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ABSTRACT. We consider channels with interference known to the transmitter but un-
known to the receiver. A precoding technique based on lattice quantization is capable of
achieving Costa’s “Dirty-Paper” limit for arbitrary interference signals, when interference
is known non-causally. The same technique can be applied when interference is known
with given anticipation k, fixed and independent of the code blocklength n. We review the
main information-theoretic results in the non-causal £k = n and causal (k = 1) settings,
and provide specific examples for a modulo-2 additive-noise binary channel with binary
interference and for an AWGN channel with additive interference.

Then, we turn to coding design for the AWGN case with causally-known interference
(nicknamed “Dirty-Tape” channel, in analogy with Costa’s “Dirty-Paper”). We provide ex-
plicit code constructions based on Low-Density Parity-Check codes and on M -PAM modu-
lation, able to approach the rates achievable by lattice precoding for the AWGN Dirty-Tape
channel. Finally, we point out some research problems such as the wideband limit of the
causally-known interference channel (and the related optimal signaling) and the extension
of our coding technique to the case of non-causally known interference (AWGN Dirty-
Paper channel).

1. Introduction

Memoryless channels with input X, output Y and state-dependent transition proba-
bility Py|x s where the channel state S is i.i.d., known to the transmitter and unknown to
the receiver, date back to Shannon [1], who considered the case of state sequence known
causally, and to Kusnetsov and Tsybakov [2], who considered the case of state sequence
known non-causally. Gel’fand and Pinsker [3] proved the capacity formula
(1.1) C =sup{I(T,Y)-I(T;5)}

Pris
for the non-causal case, where 7' is an auxiliary random variable with conditional distribu-
tion Pp|g and X is a deterministic function of S and T'. This yields Shannon’s capacity
formula [1]
(1.2) C=supI(T;Y)

Pr

for the causal case with i.i.d. state sequence, by restricting the supremization in (1.1) to 7'
independent of S [6].

In the case where the channelis Y = X + S + Z, with Z ~ N(0,0?), E[|X|?] < &€
and the interference S is also Gaussian and known non-causally at the transmitter, Costa [4]
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proved that the capacity in (1.1) is equal to the standard AWGN capacity 3 log(1 + €/0?),
as if interference was not present. From the title of Costa’s paper, coding strategies for the
non-causal known interference case are nicknamed “Dirty-Paper” coding and, by analogy,
coding strategies for the causal case are nicknamed “Dirty-Tape” coding [5, 6].

While in early works such problems were motivated by data storage on defective me-
dia [2], more recently “Dirty-Paper” coding gained renewed attention because it arises
as the main tool in several important settings such as broadcast vector Gaussian chan-
nels [7, 8, 9, 10, 11, 12], precoding for ISI channels [13, 6] and data hiding [14, 15, 16]. A
widescope recent survey of applications of Dirty-Paper coding is provided in [6].

From the information theoretic point of view, Gel’fand, Pinsker and Costa’s results
were generalized in many ways (see [6] and references therein). However, efficient coding
strategies able to approach the theoretical results are still not a common practice (prelim-
inary results can be found in [14, 15]) although, based on random coding arguments, it
can be shown that sequences of good lattice codes, mimicking Gel’fand and Pinsker ran-
dom binning scheme, do exist and can approach Costa’s result in the additive interference
AWGN case [17].

The reminder of this paper is organized as follows. In Sections 2 and 3 we illus-
trate the capacity formulas (1.1) and (1.2) through two well-known examples: an input-
constrained Binary-Symmetric Channel (BSC) with binary equiprobable interference, and
Costa’s AWGN channel with arbitrary interference. Then, Section 4 is devoted to the con-
struction of coded modulation schemes based on Low-Density Parity-Check codes (LD-
PCs) for the AWGN Dirty-Tape problem (the example in Section 3 with causal interference
knowledge). Conclusions and discussion are pointed out in Section 5.

