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Abstract. In this chapter, we address how to achieve scalable content
distributions. We present two contributions, each of which uses a different
approach to distribute the content.

In the first part of this chapter, we consider a terrestrial overlay network
and build on top of it a VoD service for fixed clients. The goal is to
minimize the operational cost of the service. Our contibutions are as
follows. First, we introduce a new video distribution architecture that
combines open-loop and closed-loop schemes. This combination makes
the overall system highly scalable, very cost-effective, and ensures a zero
start-up delay. Our second contribution is a mathematical model for the
cost of delivering a video as a function of the popularity of that video.
Our analytical model, along with some extensions, allows us to explore
several scenarios: (i) long videos of 90 min (movies), (ii) short videos of
a few min (clips), (iii) the dimensioning of a video on demand service
from scratch, and (iv) the case of the optimization of an already installed
video on demand service (i.e. the limited resources scenario).

In the second part of this chapter, we consider a satellite distribution of
contents to mobile users, or in general to users thar are occasionally con-
nected. We consider a push-based model, where the server periodically
downloads objects. We assume that clients register to the service off-line.
Our goal is to minimize the mean aggregate reception delay over all ob-
jects where each object is weighted by its popularity. Our contibutions
in this part are as follows. First, we provide a simple proof for the need
of periodicity (equal distance in transmission) of popular objects in a
cycle. Second, in contrast to existing results, we consider the scheduling
problem for caching clients. To increase the performance of the system,
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we also evaluate a pre-emptive scheduling algorithm that allows inter-
ruption (pre-emption) of an object’s transmission in order to transmit
on schedule another more popular one.

1 Introduction

The Internet has evolved, in the last decade, from a research oriented network
to a large scale commercial network. Still, most of the trading concerns non-
real time documents or services and only two parties are involved in general
(dealer/client). The deployment of content distribution networks faces two main
obstacles:

— There currently exists no scalable and widely deployed means to serve si-
multaneously a great number of clients;

— The wide heterogeneity of clients, not only in terms of access bandwidth,
but also in terms of reachability since clients might be fixed or mobile.

To achieve a scalable distribution (whose cost grows less than linearly with
the number of clients), two approaches have been commonly used: (i) a dedi-
cated overlay network to provide a multicast service at the application layer or
(ii) a satellite distribution whose cost is essentially independent from the num-
ber of simultaneous clients. In this chapter, we present two contributions that
use either one of these scalable distribution techniques with different hypotheses
concerning the clients:

In the first part of this chapter, we use a terrestrial overlay network and
build on top of it a video on demand service for fixed clients. Our objective is
to minimize the operational cost of the service. To minimize the distribution
(bandwidth) cost, we use an open-loop central server since its cost is roughly
independent of the number of simultaneously connected clients. The only lim-
itation of open-loop algorithms is that they induce a non-zero start-up delay,
which accounts for the duration between the moment where the client starts re-
ceiving the video stream and the moment it is able to visualize the video on the
screen. To achieve a zero start-up delay, we thus introduce servers that stream
the beginning of the video (which is referred to as prefix) immediately upon
connection of the client to the video on demand service. To build a cost-optimal
video on demand service, we thus end up solving an optimization problem whose
variables are: the popularity of the requested video, the number of video servers
that we use to service the beginning of the video and the fraction of the video
that the “prefix” represents.

Our contribution is the design of a mathematical model that allows to find
the architecture (i.e. the optimal values of these variables) that minimizes the
total operational cost of our video on demand service. In contrast to previous
studies, our model considers realistic underlying physical network infrastructures



to accurately model all bandwidth costs and also includes both the I/O and stor-
age requirements. Qur analytical model, along with some extensions, allows us
to explore several scenarios: (i) long videos of 90 min (movies), (ii) short videos
of a few min (clips), (iii) the dimensioning of a video on demand service from
scratch, and (iv) the case of the optimization of an already installed video on
demand service (i.e. the limited resources scenario).

In the second part of this chapter, we consider a completely different setting
since we assume a satellite distribution of content to mobile users that are oc-
casionally connected. We consider a push model where a client has registered
off-line to a service that can be modeled as the periodic download of objects
representing, for instance, pages, pictures, or short videos. The objective is to
minimize the mean aggregate reception delay of all objects where an object is
weighted by its popularity. This metric is important since it ensures minimiza-
tion of the energy consumption at the client side. Existing studies on broadcast
systems generally assume that a client is not able to temporarily cache an object.
In contrast to these studies we consider the case where clients are equipped with
a cache, which is a realistic assumption with respect to the recent evolution of
technology.

Our contributions in the second part of this chapter are the following. We first
derive a simpler proof than the existing one justifying the periodic transmission
of objects during a cycle is optimal for the case of cache-less clients. We then
extend this proof to the case of caching clients. We also devise the corresponding
optimal algorithm that computes the optimal schedule of each object. In practice,
however, achieving a perfect periodicity of the broadcasting of objects within a
cycle is an NP-hard problem because the optimal time to transmit an object
may lie before the end of transmission of the previous one.

To improve the performance of the system, we investigate several empirical
pre-emption strategies, some of them resulting in a real performance improve-
ment while others, like the ones based on interleaving transmissions of multiple
objects are proved to be inefficient.



2 Cost-optimal Dimensioning of a Large Scale Video on
Demand System

2.1 Introduction

Background Video streams such as MPEG-2 encoded video require several
Mbps and providing a VoD service to a large number of clients poses high re-
source demands to the server and the network. The bandwidth-intensive nature
of video requires efficient distribution techniques that typically serve multiple
clients who request the same video at approximately the same time via a sin-
gle video stream that is multicast. VoD systems can be classified in open—loop
systems [6,43,2,25,32,33,11] and closed—loop systems [3,39,26,19,37,17].

— Open-loop VoD systems partition each video into smaller pieces called seg-
ments and transmit each segment at its assigned transmission rate. The first
segment is transmitted more frequently than later segments because it is
needed first in the playback. All segments are transmitted periodically and
indefinitely. In open—loop systems there is no feedback from the client to
the server and transmission is completely one—way. Open-loop systems are
suitable for popular videos where multicast is efficient. However, open-loop
systems introduce a start-up delay* and waste bandwidth in the case of
non-popular videos.

— Closed-loop systems, on the other hand, require the client to contact the
server. Closed—loop systems generally open a new unicast/multicast stream
each time a client or a group of clients issue a request for a video. Whenever
a new client arrives, the client joins an ongoing multicast stream that has
been initiated for earlier clients, if there is any, and retrieves the missed
part due to its later arrival via unicast, which ensures an immediate playout
of the video. More often, Closed-loop schemes are suitable for videos with
moderate popularity where the load on the server is reasonably low.

In the first part of this chapter, we present a new video distribution architecture
that combines both, open-loop and closed-loop systems. This combination makes
our video distribution architecture suitable for both, popular and non-popular
videos. Moreover, having used a closed-loop system to deliver the first part of
the video, our video distribution architecture ensures a zero start-up delay.

Contributions and Related Work Providing an efficient and scalable video
distribution to a large client population has been investigated extensively over
the years. The basic idea to achieve scalability is to serve multiple clients via
a single stream, using multicast. Open-loop schemes take a full advantage of
multicast. Staggered broadcasting [6] is the straightforward open-loop scheme
where the server allocates for each video C' channels each of bandwidth equal to
the play back rate b of the video. On each channel, the whole video is broadcast

4 We ignore here the transmission delay due to sending a request to a server or joining
a multicast group.



at rate b. The starting points of the transmission on the different channels are
shifted to guarantee a start-up delay of no more than L/C, where L is the length
of the video. Clients listen to only one channel at the same time and no storage
capacity is needed at the client side. The start-up delay can be improved only
by increasing the number of allocated channels C.

More efficient and complicated schemes have been proposed later on.
Pyramid Broadcasting (PB) [43] divides the video into C' segments of increas-
ing size, where C is also the total number of logical channels. The size of
each segment is made a times larger than the size of the previous segment
(L;i = aL;—1, i > 1). The value of « is set to %, where K is the total number
of videos in the system and B is the total bandwidth over all the C' channels.
Note that B is divided equally amongst the C' channels. Segments i for all videos
are multiplexed into the same channel 7 and broadcast consecutively and period-
ically on that channel i at rate B/C. At any moment, the client downloads from
at most two channels. This scheme reduces the bandwidth utilization and the
start-up delay as compared to the staggered broadcasting [6] while guaranteeing
a continuous playback of the video. However, its main disadvantage is that seg-
ments are transmitted on the different channels at a high rate (i.e. B/C) which
requires a high I/O capacity at the client side.

Permutation-based Pyramid Broadcasting (PPB) [2] addresses the problem
of high I/0 requirement at the expense of a larger start-up delay and a more
complex synchronization. PPB uses the same geometric series proposed by PB
to define the length of each segment (L; = aL;_1, ¢ > 1). Unlike PB, PPB
proposes to divide each channel into K - p sub-channels, where p sub-channels
are dedicated for the same video segment. Then, each segment is broadcast on
p sub-channels in such a way that the access time of segment ¢ is L;/p. Thus,
segments are transmitted at rate B/(C - K - p) instead B/C in the case of the
PB scheme. On the other hand, at any moment, clients download from at most
two separate sub-channels.

Another efficient scheme is the skyscraper Broadcasting (SB) [25]. SB uses a
recursive function instead of a geometric series to generate the segment lengths.
Each segment is then broadcast on a separate channel at the playback rate b.
Clients listen to at most two channels at the same time. This scheme accounts
for buffer space limitations of the clients by constraining the size of the last
segment.

Fast Broadcasting (FB) [32] divides each video into segments according to
a geometric series (L; = 2¢). Each segment is broadcast on a separate channel
at the playback rate b. Clients listen to all channels at the same time. FB pro-
vides the lowest bandwidth requirement at the server as compared to the above
schemes.

Harmonic Broadcasting (HB) [33] presents another variant from the same
general idea. In this scheme, the video is divided into N segments of equal size.
Segment 4 is transmitted at the rate 1/i and clients download from all channels
at the same time.



All the schemes cited above are constrained to highly regular designs which
limits their flexibility. The Tailored Transmission Scheme [11] is a more flexible
organization that can be adapted to meet different constraints in the system
such as limited I/O capacities of the server/clients, limited storage capacity at
the client side. This scheme will be detailed more in subsubsection 2.2. For more
details on open-loop schemes, see [24].

While open-loop schemes broadcast the video regardless the request pattern
of the clients, closed-loop schemes serve the video in response to client requests.
Closed-loop schemes can be classified into batching, patching, and hierarchical
merging schemes. The basic idea of batching [3,39] is that the server groups
clients that arrive within a given interval of time, in order to serve them via a
single multicast stream. However batching introduces a start-up delay.

Patching techniques [26], on the other hand, ensure a zero start-up delay. The
first client that requests a video receives a complete stream for the whole video
from the server. When a new client arrives after the first one, we distinguish two
cases:

— The complete stream that has been initiated for the first client is still active.
In this case, the client needs to connect to that stream which changes from
unicast to multicast. In addition, the client receives immediately from the
server a unicast patch for the part it missed in the complete stream due to
its late arrival.

— There is no active complete stream. In this case, the server initiates a new
one and the process repeats for clients that arrive later.

Note that clients that are listening to the same complete stream form a session.
One efficient extension of patching has been proposed in [19] with the introduc-
tion of a threshold policy to reduce the cost of the unicast patches. Whenever a
new client arrives and a complete stream is active, the threshold value serves to
decide whether to initiate a new complete stream for that client, or whether that
client must join the last ongoing complete stream. This scheme will be explained
more in subsubsection 2.2.

White et al. [45] propose OBP, a hybrid scheme that combines patching and
batching techniques. As for the classical patching [26], in OBP, the server ini-
tiates a new complete stream for the first client. A later client either receives a
new complete stream in case there is no active complete stream, or the client
joins an already existing one. In this later case, in contrast to patching, the client
does not receive immediately the missed part in the complete stream; instead,
the server batches many clients that arrive within a given interval of time and
serve them via multicast. Thereby, as compared to patching, OBP reduces the
delivery cost of the missed parts at the expense of a larger commencement view-
ing delay of the video. Similar to the controlled multicast, the authors introduce
a threshold to decide when a new session should start. They also extend the
OBP to deal with the case of heterogeneous clients where each client chooses the
start-up latency according to the price it is willing to pay for the service.

Hierarchical merging [17] is a more efficient closed-loop scheme. As its name
indicates, this scheme merges clients in a hierarchical manner. When a new client



arrives, the server initiates a unicast stream to that client. At the same time, the
client listens to the closest stream (target) that is still active. When the client
receives via unicast all what it missed in the target stream, the unicast stream
is terminated and the client merges into the target stream, and the process
repeats. It has been shown that the server bandwidth for the hierarchical merging
increases logarithmically with the number of clients.

