation is 3.4 MB/s for one attribute (Section
4.1, Task 1) and 2.7 MB/s for four attributes.2 The most surprising results we got for
queries that perform a JOIN operation over a stream and a table (Section 4.1 Task 4).
A join is normally the most costly operation in a DBMS. We assumed that the per-
formance of a join is not better than the performance of the projection if both gener-
ate the same amount of output data. However, in our measurements TelegraphCQ can
keep up with 5.8 MB/s of network data for handling one, two, and four attributes in a
join when using a small table with ten entries. Further investigations showed that the
number of matches between table and stream does impact the performance. The more
entries in the table match the attribute value of a stream tuple, the lower the perform-
ance. The results in Figure 3 are based on a unique match. The size of the table and

2 For aggregation and join we increased the number of attributes only to four, because we

cannot see any meaningful application that would handle more aggregation or join attributes
in these queries.

the position of the matching entry in the table influence the performance. However,
even with a table of 100000 entries in which the matching entry is the last one, Tele-
graphCQ can still handle more than 2 MB/s of network data without loss. In order to
verify these preliminary results, more in depth investigations have to be performed.
Our results so far can only document that TelegraphCQ is fast enough to perform
meaningful network analysis tasks on a commodity PC with a standard Linux con-
figuration (OS release 2.4.18-3) without loosing data up to network loads of 2,5
MB/s.

0

1

2

3

4

5

6

7

1 2 4 8 16 Number of attributes

M
B

/s

Projection

Aggregation

Join

Fig. 3. Upper performance bounds for continuous queries

5 Discussion and Conclusions

Comparing our expectations and requirements with the experiences we gained in this
study, we can state that the recent TelegraphCQ prototype is quite useful for many
on-line monitoring tasks. The sliding window concept assures that the client gets
always the most recent statistics and the system can keep up with relatively high link
speeds by running only on commodity hardware. We have shown some preliminary
performance measurements and that the performance of TelegraphCQ is influenced
by the number of attributes in the output. It should also be noted that the query lan-
guage can be extended with inbuild C-functions. This feature enables a developer to
implement and use in TelegraphCQ complex algorithms that cannot be expressed
with SQL. As it is natural for an early prototype, not all features are fully imple-
mented yet. For example, joins between a stream and a table can only compare ele-
ments with the “=” operator (i.e., only equi-joins are supported in the current release).
Therefore, it is not possible to match prefixes of IP addresses, even if it would be
very helpful to identify the origin IP domain of packets. Instead, all possible origin IP
addresses we want to compare with have to be stored in the table in advance.

We have identified three restrictions in the design of TelegraphCQ that makes it
not suitable as a general tool for traffic analysis in its current stage:

• Subqueries are not supported: all tasks that require to identify associations by
inspecting the data stream twice, i.e., a simple GROUP BY statement over cer-
tain attributes is not sufficient, since it cannot be solved on-line.

• Jumping or tumbling windows are not supported: a sliding window introduces
redundancy, because each tuple contributes multiple times to a sliding window
result. To calculate statistics that are correct for time intervals that are longer
than a single window, this redundancy has to be removed. However, this can
only be done if it is known how and to which intermediate result each packet
contributes. However, this knowledge cannot be assumed to be present at the
client or an off-line application that is using the set of intermediate results.

• On-line and off-line handling is not integrated: TelegraphCQ is designed to
forward all results to the user (client). There is no direct way to insert results
from a continuous query into a PostgreSQL database. The workaround is to
start the system such that its standard output is placed in a file. This file in turn
could be later imported into a PostgreSQL database.

These aspects are supported by those DSMS that are targeted for network monitor-
ing, i.e., Tribeca [8] and GigaScope [2]. However, both systems are not available as
public domain DSMS. Therefore, we will in future studies focus on STREAM [1]
which is promised to be public domain within the next months and supports subque-
ries. We will also closely follow future releases of TelegraphCQ.

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Stream Systems, ACM Symposium on Principles of Database Systems PODS 2002, Dal-
las, Texas, USA, May 2000

2. Cranor, C., Johnson, T. Spatcheck, O., Shkapenyuk, V.: Gigascope: A Stream Database
for Network Applications, ACM SIGMOD 2003, San Diego, California, USA, June 2003

3. Golab, L., Özsu, M. T.: Issues in Data Stream Management, ACM SIGMOD Record, Vol.
32, No. 2, June 2003, pp. 5-14

4. Izal, M., Biersack, E. W., Felber, P. A., Urvoy-Keller, G., Al Hamra, A., Garces-Erice, L.:
Dissecting BitTorrent: Five Months in a Torrent's Lifetime, PAM2004, Antibes Juan-les-
Pins, France April 2004

5. Krishnamurthy, S., Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hel-
lerstein, J. M., Hong, W., Madden, S., Reiss, F., Shah, M. A.: TelegraphCQ: An Architec-
tural Status report, Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, March 2003

6. Micheel, J., Braun, H.-W., Graham, I.: Storage and Bandwidth Requirements for Passive
Internet Header Traces, Workshop on Network-Related Data Management, in conjunction
with ACM SIGMOD/PODS 2001, Santa Barbara, California, USA, May 2001

7. Schleippmann, C.: Design and Implementation of a TCP Rate Analysis Tool. Master
Thesis, TU München/Institut Eurecom, August 2003

8. Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network
Traffic, Proc. USENIX Annual Technical Conference, New Orleans, USA, June 1998

9. TelegraphCQ: http://telegraph.cs.berkeley.edu/, 2003
10. Zhang, Y., Breslau, L., Paxon, V., Shenker, S.: On the Characteristics and Origins of

Internet Flow Rates, ACM SIGCOMM’02, Pittsburg, USA, August 2002

http://telegraph.cs.berkeley.edu/

	Introduction and Motivation
	Expectations, Requirements, and Approach
	Data Stream Management Systems
	Experiments and Experiences with TelegraphCQ
	Solving Simple Traffic Analysis Tasks
	TCP Rate Analysis with TelegraphCQ and PostgreSQL
	Performance Evaluation

	Discussion and Conclusions
	References

