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ABSTRACT

In this paper we show that feature selection problem can be for-
mulated as a model selection problem. A Bayesian framework
for feature selection in unsupervised learning based on Gaussian
Mixture Models is applied to speech recognition. In the original
formulation (see [1]) a Minimum Message Length criterion is used
for model selection; we propose a new model selection technique
based on Variational Bayesian Learning that shows a higher ro-
bustness to amount of training data. Results on speech data from
the TIMIT database show a high efficiency in determining feature
saliency.

1. INTRODUCTION

Feature selection is a fundamental issue in any pattern recogni-
tion system. Speech recognition systems, of course, have same
need for robust feature selection algorithms. Such a huge number
of front-end techniques has been developed that determining the
most relevant features out of the total number of possible features
is a main point; in fact reducing the number of features reduces
computational load and discarding irrelevant features can improve
recognition. Furthermore when speech is affected by noise, effi-
cient methods for determining reliable features are the basis for
feature-based noise compensation techniques (e.g. missing data
theory).

The proposed technique is a statistical model that permits to
determine how effective a feature is in discriminating between
models. This approach is not new in speech recognition. Previous
study in this sense are for example [2] and [3]. In [2] amodel based
method is used to localize and select segments relevant to speaker
recognition; selection is done by comparing likelihood in a given
frame with competitors likelihood: if correct model is not domi-
nant, the frame is rejected. In [3] acoustic backing-off is used as an
alternative means of implementing missing feature estimation that
uses soft decisions instead of hard ones. Acoustic backing-off as-
sumes that a frame probability can be written as weighted sum of a
model dependent probability and a model independent probability;
the weight is called backing-off parameter and model independent
probability is assumed to be uniform on all possible values.

The approach here proposed is somehow similar to the back-
ing off approach, with the difference that a Hierarchical Mixture
Model is used to determine in an optimal way the model dependent
and independent probabilities as well as their weighting. In other
words the model aims at finding the saliency of a certain feature,
defined as its capacity to discriminate between model dependent
and model independent distributions. The feature saliency frame-
work reformulates the feature selection problem as a model selec-

tion problem: for this reason an efficient model selection criterion
must be used.

The novelty proposed in this paper consists in the use of a
new model selection criterion based on Variational Bayesian (VB)
learning. Theorically VB model selection accommodate in the
same expression the term that must be optimized and the model
related penalty. Compared to other approaches like BIC, it does
not require any adjusting constant. Furthermore VB learning con-
verges sensibly faster than other learning framework.

The paper is organized as follows: in section 2 the feature
saliency model is introduced, section 2.1 describes the the MML
framework while section 2.2 describes VB framework. In section
3 we shows experiments on synthetic and speech data and finally
we discuss results in section 4.

2. FEATURE SALIENCY IN GMM MODELS

We consider in this section the model proposed in [1] and [4]. A
classical gaussian mixture model with diagonal covariance matrix

canbewritten as: p(y) = E]I‘zl a;p(yl8;) = E]I‘zl a; HlDzl p(yil851)

where y is the observation vector, K is component number, D is
feature number, «; is weight of j¢th Gaussian component and 6;
are parameters of j¢th Gaussian component for the I¢h feature. If
each component represents a different cluster, the interest of the
Ith feature can be seen in its ability to discriminate between clus-
ters. Let us define u(y:|A;), the probability of the Itk feature re-
gardlessthe cluster it belongs to. For features irrelevant to discrim-
inate between clusters, we expectto have u(y:| ;) = p(yi|6;:). To
study the capacity of a given feature to discriminate between clus-
ters, a coefficient p; (referred as “feature saliency™ ) is introduced
for each feature. p; can be considered as a mixture between distri-
bution p() and «(). The GMM model is modified as:
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p1 is now a model parameter that quantifies how a given feature
is relevant for a given cluster with respect to the total distribu-
tion. A completely irrelevant feature will result in p; = 0 while
a relevant feature will result in p; = 1; p; can be considered as a
hidden variable and optimal value can be inferred using EM algo-
rithm. Basically each component is represented by a GMM with
two components in which a component is cluster dependent and
the other cluster independent.Thus, feature selection problem be-
comes a model optimization problem in which the best number
of Gaussians must be determined. If data labels are not available,
EM algorithm can be used to learn each cluster parameters and
feature saliency. In the original formulation learning is done using
a EM/ML based algorithm while model selection is done using



an MML approach. We propose the use of Variational Bayesian
(VB) learning for jointly learning optimal model and optimal pa-
rameters; the VB framework is someway more elegant in the sense
that the same objective function can be used for performing model
learning and parameter learning and seems to be more robust w.r.t
the amount of training data. Furthermore VB learning seems to
be able to converge in a smaller number of iterations compared to
classical learning algorithms (i.e. ML/EM).

