History-Based Signature or How to Trust
Anonymous Documents

Laurent Bussard, Refik Molva, and Yves Roudier

Institut Eurécom®
Corporate Communications
2229, route des Crétes BP 193
06904 Sophia Antipolis (France)
{bussard,molva,roudier}@eurecom.fr

Abstract. This paper tackles the following problem: how to decide
whether data are trustworthy when their originator wants to remain
anonymous? More and more documents are available digitally and it is
necessary to have information about their author in order to evaluate
the accuracy of those data. Digital signatures and identity certificates
are generally used for this purpose. However, trust is not always about
identity. In addition authors often want to remain anonymous in order to
protect their privacy. This makes common signature schemes unsuitable.
We suggest an extension of group signatures where some anonymous per-
son can sign a document as a friend of Alice, as a French citizen, or as
someone that was in Paris in December, without revealing any identity.
We refer to such scheme as history-based signatures.

1 Introduction

Verifying the reliability of a piece of information without revealing the identity
of its source is becoming an important privacy requirement. Anybody can easily
broadcast inaccurate or even deliberately deceptive information like in the case
of what is referred as urban legends or hoaxes. Author authentication thanks to
the signature of that very document seems a natural way to check whether the
author can be trusted and thus to determine whether the document is accurate
or misleading. Furthermore, protecting the privacy of signers is necessary. When
people are exchanging ideas in a public forum, anonymity may be a require-
ment in order to be able to state some disturbing fact or even simply not to be
traced based on their opinions. When users have a way to attach comments to
surrounding physical objects [10] (e.g. painting in a museum) the chance that
statistics be made on their interests might simply refrain them from commenting
at all.

! Institut Eurécom’s research is partially supported by its members: Bouygues
Télécom, Cegetel, France Télécom, Hasler Foundation, Hitachi, STMicroelectron-
ics, Swisscom, Texas Instruments, and Thales.

There are number of cases like pervasive computing or ad-hoc networks in
which infrastructure is lacking: neither a public key infrastructure nor a web
of trust is available which renders identity-based authentication impossible [13].
Even with an infrastructure, authenticating the author is often not sufficient and
more information on the context, in which the document was created, is required.
For instance, beginning of this year the mass media announced that a senior
radio reporter in Swaziland pretending to be reporting live from the war front in
Iraq had never left his country and was broadcasting from a broom closet. This
case shows that the context (being in some place) is sometimes more important
than the role or the identity of the author (being who I pretend to be). Group
signature schemes [5] make one step forward towards such new requirements
by assuring the anonymity of the signer when revealing some information on
his relationships, i.e. group membership. This paper extends this concept using
attributes embedded within each signature in order to enable the evaluation of
trust information on any signed document without revealing the identity of its
author.

Various attributes can be relevant to evaluate trust. When some clear hier-
archy exists among entities, a public key infrastructure [8] is sufficient to define
trust relationships. A web of trust [9] allows non-hierarchical trust relations sim-
ilar to those formed in human communities. However, using a model based on
human notions of trust is not straightforward. Three main sources of information
are generally proposed to evaluate trust [7]: personal observations of the entity’s
behavior, recommendations from trusted third parties, and reputation of an en-
tity. However, other sources of information exist: sometimes, the physical context
is also taken into account in the trust evaluation [14,11]. In a simple example,
any person present in a room can be authorized to turn on the light. In this
paper, we add the notion of proof of context, which certifies that some entity
has been to some location at some time. It provides evidence for trustworthiness
based on contextual parameters such as location and history.

This paper suggests a new signature scheme that takes those sources of trust
into account. The scheme ensures anonymity and untraceability of signers. When
signing, authors choose which part of their history will be shown to readers. For
instance, a report relating some event can be signed by an employee who was
there when this event occurred; an e-mail can be signed by an inhabitant of a
giwen district of a town; or an article could be signed by a member of a trade
union who attended a given demonstration. Like this, the signature is not based
anymore on the identity of the signer but rather on his history. Such a history is
defined as a set of the context (time and location), group memberships (reporter,
trade unionist), and recommendations (defined by Bob as a trusted party). The
signer chooses the degree of accuracy of the details he wants to disclose, e.g.
someone that can prove that he was in Paris on the 15" of January could
choose to sign a document as someone who was in France in January.

