
Establishing Trust with Privacy

Laurent Bussard, Refik Molva

Institut Eurécom
Corporate Communications

2229, route des Crêtes BP 193
06904 Sophia Antipolis (France)
{bussard,molva}@eurecom.fr

1 Introduction

With the advent of self-organizing systems such as ad hoc networks or ubiquitous
computing, security protocols have to meet a new requirement for establishing
trust among parties that have no a priori relationship like a shared naming
structure or a common organization. Trust establishment in this context calls
for a brand new paradigm with respect to classical scenarios whereby entities
build trust based on some existing security association. We suggest in this paper
a cryptographic protocol through which parties can build trust based on the
history of their interactions with other parties. This protocol allows a prover to
get a proof of history or the evidence that it was involved in some interaction
with another party. During further interactions, other parties consider the prover
trustworthy based on the verification of the proof of history.

Privacy is an essential requirement for such a protocol since providing proof
of history to several parties without privacy would severely expose the behavior
of the prover. The history-based trust establishment protocol thus assures the
anonymity of the prover and the unlinkability of interactions using the proof of
history. Moreover, the prover can choose to show only parts of its history. The
proof of history is based on a signature mechanism and the trust establishment
protocol is a challenge-response protocol based on this mechanism. The signature
mechanism is an extension of group signatures.

2 History-Based Signature

This section shows the interactions necessary to build a provable history and
to use this for history-based trust establishment. Users collect evidence of their
activity and store it as a provable history. To ensure non-transferability of evi-
dences, they are implemented as credentials attached to a valuable secret. Cre-
dentials can define group membership, location-and-time stamps, recommenda-
tions, etc.

When signing a challenge or a document, the user chooses some credentials in
his history, modifies them, and signs with those credentials. Credentials have to
fulfill the following requirements to build a provable yet anonymous history: Non-
transferability, i.e. credentials can only be used by the owner of some valuable

secret (equivalent to the private key in public key infrastructures); Anonymity,
i.e. use of history-based credentials should not reveal the identity of the author;
and untraceability, i.e. it is not possible to link different signatures based on the
same credential.

History-based signature is an extension of the group signature scheme de-
scribed in [2]. Alice (A) is the signer. She collects some credentials to subse-
quently prove some history. For instance, A holds a credential to prove that she
has been in some place. When A is traveling or visiting partners, she collects
location stamps. A has credentials to prove some membership, e.g. employee of a
company, member of ieee computer society, partner of some project, member of
a golf club, citizen of some state, client of some bank, customer of some airline.
A can show some recommendations: when she collaborates with other entities,
she receives credentials. All those credentials define her provable history. Each
credential can be used as a proof during a challenge-response protocol or as an
attribute of a signature.

2.1 Certification by a CA or Group Manager

To initiate the system, each entity has to get some certificate proving that he/she
has a valid secret, i.e. a secret linked to his/her identity. This part is similar
to the join protocol of the Camenisch’s scheme. However, we use a modified
version because a coalition attack exists against the initial scheme [1, 3]. We
define the following elements: n = pq where p and q are two large primes; Zn =
{0, 1, 2, . . . , n− 1} is a ring of integers modulo n; Z∗

n = {i ∈ Zn | gcd(i, n) = 1}
is a multiplicative group; G = {1, g, g2, . . . , gn−1} is a cyclic group of order n;
g is a generator of this group G; a, b ∈ Z∗

n are elements of the multiplicative
group; and λ is a security parameter (see [2] for more details).

In Table 1, A generates some secret x with the help of a CA or group manager
B. Moreover, A receives a certificate on this secret x: cert1b = (ax

b +1)db mod nb.

2.2 Obtaining Context Proofs or Recommendations

Once certified, A can visit different entities that will provide proofs of location,
proofs of interaction, recommendations, etc. A provable history is a set of such
proofs. Table 2 shows how A can get a credential from C. The identity of A
is not known but C verifies that this entity is certified by some known CA
or Group manager. It is always necessary to have some trust relationship with
previous signers when providing credentials or when verifying history. In this
example, C has to trust B otherwise the previous protocol has to be done once
more. However, when an entity D needs to verify the signature of A on some
document, D only has to know C.