In this work, we propose a scalable and efficient video distribution archi-
tecture that combines open-loop and closed-loop mechanisms to assure a zero
start-up delay. Each video is partitioned into a prefix and a suffix. The suffix
is stored at a central server, while the prefix is stored at one or more prefix
servers. A client who wants to view a video joins an already on-going open-loop
multicast distribution of the suffix while immediately requesting the prefix of
the video as a patch [26] that is sent either via unicast or multicast [19]. We
develop an analytical model for that video distribution architecture that allows
to compute for a video with a given popularity the cost-optimal partitioning into
prefix and suffix and the placement of the prefix servers in the distribution tree.

In contrast to previous studies (see for example [13,21,44]), we

— Model the network as a tree with outdegree m and [ levels. In comparison,
Guo et al. [21] consider only a two-level distribution architecture.

— Account in the model of the network transmission cost for the number of
clients that are simultaneously served by the multicast distribution (either
from the prefix servers or the suffix server).

— Allow for the prefix servers to be placed at any level in the distribution tree
and not only at the last hop between client and network [44].

— Include in our cost model not only the network transmission cost but also
the server cost, which depends on both, the storage occupied and the num-
ber of input/output streams needed. While the network transmission cost
is a major cost factor, the server cost must be included in the overall cost
model, especially when we try to design a cost-optimal video distribution
architecture. Otherwise, independent of the popularity of a video, the obvi-
ous/trivial architecture will be the one where a large number of prefix servers
are placed near the clients. While previous papers [21] have treated in their
model the storage space of the prefix servers as a scarce resource, we feel
that the cost model can be made more realistic by explicitly modeling the
cost of the prefix servers.

A related cost model has been presented previously in [35]. The authors
model the distribution network as a tree with [ levels. In this model, caches can
be placed at any level in the network. However, these caches can only store the
entire video. Our model is more flexible in the sense that any portion of the
video can be stored at the prefix servers. The system cost is simply the sum
over the storage cost, the I/O bandwidth cost of server/caches, and the network
bandwidth cost. Moreover, the cost formulas developed are for simple scenarios
with only unicast server/clients connections.

A recent paper by Zhao et al. [48] looks at different network topologies, such
as fan-out K, daisy-chain, balanced tree and network topologies generated with



topology generators. The analysis focuses on schemes that provide an instanta-
neous delivery of the video. They derive a tight bound on the minimum network
bandwidth requirement for each topology. They show that, at best, the minimum
network bandwidth requirement scales as O(InN), where N is the average num-
ber of clients during an interval of time equal to the duration of the video. They
also show that it is possible to achieve simultaneously close to the minimum
network and server bandwidth usage with practical distribution protocols.

The rest of this sub-chapter is organized as follows: in Subsection 2.2, we
present the broadcasting algorithm and content distribution overlay that we use
to build the video distribution service. In Subsection 2.3, we present the basic
PS-model that allows to obtain the cost formulas for the single video case when
there is no a priori constraint on the content distribution network. In Subsection
2.4, we apply the PS-model to the case of long videos, and investigate different
scenarios such as heterogeneous or homogeneous bandwidth costs, zero servers
costs, etc.. In Subsection 2.5, we prove that the PS-model is still advantageous
in the case of short videos, e.g. news clips. In Subsection 2.6, we first study
the dimensioning of the system with n videos and no resource constraints. We
next devise the algorithm that optimally assigns video to prefix servers in the
case of limited resources (I/O, storage) and fixed placement of these servers. We
conclude this sub-chapter in Subsection 2.7.

2.2 The system environment

Prefix caching assisted periodic broadcast Prefix caching assisted periodic
broadcast® [21] assumes that clients are serviced by a main central suffix server
and also by local prefix servers, which can be located throughout the network.
A video is partitioned into two parts, the prefix and the suffix, which can be
of arbitrary proportion. We denote by L (min) the length of the video and D
(min) the length of the prefix. Hence, the suffix will have the length L — D. The
entirety of the prefix is always viewed before the suffix. The main idea of the
broadcast scheme is that prefix and suffix transmissions should be decoupled in
order to transmit each most effectively. The reason why the prefix and suffix
are transmitted differently is that the client must receive the prefix immediately
upon request while the suffix needs not to be received until the prefix has been
completely viewed.

Because the prefix must be immediately received, there is less flexibility in
the choice of a transmission scheme for the prefix. In addition, transmitting the
prefix from the central server to each client may be costly. In order to reduce
transmission costs, the prefix can be stored locally at multiple prefix servers,
which can more cheaply transmit the prefix to their local audiences. For the
suffix, on the other hand, there is more leeway in the method of broadcast since
it needs not to be received immediately. The allowable delay D in transmitting

5 The term broadcast is commonly used in the literature. In our model, broadcast
really refers to multicast as the data that are sent only over links that reach clients
who are interested in receiving the video.



the suffix permits to deliver it with an open-loop scheme. Therefore, the suffix
is retained at the central server, benefiting from sharing amongst a relatively
larger number of clients as well as avoiding the server costs incurred to replicate
data across multiple servers.

Theentirevideo (L)
Prefix (D) | Suffix (L-D)

Prefix Server Central Suffix Server
Closed-loop Prefix Open-loop Suffix Multicast
Unicast/Multicast

Fig. 1. The VoD distribution architecture

Once specific transmission schemes for prefix and suffix have been chosen,
the remaining design parameters are the length of the prefix (and suffix) and the
height of placement of the prefix servers in the network. The prefix length and
the location of the prefix servers should be chosen so as to efficiently divide the
workload between central suffix server and prefix servers.

In our prefix caching assisted periodic broadcast model, we choose to transmit
the prefix via controlled multicast, while the suffix is delivered through tailored
periodic broadcast.

The distribution network We assume that the distribution network is or-
ganized as an overlay network. An overlay network consists of a collection of
nodes placed at strategic locations in existing network, i.e. the Internet. Overlay
networks provide the necessary flexibility to realize enhanced services such as
multicast [31] or content distribution [1] and are typically organized in a hierar-
chical manner.

In our model, we assume that the topology of our distribution network is a
m-ary tree with [ levels (see figure 2). The suffix server is assumed to be at the
root. The prefix servers may be placed at any level of the distribution network
other than the highest level (i.e. leaves). If the prefix servers are placed at level
j, there will be one at each node of that level, which makes a total of m/ prefix
servers. The clients are lumped together at the m! leaf nodes. The number of
clients watching simultaneously a video is not limited to m! since a leaf node does
not represent a single client but multiple clients that are in the same building.
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We digress briefly to consider the practical aspects of a network tree model.
A tree model captures the hierarchical structure of a large-scale network, where
large backbone routers service many smaller service providers which in turn
service the end-user clients. For example, a tree might include multiple levels,
dividing the network into national, regional and local sub-networks.

Level Suffix Server Height
0 h=5
1 h=4
2 h=3
3 h=2
4 h=1
5 Clients

Fig. 2. Video distribution network

The distribution network is assumed to support both unicast and multicast
transmissions. Unicast transmission occurs between a server and a single client,
whereas multicast transmission occurs when multiple clients (possibly from dif-
ferent leaf nodes) all simultaneously receive the same single transmission from
a server. We assume that for the duration of a transmission, a cost must be
paid only for every link spanned between the server and its active client(s). The
per-link cost may differ depending upon the specific links that are utilized.

For a multicast transmission, the cost may change over the duration of the
transmission as users join and leave. Note also that if multiple clients reside at
a single leaf node then the cost of multicast transmission is effectively the same
as if there were only a single client at that node. For clients at different nodes,
multicast still offers savings due to links shared at the lower levels by different
nodes.

Prefix transmission via controlled multicast Patching was first proposed
in [26] and then extended with the inclusion of a thresholding policy to produce
Controlled Multicast [19]. The key idea of patching is to allow clients to share
segments of a video stream when they arrive at different times. As the number
of clients increases from one to several, the transmission stream is changed from
a unicast stream to a multicast one so that late arrivals can still share in the
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remainder of the stream. In addition, a separate unicast stream must also be
transmitted to each client after the first one in order to deliver the data missed
due to its later arrival.

For extremely late arrivals, the cost of the additional unicast transmission
may outweigh the benefits of sharing in the remaining transmission. Controlled
multicast modifies patching to allow for this scenario. Whenever a new trans-
mission is started at time ¢, arriving clients are patched onto the stream until
time t+ T, where T is a thresholding parameter. The first client to arrive after
time ¢+ T is given a brand new transmission, and all future arrivals are patched
onto the new transmission instead of the old one, until the threshold time passes
again and the process is repeated. Figure 3 illustrates the operation of controlled
multicast. At time ¢; the first client arrives: The prefix server starts transmitting
the prefix via unicast. When the second client joins at time ¢, the remaining
part of the prefix is multicast to clients 1 and 2. Client 2 additionally receives
the initial part of the prefix that had been transmitted between ¢; and ¢ via a
separate unicast transmission. Since client 3 arrives at time t3, with t3 —¢; > T,
the prefix server starts a new unicast transmission of the entire prefix.

The costs of controlled multicast have been shown to increase sub-linearly
with the arrival rate of requests and the length of the prefix [37]; however, the
analysis assumes a network of a single link between the server and all its clients.
This is the case when the prefix servers are located one level above the clients.
We refer to that case as leaf prefix server placement. Placing the prefix
servers higher up in the distribution network increases the cost of transmission;
however, it consolidates the arrivals to a smaller number of prefix servers and
thereby allows for more sharing to occur amongst clients. Furthermore, placing
the prefix servers higher up in the network reduces server costs since there are
fewer copies of the prefix. One contribution of this paper is an analysis of the
tradeoffs in prefix server placement for controlled multicast.

Tailored periodic broadcast of the suffix We use tailored transmission
[11] to transmit the suffix. Thereby, we divide the suffix into segments of fixed
lengths. If there are no clients then the suffix server does not transmit. As long
as there is at least one client, each segment is periodically multicast at its own
transmission rate. Arriving clients receive the multicast of each segment simulta-
neously. Clients are not expected to arrive at the starting point of each segment;
instead, they begin recording at whatever point they arrive, store the data and
reconstruct each segment as they receive the data.

The length and rate of each segment is chosen so as to minimize the band-
width subject to the constraint that each segment must be completely received
before its time of playback, and also subject to the storage and reception capa-
bilities of the clients. Figure 4 illustrates the tailored transmission scheme for
the case of minimal transmission rates. The client starts receiving all segments
at time tg. The shaded areas for each segment contain exactly the content of
that segment as received by the client who started recording at time #g.
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Fig. 3. Prefix transmission with multicast and patching
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Fig. 4. Tailored Broadcast transmission

The total server transmission bandwidth is:

mzn min
Z ,r

where N, , [£52] is the number of segments the suffix consists of and 7™ is
the minimal transmission rate of segment i. When we break the suffix of length
L — D into segments, each of the segments 1 to Ny — 1 has length D and the
last segment Ny has a length of (L — D) — (Ns; — 1)D = L — N,D. Segment i
with length D needs to be entirely received no later than iD - 60 seconds after
the start of the video consumption. The factor 60 in iD - 60 is due to the fact
that the lengths of the video, the prefix, and the suffix are expressed in minutes.
Therefore, the minimal transmission rate for segment i is 77" = b - D %% = %,
where b [Mblt /sec] is the consumption rate of the video and bD 60 is the amount
of data [Mbit] in a segment of length D.




13
In the case where the length of the last segment Ny is less than D (i.e. =2

D
is not an integer), the transmission rate r”“” is computed as follows depending
on whether Nj; is larger than 1 or not.

— If Ny > 1, the segment Ny should be entirely received NsD - 60 seconds
after the start of the video consumption. As we will see later, we assume
that all the segments are multiplexed onto a single multicast channel and
the receiver stays tuned into that multicast channel until it has received
the last segment. Therefore, clients will receive the first segments multiple
times. Thus, in this case where the length of segment Ny is less than D,
it might be efficient to reduce the tuning time of clients. This can be done
by reducing the transmission time of segment N to (Ns; — 1)D - 60 instead
N¢D - 60 seconds. For a video with a low demand, reducing the service time
of the client to (Ns —1)D - 60 increases the transmission rate ry, of the last
segment; however, the increase is offset by avoiding useless transmissions of
some of the first segments. For a popular or very popular video, the prefix
length is quite short which means that Ny ~ (Ns; — 1), and so the increase
in rn, has a negligible impact on the overall server transmission bandwidth
R™n. So, using the fact that Ny = [£52] = | &/, the transmission rate of
segment N then becomes 1""“” =b ((L ivl)DD) gg =b ((%Nit—%l)JI)) =b L L_IJ .