The remaining of the paper is organized as follow. Section 2 presents the
requirements and some related work. Section 3 describes the group signature
scheme that is modified in Section 4 to define a history-based signature scheme.

Section 5 introduces a mechanism to code context and relation so that these can
only be modified in a controlled way. Finally, Section 6 evaluates the security of
this scheme.

2 Problem Statement

This section gives an overview of the interactions necessary to build a provable
history and to use this for history-based signatures. Related work is discussed
with respect to the feasibility of a provable history scheme.

2.1 Principle

Users anonymously collect evidence of their activity and store it as a provable
history. In Figure 1, a user gets a proof that he is in a place. To ensure non-
transferability of evidences, they are implemented as credentials attached to
a valuable secret. Credentials can define group membership, location-and-time
stamps, recommendations, etc.

Holder is History item
known by CA Holder was in place x at time t.

Fig. 1. Getting history items

When signing a document, the author chooses some credentials in his history,
modifies them, and signs the document with those credentials. In Figure 2, a user
is able to prove that he was in place x at time ¢, that he is said reliable by some
entity Z, that he is a member of group G, and that he has a given name and
address (electronic id card). He chooses to sign the document as someone that
was in place x at time t. The signature does not reveal more information on the
signer and it is even not possible to link two signatures of the same signer. To
ensure untraceability, it is necessary to avoid being too precise: it is indeed easier
to identify a person that signed as having been in a given room at a precise time
than to recognize this person based on the knowledge that he was in the building
at some time.

Credentials have to fulfill the following requirements to build a provable yet
anonymous history:

History

- was in place x at time ¢t
- is said “reliable” by Z

- is member of group G
- Id card

- etc.

History-based signature
Sign document as “someone
that was in place x at time t".

Fig. 2. History-based signature

— Non-transferability: credentials can only be used by the owner of some valu-
able secret (equivalent to the private key in public key infrastructures). This
secret is critical and thus will not be transferred to another entity. As a
result, credentials cannot be transferred.

— Anonymity: the identity of authors is not known when they create or use
their history.

— Untraceability: it is not possible to link different documents signed by a same
person even when the same credential is used.

2.2 Related Work

Some existing work [4, 2] already allow for privacy-preserving attribute verifica-
tion. However, the target of those works is anonymous attribute certificates and
untraceable access control. Credentials defined in [4] rely on pseudonyms and
thus it is necessary to know the verifier before starting the challenge-response
protocol. Credentials defined in [2] do not ensure non-transferability and have
to be used only once to ensure untraceability. The one-time property of these
credentials also does not suit multiple interactions as required by our scenario.

Using information on the user’s context to evaluate trust or define rights is
not new: [6] proposes a generalization of the role-based access control paradigm
taking into account contextual information. Location verification techniques
range from ultrasound-based challenge response [14] to distance bounding pro-
tocols [3], which forbid Mafia fraud attacks and thus defeat collusion of insiders.
In this paper we assume that the location stamper implements one of those
techniques to verify the presence of entities before delivering a proof of location.

3 Basic Mechanisms

This section presents the first group signature of Camenisch [5] that will be
modified in the sequel of this paper in order to define a history-based signature
scheme.

We define the following elements: n = pg where p and g are two large primes;
Z,={0,1,2,...,n—1} is aring of integers modulo n; Z = {i € Z,, | ged(i,n) =
1} is a multiplicative group; G = {1,g,¢%,...,¢9" 1} is a cyclic group of order
n; g is a generator of this group G; a € Z is an element of the multiplicative
group; and A is a security parameter (see [5] for more details).

3.1 Interactive Proof of Knowledge

A proof of knowledge (PK) allows an entity to prove the knowledge of some
secret without revealing this secret. For instance, a prover P claims to know the
double discrete logarithm of y to the bases g and a. A verifier V tests if P indeed
knows x. This is denoted PK[a | y = g(@")].