Two interactive proofs of knowledge (PK) are done in step 2.3). The first
one proves that y2 is based on some secret. The second shows that this secret
has been certified by B. Indeed, z̃g̃b = g̃b

(βeb) = g̃b
(aα

b)g̃b = g̃b
(1+aα

b) and thus
1 + aα

b = βeb . It means that A knows β = (1 + aα
b)db that is a certification of α,

A B
private: pb, qb, db

public: nb, eb, Gb, gb, ab, λb

1.1) chooses random secret x′

x′ ∈R {0, 1, ..2λb − 1}

-
1.2) y′ = ax′

b mod nb

�
1.3) ξ ∈R {0, 1, .., 2λb − 1}

1.4) computes x = x′ + ξ
y = ax

b mod nb

commits to z = gy
b

-
1.5) y, z

-�
1.6) PK[α | y = gα

b]

1.7) verifies y
?
= y′ · aξ

b

�
1.8) cert1b = (y + 1)db mod nb

Table 1. Creation and first certification of A’s secret x

A C

private: x, (ax
b + 1)db private: pc, qc, dc, dc1 , . . . dck

public: nc, ec, ec1 , . . . eck ,
Gc, gc, ac, bc, λc

2.1) y2 = ax
c mod nc

g̃b = gr
b for r ∈R Znb

z̃ = g̃b
y (i.e. z̃ = zr)

-
2.2) y2

2.3) pk2: PK[α | y2 = aα
c ∧ z̃ = g̃b

(aα
b)]

-�
pk3: PK[β | z̃g̃b = g̃b

(βeb)]

2.4) t ∈R {0, 1, . . . , 2λ − 1}
cert1c = (ax

c + 1)dc

cert2c = (ax
c + bt

c)
dh

cert3c = (bt
c + 1)dc

where dh =
∏

i∈S di

�
2.5) t, cert1c, cert2c, cert3c, S

Table 2. Obtaining some credential to build history

which is also the discrete logarithm of y2 to the base ac. In other words, y2 has
been computed from the same secret x.

In step 2.4) A receives a new credential cert2c = (ax
c + bt

c)
dh mod nc from C

that will be used to prove some history. bc as well as ac are elements of Z∗
nc

, x
prevents the transferability of credentials, and t is different for each credential to
forbid a user from combining multiple credentials (see Section 4). The attribute
value, be it a location or a recommendation, is defined using a technique that
comes from electronic cash: dh =

∏
i∈S dci

where S is a set that defines the
amount or any attribute. Construction of dh is given in Section 3. Two other
credentials can be provided: cert1c = (ax

c + 1)dc mod nc is a certification of the
secret that can replace cert1b. To avoid a potential attack (see Section 4), we
add cert3c = (bt

c + 1)dc mod nc.

2.3 Using History for Signing

This section shows how Alice can sign a document as the holder of a set of
credentials. A knows a secret x, the certification of this secret (cert1c), and
some credential that is part of her history (cert2c). Using these credentials, she
can compute a signature on some message m. A generates a random number
r1 ∈R Znc

and computes five signatures based on a proof of knowledge (SPK):

ĝc = gr1
c , ẑ2 = ĝc

y2 , and ẑ3 = ĝc
(bt

c)

spk1 = SPK[α | ẑ2 = ĝc
(aα

c)](m)
spk2 = SPK[β | ẑ2ĝc = ĝc

(βec)](m)
spk3 = SPK[δ | ẑ3 = ĝc

(bδ
c)](m)

spk4 = SPK[γ | ẑ2ẑ3 = ĝc
(γe

h′)](m) where eh′ =
∏

i∈S′ ei and S′ ⊆ S

spk5 = SPK[ε | ẑ3ĝc = ĝc
(εec)](m)

The signature of message m is {spk1, spk2, spk3, spk4, spk5, ĝc, ẑ2, ẑ3, S
′}. The

signatures of knowledge spk1 and spk2 prove that the signer knows cert1c: β =
(1 + aα

c)dc mod nc. The signatures of knowledge spk1, spk3 and spk4 prove that
the signer knows cert′2c: γ = (aα

c +bδ
c)

dh′ mod nc. To avoid some potential attack
(see Section 4), we added spk5 to prove the knowledge of cert3c. spk3 and spk5

prove that t was generated by C: ε = (1 + bδ
c)

dc mod nc.

3 Encoding Attribute Values

In the protocol, Alice receives cert2c and signs with cert′2c to hide part of the
attributes. A flexible mechanism is necessary for displaying part of the attributes.