— If Ny = 1, the suffix consists of one segment of length (L — D) < D that
must be entirely received D -60 seconds after the start of the video consump-
tion. The transmission rate of segment N, then becomes 1™ = ri*" =

b gt~y 1P

The total server transmission bandwidth is therefore:

Ry L—LJ
, b(> = D L_—D-) if Ny > 1
Ry = P ) 1
L—-D .
bT lstzl

Transmitting all the segments at their minimal transmission rate requires
that the client starts receiving all segments simultaneously. As a consequence,
parts of the video will be received some time before they are consumed and must
be stored by the client in the meantime. Figure 5 plots the evolution with time
of the amount of data stored for a video of length L = 90 min and a prefix
length of D = 2 min. We see that at the beginning, more and more data will
be received ahead of time so that the amount of data keeps increasing until it
reaches a peak corresponding to nearly 40 percent of the video. From there on,
data will be consumed at a rate higher than the aggregate rate at which new
data are received and the storage curve decreases. Storing up to 40 percent of
the video data does not pose any problem with todays equipment. In fact, there
already exist products such as the digital video recorder by TiVo [40] that can
store up to 60 hours of MPEG II encoded video.
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The tailored periodic broadcast scheme also allows to support user interac-
tions [10] such as fast forward if the transmission rate of each segment is increased
by a small factor (less than twice the minimal transmission rate), provided that
the client has enough buffer to store large parts of the video.

Storage Requirement, L = 90 min, D =2 min

o

Storage [fraction of L]
S

o 10 20 30 60 70 80 90

40 50
Time (minutes)

Fig. 5. Storage required at client as function of time, L = 90, D = 2

Interaction between clients and servers When a new client wants to receive
a video, it will contact its closest prefix server in the distribution tree. The prefix
server will either start a new transmission cycle of the prefix or extend the
ongoing prefix multicast transmission to the new client and transmit a unicast
patch to the client. However, the client does not need to contact the suffix
server. The suffix server simply needs to know whether there is currently at
least one client who needs to receive the suffix, which the suffix server can learn
by communicating with the prefix servers. Other large scale video distribution
schemes such as hierarchical stream merging [18] require that all client requests
be handled by the central server, which makes the central server a potential
bottleneck. Our video distribution scheme is not only scalable in terms of the
network and server resources required to stream a video to a large number of
clients but also in terms of processing incoming client requests.

2.3 PS-model, a cost model for the video transmission

Introduction We divide the costs of a VOD network into network and server
costs. The network costs are proportional to the amount of network bandwidth
which is transmitted over each link between a server and its clients. The server
cost is dependent upon the necessary storage and upon the total number of
input/output streams which the server(s) must simultaneously support over the
network.
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It is interesting to note that the storage and input/output stream capacity of
a server cannot be purchased in arbitrary quantities. Instead, they can usually
only be purchased in discrete increments. As a result, it is unlikely that a server
can be purchased to exactly match both storage and streaming requirements;
typically one constraint will be slack as the server will either have extra storage
or extra streaming capability.

We will examine the expected delivery cost for a video of length L as a
function of the average request rate per minute A (1/min), the prefix length (and
allowable suffix delay) D and the topology of the network. The maximum output
capacities should be fixed for each server; however, to facilitate the analysis we
will assume that any number of streams can be allocated with the costs paid on
a per-stream basis.

We divide the multicast tree into levels 1,...,l, where level 1 consists of
the m links from the root and level I consists of the m! links connected to the
leaf nodes. Arrivals to a link at level j are modeled as a Poisson process with
parameter A\/m’. As a consequence, arrivals at the root will form a Poisson
process with parameter .

We first derive the cost of prefix transmission with a single prefix server at
the root. We next generalize the root case to the general case where the prefix
servers are placed at some level between the root and the clients. The costs fall
into three categories: network, storage capacity and I/O capacity.

We neglect the effects of network latency, even though they can be important
from an operational point of view. One might treat latency effects by constraining
the maximum number of hops allowed between prefix servers and their clients.

We will derive the cost for the prefix and for the suffix transmission separately
and then combine both to obtain the overall system cost. We will refer to this
cost model also as the PS-model to distinguish it from other cost models.

Costs for prefix transmission

Prefiz server at the root We first consider a single prefix server at the root of
the multicast tree. We will afterwards generalize our results to the case where
the prefix server is at an arbitrary height in the tree.

Network bandwidth costs:

A single server at the root combines many small request arrival streams (to
the leaves) into a single large arrival stream (to the root); this should lower
costs since the cost of prefix transmission via controlled multicast is sub-linear
in the arrival rate because it promotes efficiency through shared streams; by
combining all the requests arriving at the root, we increase the possibility for
sharing. However, this is counterbalanced by the fact that sharing is no longer
free; if two clients share the same I/O stream but reside on different leaves, a
separate network cost must be paid for each of them. Of course, if clients are
already active at every leaf node, then no new network costs must be paid for
any future arrivals. However, this scenario is unlikely even for high arrival rates
because high arrival rates produce short threshold times in order to reduce the
length of the unicast streams.
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Let t; be the time of the ith complete multicast transmission of the prefix
without any patching. Arrivals between times ¢; and #;41 will share from the
multicast transmission at time ¢; and will each receive a separate unicast trans-
mission for the data which were missed. We can divide the patching process up
into separate renewal cycles (¢1t2], (23], ... which are independents and identi-
cally distributed in their usage of bandwidth. We analyze the bandwidth usage
over a single renewal cycle.

Given the threshold time T', on average there will be T'A arrivals which will
each need partial transmission of the prefix in unicast. The average length of
the unicast transfer will be T'/2 since the arrivals are uniformly distributed over
time. Finally a bandwidth cost must be paid for every link on the path between
client (at the leaf) and the root server. As a result, the total amount of data
transmitted for the unicast streams over one renewal cycle is

, T?
Cumcast =b-60 ! )‘

netw 9

Each arrival will also share from a single multicast network stream. A price
must be paid for every link in use. Given a link at level j, let 7; be the duration
of time in which the link is active. For the multicast stream, a link is active from
the time of the first arrival (before time T') to that link to the end of the prefix
at time D. Arrivals to a link at level j form a Poisson process with parameter
A/md.

As each renewal cycle begins with the activation of a stream between the
root and a single client, we know that one link at each level will be active at
time zero. Therefore 7; = D with probability 1/m/. We will now write out an
expression for E[r;]:

E[r;] = DP{r; = D} + E[rj|7; # D|P{r; # D}
i1

1 m’ —

Given a Poisson process with parameter \/m/, the time of first arrival will have
an exponential distribution with parameter A\/m’ and a cumulative distribu-

tion F(t) =1-— e~ mit. We evaluate E[rj|T; # D] making use of the fact that
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. T
j
=D(1—e" ")~ (e —emw Ty
t=0
=D(l—e mil)— m! + m—je__fT +Te miT
B A A '
Substituting E[r;|7; # D] into E[r;] produces
1 mi —1
Elrj] = D +Elrj|7; # D]—
_ 1 mJ mj_A_T _2T _2T7 mJ—l
=D— - <T—Te Wil =T w T = D1 —e"wi™) | =m

1 i—1 i—1 i-1
:D<W+(1—e‘ﬁ'7’)m ‘ )—(1—e—ﬁ'T)mA + (e T

mJ

_ s 1 ,%ij—l mi —1 B
=D(1l—em (l—m))—(l—em ) \ +( pmy YTe mi™.
By summing over all the links in the tree we find the total multicast cost
Cm?;lticast:
!
Ctticost = .60 > mIB[r;]
j=1
and the average network bandwidth cost C%%¢ can be found by dividing by the

average duration of each renewal cycle (T + 1/X) - 60.

Cmulticast + Cunicast

Croot — netw netw
netw (T +1/X) - 60
>y mIE[r;] +1T2)/2
N T+1/\

Server costs for prefix server placed at the root:

It is easy to see that the storage cost CT29¢ of a single root server will be b-60D.
The I/0O stream cost must be paid for the output capabilities of each server, i.e.
the number of input/output streams which a server can simultaneously maintain.
From the expression of C72%! above, one can conclude that the average number

of streams for a root server is equivalent to
D +T?)\/2

root __
Crjo =? T+1/A
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If T is chosen to minimize the number of I/O streams then
C195 = b(vV2DA+1-1).

However, choosing T' to minimize the number of concurrent I/O streams will
unnecessarily increase the network bandwidth. If 7" is chosen to minimize the

network bandwidth, then €792 = b(y/2CDAJI+ 1 — 1 — DACL ) where
) /O 2CDA/1+17
is a scalar constant.

In case of a non-popular video that has on average, at most, one arrival in
an interval of time D (A < 1/D), each request activates a new prefix transmis-
sion and then a new cycle. Hence, the threshold time T becomes zero and the

expressions for C7270, and C79¢ simplify to

Croot — pIAD

netw

Ci78 = bAD .

Varying the placement of the prefiz server We now generalize the model to the
case where the prefix servers can be placed at any height in the network tree. By
placing the prefix servers at some height A in the tree where 1 < h < [, we divide
the arrival process between m!~" servers, each of which can be considered as the
root of a network tree with height h. We need only therefore to consider the
root server case for a tree of the proper height h with arrival rate A/m!~", and
then multiply the costs by the number of servers m!~". The resulting formulas
are listed in table 1. The height h = 1 refers to the case of a leaf server, i.e. one
level before the clients.

Cost terms
2 )
Cprefiz b l—h %4»2?:1 m? E[r;]
netw -m T+ml—;’/>\ N R
™A, A T i) | mio1yg AR T
(B[rj] = DL — ¢ mimI=F 1(1 = 1)) = (1 — ¢ mIml=F )= Qist) 4 (m7d)Te” miml=F ")
cretie b-60-m!~".D
prefiz D4+T27/2
Cz/o b- TH+1/X\

Table 1. Summary of the prefix cost terms for the PS-model (I levels, prefix servers
at height h)

Costs for suffix transmission with a multicast tree The costs once again
fall into three categories: bandwidth, storage capacity and streaming capacity.
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The bandwidth cost is equal to the transmission rate R/™" multiplied by the
average number of active links, which we will now calculate. For the periodic
broadcast, each arrival is serviced for an amount of time E[T;] (min), which
equals the transmission time of the last segment:

L-D
“—Z|.p if N, > 1
Br]=4" D s >

D if Ng =1

We assume that all segments are multiplexed to a single multicast channel.
As a consequence, each client will consume a bandwidth of R/™" during all
the transmission of the suffix. If one multicast channel were dedicated to each
segment, the bandwidth consumption could be reduced; the client would be con-
nected only to channels corresponding to segments not yet received. However,
this reduction in bandwidth cost comes at the expense of a more complex multi-
cast, transmission and a complex synchronization between channels. This study
is left for future work.

From queuing theory, it can be shown that given an expected service time
E[Ts] and memoryless arrivals with parameter %, the probability of n jobs
simultaneously in progress is given by

e » (BT

P{n jobs} = p

)

which is a Poisson distribution. This result can be found through the derivation of
the Erlang call-blocking formula commonly used in telecommunications. Arrivals
to a link at level j are memoryless with parameter \/m?. Define P(j) as the
probability that a link at level 7 has any requests:

P(j),1—P{0jobs} =1 — e~ mi "IT:]

Then
ALEE2 D
. 1—e = mi if N, > 1
P(j) = »
1—e m7 if Ng = 1

The expected number of active links at any given time is therefore
!
E[active links] = Z m’ P(j),
j=1
and the bandwidth is

l
Coeit = Ry~ mi P(j). (1)
j=1
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On the other hand, the suffix is continuously and periodically multicast in-
dependent of the arrival rate as long as there is at least one user (if there are
no users, the suffix server will not send the suffix). In contrast, the number of
I/0 channels does vary with L and D. The I/0 stream cost is equal to the rate
R x P(0), where P(0) is the probability that there is at least one user active
at the root:

1252
1 E-1%]

Z L. D DIy _ o AERRID) i N 1
csutfiz _ b(z: i+ N, — 1 )( e ) 1 s >
I/0 =1

L—-D
b T(l—e_AD) if Ns =1

The storage cost is proportional to the length of the suffix, which is
CHITE — b 60(L — D).
The terms of the suffix costs are given in table 2, while table 3 shows all the

important mathematical terms used.

Cost terms
| R .
ot Y je 5 Ywa-eTE N >
i=1 ¢ s j=1
l
L-D - _ap
b2 S mi(l—e ) if N, = 1
j=1
ciptlie b-60 (L — D)
‘ LL*DJl £_|_£J b
G PO pH R ha - e
i=1 s
L—-D _
b D (1-e AD) if N, =1

Table 2. Summary of the suffix cost terms for the PS-model.