P sends a witness to V: w = ¢(*") where 7 is a random value and V returns
a random challenge bit ¢ € {0,1}. Finally P sends a response s = r (if ¢ = 0)
or s =1 —x (if ¢ =1). The verifier checks that

c=0 : w ; g(as) — g((l'r)
c=1 1wy = () =g = g

This protocol has to be run [times where [is a security parameter.

3.2 Signature based on a Proof of Knowledge

A signature based on a proof of knowledge (or signature of knowledge) of a
double discrete logarithm of z to the bases g and a, on message m, with security
parameter [is denoted SPK;[a | z = g(*™)](m). It is a non-interactive version of
the protocol depicted in Section 3.1. The signature is an [+ 1 tuple (¢, s1,..., $)
satisfying the equation:

@) if eli] =
_ - Jy if c[i] =0
e=tm = g llal Pyl) where P = {90y HeU 20
It is computed as following;:
1. For1 <:< l,_ generate random r;.
2. Set P; = ¢g"*) and compute c=Hy(m || z | glla || P | ... || P).
3. Set s; =14 if fi] = 0

r; —x otherwise

3.3 Camenisch’s Group Signature

The group signature scheme in [5] is based on two signatures of knowledge:
one that proves the signer knows some secret and another one that proves this
secret is certified by the group manager. The scheme relies on the hardness
of computing discrete logarithm, double discrete logarithm and e'” root of the
discrete logarithm.

The public key of a group is (n,e,G,g,a,A) where e is chosen so that
ged(e,d(n)) = 1. The private key of the manager is (p,q,d) where d - e =
1 mod ¢(n). When Alice joins the group, i.e. becomes a member, she uses her
secret x to compute a membership key (y, z) where y = a® mod n and z = g¥.
A sends (y,z) to the group manager, proves that she knows x and receives a
group certificate (y + 1)¢ mod n corresponding to her secret x. In order to sign

a message m, A chooses r €g Z,, and computes § = ¢, Z = g¥ (= 2"), and two
signatures:

Vi = SPK[a | 2 = §(@)(m)
Vo = SPK[f | g = 7] (m)

V1 is a signature of knowledge of a double discrete logarithm that can be
computed when knowing some secret z. Similarly, V5 is a signature of knowledge
of an e*” root of the discrete logarithm that can be computed using the certificate
(y + 1)% mod n. The group signature of message m is (g, Z, V1, Va).

The verifier checks that Vi and V5 are valid signatures of m. Both signatures
together mean that g% = 2§ = g(¢"*1 and thus 3 = (a® + 1)? mod n. The
verifier knows that the signer holds a certified secret x. However, the verifier
cannot get any information on x. In other words, the identity of the signer is
preserved: this is a group signature.

4 Solution: History-Based Signature Scheme

History-based signature is an extension of the group signature scheme described
in Section 3. Alice (A) is the signer. She collects some credentials to subsequently
prove some history. For instance, A holds credentials to prove that she has been
in some place. When A is traveling or visiting partners, she collects location
stamps. A has credentials to prove some membership, e.g. employee of a company,
member of ieee computer society, partner of some project, member of a golf club,
citizen of some state, client of some bank, customer of some airline. A can show
some recommendations: when she collaborates with other entities, she receives
credentials. All those credentials define her provable history. Each credential can
be used as a proof during a challenge-response protocol or as an attribute of a
signature.

4.1 Certification by a CA or Group Manager

To initiate the system, each entity has to get some certificate proving that he/she
has a valid secret, i.e. a secret linked to his/her identity. This part is similar to
the join protocol of the Camenisch’s scheme. However, we use a modified version
because a coalition attack exists against the initial scheme [1,12].

In Table 1, A generates some secret with the help of a CA or group manager
B. Moreover, she receives a certificate on this secret x: certy, = (afj—i—l)db mod 7.
Now, A is certified and can act anonymously as a member of group or as an entity
certified by a given CA in order to get credentials and build a provable history.