2. BSC with known binary interference

Suppose that we wish to hide data into the least significant bits (LSBs) of the pixels of
a gray-scale image (host signal) with a Hamming distortion constraint ¥, and assume that
the host signal goes through some transformation that, acting on the LSBs, can be modeled
as a BSC with transition probability p.

This problem can be modeled by the binary modulo-2 adder channel Y = X + S + Z
where S is the host signal LSB sequence, Z is the BSC noise and the input X is subject to
the constraint

1 n
(2.1) HZ;de,O) <W

where dp(a,b) denotes Hamming distance.

In the following we shall assume that S is i.i.d. with P(S =0) = P(S =1) = 1/2.
If the encoder has available the whole interference sequence realization s non-causally
(i.e., before encoding), it can be shown (see [18] and references therein) that the maximum
achievable rate is given by

| KW) for W.<W <1/2
2.2) C_{ aW for 0<W <W,

where the function K (w), defined for w € [0,1/2], is given by

[ h(w) —h(p) for p<w<1/2
(2.3) K(w)—{o for 0<w <p

where h(p) denotes the binary entropy function and where we let W, = 1 — exp(—h(p))
and a = log((1 — W,)/W,).!

The rate K (W) (for W > p) is achieved by Dirty-Paper coding. Namely, we construct
a binary random codebook € of size |€| = exp(n(l — h(p) — ¢/2)) and make a random
partition of € into subsets {C,,, : m = 1,..., M} of size |C,,| = exp(n(1—h(W)+¢/2)).

1When information rates are measured in bits, log and exp are base-2, when it is measured in nats, log and
exp are base-e.
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For large n, the number of subsets is given by M = exp(n(K (W) — €)). Both C and the
partition {€,, } are revealed to encoder and decoder.

Let s be the interference sequence and m be the information message to be sent. The
encoder finds a codeword ¢ € C,,, such that

1 n
- > du(siyei) <W
=1

Since each subset is “large enough”, such sequence ¢ can be found with probability 1 —e/2
for sufficiently large n. Then, the encoder sends x = ¢ + s. The decoder observes the
standard BSC outputy = x + s + z = ¢ + z, where z is the noise realization, finds the
minimum distance codeword
¢ = arg min dy(c,y)

and outputs the message 7 as the index of the subset containing . Since the codebook C is
“small enough”, Pr(m # m) < €/2 for sufficiently large n. Eventually, the rate K (W) — ¢
can be transmitter with error probability not larger than € for sufficiently large n.

Notice the different roles of the € and its subsets C,,: the codebook € must be a
good channel code for the BSC with transition probability p while its bins must be good
Hamming quantizers for the interference sequence s (a Bernoulli i.i.d. unbiased source)
with Hamming distortion WV

In the range 0 < W < W,, capacity is achieved by time-sharing with duty-cycle
6 = W /W, the above scheme for Hamming distortion equal to V.. and “silence” (zero rate
and zero Hamming distortion).

The above intuitive argument can be made formal and proves achievability of (2.2). A
converse is provided, for example, in [18].

Let’s consider now the Dirty-Tape case, where the transmitter at time ¢ knows only
(s1,-..,8;). In this case, Shannon’s formula (1.2) is given explicitly by

2.4) C =2W(log2 — h(p))

The proof of the above capacity formula serves as an exemple of the rather abstract idea
of “coding over strategies” underlying the general capacity formula (1.2). The auxiliary
variable T" in (1.2) takes on values in the set J of memoryless functions (or “strategies”)
mapping the state S into the input X. Therefore, a code for the Dirty-Tape channel (with
i.i.d. states) is given by a set € C T” of sequences €, = (Cim 15 - - ; Cm,n) Of mappings
Cm,i : S — X, such that the input sequence x corresponding to the information message
m and the state sequence s is obtained as z; = ¢y, i (8;)-

When both S and X are binary, then T = {0,1,id, not}, i.e., the identically zero,
identically 1 functions, identity and negation, respectively. The transition probability of the
associated channel with input 7" and output Y, given by