Overall system cost for the case of a single video We divide the costs of
a VoD service into network and server costs. The network costs are proportional
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Term | Definition

m Tree breadth

l Tree depth

h Prefix server height

L Video length (min)

D Prefix length (min)

L — D | Suffix length (min)

N; Number of segments of the suffix (N, , [ZZ21])

Average client request arrival rate (1/min)
Video popularity (N, AL)

Active occupation duration

for link at depth j (prefix transmission)
Prob. link at depth j

is active (suffix transmission)

Threshold time

Consumption rate of the video [Mbit/sec]
Scalar constant

Table 3. Important Mathematical Terms

=| >

a

)
~
oL
>

QTN

to the amount of network bandwidth that is expended for the transmission of
the prefix and the suffix. The server costs depend upon the necessary storage
and upon the total number of input /output streams needed for the suffix server
and the prefix server(s).

The total cost of the system can be computed as the sum of the total network
and total server costs:

system __ system system
CPS - Ynetw +’YCserver (2)

To relate the network and the server costs, a normalization factor 7 is introduced
that allows us to explore various scenarios for the cost of the servers as compared
to the cost for the transmission bandwidth. We consider here the values of v =
{0,0.1,1}. The case of v = 0 corresponds to the case that only the cost for
network transmission is taken into account and the cost for the servers is not
considered at all (considered to be zero). v = 0.1 provides high network cost
relative to the server cost, while 7 = 1 represents the case where the network
cost, is relatively low as compared to the server cost.
The terms for the network and server costs are given by:

Csystem prefix + Csuffiac

netw netw netw
system __ prefix suf fix
CSE'I’UGT - CSE'I’UGT + CSG’I”’UET’

The server cost depends on both, the required amount of storage Cs:, (in
Megabit) and the amount of disk I/O bandwidth C7,o (in Megabit /sec).
Cprefiz — max(cﬁ;‘(e)fizyﬂcprefiz)

server sto

Csuffm — max(csuffm,ﬁcsuffm)

server I/0 sto
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To be able to relate the cost for storage and for I/O, we introduce the normaliza-
tion factor 8 that is determined as follows: If our server has a storage capacity

of dsto [Megabit] and an I/O bandwidth of d;/o [Megabit/sec], then Z”tf
Since the server will be either I/O limited (I/O is the bottleneck and no more
requests can be served) or storage limited (storage volume is the bottleneck and
no more data can be stored), the server cost is given as the mazimum of Cr,o
and BCStO-

To model a case where the cost for the “last-hop link” towards the clients is
not the same as the cost for the other links, we can set the cost for the last link

to the clients (lhc) to a value different from the cost for the other links.

2.4 Results for long videos

Introduction We consider a distribution network with an out-degree m = 4
and a number of levels [ = 5. We expect that such a topology is representative
for a wide distribution system that covers a large geographical areas of the
size of a country such as France or the UK. If one wants to model a densely
populated metropolitan area such as NewYork, one would choose I < 5 (e.g.
1 =2,3) and m > 4 (e.g. m = 10). Our model has quite a few parameters and
we present results only for a limited subset of parameter values that can provide
new insights. For the rest of the paper, we will vary only the parameters -, last-
hop cost lhe, and video length L. The other parameters are chosen as follows:
For the disk I/O cost to disk storage cost ratio 3, we choose 8 = 0.001, which is
a realistic value for the current disk technology such as the IBM Ultrastar 72ZX
disk. The video length will be L = 90 min for most of the time, except when we
consider very short video clips of lengths L = 2 and 7 min.

Homogeneous link costs For the first results presented, the server cost is
weighted by v = 1 and the network per-link costs are uniform at all levels of the
network (lhc = 1). We first plot in figure (see figure 6) the optimal system cost
as a function of the video popularity N. The video popularity N represents the
number of clients requesting a same video in an interval of time of duration L
(N = AL).

In figure 6 we see that the total cost efficiency improves with increasing video
popularity N: For a 10-fold increase in video popularity N from 9,000 to 90,000
clients, the cost only doubles.

The optimal values for the prefix length and prefix server placement in the
hierarchy as a function of the video popularity N are given in figures 7(a) and
7(b). We see that both, the prefix server height and the prefix length decrease
monotonically with N.

For videos that are rarely demanded (N < 20), the prefix server is placed
at the root and the optimal prefix comprises the whole video of 90 min. Indeed,
for N < 20 the storage cost due to a replication of the prefix in multiple prefix
servers is not justified and the optimal architecture is a centralized one. On the
other hand, for videos that are popular or very popular, the optimal architecture
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m=4, I=5, L=90, y=1, B=0.001, Ihc=1
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Fig. 6. Total system cost C*Y*!*™ with optimal prefix server height and optimal prefix
length, for vy =1 and lhc =1

is a distributed one with the server for the suffix at the root and the prefix
servers closer to the clients. As the popularity N increases, the optimal prefix
length decreases since the transmission bandwidth required by the prefix server
increases with the square root of the number of clients served, while for the suffix
server, the transmission bandwidth required depends for very high values of NV
only on the length of the suffix and not the number of clients served.

m=4, |=5, L=90, y=1, f=0.001, Ihc=1 m=4, |=5, L=90, y=1, =0.001, lhc=1
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(a) Optimal prefix server height (b) Optimal prefix length (min)

Fig. 7. Optimal prefix server height and optimal prefix length for v =1, lhc = 1.
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We plot the prefix-suffix cost breakdown in figure 8. We see that the suffix
cost C*uffi ig initially lower than the prefix cost CP"¢f® since the prefix length
is quite long. Eventually, for an increasing video popularity IV, the suffix system
becomes more cost efficient, and so the length of the prefix is significantly reduced
and the suffix cost becomes greater than the prefix cost. From figure 8(c) we see
that the suffix cost C**“f/# for higher values of N is entirely determined by
the suffix network cost. In the following, we will not present the suffix cost
breakdown anymore since it does not provide any additional insight. For a given
suffix length, the fact that C**//%* does not change with N indicates that all the
links of the video distribution network are active, i.e. the multicast transmission
is in fact a broadcast to all leaf nodes.

m=4, 1=5, L=90, y=1, B=0.001, lhc=1 m=4, I=5, L=90, y=1, B=0.001, lhe=1 m=4, 1=5, L=90, y=1, B=0.001, lhc=1

— p-network
-- pserv
o

er
o p-total

number of clients number of clients number of clients

(a) total system (b) prefix cost break- (c¢) suffix cost break-
cost down down

Fig. 8. Breakdown of costs for v =1 and lhc =1

If we take a closer look at the evolution of the prefix server cost for very
popular videos with N > 102, we see (figure 8(b)) that the prefix server cost
increases linearly with increasing N. In this case, to achieve an optimal system
cost C*¥ste™ the prefix length is frequently shortened.

Heterogeneous link costs We now set the cost of transmission between levels
4 and 5 (the ”last-hop” from the root to the clients at the leaves) to be one-
tenth the normal network cost. A reduced last-hop link cost would apply to
situations where the local service providers are much cheaper than their regional
and national counterparts since they support less traffic. A recent study [§]
contains a cost comparison for transmission links of different bandwidth that
indicates that the cost in Mbit/hour for local access via ADSL or Cable is at
least one order of magnitude lower than the cost for a high speed OC-3 or OC-48
link. We can model this case by using a reduced last-hop link cost, which is 11—0
of the cost for the other links. We refer to this case as lhe = 0.1.

In figure 9, we plot the optimal prefix lengths and prefix server heights under
this scenario, with m = 4,1 =15, =1 and lhe = {1,0.1}.
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Fig. 9. Optimal prefix server height and optimal prefix length for v = 1 and lhc =
{1,0.1}

Reducing the last-hop cost makes network transmission cheaper compared to
server cost. We see that the prefix server heights are roughly the same while the
prefix lengths decay faster than in the original setup (lhe = 1) to compensate for
the relative increase in prefix server costs. This may seem counter intuitive since
reducing the last-hop cost should make the prefix cost cheaper, especially if the
prefix servers are at the leaves while the suffix server is at the root. However, we
see in figure 10(b) that the server cost for the prefix C?7¢/i* now dominates the
total prefix cost CP"¢/%  (in particular when the prefix servers are placed at the
leaves, i.e. for N > 10%) which was not the case for lhc = 1 (see figure 8(b)).

When we compare the suffix costs in figures 8 and 10, we note that reducing
the last-hop cost reduces the suffix network cost by almost a factor of 4, which
assures that the suffix system remains cost effective. This cost reduction is due
to the fact that with m = 4,1 = 5, there are 1024 links at the leaf level (last-
hop) and only 340 links in the rest of the network. The network cost for the
suffix system and the server cost for the prefix system are roughly in the same
neighborhood. As a result, the server cost (i.e. the prefix server cost) is magnified
in importance and the optimal policy is to compensate by shortening the prefix.

Reducing the server costs relative to the network transmission cost
While the cost for servers is usually comparable in Europe and the US, the cost
of network transmission is much higher in Europe than in the US. To account
for the case where the network transmission cost relative to the server cost is
higher, we set 7 to 0.1.

The results for v = 0.1 (figure 11) indicate that reduced relative server cost
allows to deploy more servers in order to reduce the impact of the expensive
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Fig. 10. Breakdown of costs for v =1 and lhc = 0.1
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Fig. 11. Optimal prefix server height and optimal prefix length for v = 0.1

network transmission cost. If we compare with v =1 (figure 9), we see that for
v=0.1

— The optimal prefix (figure 11(b)) comprises the entire video for a much
wider range of clients N. Only for a very high video popularity N > 10%,
the optimal prefix length decreases significantly.

— The prefix server height (figure 11(a)) drops faster to h = 1 since this helps
to reduce the network costs and since the server costs, though they increase
(the number of prefix server increases), have been discounted.
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We also examine the case where v = 0.1 and in addition the network cost for
the last-hop is reduced to lhc = 0.1. We plot the optimal prefix lengths and prefix
server positions in figure 11. Previously, we saw for v = 1,lhc = 0.1 that although
the reduced last-hop cost significantly reduced the cost of prefix service (and of
suffix service), the high server costs associated with leaf servers limited the use
of the prefix. Now the server cost has been discounted, we see that reducing the
last-hop network cost will allow the prefix servers to deliver the entire video over
a wider range of video popularities as compared to the lhe = 1 case (figure 11).
This is interesting, as reducing the last-hop network cost decreased the prefix
length in the v = 1 case and is an example of the interplay between network and
server costs. For v = 1,lhc = 0.1 the prefix server cost dominates the overall
prefix cost (see figure 10(b), while for v = 0.1,lhc = 0.1 it is the prefix network
cost that dominates the overall prefix cost (see figure 13(b)).
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Fig. 12. Breakdown of costs for v = 0.1 and lhc =1

Ignoring server costs Previous studies of video distribution schemes [13] have
often ignored the server cost and only considered the network cost. We can model
this case if we choose v = 0. When we ignore the server cost, placing the prefix
servers at the leaves is always optimal since the prefix network cost is minimized
in this case.

We plot the optimal prefix length for v = 0 in figure 14(b). For both values of
lhe = {1,0.1}, the optimal prefix comprises the entire video for a large interval
of the values of N. For large N > 10%, the optimal prefix length becomes shorter
as the centralized suffix system becomes more bandwidth efficient (despite the
fact that the video must traverse 5 hops for the suffix as compared to 1 hop for
the prefix) than the prefix transmission via controlled multicast.
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Fig. 13. Breakdown of costs for v = 0.1 and lhc = 0.1

If we compare the optimal values for the prefix length with the case of uniform
link costs (i.e. lhc = 1) and large N (N > 10%) , we see that for v = 0 the optimal
values are only unnoticeably larger than for the case of v = 0.1.

We plot the optimal prefix server height and optimal prefix lengths for all
configurations covered so far in figure 14. We see how the system adapts the
partitioning into prefix and suffix and the placement of the prefix servers as a
function of the cost for the network and server resources. When the cost for the
servers relative to the cost for network transmission is reduced (y < 1) more
prefix servers are deployed. For a given video popularity N, this happens in two
ways

— The prefix servers are placed closer to the clients (see figure 14(a))
— The prefix is made longer (see figure 14(b))

In the case of v = 0, the entire video is, over a wide range of the video popularity
N, delivered by the prefix servers.

We conclude this subsection by showing in figure 15 the optimal total cost
values under each scenario discussed. We see that

— for the topology m = 4,1 = 5 chosen, the majority of the links are at the
last-hop to the leaves. Therefore, for non-uniform link costs (lhc = 0.1) the
cost of the overall system is considerably much smaller than for lhc = 1.