4.2 Obtaining Context Proofs or Recommendations

Once certified, A can visit different entities that will provide proofs of location,
proofs of interaction, recommendations, etc. A provable history is a set of such

A B
private: py, qv, dp
public: ny, ey, Gy, gy, as, Ao
1.1) chooses random secret x’
z' €r {0,1,.2% — 1}

1.2) y = a?f/ mod nyp

1.3) £ €r {0,1,..,2* — 1}

1.4) computes © =z’ + ¢
y = ap mod np
commits to z = g;

1.5) y, 2

1.6) PKa | y = g5']

1.7) verifies y Ly as
1.8) cert1p = (y + l)db mod ny

Table 1. Creation and first certification of A’s secret x

proofs. Table 2 shows how A can get a credential from C. The identity of A is not
known but C verifies that this entity is certified by some known C' A or Group
manager. It is always necessary to have some trust relationship with previous
signers when providing credentials or when verifying history. In this example,
C has to trust B otherwise the previous protocol has to be done once more.
However, when an entity D will verify the signature of A on some document, it
only has to know C.

Two proofs of knowledge are done in step 2.3). The first one proves that yo
is based on some secret. The second shows that this secret has been certified by
B. Indeed, 2g, = G,*") = (%) g, = 17 and thus 1 + af = 5. It means
that A knows 8 = (1+a@)% that is a certification of o, which is also the discrete
logarithm of ys to the base a.. In other words, y» has been computed from the
same secret x.

In step 2.4) A receives a new credential certy. = (a2 + b%)% mod n,. from C
that will be used to prove some history. b. as well as a. are elements of Z} , x
prevents the transferability of credentials, and ¢ is different for each credential to
forbid a user from combining multiple credentials (see Section 6). The attribute
value, be it a location or a recommendation, is defined using a technique that
comes from electronic cash: dj, = Hie gde; where S is a set that defines the
amount or any attribute. Construction of dj is given in Section 5. T'wo other
credentials can be provided: certy. = (a® + 1)% mod n. is a certification of the
secret that can replace certyp. To avoid a potential attack (see Section 6), we
add certs. = (b + 1)% mod n..

A C
private: z, (af + 1)% private: pe, g, de, dey, - . . dey,
public: nc, ec, €cqy ... €cps
Ge, ge, e, be, Ac
2.1) y2 = af mod n.
go =gy for r €r Zy,
Z=g¥ (=2")
22) Y2

2.3) pka: PK[a | yo = al A Z = G, 9]
pks: PK[B | 2 = "]

24)ter{0,1,...,2* -1}
certic = (ag + l)dc
certoc = (af + bi)d”'
certze = (b + 1)dC
where dp, =[] d;

2.5) t, certyc, certac, certse, S

i€S

Table 2. Obtaining some credential to build history

4.3 Using History for Signing

This section shows how Alice can sign a document as the holder of a set of
credentials. A knows a secret z, the certification of this secret (certi.), and
some credential that is part of her history (certs.). From this she can compute
a signature on some message m. A generates a random number r; €p Z,, and
computes:

Jo=git, & = g.*, and 7 = g,

spk1 = SPK[a | % = ¢.\%)](m)

spka = SPK([B | 224 = g (BE()]()

spks = SPKId | Z5 = g.)}(m)

spks = SPK[y | %45 = 6.0")](m) where ep = [[;cg€iand S"C S
spks = SPK[e | Z3ge = G\](m)

The signature of message m is {spky, spka, spks, spka, spks, g, 22, 73,5’ }. The
signatures of knowledge spk; and spks prove that the signer knows certi.: 3 =
(1+ a%)? mod n.. The signatures of knowledge spk;, spks and spk, prove that
the signer knows cert.: v = (a2 +b3)%" mod n.. To avoid some potential attack
(see Section 6), we added spks to prove the knowledge of certs.. sks and sks
prove that ¢t was generated by C: e = (1 + b%)% mod n..