Pyir(ylt) =Y Pyix.s(ylt(s), s) Ps(s),

is given by the table

[Y/T] 0 [ 1] id | not |
0 [1/2][12]1—-p] »p
1T [[12]12] p [1-p

We start with an upperbound to capacity. Due to the concavity of capacity as a function
of the input average “cost” W and to the fact that the input symbol 0 has zero asscoiated
cost, we have [21]

D(Py || Py r—
(2.5) C < W sup (Pyr=¢|lPy|1=0)

U — @0 2 (g2 = h(p)
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FIGURE 1. Capacity of the input-constrained BSC with causally and
non-causally known interference, for p = 0.1.

where the supremization is achieved by either ¢ = id or by ¢ = not. In order to show that
(2.5) is indeed the capacity, we find an input probability assignment Pr such that I(7T";Y")
equals (2.5). The input constraint is given by

2.6)  Eldu(T(S),0)] = Pr(0)-0+ Pr(1) -1+ % (Pr(id) + Pr(not)) < W

By direct inspection, it is clear that the optimal input probability assignment must put zero
probability on the input 1, since Pr(1) > 0 would increase the input average Hamming
weight, without increasing mutual information, as I(T' = 1;Y) = 0. Moreover, by sym-
metry, it must be Pr(id) = Pr(not) (notice that this choice makes the output distribution
uniform). Hence, we choose Pr(id) = Pr(not) = 6/2, and Pr(0) = 1 — 6 for some
6 € [0, 1]. The resulting mutual information is given by

(2.7) I(T;Y) = 6 (log 2 — h(p))

that, by letting § = 2, coincides with the upperbound (2.5).

Fig. 1 shows the Dirty-Paper and the Dirty-Tape capacities vs. the input constraint W
for p = 0.1. Causal knowledge of the interference sequence incurs a noticeable capacity
loss with respect to non-causal knowledge. The capacity per unit cost [21], defined as the
maximum number of information bits per input “one” (the input cost function is dg (z, 0))
and given by U = ﬁC’(WMW:O, yields

Unon—causal
(2.8) Ueavsal - — 9(log2 — h(p))

3. AWGN channel with known arbitrary interference

Consider the real additive noise channel Y = X + S + Z, where Z ~ N(0,0?)
is white Gaussian noise, the input is constrained by E[X?] < & and S is an interference
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signal arbitrarily distributed according to some Ps. This model differ from Costa’s channel
since Pg is not necessarily known, therefore, the random coding argument for achievability
(outlined in Section 2 for the BSC) does not hold any longer, as it makes use of typicality
and, implicitly, exploits the knowledge of Pg. Nevertheless, in [5, 6] an explicit coding
strategy referred to as inflated lattice precoding is shown to achieve capacity %log(l +
&/0?) when the interference signal realization is known non-causally.

Inflated lattice precoding is based on lattice dithered quantization and on the scaling of
the received signal (inflation) followed by lattice decoding. Dithering requires that encoder
and decoder share common randomness 2, and allows the extension of Costa’s result to any
interference statistics and even to arbitrary interference sequences [6], making it an efficient
coding approach for the arbitrary varying channel with states known to the transmitter [22].

Moreover, the inflated lattice scheme can be applied to the case where interference is
known non-causally with anticipation k, i.e., the encoder at time ¢ knows the realization
of the interference signal (s1,. .., Smin{i+k—1,,})- In particular, for & = 1 is provides an
effective coding strategy for the Dirty-Tape setting.

The inflated lattice precoding scheme is illustrated in Fig. 2. Let k be an integer divid-
ing the block length n, and consider a k-dimensional lattice A with fundamental Voronoi
cell V, with normalized second-order moment € (i.e., such that {5y [y [x|*dx = k&).