— There is surprisingly little difference in the cost of the overall system for v =
0.1 and v = 0 since in both cases it is the cost for the network transmission
that dominates the total cost. For v = 0.1, the impact of the prefix server
cost is attenuated (for 1 < N < 100) by using fewer prefix servers (see figure
14(a))
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Conclusions so far We have seen how our distribution architecture gives us
the cost-optimal configuration as a function of the video popularity N. For a
non-popular video, the prefix server is placed at the root® and the length of the
prefix comprises the whole duration of the video. As the video popularity N

5 With the exception of v = 0, where the prefix servers are always placed at height
h=1.
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increases, the optimal prefix length becomes shorter and the optimal height for
prefix servers becomes closer to the clients.

Using the suffix server at the root of the distribution tree becomes econom-
ically very interesting for very popular videos, where the prefix length becomes
much shorter than the whole duration of the video. However, the optimal suffix
length used is quite sensitive to changes in the popularity (see figure 14(b) for
10* < N < 10%). Therefore, to operate the distribution system in a cost-optimal
fashion, one needs to periodically estimate the current popularity of a video and
adapt, if necessary, the prefix length.

Costs for non-optimal prefix server placement For a large video distri-
bution system serving many movies, it will be feasible to place prefix servers
at every level of the distribution tree; however, for smaller systems, the prefix
server locations will probably be fixed as there may not be prefix servers at every
level of the distribution network. The placement of the prefix servers at an arbi-
trary level may also be impossible for other reasons. For instance, the facilities
necessary for installing a server may not be available or accessible. Thereby, it is
worth evaluating the cost performance of a video distribution system where the
prefix servers are placed non-optimally. We will examine how the system adjusts
the prefix length to find the most cost-efficient solution for the case where

— The prefix server is placed at the root, which will be referred to as root
placement

— The prefix servers are placed at the leaves (i.e. at height h = 1, one level
above the clients), which will be referred to as leaf placement

We always assume that the cost for the server is taken into account (i.e. v # 0)
and consider the following scenarios

— Network is cheap, v =1 and lhe = {1,0.1}.
— Network is expensive, v = 0.1 and lhe = {1,0.1}.

Network is cheap We first discuss the case with [hc = 1, where the per-link
network costs are the same across the network. We know from figure 7(a) that
for values of N, N < 20, the optimal placement of the prefix server is at the root.
For increasing values of IV > 20, the optimal placement finds the best trade-off
between network and server cost by moving the prefix servers closer to clients
and reducing the length of prefix. When we fix the placement of the prefix server
at the root, the only degree of freedom left to minimize the cost is to adjust the
prefix length. We see in figure 16(b) that the prefix length for the root placement
case decreases more rapidly than when the prefix placement is chosen optimally.

In figure 16(a) we plot the ratio of the total system costs. For the case when
the prefix server is always at the root as compared to when it is optimally placed,
the total system cost increases by up to 60%: For very popular videos, placing
the prefix server at the root results in a longer suffix in order to limit the high
cost, for the prefix distribution.



31

m=4, I=5, L=90, y=1, B=0.001 m=4,|=5,L=90,y=1,3=0.001
' T T T ; ;i T T T : :
- 7 — leaf plc,lhc=1 N — leaf pl.,Ihc=1
- - root plc,lhc=1 ol L - - root plc,lhc=1 ]
o ~ -~ leaf plc,lhc=0.1 [ optimal pl.,Ihc=1
= root plc,lhc=0.1 I - leaf pl.,Ihc=0.1
leaf placement 70 [ —&— root plc,Ihc=0.1
25 i —e— optimal pl.,lhc=0.1
v
Seof v . 1
g optimal placement
% IS =50l
g E root placement
S 25t gor
£
root placement Sao
2k
20 leaf placemen
15 N
v 10
13 o - r
10 10 10 10 10 10 10 10 107 10" 10° 10" 10° 10’ 10° 10°
number of clients number of clients

(a) Cost ratio for prefix server, vy = 1, (b) Optimal prefix length, v = 1, lhc =
lhe = {1,0.1} {1,0.1}
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cost and optimal prefix length for v = 1 and lhc = {1,0.1}.

When the prefix servers are always at the leaves, the cost increase as com-
pared to the optimal placement is much higher than for root placement and can
be up to 450% since leaf placement is very expensive for non-popular videos
(N < 10%). This big difference in cost is due to the fact that keeping copies of
a video in all the prefix servers placed at the leaves is very inefficient for videos
that are not very popular, i.e. N < 103. When the prefix servers are placed
at the leaves and the video popularity is low (N < 10'), the system chooses
the minimal possible prefix length of D = 1 to limit the overall cost of keeping
the many copies of that prefix (see figure 16(b)). For larger values of N, the
optimal prefix server placement is at the leaves, and so the performance of the
non-optimal system is the same as the optimal one for N > 103.

When we compare the case where all links of the network have the same cost
(lhe¢ = 1) to the case where the last-hop links are less expensive for lhc¢ = 0.1,
we see little difference in the results. For [hc = 0.1, the worst case cost increase
due to leaf placement is a little bit less than for [hc = 1. For the root placement,
the fact that the last-hop links are less expensive (lhc = 0.1) increases the cost
of root placement as compared to lhc = 1.

Overall, when the network is cheap and we must choose between root and
leaf placement, root placement is preferable.

Network is expensive We examine now the opposite situation, where the network
is expensive as compared to the cost for servers (see figure 17(a)).

When the network is expensive, the worst case cost performance of leaf place-
ment deteriorates only slightly as compared to the case when the network is
cheap, since the cost for the servers placed at the leaves dominates the total
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system cost. For root placement, the worst case cost is significantly higher as
in the case of v = 0.1 , in particular for [hc = 0.1, since the network transmis-
sion has become more expensive, which is directly reflected in an increase of the
total system cost. The optimal placement for v = 0.1 moves the prefix servers
for increasing N rapidly towards the clients and chooses a prefix that comprises
the entire video for all except the very popular ones N > 10* (see figure 14).
Since the root placement can not move the prefix servers, it shortens the prefix
length drastically with increasing IV to offset the cost-increase due to the prefix
placement at the root (see figure 17(b)).

Conclusion The video delivery architecture has normally two degrees of freedom:
the prefix length and the prefix server placement can be varied to determine
the cost optimal solution. When we remove one degree of freedom and fix the
placement of the prefix server, the total system cost can increase significantly,
in particular for the case of leaf placement, where the server cost dominates as
compared to the network cost.

2.5 Short videos

Introduction So far we have looked at videos of length L = 90 min, which
corresponds to feature movies. Besides movies, there are news clips or clips for
product promotion, which are much shorter in length, that can be distributed
via a video distribution system. For these clips it is interesting to evaluate how
efficiently the video distribution architecture supports the distribution of these
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clips. We consider clips of L = 7 min”. As before, the network has an outdegree
m = 4 and a number of levels [ = 5. We vary the popularity of the video between
1072 < N < 10°.

The optimal configuration is computed using the PS-model. The PS-model
allows to determine which fraction of the video should be stored at the prefix
servers and where to place the prefix servers to minimize the delivery cost.

In addition, we consider two more cases where we remove one degree of
freedom:

— D = L, i.e. the prefix comprises the full video, which we refer to as full
video caching. However, the height of the prefix servers is chosen such to
minimize the overall system cost.

— The prefix server is fixed at the root, which we introduced in subsection
2.4 as root placement. However, the length of the prefix is chosen such to
minimize the overall system cost.

Results Figure 18 shows the optimal prefix server placement and the optimal
prefix length in the hierarchy as a function of the video popularity N. A com-
parison with the values obtained for long videos of L = 90 min (see figure 14)
shows that the video distribution system behaves the same way, for both short
and long videos:

— With increasing video popularity N, the placement of the prefix servers
moves closer to the clients

— For all but the most popular videos, the optimal prefix comprises the whole
video.

As we can observe from figures 18(b) and 19(a), full video caching is the
optimal solution, except for the most popular videos.

In Figure 19(b) we plot the ratio of the delivery cost of a video obtained in
the case of root placement as compared to the delivery cost obtained when both,
the prefix length and the prefix server placement are chosen optimally®. We see
that there is an additional cost of fixing the prefix server at the root for a values
of video popularity N except very small ones, where placing the prefix server
at the root is the optimal choice. The additional cost due to root placement is
lowest when the network transmission is cheap (v = 1) and highest when the
relative cost for the prefix servers is low (y = 0.1) and the transmission cost over
the last hop is reduced (lhc = 0.1). When the network is expensive (y = 0.1) the
cost ratio is worst for the values of NV where the optimal prefix server placement
puts the prefix servers at the leaves (h = 1) and chooses a prefix that comprises
the entire video (D = L). The shape of the curves is similar to the ones observed
for long videos (see figures 16(a) and 17(a)).

" We also looked at clips of 2 min length. The results we have obtained for L = 2 are
very similar to the ones for L = 7 and are therefore not present here.

8 We do not plot the cost ratio for v = 0, which can reach a value up to 40 for small
values of V.
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2.6 Video distribution system for a set of videos

Introduction So far we have looked at a single video. We studied the case of
how to determine the optimal prefix length and the optimal prefix placement
as a function of the video popularity IN. However, a complete video distribution
system will offer to the clients a host of different videos V = {1,... , K'} to choose
from.
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We will now extend the PS-model to deal with the following scenarios:

— Provisioning.
The PS-model is used to solve the provisioning problem for a given set of
videos whose popularities are known: We just need to execute the model
for each video separately to determine the optimal prefix length and the
placement of the prefix servers.

— Video assignment problem for an existing configuration.
Very often, the situation will be such that the video distribution system has
been already deployed, i.e. the central suffix server and the prefix servers
have been installed and changing the location (placement) or the capacities
of prefix servers is not possible. Given that the placement and the capabilities
of the prefix servers are fized, we then want to determine the cost-optimal
prefix length and prefix server placement for a set of videos and popularities.

For a set V = {1,...,K} of K videos, the PS-model computes separately
the optimal system cost of each video i € V. The total system cost will be the
sum of the system costs over all K videos of the system. In the following, we will
consider that the popularity NV; = Z.é of video 7 € V follows a Zipf distribution
the popularity of the most popular video and a the slope of the popularity
distribution; the bigger a, steeper the slope, i.e. the more biased or skewed the
popularity distribution. In figure 20 we plot the popularity for different values

of A and a.

Zipf Distribution
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Fig. 20. The popularity N; of video i as a function of the index i, according to a Zipf
distribution, on a log-log scale.

Provisioning of the prefix servers The aim of provisioning is to compute
the resources required in terms of video server storage and video server I/0O
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bandwidth for a given set of videos ¥V = {1,..., K} with popularities N;, for
i € V2. We will concentrate here on the provisioning of the prefix servers inside
the network. However, the provisioning of the servers at the root can be done in
a similar way.

We use equation 2 (subsection 2.3) to compute the optimal prefix length D;,
the optimal threshold 7;, and the optimal prefix server level l; for each video
i€V.Let L(j),{i € V|l; =j} denote the subset of videos whose prefix will
be optimally served by the prefix servers of level j and I/O; denote the amount
of I/O bandwidth needed for each prefix server at level j to serve the prefix of

video i € V. The value of I/O; can be computed the same way as Cf}"gf “in

subsection 2.3. With \; = & and i € £(j) we have

/ ml 2+ 2)\ZTZ/TTLJ

At each level j, the total storage PSs(j) and I/O PSr/o(j) capacity of the
prefix servers are computed as the sum of the prefix lengths and the amount of
I/0O bandwidth needed over all prefixes placed at that level. Hence, at level j,
the resource requirements of the prefix servers are given by:

PSu(j)= > b-60D; Vje{l,..., -1}
i € L(F)

PSpo(i)= > I/O; Vie{l,....1—1}
i € L(F)

Since we assume a homogeneous client population, the load will be uniformly
distributed over the prefix servers at a particular level. Therefore, all prefix
servers at a particular level 7 will have the same capabilities.

Assignment of a videos to prefix servers with limited storage and
I/0O capabilities We now consider the case that the prefix servers have been
installed and that it is not possible to add new prefix servers or to modify their
placement in the distribution hierarchy. The values of PSs(j) and PSy,0(j) are
known Vj € {1,...,1—1}. We will refer to them as prefix server constraints.
However, we allow for modifications to the servers installed at the root. This
means that there are no constraints on the resources of the central suffix server
or the prefix server at the root (I = 0).

To solve the prefix assignment problem for a set of videos V, we need to
find the placement that satisfies the prefix server constraints of the system and
minimizes the total system cost.