2.1. MML model selection

The MML model selection criterion was used in [1] to learn the
optimal number of Gaussians and optimal feature Saliency. Let
us consider the classical Maximum Likelihood criterion: given an
unlabeled training set Y = (y1, ..., y~) With yi = (yi1, ..., ¥iD),
estimation of parameters given by © = {«;, 8,1, A1, p1} can be
expressedas © = argmin —log p(Y|©). If the number of Gaus-
sian components is a priori known, a classical EM algorithm can
be used to learn ©, considering «; and p; as hidden variables.
If the number of Gaussian components is unknown, a model se-
lection criterion must be used, because GMM suffers from many
drawbacks when the component number is inappropriate to the
current data set. Using Minimum Message Length (MML) crite-
rion, it is possible to derive (see [1]) a joint optimization criterion
for parameters and model i.e.
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where R and S are the number of parameters in 6;; and );, and
K is the initial number of Gaussian components. In the proposed
model R = S = 2. We will refer to this method as MML Feature
Saliency (MML-FS). Criterion (2) can be seen as a MAP estimate
if the following improper priors on «; and p; are defined:
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Once priors are defined, posterior distributions can be obtained as
follows ([1]):
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An important advantage in using formulas (5) and (6) is the ca-
pacity of pruning parameters. In fact if the initial model is ini-
tialized with a huge number of Gaussians, MML learning should
detect the correct number of clusters by pruning extra Gaussian
components. Naturally when a component disappears from the
model, the number of parameter is reduced and criterion (2) must
be explicitly modified to take into account the current number
of parameters used by the model. Anyway if the model is ini-
tialized with a very huge Gaussian component number, the term
maz (Y, wij; — RD/2,0) may be zero for all components and
all terms may be pruned out at the first iteration. To circumvent
the problem a modified version of the EM algorithm that uses un-
normalized accumulator has been proposed (CWEM Component
Wise EM)(see [4]).

2.2. Variational Bayesian L earning

Recently a new Bayesian framework generally referred to as Vari-
ational Bayesian (VVB) framework has been proposed. VB learning
is an approximate learning method that allows simultaneous opti-
mization of parameters and model. Given a training set Y', model
parameters © and hidden variables X', VB assumes that true (and
unknown) parameter posterior distributions p(©|Y") and p(X|Y")
can be approximated by variational Bayesian posterior distribu-
tions referred to as ¢(©]Y) and ¢(X|Y). VB learning consists in
finding ¢(©]Y") and ¢(X|Y") that maximize the following upper
bound on the marginal likelihood (see [5] for details):
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where p(©) are parameter prior distributions and D(.||.) indicates
KL divergence. Expression (7) is often referred as negative free
energy. The interest of this approach is that, even if expression
(7) is an approximated bound, it contains a term that penalizes
more complex models i.e. D(g(©|Y)||p(®)). It can be shown
that when N — oo where N is the number of training samples, it
correspondsto the BIC criterion. In other words, the same quantity
(7) used as parameters optimization criterion is a model selection
criterion as well. To better formalize the model selection problem,
let us introduce the model posterior probability ¢(m). It can be
demonstrated that the optimal value can be written as (see [5]):

q(m) oc exp{F(®, X, m)} p(m) ®

where p(m) is the model priors. In absence of any prior infor-
mation on model, p(m) is uniform and optimal ¢(m) will simply
depend on the term F(©, X, m) i.e. free energy can be used as
model selection criterion.

MAP learning can be seen as a special case of VB learning; in
factif ¢(9|Y) = 6(6 — H'), finding the maximum of equation (7)
(where hidden variables are omitted for simplicity) means:
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where the term [ q(6)log q(8)dé has been dropped because it is
constant. The second line in expression (9) corresponds actually
to the MAP criterion; this is because MAP corresponds to a point
estimation in the space of parameter distribution while VB inte-
grates out parameters distributions. So if the () distribution is a
delta, integrating parameters gives a point estimation.