DITHER
GENERATOR
Z
u u

(¢} - X ‘
ENCODER mod A A % ‘L ‘m()dA ——| DECODER |——>

o)

-
J? s &

STATE
GENERATOR

FIGURE 2. The inflated lattice precoding scheme.

A code C of rate R and block length n is constructed according to a uniform distribu-
tion over V, so that

CCVV/EEYx...xV
——
n/k times
Furthermore, the transmitter and the receiver generate the same dither signal u, uniformly
distributed over V/*.
For an n-dimensional vector v, the vector v mod A"/ is defined as

(3.1) v mod A"* = v — A(v)

where

(3.2) A(v) 2 arg min |v— Al
AeAn/k

In other words, reducing v modulo A™/* consists of quantizing v by using A"/ as a lattice
quantizer, and computing the total quantization error vector.

Let ¢ € € be the codeword to be transmitted. After observing the interference signal
s, the transmitter produces the channel input sequence

(3.3) x = [¢ — as — u] mod A™/*

2Notice that sharing randomness is common practice in wireless communications. For example, in standard
randomly spread CDMA transmitter and receiver share the (pseudo-)random spreading code generator.



6 GIUSEPPE CAIRE AND SHLOMO SHAMAI (SHITZ)

where a € [0, 1] is a scaling coefficient (to be optimized), and sends x. Thanks to the dither
signal u, x is uniformly distributed on V"*/* and its average energy per symbol is &, so that
the power input constraint is satisfied.

After receiving y = x + s + z, the receiver computes

(3.4) y' = [ay +u] mod A™/*

It can be shown [5, 6] that the channel from the encoder output to the decoder input (see
Fig. 2) is equivalent to the additive modulo—A"/* noise channel

(3.5) y' = [c+2'] mod A™/*

where z' is distributed as [(1 — a)u 4+ az] mod A™*. Finally, the decoder computes (or
approximates) the ML decision

(3.6) C = arg max pz: (y' —c)

where pz/ denotes the pdf of z’ defined above.

As anticipated above, inflated lattice precoding for £ = n applies to the non-causal
Dirty-Paper case and, by choosing a sequence of good n-dimensional lattices, it achieves
the AWGN capacity 1 log, (1 + €/0?), where the optimized inflation factor is given by [4]

&
3.7 =
3.7) YT 2re
For the Dirty-Tape case (k = 1), we have A = AZ, with A = 1/12€, and the Voronoi
region V is the interval [—%, %] The scheme is a special case of Shannon’s coding over

strategies, where the code is randomized (via the dither signal) and the strategy alphabet is
given by

(3.8) T ={tyul(s) =[v—as—u]lmod [-A/2,A/2] : ve[-A/2,A/2]}
Random coding over T where the code ensemble is generated according to a uniform dis-
tribution achieves the rate

(3.9 RP™ = max {logA — h(Z")}
a€[0,1]

where the optimization of the inflation coefficient « is obtained numerically. Fig. 3 shows

the optimal « as a function of the SNR 2¢ /o?. The optimal Dirty-Paper value (3.7) is
shown for comparison.
By choosing « as in (3.7), we obtain the lower bound

1 & 1 2me
3.10 pree. > — 1 1+ —= ) — -log—
(3.10) R —2°g<+a‘2) 2 %12
where 1 log, 2Z¢ = 0.254 bits is the “shaping gain”. Moreover, in [5] it is proved that
the above rate is asymptotically optimal, i.e., it coincides with the capacity of the AWGN
Dirty-Tape channel with arbitrary interference, in the limit of high SNR. It is interesting
to notice that, for high SNR, the penalty incurred by causal versus non-causal interference

knowledge is only the shaping gain.

4. LDPC coded-modulation for writing on Dirty-Tape

In this section we consider the AWGN Dirty-Tape channel and we construct inflated
lattice coding schemes approaching the performance of random coding with uniform prob-
ability over the alphabet T defined in (3.8). The obtained codes can be seen either as
“Dirty-Tape” codes, either as “Dirty-Paper” codes with a suboptimal choice of the lattice
A in the general inflated lattice precoding scheme outlined in Section 3.