9 For sake of simplicity we assume that all videos have the same length L.
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We formulate the assignment problem for a set V of videos as follows:

mln ZZCsyStem i,7) % 6ij)
j=01ieV

s.t. ZDU x 0;; < PSg(j) 1<j<i-1
i€V
> 1/0i; x 65 < PSpo(j)  1<j<i-1
i€y
-1
Zaij =1, Vi
=0

L 9,']' S {0, 1}, v ’L,]

where (i) C2' (i, j) is the lowest total system cost achievable when placing

video i at level j, (ii) D;; is the corresponding optimal prefix length when placing

video i at level 7, (iil) I/O;; is the amount of I/O bandwidth needed when placing

video i at level j, and (iv) ;5 is a binary variable. 6;; is equal to 1 if the prefix
-1

of the video i is placed at level j and 0 otherwise. Z 6;; = 1 indicates that no
j=0

video prefix can be stored at more than one level in the hierarchy.

Both, the objective function and the constraints are linear functions of the
binary variables 6;;. This optimization problem can be resolved using dynamic
programming. We use the XPress-MP package [15] to solve the assignment prob-
lem.

Results Moving a video prefix from an optimal level to a non-optimal one in
order to satisfy the constraints increases the delivery cost of the video and con-
sequently the overall system cost. It is interesting to evaluate how the prefix
server constraints will impact the overall system cost of the video distribution
system. To this purpose, we compute the overall system cost ngts without any

vds = with prefix server constraints,

constraints and the overall system cost C¥o7 ..

which are defined as

vds _ § : system
opt C
2%

'uds § :E : system
constr C Z .7 X 01]

j=01i€V

We use the cost ratio C24s , /C2ds to evaluate how well the video distribution
architecture can adapt to changes in the video popularity and the number of
videos. We plot in figure 21 the cost ratio for « = {0.2,0.6,1} and different
numbers of videos K = {100,120,150}. We set the normalization constant to

A = 9000. The prefix server constraints were computed for the case of K = 100
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videos with o = 0.6 for the Zipf distribution. This initial distribution (a = 0.6)
is skewed or biased enough to fit well with small systems.

m=4, =5, L=90, y=1, B=0.001, lhc=1

T
— 0=0.6
-- 0=0.2
--a=1

cost ratio

L L L L L L L L
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Fig. 21. Cost ratio C;’fism/cgﬁ

Figure 21 shows the following interesting features:

— The cost ratio increases sub-linearly with the number of videos.
— The increase of the system cost strongly depends on the parameter a.

These results fit well with the intuition. The larger the popularity N of a video,
the closer is the placement of the prefix to the clients. If there is no more place
for the popular videos at the higher levels of the prefix hierarchy, video must be
moved closer to the root.

For a given Zipf distribution, increasing the number of videos adds videos at
the tail of the distribution. Those additional videos are the least popular ones,
and must be moved near the root to free resources for the more popular ones at
the higher levels. The placement of the least popular videos close to the root will
use up very few of the constraint resources, which explains the small change in
the cost ratio with increasing number of videos. At some point, all the additional
videos will have such a low popularity that their prefixes will all be placed at the
root and the cost ratio will no longer change with increasing number of videos.

For a = 1, the popularity distribution is very skewed, and increasing the
number of videos K in the system has no impact on the cost ratio since those
additional videos are all optimally placed at the root. If we compare @ = 0.2
and a = 0.6, we find that, as the number of videos K increases, the cost ratio
increases more rapidly for a = 0.2 than for a = 0.6. The reason is that, for
a = 0.2, the videos added to the system are relatively more popular than those
for a = 0.6, and as a consequence, moving them closer to (or placing them at)
the root to satisfy the constraints comes out more costly.
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We also evaluated other scenarios such that, v = 0.1, or v = 0 and for a
reduced cost of the last hop link [hc = 0.1. The results obtained were similar
and are therefore not presented here.

Conclusion The PS-model adapts itself very well in case of limited prefix server
resources. Non-popular videos are moved close to the root to free a place for the
more popular ones. For ¢« = 0.6 and a = 1, the increase in the overall system
cost for increasing number of videos is very low, less than 5%. Even when the
popularity distribution differs a lot from the one used when determining the
prefix server resources (as is the case for @ = 0.2) the extra cost incurred will be
small, 25%— 30%.

2.7 Conclusion and Outlook

Summary We have presented a scalable video distribution architecture that
combines open-loop and closed-loop schemes and assure a zero start-up delay.
Under this architecture, each video is split into two parts, the prefix and the suf-
fix. The prefix is transmitted via controlled multicast (closed-loop scheme) while
the suffix is transmitted via tailored periodic broadcast (open-loop scheme). The
architecture is very cost-effective since the cost for the prefix transmission in-
creases only with the square root of the number of clients and the suffix distri-
bution cost is, at high request rates, independent of the number of clients and
simply a function of the number of segments the suffix is decomposed into.

Another advantage is that our architecture is highly scalable in terms of
serving incoming client requests. A client who wants to receive a video contacts
his closest prefix server. The central server only needs to know if there is at least
one client connected, which the central server can learn by communicating with
the prefix servers. This interaction between the clients and the servers avoids
having a bottleneck due to handling all the requests by a single server.

We have developed an analytical cost model for that architecture that we
called PS-model. In the cost model, we include not only the network bandwidth
cost, but also the costs for the server I/O bandwidth and server storage. Using
the PS-model we can determine the

— Bandwidth and streaming costs for prefix and suffix transmissions
— Optimal prefix length
— Optimal position of the prefix servers.

The PS-model makes the trade-off between the server and network bandwidth
costs to determine the cost-optimal prefix length and the optimal prefix server
placement.

As key results, we found that

— The cost efficiency increases with increasing video popularity N. For a 10-
fold increase in N from 9,000 to 90,000 clients the total system cost only
doubles.
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— A popular video is replicated at many prefix servers that are placed close to
the clients.

— A non-popular video is placed at the root or very close to the root to reduce
the server storage cost incurred for replicating the prefix across many prefix
servers.

— The central suffix server is highly efficient to serve very popular videos for
which the optimal the suffix comprises the major portion of the video.

The PS-model has two degrees of freedom: It can adjust the length of the
prefix as well as the placement of the prefix server in the hierarchy so as to divide
efficiently the workload between the suffix server and the prefix servers. Thus,
if we remove one degree of freedom, for instance, we fix the placement of the
prefix server at either the root or the leaves, the only degree of freedom left is to
adjust the length of the prefix. It is worth to discuss the cost for a non-optimal
placement of the prefix servers since for small systems, it might not possible
to have prefix servers at any level in the network. By comparing between leaf
placement and root placement for the prefix servers, we found that

— The system cost can increase significantly as compared to the optimal system
cost. This increase is up to 450% for leaf placement.

— Root placement outperforms leaf placement in the case where the network
cost is cheap as compared to the server cost. In this case, the cost increase
is relatively small, up to 60%.

— Root placement becomes very costly when the network cost is high relative
to the server cost, and the increase in the system cost can exceed 600% in
case of a reduced last-hop cost.

We also evaluated the PS-model for the case of short videos such as video
clips or clips for product promotions. In fact, even for short videos, it is always
cost-optimal to divide the video into prefix and suffix in the case very popular
clips.

Moreover, we extended the PS-model to looked at the following scenarios:

— Provisioning:
We showed how the PS-model can be used to compute the cost-optimal
for a system with a set V of videos. Given the popularity of each video,
the PS-model determines the system resources required in terms of network
bandwidth, server I/O bandwidth, and server storage to optimize the total
system cost.

— Assignment of prefixes into prefix servers:
We studied how the PS-model adapts the prefix length and the prefix place-
ment for a set V of videos when the amount of resources for the prefix servers
is given, which is for instance the case when a new set of videos must be
optimally placed. The cost increase due to predefined capabilities of the pre-
fix servers is very low over a wide region of our model, less than 5%. Even
when the popularity distribution of the videos differs a lot from the initial
distribution used to determine the prefix server resources, the increase in the
system cost remains low, 25-30%.
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The PS-model has allowed us to study different scenarios. However, several
extensions to the PS-model are possible that allow to make the overall model
more realistic. The current model assumes that client requests for a single video
are homogeneously distributed among all clients. A possible extension would
consider the case where a particular video is more popular with a sub-group of
the clients which would lead to heterogeneous request patterns. The current video
distribution network has a very regular structure with all clients being at the
same distance from the root and the distribution tree being very regular, while a
real distribution network most likely has not such a regular structure. We intend
to extend our model in the future and evaluate the impact of these extensions.
These extensions will clearly change the absolute cost values. However, we do
not expect that they will change the broad conclusions that we could draw using
the PS-model.

We would also like to evaluate different architectural choices. Today, digital
VCRs with at least one hundred Gigabyte of local storage are commercially
available [40]. Given local storage, one can proactively download the prefixes of
the most popular videos directly into the VCR. We intend to extend the PS-
model to evaluate the overall cost reduction due to the use of local storage in
the VCR. Another very attractive architectural option is a satellite distribution
of the suffix of the videos.

Outlook In the system model we have analyzed, we had assumed that both,
the suffix server and the prefix servers, are dedicated. These assumptions hold
true for a “commercial” CDN. In recent years, a new paradigm called peer-
to-peer [34] emerged where a particular machine can assume both roles, i.e.
be client and server at the same time. Popular peer-to-peer systems such as
Gnutella, Napster, or KaZaa have been used by Millions of users to share digital
content such as MP3 files. P2P architectures are very interesting for scalable
content distribution. They offload all or at least the majority of the work for
storage and distribution onto end-systems that are not dedicated to the purpose
of content distribution and therefore, significantly reduce capital expenditures.
P2P architectures are also inherently self-scaling: In case of a sudden increase in
the number of requests, the number of peers that have received the content will
also increase, which in turn will increase the total capacity of the P2P system to
serve new clients. P2P systems are therefore much more suitable than centralized
server-based systems to handle “flash crowds”.

The research community has made numerous proposals on how to use the P2P
paradigm to provide overlay multicast distribution trees [14,7] and to perform
scalable video distribution. The P2?Cast scheme [22] partitions the video into
prefix and suffix as we do in our model and proposes to distribute the suffix by
a central server via application layer multicast while the prefix is delivered via
unicast by another client that has already received the prefix previously and is
currently viewing the suffix.

Constructing application layer multicast trees for video distribution is very
challenging as clients that are part of the tree may leave at any time, which may
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disrupt the video reception of the clients that are downstream while the tree is
re-built. Various proposals such as Coopnet [36] and SplitStream [12] propose
to encode the video signal using multiple description encoding techniques [20]
where the video signal is encoded as IV independent descriptions or sub-streams
that are each transmitted on a separate multicast tree. In this case, a receiver will
be able to play out the video, albeit with reduced resolution, if it receives only
a subset of the descriptions. When using such an approach, it is important that
the multicast trees for transmitting the different descriptions are constructed in
such a way that the failure of a node will not affect different receivers for each
of the descriptions. This is assumed in SplitStream by constructing the trees in
such a way that an interior node in one tree is a leaf node in all the other trees.

A hybrid architecture that combines a CDN (with its servers installed at
certain places) and peer-to-peer based streaming was proposed in [47]. Such an
architecture allows to considerably reduce the amount of CDN resources required
since peers that have received a video will in turn serve other clients, which
reduces that load on the CDN server.
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3 Scheduling Objects for Broadcast Systems

3.1 Introduction

Technological progress in high speed communications, embedded systems and
consumer electronics has led to the availability of several thin, personalized user
terminals capable to store, process, transmit and receive information, such as
mobile phones, personal digital assistants (PDA), palmtops, tablet PCs, etc.
Their powerful characteristics enable a wide range of services and applications,
which deliver information to users efficiently.

Broadcast systems constitute a popular communication infrastructure to de-
liver services to thin, personalized client devices. Broadcast systems are capable
to deliver multimedia services to a wide client population, because they are
scalable in terms of user population and end-user bandwidth; furthermore, they
accommodate heterogeneous user technologies, including mobile and wireless [4].
There exist several architectures for broadcast systems differing in the data deliv-
ery methods and mechanisms, such as the push or pull data transmission model,
periodic or aperiodic transmission, etc. Each architecture provides advantages
for specific environments and/or set of services.

In this work, we consider a popular and powerful broadcast system, suit-
able for satellite systems: an asymmetric, push-based system with receive-only i
clients (i.e. without uplink bandwidth), who are mobile, or in general, connected
occasionally. Typical broadcast systems in this category include the deployed
systems Pointcast [28], Traffic Information Systems [38], Stock, Weather and
News dissemination systems, DirecPc by Hughes [16] and Internet-over-Satellite
(IoS) by Intracom [29]. In analogy to a web-type environment, we assume that
application information is composed of logical objects (e.g., pages, pictures, text,
segments, etc.), where each object is characterized by a different “popularity”.