VB learning is done using an EM-like algorithm (see [5]) based
on the following two steps:
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where < a > is the expected value of « w.r.t 5. Many models such
as GMM or HMM and others can be learned using this EM-like
step. If parameter prior distributions are chosen in the conjugate
family, variational posterior distributions will have the same form
of priors; given 6;; = {pj1, 05} 1 = {wu, o1} let us define the
following priors:

p{a) = Dir{xo) p(p) = Dir(ro)

p(oji) = T(bo,ca) p(ujiloj) = N{glmo, Booji)

p(o1) = T(bo,co) p(mlor) = N{u|mo, Boor)
(12)



where Dir is a Dirichlet distribution T" is a Gamma distribu-
tion and N is a Normal distribution. Coming back to our feature
selection model, it can be easily learned using VB learning, we
will refer to it as VB-FS (Variational Bayesian Feature Saliency).
Iteratively applying equations (10) and (11), optimal variational
Bayesian posterior distributions can be learned . A closed form
for the free energy can be derived and used for selecting the best
model (for detailed reestimation formula see [6]). VB-FS, as well
as MML-FS, can be initialized with a huge number of Gaussian
components and the training will learn the best component num-
ber. This time, as the penalty term is contained in the criterion ex-
pression, no artificial adjustment of penalty term is needed because
when a component disappears, its parameter distribution has the
same expression of prior distribution and the term D(¢(©|Y)||p(©))
will be zero for pruned components.

3. EXPERIMENTS

3.1. Synthetic data

To test GMM/feature saliency methods, we generated 1000 vec-
tors of dimension 5 using a 3 component GMM with the following
mean vectors: m1 = [0,0,0,0,1],m2 = [-1,0,—1,—1,1],m3 =
[1,0,1,—1,1] and diagonal covariance matrixes. GMM weighs
are respectively 0.3 0.4 and 0.3. We can notice that feature one
and three can discriminate between three Gaussians, feature 4 can-
not discriminate between m2 and m3, and features two and five
cannot discriminate at all. In an ideal experiments we should have
b1 = d3 = 1,02 = ¢5 = 0and 0 < ¢4 < 1. We run the MML-
FS and VB-FS algorithms: both algorithms recovered correctly
component numbers and features saliency. Anyway VB learning
converges after a few iterations (about 30) while MML needs more
than 400 iterations. Actually both techniques are affected by local
minima problem. It is known by experimental evidence that VB
converges faster than classical ML.

3.2. Speech data

In this section we study the application of MML-FS and VB-FS
algorithms to speech data. Experiments are run on the TIMIT
database. We tried to determine feature saliency for a feature set of
dimension 75 constituted by: 12 MFCC+A+AA, 12 PLP+A+AA,
Energy+A+AA. Another point we are interested in, is the quan-
tity of available training data; in fact Bayesian approachesare gen-
erally more robust to lack of data. For this reason we run exper-
iments with three training set of different size: 2k,20k,and 200k
acoustic vectors. Furthermore MML-FS and VB-FS are tested
with clean speech and with speech contaminated with noise; the
noise is f16 cockpit noise from the NOISEX database. Both al-
gorithms were initialized with 100 Gaussian components. Fol-
lowing values where used for parameters priors Ay = 7 = 1,
bo = D,co = 1and 3o = 1, mo = y. Table 1 shows in brack-
ets the final dimension for clean and noisy speech (SNR=10db).
MML learning is more sensitive to different amount of training
data. On the other hand, VB learning seems to be more robust in
determining feature saliency. This is probably due to the regular-
ization introduced by parameter prior distributions. Furthermore
when only sparse data are available MML learning prunes very
hard all features i.e. feature saliency is zero almost for all features
while again VB learning benefits from prior regularization result-
ing in less hard pruning. Figures 2 and 3 show feature saliency
for the 200k observation set; feature saliency is actually different

for the two techniques. MML learning gives more importance to
first coefficients of MFCC,PLP and their deltas, but does not prune
any feature as weak (i.e. very low saliency). A main point of the
discussion is how the evaluate the quality of the clustering and the
quality of features because learning was actually unsupervised. We
will use recognition rate performed using strongest features and

entropy measure.
Let us consider an entropy measure based on data entropy; let
us define as in [1]:

wij o< & p(yil©;) vij o< &5 p(y:|Ou) (13)

w;; measures the probability of the observation y; to belong to
cluster 5 and not to the common data distribution whose probabil-
ity is given by v;;. In the case of only relevant features, it should
be w;; = 1; a simple way to measure how good the feature subset
is, consists in entropy H (wi;) = 1/n 3=, >~ wi; log(wi;). Fig-
ure (1) shows entropy obtained progressively removing features
sorted by saliency for VB and MML learned models. When weak
features are removed, there is small entropy variation; on the con-
trary when strong features are removed, entropy increases fast.