It is natural to construct the code € by concatenating a linear binary code with M -PAM
signal set

A
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FIGURE 3. Optimal inflation factor for k = 1and k = n — oo.

thus inducing an input marginal distribution close to the uniform distribution over [-A /2, A /2],
for large PAM alphabet size M.

The first-order transition pdf of the corresponding modulo-noise channel (defined in
general by (3.5)) is given by

P 2+kA+(1—a)A/2) P 2+kA—(1—a)A/2
4.1) prr(z) =Y Z( a ) Z( I )
ke

(1-a)A

where Py (z) denotes the cdf of the noise of the original channel. In this work we consider
AWGN, therefore Py(z) is the Gaussian distribution N(0, o).

Next, we consider two code constructions for €: LDPC multilevel coding and direct
design of LDPC-coded modulation.

4.1. Multilevel coding. Multilevel coding (see [23] and references therein) is a gen-
eral method for constructing coded modulation schemes. Fig. 4 shows a block diagram of
the multilevel encoder, where m binary codes produce codewords ¢y, .. ., ¢, of length n.
These are arranged as rows of a m x n matrix, and a binary labeling function ¢ : [F5" — A
is applied columnwise, in order to form the corresponding codeword of €.

As binary component codes we choose LDPCs from the database of LDPC ensembles
optimized for the binary-input AWGN channel provided in [24]. Following [23], the choice
of the component code rates is dictated by the mutual information chain rule. Namely, let
A be uniformly distributed on A and let (b, . .., by, ) be binary uniform random variables,
then

IAY") =I(by, ..., bn;Y') =) R
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FIGURE 4. Multilevel coded modulator with three levels.

where we define the rate at level 7 as
Ri = I(Y';bilb1,...,bi—1)
Zaeﬂ(bl,m,bi) pz (Y' —a)

4.2 F |log.
4.2) 08y Za’eﬂ(b17...,bi—l)pzl (Y' —a)

where A(by,...,b;) denotes the subset of points of A whose label first 4 positions are
given by (by,...,b;). The rates R; are achievable by a multistage decoder that considers
the levels in sequence, by decoding each level ¢ assuming that the decoding outcomes at
previous levels 1,...,¢ — 1 are correct, and by treating the levels ¢ + 1, ..., m as arandom
nuisance. The multistage decoder is analogous to the well-known successive interference
cancellation decoder used in Gaussian multiaccess and broadcast channels [20].

The binary labeling ¢ affects the level rates R; but, as long as ¢ is a one-to-one map-
ping, the total mutual information is independent of ¢. Fig. 5 shows an example of the
set-partitioning labeling [25] considered in this work for 8-PAM codes and Fig. 6 shows
the corresponding achievable rate of the 8-PAM modulo-noise channel, with the level rates
R;.

@ @ @ @ @ @ @ @
000 001 010 011 100 101 110 111

FIGURE 5. Set-partitioning labeling of 8-PAM.

Levels are decoded from right to left of the labels. We notice that for high SNR only
the first level need coding at rate R; < 1, while the other two can be transmitted uncoded
(i.e., Ry = R3 = 1). This provides a very simple scheme requiring a single decoding stage
followed by symbol-by-symbol detection of the remaining stages. Hence, multilevel coding
with set-partitioning labeling is particularly attractive in the high-SNR region. Incidentally,
this is also the region where the inflated lattice precoding scheme with & = 1 pays the
smallest relative penalty with respect to the full non-causal case (as already noticed, the
shaping gain 0.254 bit/symbol).

4.2. Direct optimization. Our second approach consists of directly optimizing the
ensemble of LDPC-coded modulation schemes constructed over the M-PAM alphabet
A, by exploiting the density-evolution method developed to analyze LDPC codes under
message-passing decoding in the limit of infinite block length [26, 27]. Fig. 7 shows the
Tanner graph of the code, where the bitnodes are partitioned into subsets of m nodes, each
of which is associated to the m label positions of a M -PAM symbol. The super-nodes
corresponding to modulation symbols will be referred to as “A-nodes”.