When credentials from different entities (e.g. B and C) have to be used
together, it is necessary that A generate a random number ry €p Z,, and

compute g, = g;* and 2 = G, (= 2"2). spky and spky are modified as following:

spkf = SPKla | % = 6.'%) A 2 = G,\")](m)
spkl, = SPK[3 | 2, = 3,*"")(m)

spki and spk} prove that the signer knows certip: 8 = (a + 1)% mod ny,
and spk] proves that certy, and certs. are linked to a same secret .
spki is a signature based on a proof of equality of two double dis-
crete logarithms (see Appendix A). The new signature of message m is

{Spkllﬂ Spk/Q’ 8pk3’ Spk4, Spk5ugAba 27gAC7 zAQa 2?37 S/}

5 Encoding Attribute Values

In Section 4, the user receives certo. and signs with cert). to hide part of the
attributes when signing. This section presents a way to encode data so that they
can be modified in a pre-defined way. The main goal of this is to allow the user
to choose the granularity of transversal attributes.

A straightforward solution to define granularity is to provide multiple cre-
dentials. For instance, a location stamper will provide credentials defining room,
building, quarter, town, state, etc. The holder is thus able to choose the granu-
larity of the proof of location. Unfortunately, this requires too much credentials
when transversal attributes have different granularities (longitude, latitude, time,
etc.).

5.1 Principle

Authorities that deliver certificates (time stamper, location stamper, group man-
ager, etc.) have a public key: a RSA modulo (n), and a set of small primes
€1,...,em where Vi € {1,....,m} | ged(e;, ¢(n)) = 1. The meaning of each e; is
public as well. Authorities also have a private key: p, q, and {ds,...,d,,} where
pg=nand Vi € {1,...,m} | ¢;-d; = 1 mod ¢(n).

In this manner, a signature SIGN(gy)(m) = m® mod n, where S is a
set and d, = [];cgdi, can be transformed into a signature SIGN(g) (m) =
m® mod n, where S’ is a subset of S and dj = [l;cg di- The the attribute
value is coded as a set S corresponding to its bits equal to one. This signature
based on set S can be reduced to any subset S’ C S:

SIGN 5 ny(m) = (SIGN(S,n)(m)>(Hi€{S\SI} ei) — mIlicsr di mod ¢(n)) 1o q

Thus, an entity that received some credential certs. is able to compute cert,.
and to sign a document with this new credential.

Mieqs\sry €

certh, = (certo)liets\s/r @ = ((af + bz)niesdi) = (al + bi)nies/ &

This technique ensures that part of the signed attributes can be modified.
For instance, the attribute value v = 134 is equivalent to the binary string

01101, and can be encoded as S = {4,3,1}, i.e. 4" 374 and 1% bits set to
one. dp, = dy - ds - d; mod ¢(n). Knowing {e; | i € S}, the following transfor-
mations are possible: S’ € {{4,3,1};{3,1};{4,3};{4,1};{4};{3};{1}} and thus
v € {13,5,12,9,8,4,1}. Any bit i equal to one can be replaced by a zero (by
using e;) but any bit j equal to zero cannot be replaced by a one (because d; is
private).

5.2 Possible Codes

Choosing different ways to encode data enables to define which transformations
of the attribute values are authorized:

— more-or-equal: values are encoded so that they can only be reduced. For
instance, v = 134 — 01101, — S = {1, 3,4}. Because bits equal to one can
be replaced by zeros, it can be transformed into v’ € {13,12,9,8,5,4,1}.

— less-or-equal: values are encoded so that they can only be increased. For
instance, v = 134 — 10010, — S = {2,5}. It can be transformed into
v € {13,15,29,31}.

— unary more-or-equal: the problem with binary encoding is that they cannot
be reduced to any value. For instance, 74 = 111; can be shown as 7, 6, 5, 4, 3,
2,1, or 0 but 64 = 110, can only be shown as 6, 4, 2, or 0. This limitation can
be solved by using a binary representation of unary: v = 64 = 111111, —
0111111, — S ={1,2,3,4,5,6} can be shown as v’ € {6,5,4,3,2,1,0}. The
overhead is important (I bits data is encoded with 2! bits) and thus unary
has to be restricted to small values.