_Entropy_

Removed Features

Fig. 1. Entropy obtained progressively removing features for VB
(solid line) and MML (dashed line) learned models

Let us now consider phoneme recognition experiments. Ta-
ble 1 shows context independent recognition for the classical 39
phoneme set obtained used the first 24 features with highest fea-
ture saliency in clean and noisy conditions. Phonemes are rep-
resented with a three state left to right HMM. Subsets obtained
with VB learning performs better than subset obtained with MML
learning. When 2k acoustic vectors are used, MML prunes almost
all features, making recognition impossible. Anyway a point must
be outlined: the more robust features do not constitute the optimal
subset because the model proposed do not take into account in-
formation redundancy between features but only their robustness
w.r.t. inferred clusters.

data amount (a) 2k 20K 200K
MML learning N/A (2) | 59.3% (68) | 60.1% (100)
VB learning 57.2% (5) | 60.6% (50) | 61.8% (75)
data amount (b) 2k 20K 200K
MML learning N/A (3) | 50.8% (32) | 51.2% (100)
VB learning 50.4% (7) | 50.8% (70) | 52.4% (75)

Table 1. Recognition rate for the first 24 features with highest
saliency; in brackets final cluster dimension for (a) clean speech
(b) noisy speech (SNR=10dB)

3.3. Bayesian decision

The previously defined framework allows to take global a decision
on the quality of the feature. Let us consider an acoustic vector
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Fig. 2. Feature saliency with MML algorithm (initial components 100; Fig. 3. Feature saliency with VB algorithm (initial components 100;

inferred components 100) with 200Kk training vectors

y = {1, ...,y }; itis possible to take a Bayesian decision locally
on the reliability of each feature in a frame. Let us designate with
7 the Gaussian component that holds the highest likelihood on the
observation y (i.e. the cluster that best model the observation).
Decision on feature I can be taken on the following criterion:

pp(yilbi) s (1 — p)u(y|Xy) for 1=1,.. L

It is so possible to detect in a frame unreliable features; it is then
possible to reconstruct features or simply discard them. Here we
run recognition with the full 75 feature set and then discarding
features that have high rejection rate (in our application features
with more than 0.9 of rejection rate). Table 2 shows the PER for
the full set and for the strongest features in the Bayesian sense;
in brackets the final feature number. Using VB learned models,
only 67 features hold a rejection rate lower than 0.9; discarding
weak features does not affect recognition. MML learned models
cannot prune any feature. In noisy conditions only 5 features are
pruned for VB-FS while again MML-FS does not prune any fea-
ture. Eventually a decoder that take into account feature saliency
frame by frame (here a global decision was used) can be used to
further improve recognition.

(14)

Full set VB driven | MML driven
PER clean 66.2% (75) | 66.8% (67) | 66.2% (75)
PER (SNR=10db) | 58.1% (75) | 58.6% (70) | 58.1% (75)

Table2. PER with feature subset obtained with Bayesian decision;
in brackets final features number.

4. CONCLUSION AND DISCUSSION

After running experiments on synthetic and speech data we can
conclude that using VB learning has many advantages compared
to MML learning. First of all, VB converges faster than MML,
saving computational time. Then VB seems to determine features
in a more robust way. It comes from the fact that the recogni-
tion rate coming from VB selected features is always higher than
the recognition rate coming from MML selected features. This is
probably due to the fact that the clustering is rather different for
the two approaches. Furthermore VB learning benefits from regu-
larization effects coming from prior distributions. This can be seen
when very little training data are used: MML based method prunes
almost all components, while VB based method achieves a “reg-
ularized” solution thanks to priors. Many considerations must be
done about this approach to feature selection. An important advan-
tage of this approach is that, contrarily to many feature selection
algorithms, it does not need labels. In speech recognition applica-
tions, labels are not always available and furthermore the choice of

inferred components 75) with 200Kk training vectors

the class used to discriminate is a critical point that can affect per-
formance (phonemes,HMM states,single Gaussians). The absence
of labels of course makes the model selection criterion a crucial
point in algorithm performance.

On the other hand this approach suffers from many drawbacks.
First of all, features are considered independent in the proposed
model, so the information extracted is only the relevance of a
certain feature w.r.t. the identified clusters, but redundancy be-
tween features is not considered. For this reason it is not possi-
ble to say that N strongest features represent N best feature subset
because mutual information between features is not considered.
Another important point is that single features are modeled using
single Gaussians i.e. p(yi|6;:) u(y:|A:) are single Gaussians. It
would be interesting to use a more complicated model like GMM
to represent p() and u(). A third drawback comes on the auto-
matic clustering algorithm. It is actually difficult to obtain correct
speech data clustering even with highly robust model selection al-
gorithms. It has been shown that introducing duration constraints
can increase the quality of clustering (see for example [7]). It
may be interesting to incorporate duration constraints in the GMM
based feature selection algorithm in order to obtain a better clus-
tering. The current approach has been applied to feature selection
but a very huge range of possible applications can be imagined.
For example, exactly the same framework can be applied to filter-
bank output for determining unreliable information (e.g. because
of noise) in missing feature approach. The same model can be used
to model HMM emission probabilities with the same advantage of
learning feature saliency and model parameters at the same time.
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