
Towards a “Good” Functional and Executable
Behavior Model.

D. Sidou, Institut Eurécom, France (sidou@eurecom.fr)

The objective of this paper is to present the more important features of a behav-
ior model intended for the specification and the validation of distributed applications
or distributed application components. Distributed application components are the ba-
sic building blocks that are directly useful for the procurement of working distributed
applications, e.g. telecommunication management network (TMN) applications, elec-
tronic commerce applications. . . . Such distributed application components are typically
built on top of distributed object computing (DOC) systems that basically provide the
communication infrastructure. Among the existing DOC systems we are particularly
interested in the OSI Systems Management (OSI-SM) framework [13] typically used
for TMN applications and the general purpose OMG-CORBA [12] DOC system. There
is an important requirement for a better specification of distributed application compo-
nents. Indeed, without a precise, unambiguous and correct specifications it is difficult
to build a truly interworking distributed application. To this end, it is necessary to go
far beyond the communication infrastructure for which a reasonable level of maturity is
available. The challenge is to provide effective specification and validation frameworks
for application oriented issues, e.g. what is the meaning or semantics of each interac-
tion occurring between a client and a server. As a matter of fact, organizations such as
the network management forum (NMF) and the OMG have proposed new concepts to
allow the standardization of application oriented issues. In the NMF we haveEnsem-
bles[11], in the OMG we haveObject Frameworks[17]. A NMF-Ensenble defines a
coherent grouping of object interfaces and utilization scenarios corresponding directly
to a given network management application. However an Ensemble does not include
any behavior specification of involved managed objects. Object frameworks are a more
recent proposal by the OMG intended to cover behavior issues. In this paper, the goal
is to define a suitable behavior model based on executable specifications to allow the
validation of distributed object frameworks.

In terms of expressiveness of the specification framework, nondeterminism and dy-
namism are considered as the two important features in the behavior of distributed ap-
plications. Section 1 gives a more precise description of these features and presents the
way they are considered in the proposed behavior model. In terms of validation involve-
ment of users is the key point. Section 2 presents some motivations for this statement
and describes also the way usability is achieved for validation issues.

1 Specification Framework

1.1 Nondeterminism

Nondeterminism is a natural consequence of distribution. In a distributed system, ac-
tions1 may execute concurrently (concurrency), actions may execute in an undeter-
mined order (unordering), or actions can be selected for execution in a non-determined
way (choice). As a result, the overall behavior of the system can not be uniquely de-
termined a priori. Consequently, a behavior model for distributed applications has to
allow the modeling of nondeterminism. In fact two approaches can be distinguished
depending on the use of control abstractions to organize the specifications of actions in
the system.

1.2 Transition Systems

In this section the notion oftransitionandstateare defined. Putting this two notions
together defines in its turn the concept oftransition systemwhich can be viewed as a
low level representation for the behavior of any distributed system. Transitions in the
system are merely its atomic actions, i.e. steps that can be observed in a single and
coherent phase. The configurations of the system between its atomic transition steps
define naturally its states. The overall behavior of the system can be defined either by
all the sequences of transitions or states the system can go through from a given initial
states0. This defines the concept oftransition system. Though the behavior of a system
can always be given as a transition system, such a representation is rather impractical
because it is too low level. Most of the time transition systems are used by verification
tools as a backend representation [2]. Because specification is a human activity the
availability of higher level abstractions is mandatory to allow the specification of state
and transitions – even if validation is typically performed at the low level representa-
tions based on transition system.

1.3 Using Control Abstractions

In many notations dedicated operators are introduced to model the causes of nonde-
terminism, e.g. concurrency or nondeterministic choice operators. These operators are
applied to some rather sophisticated control abstractions such as processes as in process
calculi [9], or automatas as in automata based specification languages [16]. Processes
and automatas are intended to give a suitable partitioning of the control state of the
system into well identified and manageable pieces. Actions are typically organized on
such control structures, i.e. actions are specified based on the local (control) states that
are defined in each process / automata in the system. Because of the emphasis that is
put on control issues in the configuration of the system such models are referenced as
control oriented models.

1An action is defined as in RM-ODP2 [15] very generally by anything happening in the system. One
important point is that the granularity of actions is a design choice. An action need not be atomic, so actions
may overlap in time.

1.4 Declarative Specification of Actions

In this approach, each action is declared one by one. Each action is self contained in
the sense that it contains both a specification of the conditions required for its acti-
vation, a specification of its effects, and a specification of any other constraint that it
may observe. It is important to note the key role played by the underlying data state
of the system. Effects are typically specified as data state changes, and constraints are
assertional conditions on data states that have to be verified at well identified places,
e.g. pre- and post-conditions or general assertions. The enabling condition is based on
a condition related to the data state. However it may also include a triggering event
used to model interactions of the systems with its environment. For instance, a client
that makes a request on a server object, or more basic things such as data state changes.
Since the configuration of the system is defined only w.r.t. data abstractions, such mod-
els are referenced as data oriented models.