— unary less-or-equal: unary representation a similar approach can be used for
less-or-equal too: v = 245 — 1111100, — S = {3,4,5,6,7} can be trans-
formed in v’ € {2,3,4,5,6,7}.

— frozen: values are encoded so that they cannot be changed. In this case, the
number of bits have to be larger: I bits becomes [+ [log,({)] + 1 bits. For
instance, 134 — 00011015, ¢ = 100, — 0001101]|100, — S = {7,6,4,3}. The
checksum c¢ represents the number of bits equal to zero, any modification
of the value increase the number of zero but the checksum can only be
decreased. It is not possible to change frozen values.

— blocks: data are cut into blocks. Each block is encoded with one of the pre-
vious schemes.

5.3 Example: Location-and-Time Stamper

This section describes how the previous encoding schemes can be used. Let us
define a location and time stamper (LTS) that certifies that some entity has
been in a given place at a given time. The proof can be provided by a cell-
phone operator that locates subscribers, by a beacon in a building, or even by
using some distance bounding protocol. A LTS can define logical location (e.g.
continent, country, department, town, quarter, building, room) or geographic

location (longitude, latitude). We only focus on the latter case because it does
not require the definition of a complex data structure.

A location-and-time stamper company can deploy a network of public ter-
minals and sensors. When Alice plugs her smart card in a terminal or when
she passes a wireless sensor, she receives a location-and-time stamp with the
following attributes: time (UTC, date) and location (latitude, longitude). Table
3 shows an example of the attributes that could be delivered by some LTS in
Eurecom Institute.

Value Meaning

180432 UTC in hhmmss format (18 hours, 4 minutes and 32 seconds)
24112003 Date in ddmmyyyy format (November 24, 2003)

43.6265 Geographic latitude in dd.dddd format (43.6265 degrees)

N Direction of latitude (N - North, S - South)

007.0470 Geographic longitude in ddd.dddd format (7.047 degrees)

E Direction of longitude (E - East, W - West)

Table 3. Context data: location and time

It can be represented by four attributes [180432, 24112003, 436265,
-0070470] that can be divided into frozen blocks: [18]04|32, 24]11|2003,
43162165, -007|04|70] the meaning of each block is publicly known: LTS de-
fines his public key as n and a set of e. For instance, e; is the least significant bit
of the time in seconds (0-59 : 6 bits), eg is the most significant bit of the time
in seconds, e7 is the LSB of checksum of time in seconds, etc. If a location and
time stamper provides the following credential to Alice:

[18104132, 2411|2003, 43]62|65, -007]04|70], she can sign a document
with a subset of this credential.

[18|XX|XX, XX|XX|XXXX, 43|62]65, -007104170], ie. the document is
signed by someone that was in the building someday around siz o’clock. Or
[XX|XX|XX, 24111]2003, 43|XX|XX, -007|XX|XX], i.e. someone who was in
the South of France the 241" of November.

Hidden attributes are different than zero values (XXX # 000). Indeed, XXX is
represented as 00000 and is not equal to 000 that is defined as 000|11. Thus
it is not possible to convert 09:08:30 into 09:00:30. The only way to suppress
minutes is to remove seconds as well: 09:XX:XX. This value does not mean that
some action occurred at nine o’clock but that it occurred between nine and ten
o’clock.

Similarly, a company can qualify customers as Platinum, Gold, or Silver; a
state can provide digital Id cards to citizen to certify gender, name; a company
can provide credentials that define role, access rights; and a partner can define
recommendations. In all those cases, the ability of selecting which attribute is
displayed is very important to protect privacy when enabling trust evaluation.

6 Security Evaluation

This section evaluates the security of this protocol. The security of the scheme
is based on the assumptions that the discrete logarithm, the double discrete
logarithm and the roots of discrete logarithm problems are hard. In addition
it is based on the security of Schnorr and RSA signature schemes and on the
additional assumption of [5] that computing membership certificates is hard.

