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Abstract

Recent results on the asymptotic empirical eigenvalue distribution of random matrices have enabled the study of the

asymptotic limits of Linear Precoded OFDM systems with MMSE equalization. In this contribution, we extend these

results to the MMSE Successive Interference Cancellation (MMSE SIC) detector and quantify the non-linearity gain for

certain type of precoding matrices.

Keywords
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I. I NTRODUCTION

Linear Precoded OFDM (LP-OFDM) systems have drawn a lot of research interest lately. This type of modulation

was first proposed in 1993 in the multi-user context known as Multi-Carrier CDMA [16]. In [15], this scheme has been

extended to the single user scenario called LP-OFDM, in which, the information is linearly precoded before transmission.

This procedure is simply expressed by the fact that aK dimensional transmit information vector is pre-multiplied by

a N ×K matrix before transmission on a frequency selective fading channel. In the case of the maximum likelihood

detector, previous work have already analyzed the optimum choice of the precoder whenK = N [1] or the impact of

limited diversity whenK ≤ N [13]. The analysis has been recently extended to the MMSE receiver by Debbah et al. [2]

(in the context of LP-OFDM and downlink MC-CDMA) and Peacock et al. [5] (in the context of uplink MC-CDMA).

Based on the fact that the number of carriers is high in OFDM wireless networks, the influence of the precoding matrix

and the ratioK
N on the performance of the MMSE receiver have been analyzed. In order to obtain tractable expressions

of the SINR, an attractive approach already used in the context of multi-users CDMA systems was proposed which

models the precoder as a certain type of random matrix [9], [7]. The study is conducted in the asymptotic regime (by

asymptotic, it is understood that the number of symbolsK to be sent tends to infinity, the number of carriersN tends

to infinity while the ratio remains constant) and it is shown that the SINR converges almost surely to a deterministic

term independent of the particular realization of the random precoding matrix. Although simple, the sub-optimality of

the MMSE receiver has nevertheless motivated in recent years the search for efficient non-linear detection schemes to

increase the spectral efficiency [8] with only polynomial complexity [3]. Unfortunately, the gain achieved by these non-

linear detectors is not straightforward to analyze and depends on many factor such as the ratioK
N or the nature of the

precoder. In this contribution, due to its simplicity, we derive the performance of a well known non-linear detector, the

MMSE SIC receiver (which is known to achieve capacity [10]), and quantify for a given system load the non-linearity

gain for two type of random codes: random i.i.d and random isometric (see section II-B for details and justification).

II. LP-OFDM

A. Model

The baseband frequency domain block equivalent model of a LP-OFDM system is depicted in figure .2. The receiver

front-end is formed by a symbol-matched filter followed by sampling at the symbol rate. The input symbol stream is

serial to parallel converted, then the resultingK-dimensional symbol vectors = (s 1, · · · ,sK)T (a white vector process with

12th December 2003 DRAFT



0-2

E
(
ssH
)

= IK) is multiplied by aN ×K matrix WN,K whereN ≥ K. This N-dimensional vectorx = WN,Ks is parallel

to serial converted and the corresponding generated data stream is sent across a non selective Rayleigh fading channel.

After serial to parallel conversion, due to inter-carrier interference generated by the precoder, theN–dimensional received

vectory = (y1, · · · ,yN)T can be expressed as a function of the emitted symbol vectors:

y = HN WN,K s + n (1)

wheren is a additive white Gaussian noise such thatE
(
nnH

)
= σ2IN , and whereHN = diag([h1, . . . ,hN]) is theN ×N

diagonal complex matrix bearing on its diagonal the channel gains.

In the remainder of this paper, channel knowledge and perfect synchronization at the receiver is assumed. Due to

a lack of space, we will only consider the ergodic channel case. We assume fast fading environments in which time

and frequency interleaving is performed on the components ofx = W N,K s. The purpose of interleaving is to scramble

the precoded data stream in order to provide the coefficients(h k)1,...N with ergodic properties (we denote byp(t) the

probability density of the random variables(|h i|2)i=1,...,N and suppose that for each continuous bounded functionf :

R → R,limN→+∞
1
N ∑N

k=1 f (|hk|2) =
∫

f (t)p(t) dt almost surely). This strategy incurs a delay in order to retrieve all the

components ofWN,K s(n) before� de-spreading�.