An important technical issue in such broadcast systems is scheduling, i.e. the
order in which data objects are transmitted. The server transmits objects, so that
their mean aggregate reception delay is minimized for all users. This criterion, the
minimized mean aggregate reception delay, is important not only for performance
but for energy consumption as well: minimized delay implies that client devices
are switched on for a minimized time, and thus, energy consumption of users is
minimized.

In push-based broadcast systems, servers broadcast objects in periodic cycles
consisting of T time units. Several algorithms have been used to construct the
exact transmission schedule in a cycle, given as optimization criterion the min-
imization of the mean aggregate delay to start receiving an object, also called
the access time (the results presented in the following, also apply to non-cyclic
schedules, effectively when T — o0). The schedule of a cycle (period) includes
multiple transmissions of each object, depending on its popularity [42]. It is
known that, the optimal mean access time is achieved when all appearances of
an object are equally distanced within the cycle [30].

Existing analyses of broadcast systems consider memory-less clients, i.e.
clients which are not equipped with any storage. However, technological ad-
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vances have led to the deployment of clients with memory today, and actually,
memory sizes in the client devices are continuously increasing; in the following,
we call this memory a cache, because it is not used for long-term storage. Exis-
tence of a cache at a client changes the model of a broadcast system, because a
caching client is able to start collecting an object even if he/she turns on their
device during the transmission of the desired object. This can be achieved pro-
vided that, each object transmission is done using packets that have headers
with the appropriate packet information. This provision is the state of the art
though, because often, transmission is done with fixed size cells, also called radio
units, where each cell has an appropriate header, e.g. in GPRS [23], 802.11, etc.

In this chapter subsection, we present three main contributions. First, we pro-
vide a simple proof for the need of periodicity (equal distance in transmission)
of popular objects in a cycle; the existent proof [30] uses arguments which are
very complex. Second, in contrast to existing results, we consider the scheduling
problem for caching clients. As we show, the existence of cache not only reduces
the reception time of an object, but leads to an optimal broadcast schedule that
is different from the optimal schedule for cache-less (traditional) clients. In our
work, we calculate the reduced reception delay and we derive the i property
that the optimal schedule for caching clients is based on, which is different from
the one for cache-less clients. We also describe the scheduler that achieves the
optimal schedule. For our work, we use as optimization parameter the mean
aggregate reception delay, i.e. the sum of the access delay and the actual ob-
ject reception time. In prior analyses [42],[46], where models similar to teletext
were used, caching clients were not considered, because it was assumed that
access time is significantly larger than actual object reception delay; however,
in modern systems, this assumption does not hold because it is often necessary
to transmit large objects with high popularity. Importantly, our optimization
parameter reflects power consumption more realistically than existing models
and calculations. This occurs because objects have variable sizes and thus, re-
ception delay is not equal for all objects; however, prior work does not include
this extra delay (and corresponding power consumption), because they consider
environments with cache-less clients, where the only variable time is the access
time.

Our third contribution refers to the analysis of pre-emptive scheduling, among
other heuristics, for broadcast systems with or without caching clients. Since
perfect periodicity of the broadcasting of all objects within a cycle is an NP-
hard problem [9], we prove that the mean aggregate tuning delay of an object
in a broadcast schedule may be further reduced, if we allow interruption (pre-
emption) of an object’s transmission in order to transmit on schedule another
more popular one. This is contrary to the usual practice to transmit objects
non-preemptively (without interruption). We deduce the conditions under which
pre-emption is advantageous and we show that switching the transmission order
of two consecutive objects is beneficial in some cases. Finally, we prove that
interleaving transmission of two consecutive objects is not advantageous in any
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case; such interleaving is tempting, considering object packetization and the
popularity of interleaving in ATM networks.

The paper is organized as follows. Subsection 3.2 presents an overview of
data delivery architectures for broadcast systems and introduces the scheduling
problem. Subsection 3.3 introduces the model of the broadcast system, which we
analyze, and the notation used in the paper. Subsection 3.4 presents our sim-
ple proof of perfect periodicity. Subsection 3.5 presents our analysis for caching
clients, including the calculation of aggregate reception delay and the scheduler
for achieving optimal schedules in the new model. Finally, Subsection 3.6 de-
scribes the conditions under which pre-emptive scheduling provides improved
results.

3.2 Data Delivery Architectures
Broadcast systems can be classified, in general, using 3 parameters:

— the data request model (push vs. pull);
— the timing properties of their scheduling scheme (periodic vs. aperiodic);
— the connection model between server(s) and client(s) (unicast vs. 1-to-N).

Every broadcast system is characterized by a specific choice for each of these
parameters, leading to 8 possible system configurations. In the following, we
elaborate on these three parameters.

A broadcast system is characterized by its data request model, where either
the client requests (pulls) data from the server by posting a request, or the
server sends (pushes) information to client(s) without explicit requests from the
clients. In the pull model, the client posts an explicit request to the server, which,
in turn, responds to the client with the requested data; i.e. the client initiates
the data transfer. In contrast, in a push system, servers transmit data to clients
without a prior request, using some schedule, i.e. the data transfer is initiated by
the server itself. The push system is more appropriate for satellite broadcasting
to mobile clients, because it eliminates the need for clients to transmit, which is
power consuming, especially for the case of GEO satellites.

Data delivery can be periodic or aperiodic in a broadcast system. In periodic
systems, data are transmitted according to a predefined schedule (off-line algo-
rithm, similarly to the classic TDMA systems), while in aperiodic systems, data
delivery is event-driven, i.e. a data transfer is performed when an event occurs
(on-line algorithm, e.g., a request in a pull system or a server decision in a push
system). Periodic systems with very long periods can be considered as aperiodic,
although they are constructed using an off-line algorithm.

Furthermore, broadcast systems may use different connection models: data
transfers may occur in a unicast fashion or in a multicast (broadcast) fashion.
In unicast systems, data transfers between servers and clients occur over a one-
to-one connection, where no other client can receive the transmitted data. In
contrast, in 1-to-N systems, the delivered data are transferred to a set of N
clients, which constitute a group. If N is the complete population, then the
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system follows a broadcast delivery method; however, the broadcast method is
typically used in environments where N is unknown.

Several known systems can be classified using the above scheme. Pull-based
systems are used, in general, for on-demand services, e.g. Video-on-Demand
(VoD), news-on-demand, etc., where clients make requests for a specific service.
Actually, these services are typically pull-based and aperiodic, since requests
typically arrive at random time instances. Depending on the specific network
configuration, the system can be based either on unicast or multicast (1-to-N)
connections (a multicast connection is considered as broadcast, when N is the to-
tal population). Push-based systems include the characteristic examples of news
services and newsgroup services as well as some forms of VoD, where clients have
subscribed to receive specific information. Such systems can be either periodic
(sending specific information at designated time intervals) or aperiodic (sending
update information only, or information at random intervals).

We focus on push-based, periodic, 1-to-N broadcast systems. These systems
are popular in environments where N is unknown. We focus on periodic systems
(off-line scheduling algorithms) but our results also apply to effectively non-
periodic systems with very large periods. We focus on push-based, because we
consider environments where data transmission from clients to servers is expen-
sive and power hungry, e.g. satellites, and client-to-server communication occurs
off-line, probably using a less expensive medium, such as a telephone connection.
Scheduling in broadcast systems has received a lot of attention.

In pull-based systems, scheduling is necessary to specify the transmission
sequence of objects (to choose the object to transmit next). Several scheduling
algorithms have been developed for servers [5]: FCFS, Most Requested First
(MRF), Most Requested First Lowest (MRFL), Longest Wait First (LWF) and
RxW.

Several scheduling algorithms have been developed for push-based systems as
well [4,42,41]. The criterion is to minimize average access time or tuning time.

One method to minimize access or tuning time, and thus power consumption,
is to use indexing methods. In such environments, all objects are identified with
a unique key and the system transmits indexing information along with the data;
the index is a sequence of pairs of the form (key, location), where the key identi-
fies an object and the location identifies the position of the object in a broadcast
cycle. In this fashion, a client can tune in, find the appropriate index entry for
the object required and then, it can tune in at the appropriate time, in order to
receive the desired object. Several indexing methods have been developed, which
differ according to the indexing method or the amount and transmission method
of the indexing information. Methods such as (1,m)-Indexing, Distributed In-
dexing and Flexible Indexing [27] transmit index information in various ways
(multiple transmissions of the complete index, distributed transmission of index
portions, etc.), while hash-based techniques substitute the indexing information
with hashing information that allows the client to calculate the appropriate po-
sition of an object in the broadcast cycle.
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3.3 Model

We assume a server S that broadcasts information objects to a set of clients
(users), who have subscribed for reception of specific objects off-line. We consider
a Web-like environment, where the server transmits objects from a set O =
{01, 04,...,0On} and each object O; is characterized by a popularity p;, which
is a probability that quantifies the number of clients waiting to receive a specific
object. Transmission is performed using fixed size cells, also called radio units.
Objects have arbitrary length and /; denotes the length of O;, measured in radio
units.

Data transmission is performed in periodic cycles T'. In every cycle T, all
objects are transmitted and each object may appear more than once in T, de-
pending on its popularity and its length. An appearance of an object in the
broadcast cycle is denoted as an instance of the object. The spacing s;; be-
tween two consecutive instances of an object O; is the time between the beginning
of the j-th instance and the beginning of the (5 + 1)-th instance.

Clients in the model are devices which are switched on arbitrarily in time.
When a client is switched on, it remains on until it receives the desired object(s),
and then it is turned off. The switch-on activity of a client can be modeled
as posting a request for the object, which the client is waiting for; so, in the
following, we will refer to the client switch-on as a request. We assume that,
during a broadcast cycle T, client requests for an object O; appear uniformly
distributed.

We consider two different types of clients in the system: caching clients
(equipped with cache) and cache-less ones. Cache-less clients need to receive
an object from beginning to end, in order to consume it, because they do not
have any storage capability. In contrast, caching clients have storage capability
and can store partial object information; thus, they are able to store the last
part of an object first and then wait for the reception of its beginning later.

We define as tuning time for an object, the access time of the object (the
time until the beginning of reception of the object) plus the actual reception
time of the object. Thus, we define waiting time differently from others, who
consider the waiting time equal to the access time. This definition does not affect
the construction of the optimal broadcasting schedule for cache-less clients, which
are considered in prior work. In our work, we use as optimization parameter the
mean aggregate tuning time, which is defined as the average of the mean tuning
times of all users, i.e. Y p;D;, where i = 1,..., M, p; is the popularity of object
O; (i.e., the fraction of the user population waiting for O; at a given time) and
D; is the mean tuning time.

3.4 Periodic Object Transmission in a Cycle

Using the system model with cache-less clients, it has been shown that, for
optimal broadcast scheduling (i.e., for minimization of the mean aggregate access
delay), all instances of an object should be equally spaced within a cycle T' [30].
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Fig. 22. Calculating the mean tuning delay of object O;

In the following lemma, we provide a simple proof of this requirement, in
contrast to [30], where the proof is quite obscure. Furthermore, we provide a proof
that the same requirement exists for optimal scheduling with caching clients who
can start collecting radio units of the desired item as soon as they appear (they
start storing parts of the desired object O;, even if they are switched on during
transmission of O;).

Lemma 1. The spacing s; between any two consecutive instances of the same
object O; should be equal in a transmission cycle T'.

Proof. We consider two different cases, depending on whether clients have caches
or not.

Cache-less clients
Assume that object O; is been broadcasted f; times in a broadcast cycle T'. The
instances of O; are at spacings s;1, Si2, . - ., Sif,, where > s; = T. If there is one
request for O; during T then there is a probability that it will appear during the
spacing s;1; this probability is s;; /T, and the mean delay to receive all of O; is
[l; + (si1/2)]. The same holds true for every spacing s;;. Therefore, the average
delay D; to receive object O; during a broadcast cycle T is:

D; = (1/T){sa [li + (s:1/2)] + si2[li + (802/2)] + -+ + sig. [l + (si1,/2)]} =
(UT){s5/2+ s5/24 -+ 87, /2+ li(si1 + sia + -+ 537,) } =

(1T){s2/2+ s%/2+ - + 83, /2 + LiT}

It is well known that the sum of squares of numbers with a constant sum is
minimized when the numbers are equal. Therefore: D; = minfor s;;1 = s;0 =
<= sy, =T/ fi, and so:

Dimin = (fi/2T)(T/ fi)* + i = (5:/2) + l;

Caching clients
Under the same assumptions as above (for cache-less clients), the average delay
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to receive object O; in a broadcast cycle is:

Dcache; = (l/T){llszl + (Sil - l,)[(sll — ll)/Q + lz]
+lisio + (si2 — 1) [(s:2 — 1) /2 + 1]

Hlisig, + (sigy — 1) [(sig; — 1) /2 + L]

= (D) {3 53) + (5/2) + (5/2) + -+ (53,/2)
(Y sig) + (F/2) fi + (D siy) — lffi}

= (1/T){8?1/2 + 8T /2 4 83 24 (D sy) ~ (l?/Q)fi}

(UT) {72+ 55/2+ -+ s, [2+ LT = (2/2) ;]

This expression is minimized when s;1 = s4 = --- = s;f, = s; = T/ f;, and so:

Deacheimin = fi(T/£:)° /2T + 1 — (2/2) (fi/T) = (si/2) +1: — (12£:/2T)
= Dimin — (I fi/2T) = Dimin — (13 /25;)

The last expression shows that, local caching clients receive the desired object
O; with reduced (shorter) delay. The scheduling algorithm presented in [42],
which requires that s?p;/l; = constant, does not take into account local memory
(cache). If one wants to take advantage of a client’s cache, one must modify the
condition, on which the scheduling algorithm is based, accordingly. As we prove
in the following subsection, the optimal broadcast schedule for caching clients
requires that s?p;/l;+1;p; = constant. The difference between the two conditions
becomes significant, if there exist lengthy objects with high popularities in the
system.