Our proposal is based on the group signature scheme of [5], which join pro-
tocol is subject to a collusion attack [1]. Modifications of [12] that prevent this
attack have been taken into account (see Table 1). Even with this modification,
there is no proof that the scheme is secure. The security does, however, rest on
a well-defined number-theoretic conjecture.

6.1 Unforgeability of Signature

The signature produced by the above protocol is not forgeable. Specifically, only
an entity having received a given credential could have issued this signature.
This holds because, in the random oracle model, spk; proves that the signer
knows his secret, spks proves that the signer knows a credential’s secret, and
spky proves that the signer knows a credential corresponding to both secrets.
That is, spk1 and spks respectively show that

% =¢") and

and therefore:

n A NPT 5
23:g(a +b°%)

for integers o and (3 that the signer knows. On the other hand, spk4 proves that
(aa + bé) _ ,yeh/

for some 7y that the signer knows. Under the hardness assumption on the unforge-
ability of credentials, this can only happen if the signer received a credential.

6.2 Unforgeability and Integrity of Credentials

In order to code attribute values, a set of different e; and d; are used with
the same modulo n. However, the common modulus attack does not apply here
because each d; is kept secret. Because there are multiple valid signatures for a
given message, this scheme seems to make easier brute force attacks that aim at
creating a valid signature for a given message: an attacker can choose a message
m and a random dr €r Z, and compute a signature m? mod n. If e; and
d; are defined for i € {1,...,k}, there are 2¥ valid d = [[;cg.cgdi- Like this,
the probability that a random dp be acceptable is 2¥ times higher than with
RSA where k& = 1. However, even if the number of possible signatures for a

given message increases, it is necessary to find out the set S corresponding to
the randomly chosen signature. In other words, the attacker has to test whether

VS € S | m = (m?)lies ¢ mod n. There are 2% possible sets S’ to check and
thus the security of this scheme is equivalent to RSA.

In some cases, the signature scheme can allow combining attributes of two
credentials in order to create a new one: naive credentials (a® +1)%1 and (a® +
1)?r2 could be used to create (a® + 1)4n where S’ C Sy U Sy. If h; states that
Alice was present from 8 a.m. to 10 a.m. and hs states that she was present from
4 p.m. to 6 p.m., it is necessary to forbid that Alice could create a h' stating
that she was present from 8 a.m. to 6 p.m. To avoid this attack, a unique secret ¢
is associated to each credential. Like this (a® + b*1)%1 cannot be combined with
(az + btz)dh2 .

6.3 Non-Transferability of History

Even when the signature of a message cannot be forged, it is necessary to ensure
that it is not possible to find another message with the same signature. It has
not been proven that generating two pairs (z,t) and (z’,t') so that a® + bt =
a® 4 b mod n is difficult. It is the reason why it was necessary to add certs.
and spks to ensure that z,t, and ¢’ are imposed and that an attacker wanting to
transfer credential can only try to define a new secret ' = log, (a” + b* — b*')
which is equivalent to the discrete log problem. It ensures that the credential
received as a proof of context or as a recommendation cannot be transferred.
A proof that the previous scheme is equivalent to a difficult problem (e.g. the
discrete logarithm problem) would enable simplifications of the history-based
signature scheme.

7 Conclusions and Future Work

This paper introduces the history-based signature scheme that makes it possible
to sign data with one’s history. In such a scheme, signers collect credentials (proof
of location, recommendation, etc.) in order to build a provable history. This
scheme preserves the privacy of authors and makes a large variety of attributes
possible for defining trust: recommendations, contextual proofs, reputation, and
even hierarchical relationships.

This scheme can be useful in different situations. For instance, any visitor
of a pervasive computing museum could be allowed to attach digital comments
to painting and to read comments of previous visitors. Notes could be signed
by an art critic that visited the museum one week ago. In this example, we
assume that the critic received some credential to prove that he is an expert
(e.g. electronic diploma when completing study) and that he can prove that he
visited the gallery. Each visitor will filter the numerous notes according to some
parameters defining trustworthiness, i.e. art critic, location, or recommended by
the museum. The authors of note have a guarantee that they cannot be traced.
In another situation, the signature of an article written by a journalist could

require one credential to prove that the author was where the event occurred
and another credential to prove that he is a reporter.