We say that a A-node is of type (dy, . .., d,,) if its i-th label bitnode has degree d;. We
enumerate the A-node types in lexicographic order, and let d; ; be the degree of the ¢-th
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FIGURE 7. Tanner graph of an LDPC-coded modulation scheme.

bitnode in the A-nodes of type . We let ) ; denote the fraction of edges connected with
A-nodes of type ¢ in position ¢. For a graph with e edges, the number of A-nodes of type ¢
is given by ny = e\,;/d; i, therefore A ; /d; ; must not depend on i.

As in standard LDPC notation, we let p; be the fraction of edges connected to chec-
knodes of degree j. The ensemble optimization consists of finding, for any given SNR,
the set of A-node types, the left degree distribution {A;;} and the right degree distribu-
tion {p;} such that the coding rate is maximized subject to the constraint that the density
evolution (DE) converges to zero bit-error probability as the number of iterations goes to
infinity (see [26, 28] for the details). Since optimizing the degree distributions based on
the exact DE is computationally very intensive, we propose a design method based on a
one-dimensional approximation of DE, obtained by approximating the message densities
by Gaussian pdfs (see [27] and especially [29] for similar approaches in different contexts).
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From ), . A;; = 1 we obtain the constraint >, Az1 D .oy gzl = 1. The design
coding rate is given by
> pili
4.3) R=log, M — ==L bit/symbol
&2 Dot A/ dea /5y

For given right degree sequence {p;}, we wish to obtain an optimization problem in the
variables { A 1}.

Consider an A-node of type (dy,...,d,) and consider an edge o connected in po-
sition 4. The message-passing transformation of the iterative belief-propagation decoder
associated to the message output by the node onto edge o is given by

m d; in
¢ ZaeAé pz (Y — a)exp (_ Zj:l bj Zu:l Lj,u)
(4.4) Ly =log Y

dj in
ZaeAi Pz (y, — (l) exp (_ Z;nzl b_] Zu:l £)_],’u)

denotes the input message from edge u connected to the bitnode in position
4, and A} (resp. A?) denotes the signal subset of all points of A having symbol 0 (resp.
1) in label position 7 and where y’ denotes the channel output corresponding to the given
A-node.

It has been shown in [28] that the message pdfs generated by the belief propagation
algorithm at each iteration satisfy a symmetry condition. If the pdfs are Gaussian, the
symmetry condition imposes that the variance must be twice the mean. Assuming that all
input messages are Gaussian i.i.d. ~ N(u,2u), we can obtain by Monte Carlo simulation
of (4.4) the distribution of L;?};t for every ¢ and node type ¢, parameterized in the input
mean value u.

in
,0

in
where L7,

Following [29], we shall replace the pdf f¢ (z) = L Pr(L < z|b = 0) of a message
L relative to a bitnode b by the value of the mutual information functional I(b; L) which,

for symmetric pdfs, is given by

4.5) Ib;L)=1- /oo log, (1+€e7%) fo(z)dz

Then, from the Gaussian assumption of the input messages and the explicit mapping (4.4),
for any A-node type and bitnode position ¢ we can find (numerically) a mutual information
transfer function

(4.6) y =Twi(x)

where x 2 I(b; L") and y £ I(b; L°UY).

Again as a consequence of the message pdf symmetry, the mutual information between
a message L°" and its associated bitnode value b on a randomly selected graph edge,
chosen with probability A ;, is given by

(4.7) y=> Ailei(x)
t,i

Fig. 8 shows the functions I'; ; for an 8-PAM-node of type (2, 5, 10).