1.5 Synthesis

One of the first models proposed for the specification of concurrent systems was Di-
jkstra’s guarded command language (GCL) [1], which is a typical example of a data
oriented model. The semantics of such languages is based only on nondeterminism.
For instance in Dijkstra GCL at each step one guarded command among the enabled
guarded commands is nondeterministically selected to be fired. In general instead of
atomic commands actions of any granularity are used, it follows that the execution
model is typically based on the nondeterministic interleaving of enabled actions. In
contrast, control oriented models can be viewed as refinements of data oriented mod-
els intended to model specific features of the real world. For instance, automata based
languages are particularly adapted to the modeling of communication protocols. At
each step, the local control state in each automata / process defines the set of enabled
actions. The execution model then follows as before the same principle of nondetermin-
istic interleaving of enabled actions. Detailed modeling of control is useful if related
knowledge is available and relevant at a give stage of specification. This implies that
the actual distribution of actions in the system is established as well as their relative se-
quencing within each process or automata. In ODP terms this implies that a significant
part of the engineering viewpoint issues are fixed. A model of the actual distribution
might be required if real time constraints are to be checked that typically depend on
the parameters associated to the communications channels (e.g. network links) existing
between the execution threads in the system. However, if one is only interested in the
specification of functional issues, an engineering viewpoint model is absolutely not re-
quired. In fact this would overspecify the problem [7]. Therefore a behavior modeling
framework, based on the declarative specification of actions, where control issues are
specified minimally is more adapted for the purpose of functional modeling.

1.6 Dynamic Nature

Role Modeling In contrast to interfaces that are object centric, behaviors are of col-
lective nature [8]. This is a natural consequence of modeling application oriented issues

where the contexts of utilization of objects has to reflect the application requirements.
Within an object framework basic objects are typically composed to form composite
objects or object configurations. Each object is intended to fulfill a well identified role
in the configuration. The role can be used as an identifier for objects [15] involved in
specification of behavior, but this identifier has a high level semantics value w.r.t. the
application. In other words, a role represent a view of an object for a particular purpose
or context of utilization. So roles, by capturing utilization contexts provide a suitable
modeling abstraction to take into account application requirements. In addition, role
modeling allows dynamic subtyping, which is as shown below a very important feature
of distributed applications.

Subtyping A role defines a subtype for an object in the sense that an object fulfillinga
role is still compatible with the core specification of the object itself, i.e. it still observes
the interfaces defined on the core object. However, the behavior resulting from the
interactions on such interfaces with other objects is defined w.r.t. the role. For instance
specific state information may be associated to a role and updatedaccording to the
purpose of this role. In addition, in the behavior of an object in a given role interactions
with other objects are specified using object references based on the role identifiers
available in the object configuration, e.g. an object in theclient role interacts with an
object in theserverrole. So behavior gains to be promoted at the role subtype level.
The advantages are that (i) much more expressive and readable behavior specifications
are obtained, and (ii) core object are kept as simple as they are, i.e. most of the time
limited to their mandatory interfaces and attributes.

Dynamic Subtyping The dynamic subtyping character of role modeling results merely
from the fact that roles may be associated dynamically to objects. ODP states clearly
that in a composite object, the association of a component object with a role may result
from the actualization of a parameter [15]. An object can in fact play several roles, and
this set can change over time according to its evolution in the distributed application.
An important point is that a usual object oriented mechanisms such as (static) inheri-
tance is clearly not satisfactory to model the different variants of an object just because
these variants need to be dynamically available. Note that the set of roles fulfilled may
have to be kept consistent. For instance an object is usually not allowed to play there-
viewerandreviewedrole at the same time. Such inconsistencies are not caused by role
modeling, they merely reflect properties of real life systems. Interestingly, role model-
ing provides very expressive means to specify such constraints. This has typically been
used to model and analyze management policy conflicts [10].

1.7 Relationships

The concept of relationship follows directly from the need to model configuration of
objects. However, this is only one way to do so, and in fact some authors prefer not to
use relationships because they want to keep the emphasis on roles. A typical example
is therole model collaboration viewof the object oriented role analysis and modeling
(OOram) software engineering method [14]. One problem with relationships is that

they are often used for other purposes such as graph modeling and navigation on object
graphs. Though relationships is an overloaded concept, in the context of TMN appli-
cations it turns out that the generic relationship model (GRM) [5] is suitable to define
roles for the purpose of dynamic subtyping. Note that as in [4] only GRM templates re-
lated to information modeling viewpoint issues are used. The computational viewpoint
issues in GRM are not usable as such. For instance relationship operation mappings
can not be defined precisely using GRM. In addition they are defined only using CMIS
services.

