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Abstract — The design of maximum likelihood detection al- 5. Set & = p; — z;, and t 1= 74(S; — ;). If i > 1 { ii=¢—-1,

gorithms for linear multi-dimensional constellations and lattice
codes transmitted over Gaussian fading channels is considered.
The linearity of the constellations over the field of complex num-
bers facilitates the design of maximum likelihood detectors us-
ing number theoretic tools for searching the closest lattice point.
In particular, the Pohst enumeration method and the Schnorr-
Euchner refinement of the Pohst strategy are used to develop two
maximum likelihood detection algorithms. The first algorithm
is shown to offer a significant reduction in complexity compared
to the Viterbo-Boutros implementation of the Pohst strategy. The
second algorithm is more suited to maximum likelihood detection
than the Agrell ef al. implementation of the Schnorr-Euchner
strategy. Further, the two algorithms are compared to extract
insights on the lowest complexity approach in different scenar-
ios. The results obtained indicate that the distance between the
nulling and cancellation solution and the maximum likelihood so-
lution plays a major role in determining the lowest complexity
algorithm.

In this paper, we focus our attention on the maximum likeli-
hood (ML) detection problem of lattice constellations. In particular,
we propose two new ML detection algorithms with lower complex-
ity compared to previously proposed techniques. Two versions of
sphere decoding of Pohst [1] are of interest. First, a modified ver-
sion of the Pohst strategy [1], or natural spanning, which reduces the
sphere radius each time a point is found in side the sphere without
re-examining previously tested nodes as done in [2]. Second, a mod-
ified version of the Schnorr-Euchner refinement of the Pohst strat-
egy [3], which makes it more suitable for finding the ML solution of
MIMO systems and lattice codes. The former version is referred to
by Algorithm I, the latter by Algorithm IL. For simplicity of presenta-
tion, we restrict ourselves to convex constellations S carved from Z™
and bounded in the m-dimensional cube [(f41,min; - - - , fhm,min) T
(Nl,max, cee 1llm,max)T], Mimin < Mimax € Z,s = 1,...,m.
Given the lattice generator matrix B !, we first reorder its columns
by a permutation IT such that ||bryy||* < ... < |[Brigm) ||, and we
apply the QR decomposition on II(B). The algorithm then proceeds
as follows:

Algorithm I (Input Co, p, R. Output & and d):

1. Seti:=m,disty, := 0, Sy := pm, B = Co.

. If B < dist; go to 4. Else, LB(x;) =
max ([@ + Si-l ) M min)y UB(z:) =

min ([@ + S¢J , /.Li,max) ,and set z; = LB(z;) — 1.

3. zy:=ax;+ 1. Ifz; <UB(z;) goto 5, else go to 4.

. If i = m terminate, else set ¢ := 7 + 1 and go to 3.

'"Matrix B contains the MIMO channel and the lattice code generator ma-
trix [4].

1 & , ;

Si = pi + — Z raéi, dist; ;= dist;y;1 + t2, and go to 2 }
T T

Else go to 6.

6. d :=dist; + ¢ Ifd < B, set B = d, save & := x, UB(z) :=

min ([@ + SkJ,m,max) ,k=1,...,m. Then go to 3.

Algorithm II is a modification of the Schnorr-Euchner refinement
of the Pohst strategy (3] 2 that takes into account of the constellation
boundaries and the lattice code constraints [5]. It does not compute
upper and lower bounds on z;, but only computes a step associated
at the i-th level which takes account of the ordering of the nodes.
Algorithm II zig-zags around the decision feedback equalizer (DFE)
point, or the Babai point [3], until it finds the ML solution. During its
zig-zags, one constrains the search with the lattice code boundaries
once it “steps over” the ML solution when the closest lattice point to
the received signal is not a valid code point. Algorithm II’s complex-
ity can be considerable improved when using minimum mean square
error (MMSE) filtering with the MMSE-DFE matrix which makes
the starting point of the Algorithm II the MMSE-DFE instead of zero
forcinf (ZF)-DFE, which is much closer to the ML solution. Us-
ing the MMSE-DFE gives large improvement over ZF-DFE in terms
of performances, and therefore a large reduction of the sphere de-
coder complexity. Our experiments shows that MMSE-DFE implies
smaller sphere decoder complexity with almost no performance pe-
nality. Additional saving in complexity can be done by ordering
the columns of the MMSE-DFE matrix in a “greedy” manner as in
BLAST detection algorithms {6]. For example, in 4 x 4 BLAST sys-
tem with a 16-QAM modulation, the complexity reduction factor is
about 5 at small SNRs and 2 at large SNRs (at large SNR, the ZF-
DFE tends to MMSE-DFE).
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2The main modifications over [3] are summarized here owing to space
limitations. More details are available in the journal version [5].
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