We setE(|hi|2) = 1 andE(|si|2) = 1 so thatσ2 defined byE(nnH) = σ2IN represents the inverse of the SNR at the

receiver input. The input SNR is defined as:λ = 1
σ2

B. Types of codes

Two types of codes will be analyzed:

• random i.i.d matrix: coefficients of the precoding matrix are modeled as i.i.d random variables. This choice is

justified in order to get interpretable expressions of the SINR. The i.i.d. case study is based on mathematical results related

to the ”limiting distribution of eigenvalues” of some large random matrices with independent and identically distributed

entries (see e.g. [7],[9] ). As a particular example and for implementation simplicity sake, the coefficients can be chosen

randomly from the set (1,-1).

• random Haar distributed isometric matrix: In general, Walsh-Hadamard codes are used in LP-OFDM schemes

but the Haar distribution is introduced for calculus purpose. Moreover, as shown later, these matrices do not incur any

performance loss. AN ×N random unitary matrix is said to be Haar distributed if its probability distribution is invariant

by right (or equivalently left) multiplication by deterministic unitary matrices. We restrict our study to isometric matrices

(obtained by extractingK < N columns from a Haar unitary matrix) since perfect synchronization is ensured between the

codes at the transmitter. In this case, new tools, borrowed from the so-calledfree probability theory [11] are used to

analyze the SINR formula. One drawback of the isometric codes is that it is impossible to take into account a scenario in

which the redundancy factorα = lim N→∞
K
N is greater than 1. In order to deal with this case, we consider co-isometric

codes. Instead of using codes whose columns are orthogonal, one may use a matrix code such as the rows are orthogonal.

In this context, we model the precoding matrixW N,K as a random matrix obtained first by extractingN rows from a Haar

distributed unitaryK ×K matrix, and second by multiplying the resulting matrix by the scaling factorα 1/2. Therefore,

12th December 2003 DRAFT



0-3

WN,K satisfies

WN,KWH
N,K = αIN (2)

The scaling factorα in (2) guarantees that the average power allocated to each component ofs is 1 as is the case when

α < 1. The caseα > 1 is only interesting for a comparison basis with the i.i.d case.

III. SUCCESSIVEINTERFERENCECANCELLATION DETECTOR

Results on the performance of the MMSE receiver have been previously derived in [2]. However, the sub-optimality

of the MMSE receiver has raised considerable interest [8] for non-linear multiuser detectors. The price for those im-

provements is of course receiver complexity. Basically, these non-linear methods borrow equalization schemes from the

CDMA context [6], [4].

A. MMSE SIC algorithm

The algorithm relies on a sequential detection of the received block [14]. At the first step of the method, a MMSE

equalization of matrixMN,K = HN WN,K is performed. The output of the MMSE detectorŝ = [ŝ1, . . . , ŝK ]T is given byŝ =

WH
N,KHH

N

(
HNWN,KWH

N,KHH
N +σ2IN

)−1
y. Each component ˆsk of ŝ is corrupted by the effect of both the thermal noise

and by the ”multi-user interference” due to the contributions of the other symbols{s l}l �=k. Denotewk the column ofWN,K

associated to elementsk, andUN,K theN × (K −1) matrix which remains after extractingwk from WN,K . DefineAN,K =

HNWN,K WH
N,KHH

N + σ2IN . The component ˆsk after MMSE equalization has the following form: ˆsk = ηwk sk + τk where

ηwk = wH
k HH

N (AN,K)−1 HNwk . andτk = wH
k HH

N (AN,K)−1 HNWN,K [s1, . . . ,sk−1,0,sk+1, . . . ,sK ]T + wH
k HH

N (AN,K)−1n.