There are two main limitations to this scheme. First, it is well-known that
signatures based on the proof of knowledge of a double discrete logarithm are not
efficient in terms of computational power. It could be interesting to study other
approaches to define more efficient history-based signatures. Second, the deploy-
ment of the scheme is easy when some authorities (CA, TTP, group manager,
LTS, etc.) provide proofs of context and recommendations and some users col-
lect those credentials in order to sign. To enable peer-to-peer frameworks where
each entity acts as a signer and as a credential provider, it would be necessary
to associate members’ secret and group manager keys.

References

1. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In Proceedings of Financial Cryptography99, volume 1648 of LNCS, pages
196211. Springer-Verlag, 1999.

2. S. Brands. A technical Overview of Digital Credentials. Research Report, February
2002.

3. L. Bussard and Y. Roudier, Embedding Distance-Bounding Protocols within Intu-
itive Interactions, in Proceedings of Conference on Security in Pervasive Computing
(SPC’2003), Boppard, Germany, March, 2003.

4. J. Camenisch and A. Lysyanskaya, An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation, LNCS 2045, 2001.

5. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. In
Advances in Cryptology, CRYPTO ’97 Proceedings, LLNCS 1294, pages 410-424,
Santa Barbara, CA, August 1997.

6. M.J.Covington, M.J.Moyer, and M.Ahamad, Generalized Role-Based Access Con-
trol for Securing Future Applications. In 23rd National Information Systems Secu-
rity Conference (2000).

7. Nathan Dimmock. How much is ’enough’? risk in trust-based access control, In
IEEE International Workshops on Enabling Technologies (Special Session on Trust
Management), June 2003.

8. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T.Ylonen. Rfc 2693
spki certificate theory, 1999.

9. Simson Garfinkel. PGP : Pretty Good Privacy. International Thomson Publishing,
1995.

10. D. Ingram. Trust-based filtering for augmented reality. In Proceedings of the First
International Conference on Trust Management, volume 2692. LNCS, May 2003.

11. T.Kindberg, K.Zhang, and N.Shankar, Contezt authentication using constrained
channels, in Proceedings of the IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA), pages 14-21, June 2002.

12. Zulfikar Amin Ramzan. Group blind digital signatures: Theory and applications,
Master Thesis, MIT, 1999.

13. J.M. Seigneur, S. Farrell, C.D. Jensen, E. Gray, and Y. Chen End-to-end Trust
Starts with Recognition, in Proceedings of Conference on Security in Pervasive
Computing (SPC’2003), Boppard, Germany, March, 2003.

14. N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims, In
Proceedings of the 2003 ACM workshop on Wireless security, 2003.

A Signature Based on a Proof of Equality of Double
Discrete Logarithms

Section 4.3 uses a signature based on a proof of equality of two double discrete
logarithms (SPKEQLOGLOG).

SPKi[a | y1 = g\ A - Ay = g4)(m)

where [is a security parameter. The signature is an [4+ 1 tuple (¢, s1,...,s;)
satisfying the equation

c=H(mlkl{yr-- ye}{g1-- - gr}l{ar - anH{Pra- - Pra}ll---[{Pe- - Pri})

where P%J = 9i s if C[]] =0
Y, otherwise
The signature can be computed as following:

. For 1 < j <, generate random r; where r; > .
.For1 <i<k forl<j<lI set P :ggai])
. Compute ¢ = H (m|k|{yr ... ye}{o1---gx}ll{ar- - ax}{Pr1-- - Pri}l|-)

o Tj if C[ﬂ =0
. Set 55 = {rj —x otherwise

N

The verification works as following:
if C[]} =0: PZ,] = gi(ai') = gi(ai)

e i —z Sjtw s

) _ () _)

. . a.:J 4 i i
it elj] = 1: Py =gt = (o] =Y =Y

It is not possible to reduce s; modulo because the order of a; € Z; is
different than the order of az € Z .