2 Validation Framework

Validation of a specification consists to check the correspondence between informal
requirements and the formal specification. Three techniques are commonly used :

1. inspectionconsists merely for the people involved to cross-read their respective
specifications.

2. reasoningconsists to prove properties about a specification.
3. executionproceeds by executing series of tests and by observing their outcome.

Though inspection is a technique that can always be used because it is always pos-
sible, it suffers from severe limitations because it is a manual process directly limited
by the capacities of humans. In contrast execution and reasoning provide some assis-
tance for validation. However, in the end the quality of the validation depends only on
the relevance of either the executed test cases or the properties that were proved. So in
both cases all depends on the users involved in the validation process. Execution and
reasoning have been opposed for ages. Executable specifications are often qualified
as less abstract and less expressive that non-executable ones. In addition, it has also
been argued [6] that, though executing individual test cases is useful, it is less powerful
than proving more general properties. However, with declarative specifications it can
be shown [3] that a comparable level of abstraction and expressiveness can be obtained.
In addition, executable specifications are much more prone to the involvement of users.
They allow a directtouch-and-fellapproach about the features of a system. This pro-
vides an excellent communication vehicle between users, specifiers and developers. In
contrast reasoning has not yet reached a satisfactory level of usability, because theorem
provers still need intelligent indications from users to achieve complex proofs. Even
then other important issues are the manageability, the presentation. . . of such proofs,
which is still a difficult problem in the currently available tools. Note that to allow for
the executability of declarative specifications of actions a precise execution semantics
based on the nondeterministic interleaving of the execution of actions has been devised.

3 Conclusion

By deliberately limiting our ambitions to the specification and validation of functional
behavior properties, we have come up to a behavior model particularly adapted to infor-
mation and computational viewpoint modeling. The declarative specification of actions

is intrinsically nondeterministic. Thus there is no problem to model nondeterminism,
which is a basic feature of distributed applications. Another important feature of dis-
tributed applications is their dynamic nature. To this end it has been shown how roles
provide a powerful information modeling abstraction to capture application oriented
requirements. Roles define object subtypes dynamically available, object configura-
tions and behavior labels, all that being directly linked to high level application issues.
Finally, validation is based on the principle of executable specifications. This is a prag-
matic approach that has been felt more usable than reasoning. The resulting behavior
model is “good” because it allows to model the intended distributed application fea-
tures, moreover it is reasonably usable for distributed application domain experts such
as telecom engineers both in terms of specification and validation.

References

1. E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

2. J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. Cadp
(cæsar/aldebaran development package): A protocol validation and verification toolbox. In
CAV, 1996.

3. Norbert E. Fuchs. Specifications are (preferably) executable. Technical Report 92, Univer-
sity of Zurich (CS Dept.), 1992. Available at ftp://ftp.ifi.unizh.ch/pub/techreports/.

4. Management of the Transport Network – Application of the ODP Framework, ITU-T G851-
01, 1996.

5. ISO/IEC JTC 1/SC 21, ITU X.725 : General Relationship Model.

6. I.J. Hayes and Jones C.B. Specifications are not (necessarily) executable. Technical Report
90-148, University of Manchester, 1990. Available at ftp://ftp.cs.man.ac.uk.

7. H. Jarvinen and R. Kurki-Suonio. DisCo Specification Language: Marriage of Action and
Objects. InInt. Conf. on Distributed Computing Systems, 1991. Available at www.cs.tut.fi.

8. H. Kilov, H. Mogill, and I. Simmonds.Invariants in the Trenches in Object Oriented Behav-
ior Specifications, pages 77–100. Kluwer, 1996.

9. LOTOS : A Formal Description Technique based on the Temporal Ordering of Observable
Behaviour, ISO / IEC 8807, 1987.

10. Emil Lupu and Morris Sloman. Conflict Analysis for Management Policies. InIntegrated
Network Management, 1997. available at ftp://dse.doc.ic.ac.uk.

11. Ensembles: Concepts and Format, 1992. Network Mangement Forum.

12. Common Object Request Broker Architecture, 1996. Available at http://www.omg.org.

13. The OSI Systems Management Standards, ITU-T X.7xx Documents.

14. Trygve Reenskaug.Working with Objects : The OOram Software Engineering Method.
Manning Publications, 1996.

15. Basic Reference Model of ODP – Part 2: Foundations, ISO 10746-2, ITU X.902.

16. C. C. I. T. T. Functional Specifications and Description Language (SDL). Rec. z.100-z.104,
Geneva, 1984.

17. Bryan Wood. Draft green paper on "object model for services", 1997.

This article was processed using the LATEX macro package with LLNCS style