Each authority that delivers certificates (time stamper, location stamper,
group manager, etc.) has a public key: a RSA modulo (n), and a set of small
primes e1, . . . , em where ∀i ∈ {1, . . . ,m} | gcd(ei, φ(n)) = 1. The meaning of each
ei is public as well. Each authority also has a private key: p, q, and {d1, . . . , dm}
where pq = n and ∀i ∈ {1, . . . ,m} | ei · di = 1 mod φ(n).

A signature SIGN(S,n)(m) = mdh mod n, where S is a set and dh =
∏

i∈S di,
can then be transformed into a signature SIGN(S′,n)(m) = mdh′ mod n, where

S′ is a subset of S and dh′ =
∏

i∈S′ di. The the attribute value is coded as a set
S corresponding to its bits equal to one. This signature based on set S can be
reduced to any subset S′ ⊆ S:

SIGN(S′,n)(m) =
(
SIGN(S,n)(m)

)(∏
i∈{S\S′} ei) = m(∏

i∈S′ di mod φ(n)) mod n

Thus, an entity that received some credential cert2c is able to compute cert′2c
and to sign a document with this new credential.

cert′2c = (cert2c)
∏

j∈{S\S′} ej =
((

ax
c + bt

c

)∏
i∈S di

)∏
j∈{S\S′} ej

=
(
ax

c + bt
c

)∏
i∈S′ di

This technique ensures that part of the signed attributes can be modified.
A location and time stamper (LTS) can certifies that some entity has been at
a given place at a given time: [time: 180432, date: 30012004, latitude:
436265, longitude: -0070470]. If a location and time stamper provides the
following credential to Alice:
[18|04|32, 30|01|2004, 43|62|65, -007|04|70], she can sign a document
with a subset of this credential.
[18|XX|XX, XX|XX|XXXX, 43|62|65, -007|04|70], i.e. the document is
signed by someone that was in the building someday around six o’clock. Or
[XX|XX|XX, 30|01|2004 43|XX|XX, -007|XX|XX], i.e. someone who was in
the South of France the 30th of January.

Similarly, a company can qualify customers as Platinum, Gold, or Silver ; a
state can provide digital Id cards to citizen to certify gender, name; a company
can provide credentials that define role, access rights; and a partner can define
recommendations. In all those cases, the ability of selecting which attribute is
displayed is very important to protect privacy when enabling trust evaluation.

4 Security Evaluation

The security of the scheme is based on the assumptions that the discrete loga-
rithm, the double discrete logarithm and the roots of discrete logarithm problems
are hard. In addition it is based on the security of Schnorr and RSA signature
schemes and on the additional assumption of [2] that computing membership
certificates is hard. The signature produced by the above protocol is not forge-
able. Specifically, only an entity having received a given credential could have
issued this signature.

Secret t has been added to that attributes of multiple credentials could be
combined. A desirable goal is to be able to assure that it is not possible to
find another message with the same signature. Violation of this property with
our protocol would require the generation of two pairs (x, t) and (x′, t′) so that
ax + bt = ax′ + bt′ . In order to prevent transferability based on such generation
of equivalent pairs, cert3c and spk5 were included in the protocol. Computing
(x′, t′) from a credential based on (x, t) would thus require computing x′ =
loga(ax + bt − bt′) which is equivalent to solving the discrete logarithm problem.
A proof that the generation of pairs is equivalent to a difficult problem would
allow for important simplifications of the history-based signature scheme.

5 Conclusions

This paper introduces a history-based signature scheme that enables to build
trust based on the evidence of previous interactions without revealing them.
This scheme can be useful in two ways: first it allows anonymous signatures, e.g.
some article can be signed by an art critic that visited some museum one week
ago. Next it can be used in a challenge-response protocol to prove one’s history.
For instance, previous successful collaborations can be asserted. User privacy is
protected by displaying only necessary attributes and by avoiding traceability.

There are two main limitations to this scheme: it is well-known that signa-
tures based on the proof of knowledge of a double discrete logarithm are not
efficient in terms of computational complexity and the deployment is dedicated
to client-server model but does not allow peer-to-peer collaborations where each
entity acts as a signer and as a credential provider.

References

1. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In Proceedings of Financial Cryptography99, volume 1648 of LNCS, pages
196211. Springer-Verlag, 1999.

2. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In
Advances in Cryptology, CRYPTO ’97 Proceedings, LLNCS 1294, pages 410–424,
Santa Barbara, CA, August 1997.

3. Zulfikar Amin Ramzan. Group blind digital signatures: Theory and applications,
Master Thesis, MIT, 1999.