It has been shown [17] that the additive noiseτ k can be considered as Gaussian whenK andN are large enough.τ k is

therefore an asymptotically zero mean Gaussian noise of varianceV = E(| τ k |2 /HN ,WN,K) = ηwk (1−ηwk).
1

The SINRβwk at the outputk of the MMSE detector can thus be expressed as:

βwk =
E[| ηwk sk |2 /HN ,WN,K ]

E[| τk |2 /HN ,WN,K ]

=
ηwk

1−ηwk

In the case of i.i.d or isometric spreading, under certain conditions, it has been shown in [2] that whenN grows

towards infinity andK/N → α, the SINRβK
wk

at the outputk of a MMSE equalizer converges almost surely to a value

β(α). Therefore, all the symbols enjoy asymptotically the same2SINRβ(α). Since there is no optimal choice for detecting

the first symbol, suppose that the algorithm starts by decoding symbols K . Assuming a perfect decision (this is possible

if the informationsK has been encoded at a rate log2(1+βK
wK

), the resulting estimated symbol ˆsK is subtracted from the

vector of received samples in the following manner:r 2 = r1− ŝKmK (mi represents theith column ofMN,K and vector

r1 = y). This introduces one degree of freedom for the next canceling vector choice which enables to reduce the noise

plus interference influence and yields an increase in the decision process reliability.

1this proof can be found in [12]
2In the case of finite systems, the SINR of each symbol is different. Therefore, only the symbol with the best SINR is detected first.

There is an optimum ordering in the detection process (depending on the channel attenuations) which makes the analysis extremely

difficult for finite dimensions.
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The second step can be virtually represented by a completely new system ofK − 1 symbols(s 1, ...,sK−1) transmitted

by an N × (K − 1) isometric precoding matrixWN,K−1 on the same flat frequency fading channel. Equalizing with

matrix G2 = MH
N,K−1(MN,K−1MH

N,K−1 + σ2I)−1 whereWN,K−1 denotes the matrix obtained by suppressing columnsK

of WN,K andMN,K−1 = HNWN,K−1, all the estimated symbols enjoy asymptotically an SINR ofβK−1
wK−1

. Assuming that

the information insK−1 has been encoded at a rate log2(1+ βK−1
wK−1

), one can reiterate the same process described at the

beginning. The advantage of such a scheme is thatβK
wK

≤ βK−1
wK−1

: one is able therefore to convey much more information

on the second symbol (since the SINR increases) than with MMSE equalization.

B. Performance issues

In this section, we will derive the asymptotic SINRβ(x) for each symbolk = [xN +1] ([] is the integer part operator)

during the detection process. We assume hereafter that the detected symbols at each iteration are perfectly retrieved.

For each symbols j,1 ≤ j ≤ K − l, the SINRβK−l
w j

is easily shown to beβK−l
w j

=
ηK−l

w j

1−ηK−l
w j

wherew j is the jth column of

matrixWK−l (ηK−l
w j

= wH
j HH

N

(
HNWN,K−lWH

N,K−lH
H
N +σ2IN

)−1
HNw j ) Based on [2], the following result holds:

Proposition 1: Let k be the number of symbols to be detected and N the numbers of carriers. When N → ∞ and

k/N → x ≤ 1, the SINR βk
wj

(1≤ j ≤ k) at the output of the MMSE SIC equalizer with i.i.d and random isometric Haar

distributed matrices converges almost surely to a value β(x) that is the unique solution of the equation:

• Isometric case: ∫ ∞

0

t
xt +σ2(1− x)β(x)+σ2 p(t) dt =

β(x)
β(x)+1

. (3)

• i.i.d case: ∫ ∞

0

t
xt +σ2β(x)+σ2 p(t) dt =

β(x)
β(x)+1

. (4)

Sinceβ(x) is a decreasing function ofx, perfect retrieval of the symbols at each step of the algorithm reduces the

interference and yields an increase in terms of performance. This is one of the asymptotic justification of the MMSE

SIC algorithm. The following theorem will be used in order to derive the asymptotic performance of the MMSE SIC

algorithm in terms of spectral efficiency and bit error probability :

Theorem 1: let f : R → R be a continuous function. IfK → ∞, N → ∞ andK/N → α > 0, then 1
K ∑K

i=1 f (βi
wi

) a.s→
1
α
∫ α

x=0 f (β(x))dx whereβi
wi

=
ηi

wi
1−ηi

wi
with ηi

wi
= wH

i HH
N

(
HNWN,iWH

N,iH
H
N +σ2IN

)−1
HNwi andβ(x) solution of equation

(3) or (4).