For the message-passing mapping at the checknodes we use the approximated dual-
ity property [30], stating that the mutual information transfer function of a checknode is
closely approximated by the mutual information transfer function of a bitnode with the
same degree, by applying the mapping x — 1 — x to the input and y — 1 — y to the output.
Assuming the input messages i.i.d. Gaussian ~ N(u, 2u) and by defining the binary-input

Gaussian mutual information functional
A 1 oo 2
4.8) Jw) 21— 7/ e~ log, (1 +e_2\/’7z_”) dz,
™ — o0

the mutual information transfer function of a checknode of degree j is given by
y=1-J((G-1J "1 -x)
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EXIT function, node type (2,5,10), SPAM, SNR = 0dB
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FIGURE 8. Mutual information transfer function for a 8-PAM node of
type (2, 5, 10) for SNR= 0 dB.

Eventually, the one-dimensional DE approximation is given by the recursion

(4.9) merm 1_2,,1 (G-177t (1=x))

for ¢ = 1,2,. .., with initial condition x(¥) = 0.
The recursion (4.9) has a unique stable fixed pointin x = 1 (corresponding to vanishing
bit-error probability), if and only if

(4.10) X>Z)\“F“ 1—2;»] G-DJt1-x)], ¥Yxel[o,1)

Hence, we can sample the above equation for x taking on values in a fine grid of points
in the interval [0, 1) and for each point we obtain a linear constraint in the variables A; ;

(recall that A, ; = d A /\t 1, therefore the only independent variable of the optimization

problem are {A; 1}) Slnce both the constraints and the objective function (4.3) are linear
in the {1}, the solution is readily obtained by linear programming.

4.3. Results. Fig. 9 shows the rate versus E;/Ng of some multilevel LDPC codes
and LDPC-coded M-PAM codes obtained according to the methods described above, for
the AWGN Dirty-Tape channel. In all cases, the block length (in PAM symbols) is 20000
and the marks correspond to bit-error probability < 10~* with a maximum of 100 decoder
iterations.

Marks labeled by “2PAM” correspond to standard binary LDPC, marks labeled by
“MCM MPAM” correspond to scheme obtained by multilevel coded modulation and marks
labeled by “LDPC-CM MPAM” correspond to direct optimization of LDPC-coded modu-
lation.
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AWGN Dirty-Tape (inflated lattice precoding)

AWGN Dirty-Paper : N 7 A : : i

2.5+

R (bit/symbol)

2 = N N e MCM BPAM —
MCM 4PAM

15 N T e ' ....... ]
N G S - eat iU LDPC-CM 8PAM |

2 0 2 4 6 8 10 12 14 16 18 20
Eb/NO (dB)

FIGURE 9. Performance of LDPC-coded modulation schemes for the
dirty-tape channel with AWGN.

We observe that the theoretical achievable rate RP™° given by (3.9) can be closely
approached by our LDPC-coded PAM modulation, especially for high SNR. For low SNR,
the best results are provided by standard binary LDPC codes (M = 2), while for high
SNR the multilevel construction with one or two coding levels and the remaining levels left
uncoded proves to be both efficient and simple in terms of complexity. There exists a region
of intermediate SNR where it is indeed worthwhile to construct explicitly optimized LDPC-
coded modulation, although better understanding and more refined optimization are called
for, since the simple schemes that we experimented do not show a dramatic improvement
with respect to multilevel codes. For direct optimization we restricted to codes over the
8-PAM alphabet, but the coding design ideas apply immediately to other cases.

It is interesting to notice that the minimum Ej, /Ny (corresponding to the inverse of the
capacity per unit-cost) achieved by inflated lattice precoding with ¥ = 1 is not obtained
for vanishing SNR. This is due to the fact that the rate RP™® (€ /o?) (seen as a function of
&/ o?) is not concave, therefore, in a region of low SNR a better rate is obtained by time-
sharing between SNR= 0 and some positive SNR*. Fig. 10 shows (Ej,/Np)P***, defined
implicitly by the equation

Eb pree prec. PANE €

versus SNR. From this figure we find SNR* ~ 0 dB.