3.5 Broadcast System with Caching Clients

Theorem 1. The optimum broadcast schedule in a system with caching clients
requires that

s7pi/l; + l;p; = constant

Proof. Our proof follows the lines of the proof for cache-less clients [42] Assume
that the following holds for all objects scheduled in a cycle T': the spacing s;
between all pairs of consecutive transmissions of the same object O; within T is
equal (as we will see this is not always possible, but this is approximately true
for large broadcast cycles). Then, the average delay to receive object O; is:

Dcache; = (s;/2) +1; — (I7 f;/2T)
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So, the mean aggregate delay for all items is:
Dcache =)~ Dcache;p; =
= (sipi/2) + > _Lipi — Y _ (I} fipi/2T) =
= Lpi+ (1/2) > pi[si — G £i/T)] =
= Lpi+ (1/2) > pili[(si/li) — (i fi/1)]

We denote as ¢; the quantity ¢; = I; f;/T. Clearly: " q; = Y. (Li fi/T) =T Y I; fi =
1. Then, s;/l; = s;ifi/lifi = T/Lifi = qi_l. This results to:

Dcache = Zpili +(1/2) Zpili[qi_l - qi]
In order to find the ¢; which minimize the mean aggregate delay Dcache, we set
(0Dcache/dq; = 0,for i =1,2,..., M
So, we find that the following relation must be true:
pili(1+¢;?) =pala(1+ ¢ %) =+~ = paular (1 + q,/) = constant
This leads to:

pili(1+47%) = pili + pili(T? )13 £2) = pili + pila (s 7/ f7) =
= pil; + pis?/l; = constant

Considering the condition of the theorem, one can easily create an on-line schedul-
ing algorithm that constructs optimal schedule for caching clients. We follow the
method and the notation of [41]:

let @ denote the current time; the algorithm below decides which object to trans-
mit at time Q). Let R(j) denote the time at which an instance of object O;
was most recently transmitted and H(j) denote the quantity H(j) = {[Q —
R()PPpi/li} + piljyj = 1,2,...,M (R(j) = —1 if Q; was never transmitted
before).

On-line scheduling algorithm:

Step 1: Calculate Hpyax = max{H (j)}, for all j

Step 2: Choose O; such that H(i) = Hpyax (if this equality holds true for more
than one object, then choose one of them arbitrarily)

Step 3: Transmit object O; at time @)

Step 4: R(i) = @, go to Step 1

Observe that [ — R(j)] is the spacing between the current time and the time
at which O; was previously transmitted. The algorithm tries to keep constant
the quantity

H(j) ={[Q — R(j)’p;/1;} + pjl;
This quantity is similar to p;s?/l; + p;l;, which must be constant according to
the theorem.
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3.6 Pre-emptive Object Scheduling

The optimum schedule requires that the consecutive instances of an object O;
are equally spaced within a broadcast cycle T'. This is a very desirable property,
especially for energy-limited users, because it reduces busy-waiting (as opposed
to stand-by or doze-waiting) for the desired object. However, the design of an
optimum schedule is an NP-hard problem [9], leading to use of heuristics that
do not achieve the “perfect” schedule. So, as illustrated in Figure 23, it is very
probable that an instance of an object (O with length Iy in the figure) will be
broadcasted after the expected time (for perfect periodicity) with high probabil-
ity, because the transmission of another object (O; in the figure) is in progress
and must be completed first.

O] 02 O] 02 O2 Ol
11 12 11 12 12 11

81

82 82

Fig. 23. A case where perfect scheduling is impossible

One can attempt to improve the schedule with the following heuristics:

1. Interrupt the transmission of object Oy, transmit part of Oy, complete the
transmission of 07 and then of Oy (see Figure 24). As we prove below, this
interleaving is not the right approach, because it always increases the total
delay. It is easy to see that the same conclusion holds true if we attempt to
do a finer interleaving.

2. Interrupt the transmission of Oy, transmit the complete O4, and then resume
and complete the transmission of O; (see Figure 25). This is an example of
pre-emptive transmission. As we prove below, this approach may decrease
the total delay under the right circumstances.

3. Transmit O, first (ahead of schedule) and then O; (behind schedule) (see
Figure 3.6). Again, this ahead-of-schedule transmission decreases the total
delay under certain conditions.

The results mentioned for each heuristic above hold for both client models,
caching and cache-less. In the remaining subsection, we analyze all heuristics for
the case of cache-less clients, because this analysis is much easier to present. We
also present, for comparison, as case 4, the analysis of pre-emptive transmission
for caching clients and derive the condition under which the total delay is re-
duced. In all cases analyzed below, only the delays of clients waiting for objects
O; and O, are influenced. Remaining clients do not experience any difference in
performance.
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Case 1: Interleaving (Cache-less clients)

tg 1 2 t3 ty ts ts

Fig. 24. Interleaving objects O; and O-

Calculation of the increase of the average delay for object Oy :
Requests for object O; appearing in the interval [to, 2] will experience a delay
increase to receive the object; this increase is equal to /1. Remaining requests
are unaffected. Therefore, the increase of the mean aggregate delay is equal to:
p151l21/T.

Calculation of the increase of the average delay for object O :
Requests for O, that appear in the interval [t3,t4] will experience a delay in-
crease to receive the object equal to: tg — t5 = s20 (s22 is the spacing between
instances #2 and #3). The remaining requests are unaffected. Given that the
interval [ts, t4] has length lyo, the increase of the mean aggregate delay is equal
to: p2822112/T.

Combining the results of the two previous calculations, we see that it is not
appropriate to interrupt the transmission of O; in order to transmit part of Os,
because this decision always increases the mean aggregate delay by the amount:

Total delay increase = [p1s1la1 + pasaslia]/T >0

Case 2: Pre-emption (Cache-less clients)
In this case, the transmission of O; is interrupted, O is transmitted and then
the transmission of O is completed, as depicted in Figure 25.

Calculation of the increase of the average delay for object O :
Requests for Oy appearing in the interval [to, t2] will experience a delay increase
equal to I3, in order to receive O;. The remaining requests are unaffected. There-
fore, the increase of the mean aggregate delay for O; is equal to: pys1ls/T.

Calculation of the increase of the average delay for object O :
Requests for O, appearing in the interval [t1, t3] (with length so1 — l12) will ex-
perience a delay decrease equal to 15, in order to receive Os. Requests made
during [t3, t4] will experience a delay increase equal to s22 to receive O. The re-
maining requests are unaffected. Therefore, the increase of the mean aggregate
delay is:

[—p2(321 - 112)112 + p2l12822]/T
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Fig. 25. Pre-emptive transmission of Os

Given the above calculations, the total increase of the mean aggregate delay
AD is:

AD = [p151ly — p2(s21 — lia)lia + paliasae]/T =
= [p151lz + paliy — p2(s21 — $92)l12]/T

So, the delay increase depends on l15. If we set dAD/dl15 = 0, then we find that
AD takes a minimum value, if 19 = (s21 — $22)/2. This minimum value is:

ADmin = [p181l2 — pa(s21 — $92)?]/4T
and is negative (= maximum decrease of delay) if
(s21 — 822)° > 4p1sila/po

Thus, if this inequality holds, then we can reduce the mean aggregate delay,
if we interrupt the transmission of O; after l; — lj2 = I3 — (S21 — $22)/2 radio
units, in order to transmit Os.

Case 3: Ahead-of-Schedule Transmission (Cache-less clients)
In this case, we transmit Oy ahead of schedule and O, behind schedule.

7

81

822
g2

%
.

Fig. 26. Switching the transmission order of O; and O2

Calculation of the increase of the average delay for object Oy :
Requests for Oy appearing in the interval [to, t2] will experience a delay increase
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equal to I, in order to receive O;. Requests in the interval [t2, 3] will experience
a delay decrease equal to (s; —l2), while all remaining requests are unaffected.
Therefore, the increase of the mean aggregate delay is equal to:

[P151le — pila(s1 — 12)]/T

Calculation of the increase of the average delay for object O :
Requests for O, appearing in the interval [¢1, t2] will experience a delay decrease
equal to Iy to receive Os. Requests in the interval [t2, t4] will experience a delay
increase equal to s22. All remaining requests are unaffected. Therefore, the
increase of the mean aggregate delay is equal to:

[—poli(s21 — l1) + palis2s]/T
The total delay increase is:

AD = [p1sila — pila(s1 — la) — pali(s21 — I1) + palisan] /T =
= [p13 + palf — pali(s21 — $22)]/T

This expression becomes negative (decrease of the delay) if

(21 — 822) > 1 + (p113)/pola

Since (s21 — $22) = 212 (see Figure 3.6), we obtain:

lis > [l + (p13)/p2li] /2

If this inequality holds, the mean aggregate delay is reduced when the trans-
mission order of O; and Os is switched.

The results of this analysis hold true for the case of caching clients as well;
however, the analysis is more involved. We present the analysis of pre-emptive
transmission with caching clients.

Case 4: Pre-emption (Caching clients)

Consider the pre-emptive transmission of object Os, shown in Figure 25, for the
case of caching clients. We derive the conditions under which this pre-emptive
transmission reduces the total tuning time.

Calculation of the increase of the average delay for object O :

Clients requesting O; and appearing in the interval [t(,t2] will experience an
increase of the tuning time by ly. Requests during the interval [t2, 3] will not
be affected. Requests during [t3, 5] will have a mean decrease of their tuning
time by ly/2. Similarly, requests during [t},¢4] will have a decrease of their
tuning time by ly, while requests during [t4,t5] will have a mean decrease by
l2/2. Putting these together, we see that the mean increase of the tuning time
of clients requesting O1, due to the pre-emptive transmission of O, is:

ADy = (p1/T)l[(s1 =l +li2) = 12/2 = (lia = l2) = 12/2] = pila(s1 — 1) /T
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Calculation of the increase of the average delay for object Os:
Clients requesting O2 and arriving in the interval [t1,t3] will have a decrease
of their tuning time by ;2. Requests during the interval [t3, t5] will have a mean
increase of their tuning time by (s22 —12/2), requests during the interval [t5, 4]
an increase by s22, and requests during the interval [¢4, t5] a mean increase by
l2/2. Thus, the mean increase of tuning time for object O is:

ADy = (p2/T)[=(s21 — li2)li2 + (522 = l2/2)l> + (L2 — l2) 522 + 122/2] =
= poli2(s22 — s21 + l12) /T

Working similarly to the case of cache-less clients, we find that the condition
under which pre-emptive transmission reduces the total tuning time is:

(821 — 822)% > dpi(s1 — l1)la/p2

Thus, the maximum reduction of the tuning time is achieved when: I35 = (s21 —
522)/2.

3.7 Conclusions

We showed that, as expected, a local cache reduces the time required for the
reception of an object. We also proved that the optimal broadcast schedule for
these caching clients is different from the optimal schedule for cache-less clients
(it must satisfy the condition s?p;/l; + p;l; = constant, rather than the condition
s%pi /l; = constant). Considering a broadcast schedule constructed with heuristic
algorithms that are based on these conditions, we proved that, for caching or
cache-less clients, the mean aggregate delay for the complete reception of an
object may be further reduced, if we allow the interruption of the transmission
of an object in order to transmit on schedule another more popular one. We
deduced the conditions under which this pre-emption reduces the mean aggregate
delay. Furthermore, we showed that under some conditions the switching in the
transmission order of two neighboring objects may also be advantageous. Finally,
we proved that the interleaving of the transmissions of two neighboring objects
is not beneficial in any case.
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