The proof can be found in the appendix.

BER Considerations: At each step of the SIC algorithm, perfect detection of the symbols is assumed. Even though

such an assumption is not justified3, the performance evaluation gives us an upper bound on the achievable performance.

For a fixedK andN, the mean BER(K,N) is: 1
N ∑K

i=1Q

(√
βwi

i
)

(we consider here a QPSK constellation). Theorem 1

can be therefore applied to the continuous functionf : y → Q(
√

y) and yields limN→∞ BER(K,N) = 1
α
∫ α

0 Q
(√

β(x)
)

dx.

Figure (1) shows the BER in the uncoded case respectively for independent Rayleigh channel attenuations . Notice

that only the random isometric Haar distributed case is illustrated. The theoretical curves closely match to the simulation

3With this assumption, the final step of the detection process achieves the performance of the single user bound while it is well

established that due to the propagation of errors, such a result is not reached
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results at high SNR, using a realistic number of sub-channels (N=256). At low SNR, a little gap appears due to the fact that

uncoded transmissions have been simulated. In this case, the symbols are not retrieved perfectly and yield propagation

errors. Indeed, for performing a good interference cancellation, due to the underlying feedback mechanism involved

in the successive detection, the MMSE SIC algorithm should decode first the reliable carriers enjoying a greater SINR

and then the most corrupted ones. Unfortunately, all the carriers share the same SINR resulting in practice to marginal

performance gain when applying successive interference cancellation approaches. The theoretical curve in figure (1)

shows also that even when ideal interference cancellation is performed (the best achievable BER), the performance gain

in the uncoded case is poor in comparison to the great complexity of the algorithm. Indeed, the performance is mostly

affected by the errors incurred at the first stages of the algorithm.

Spectral efficiency Considerations: The spectral efficiency is defined as the highest rate at which information can be

sent with arbitrary low probability error with MMSE SIC detection. Our analysis (in which we consider perfect retrieval

of the detected symbols) is justified if coding on each carrierk (k = [xN +1]) of figure (2) is carried at exactly the spectral

efficiency rate log2(1+β(x)). For a fixedK andN, the mean spectral efficiency of re-encoded successive cancellation is:

γ(K,N) = 1
N ∑K

i=1 log2(1+βi
wi

). Theorem 1 can be therefore applied to the continuous functionf : y → log2(1+ y) and

limN→∞ γ(K,N) =
∫ α

0 log2(1+β(x)) dx .

It is well known (see [10]) that for eachK andN, γ(K,N) = 1
N ∑K

i=1 log2(1+ βi
wi

) actually coincides with the ca-

pacity 1
N log2(det(I +

HNWN,K WH
N,KHH

N

σ2 )). This equality is thus of course verified in the asymptotic regime. Therefore, the

following result holds:

Theorem 2: let γSIC denote the spectral efficiency of the MMSE SIC algorithm andγopt the spectral efficiency when

optimal detection is performed.

γSIC =
∫ α

0
log2(1+β(x))dx

and

γopt = lim
N→∞

1
N

log2

(
det

(
IN +

HNWN,KWH
N,KHH

N

σ2

))

The following equality holds:γopt = γSIC

A remarkable result of theorem 2 in the ergodic case is that the MMSE SIC is able to achieve the single user bound

without the knowledge of the channel realization at the transmitter (in order to encode information on each substream)

but only the channel statistics (sinceβ(x) is deterministic). We believe that this is truly an important result as it does

not require a channel feedback mechanism but only knowledge of the channel statistics.Therefore, with time and

frequency interleaving, the MMSE SIC is able to achieve optimal performance in limited diversity channels.