5. Discussion

From the results of previous section we observe that inflated lattice precoding incurs a
significant loss in achievable rates for low SNR. It is natural to ask whether this loss is due
to the suboptimality of the inflated lattice strategy alphabet, or it is due to causal versus non-
causal interference knowledge. Assuming i.i.d. interference with known distribution Pg,
the capacity per unit-cost of the AWGN Dirty-Tape channel can be investigated by using
the general formula of [21]. In particular, let T denote the set of all functions ¢ : R — R
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FIGURE 10. Ey/Ny corresponding to the Dirty-Tape inflated lattice
achievable rate vs. SNR.

mapping S into X, and let

Py ir(ylt) = / Py x.5(ult(s), 5)dPs(s)

(y=z—s)
where Py |x s(y|z,s) = s—¢ 22 . Then,
D (Py7—¢|| Py 7=
5.1 Unonfcausal = sup ( Y|T—t|| 2Y|T—0)
teT E[t(5)?]

where, as before, 0 denotes the indentically zero function. The supremization in (5.1) does
not yield, in general, a simple solution. However, a lower-bound to U™°?~¢usal for some
specific Pg can be found by restricting ¢ to take on a particular form. For example, assume
S ~N(0,0%), define v = 02 /0%, and consider the set of affine functions

t(s)=as+b
We find [31]
1—(1+a)® lo ( 1—(1+a)2)
(5.2) Unon—causal > % sup 14+~ _ 14y
20¢ a>-1 a

where the RHS is the rate per unit-cost achieved by on-off affine-strategy signaling. The
“on” input is t*(s) = a*s, with a* given by the supremization in (5.2), and the “off” input
is 0, where the duty-cycleis 0 = £/((a*)?03%).

Fig. 11 shows the minimum E}, /N, corresponding to the above on-off signaling versus
. This is compared with the minimum (Ej/Ny)P*®® (which is independent of 7). As
expected, for weak interference power (i.e., for large -y) on-off signaling approaches —1.59
dB, the minimum Ej /Ny of the AWGN interference-free channel. However, on-off affine
signaling is not robust to the interference power, as its minimum Ej, /Ny increases as -y
decreases. On the contrary, the inflated lattice strategy yields minimum Ej, /Ny independent
of the interference power. This example shows that for some interference distributions Pg
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Inflated Lattice precoding

min Eb/NO
N
T
1

Affine on-off strategy

-2
-10 -5 0 5 10 15 20

Noise/Interference (dB)
FIGURE 11. Minimum E} /N, corresponding to the on-off affine strat-
egy signaling and to inflated lattice precoding for the AWGN Dirty-Tape
channel.

we can find coding strategies that outperform inflated lattice precoding (in some range of
non-asymptotically large SNR). Whether the convex upper envelope of the achievable rates
RPTe¢ ig the worst-case Dirty-Tape capacity over all possible interference distributions Pg
is still an open conjecture.

An important generalization of the coding schemes presented here considers the case
of finite anticipation k£ > 1. The same approach of multilevel coding or direct optimization
can be applied to a k-dimensional lattice A. Let G € R*** be the generator matrix of
A. Then, the code € will be constructed on the constellation A = G(M —PAM)¥, of M*
points in the fundamental Voronoi cell V of A (after appropriate scaling and translation).
Depending on A, the modulo-A operations at the transmitter and receiver can be imple-
mented either by some ML lattice decoder (e.g., based on a trellis representation of A) or
by the general-purpose sphere decoder [32, 33]. As noticed in [6], the shaping gain plays
a very important role also in the low-SNR region, and there is no hope of approaching
Costa’s Dirty-Paper limit for low SNR by using low-dimensional lattices (small k).

Finally, an interesting information-theoretic problem consists of studing the achievable
rates with some restrictions of the code alphabet, e.g., the constraint that € must be a binary
code.
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