In figure 3, we study the impact of the orthogonality of the precoder’s columns with respect to the i.i.d case at 10 dB

with i.i.d Rayleigh fading. Important conclusions can be drawn:

• with orthogonal codes, a great improvement with respect to the MMSE receiver is achieved whenα is close to

1 (nearly 1.5 bit/s/Hz forα = 1). When 0≤ α ≤ 0.5 , there is no need into using such a detector. In this case, the high

redundancy of the precoder is able to compensate the sub-optimality of the MMSE detector.

• with i.i.d codes, a surprising result shows that there is no loss in terms of spectral efficiency as long asα → ∞.

Therefore, one can use a matrix with i.i.d entries and still achieve the best performance possible. However, since the
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complexity of the SIC detector is related the number of inversionsK, using i.i.d codes can be prohibitively to complex to

use in this case. For 0≤ α ≤ 1, the SIC detector with i.i.d codes performs similarly as the MMSE detector with orthogonal

codes. In this region, orthogonality pays off.

IV. CONCLUSION

In this contribution, an asymptotic analysis has been derived for the SIC MMSE detector. We show in particular

that for loads 0≤ α ≤ 0.5, the MMSE receiver already achieves optimal performance. Moreover, if time and frequency

interleaving is performed, a truly important result shows that the coding rate on each carrier dependsonly on the channel

statistics. We also showed that in the uncoded case, SIC approaches yield a very small performance gain in terms of

BER.
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APPENDIX

Proof of theorem 1

As we assume in the ergodic case that the probability distribution of the channel fading is compactly supported, it

is possible to show that the SINRs for each user at each iteration are uniformly bounded, for allN andK, and for all

realization of the precoding matrix. In the non-ergodic case, the channel gains are also bounded for a given channel

response. Consequently, is it sufficient to show the result for a functionf that is continuous and bounded by a valueM.

First, we noteαN := K(N)
N , and we define the random piecewise constant function defined on[0,max(α N ,α)] for an

eventω:

gN(x) ∆=


 f (SINR(�xN +1	,N)) if x ≤ αN

0 if x > αN

We can also define for allx, g(x) ∆= f (β(x)). Thus we have1
K ∑K

i=1 f (SINR(i,N)) =
∫ αN

x=0 gN(x)dx

Because of the fact thatαN → α and f is bounded by a real valueM, we have
∫ α

αN
gN(x)dx → 0. In order to prove the

result, it is sufficient to show that a.s.,
∫ α

x=0 gN(x)dx → ∫ α
x=0 g(x)dx

For a fixedx ∈ [0,α], P [ f (SINR(�xN +1	,N)) � f (β(x))] = 0 (consequence of the almost sure convergence of

SINR(�xN+1	,N) shown in [2], and of the fact thatf is continuous). This result can be written as:∀x∈ [0,α],E
(
1{gN(x)�g(x)}

)
=

0. It is then possible to considerx as the realization a random variable X, independent fromω, with a uniform density over

[0,α] ; thus we can calculateExE
(
1{gN(x)�g(x)}

)
dx = 0 The function that is integrated is positive, so Fubini’s theorem

can apply:E
∫ α

x=0 1{gN(x)�g(x)}dx = 0

Consequently, as the integrated term is positive,Pω-a.s.,EX 1{gN(x,ω)�g(x)}dx = 0. Let us consider one such eventω.

We then havegN(x,ω) → g(x) a.s, and asg andgN are uniformly bounded by a positive valueM, EX [gN(x)] → EX [g(x)].

Indeed, we have

|EX [gN(x)]−EX [g(x)]| ≤ EX [|gN(x)−g(x)|]
≤ 1

α

∫ α

0
1{gN(x)→g(x)}|gN(x)−g(x)|dx︸ ︷︷ ︸
→0(dominated convergence)

+
1
α

∫ α

0
1{gN(x)�g(x)}|gN(x)−g(x)|dx︸ ︷︷ ︸

≤2M×PX (gN(x)�g(x))=0

i.e. ∫ α

x=0
gN(x)dx →

∫ α

x=0
g(x)dx
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