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Abstract— In this paper we analyze the limits on commu-
nication induced by mobility. The case of no channel state
information at the receiver (CSIR) is considered. We specif-
ically analyze the matched filter bound (MFB), which cor-
responds to the ML performance for the detection of a sym-
bol assuming all other symbols are known. This setting al-
lows to incorporate channel estimation from the known sym-
bols. Two channel models can be considered for two types of
transmission. In the case of (quasi-)continuous transmission,
parametric channel models are considered with a decomposi-
tion into fast and slowly fading channel parameters, with the
estimation errors on the slow parameters being neglected.
For the case of block-wise transmission, we assume basis
expansion models with the correlations between the basis
components being taken into account. On the other hand
one can also distinguish between specular (pathwise) and
diffuse (separable correlation) channel models. The MFB
degradation due to channel estimation is characterized in
terms of a misadjustment factor, which is analyzed further
for SISO flat channels and MIMO OFDM channels, with
specular or diffuse channel models. The channel estimation
based approach is also briefly contrasted with and outper-
forms differential (de)modulation approaches. Finally, some
links with previous work on capacity analysis are made.

I. INTRODUCTION

The channel capacity in mobile communications is lim-
ited due to mobility which results in fast fading channels
[3], [4], [5], [6]- In practical systems, training sequences
or pilot symbols are incorporated in the transmitted signal
to allow for channel estimation at the receiver. The den-
sity of training data needs to increase as the mobility and
the channel variation increases. Nevertheless, even with
training data available, the channel estimate can only be
of limited quality, and the channel estimation errors reduce
the channel capacity. Furthermore, the fact of substituting
data to be transmitted by training data obviously also lim-
its the capacity. All this means that the channel capacity
degrades with mobile speed and we are particularly inter-
ested in determining the range of mobile speed for which
the capacity degradation with respect to the case of known
channel at the receiver remains negligible.

In theory, the notion of channel capacity [7] implies that
data transmitted at a certain rate will be recovered error-
free. This data can also be used to estimate the channel in
a decision-directed mode. All this indicates that the lim-
its in capacity appear to correspond to the case in which
all the received data is assumed to be correct and is used

to estimate the time-varying channel. This point of view
will lead to the minimum possible channel estimation error.
The channel estimation problem becomes a typical Wiener
or Kalman filtering problem of estimating a stationary pro-
cess (the channel coefficients) that is observed in additive
(channel) noise. Whenever this channel estimation error
translates into negligible additive noise increase, the loss
in capacity due to the lack of knowledge of the channel at
the receiver is negligible.

In [1], we have analyzed the capacity reduction due to
this lack of channel knowledge at the receiver. In this pa-
per we shall continue that work by introducing a comple-
mentary and more pragmatic analysis of the effect of lack
of channel knowledge at the RX on the Matched Filter
Bound (MFB). The difference between MFB and capacity
is essentially an issue of interference. It is expected that
the range of mobility for degradation to be negligible will
be commensurate for both performance measures.

We should emphasize that the loss in capacity or MFB
is only due to the temporal variation of the channel. If
the channel were constant, then it would be possible to
estimate the constant parameters with an error level that
vanishes as the duration of the transmission increases. Pos-
sible indeterminacies in the channel estimate due to rota-
tional invariances in practical symbol constellations also
lead asymptotically to negligible capacity loss.

II. MATCHED FILTER BOUNDS AND CRAMER-RAO
BounDs

When the channel is known (perfect Channel State In-
formation at the Receiver (CSIR)), the MFB corresponds
to the Maximum Likelihood (ML) performance for the de-
tection of a symbol assuming that all other symbols are
known. In fact, the MFB has interesting connections with
the Cramer-Rao bound (CRB). Indeed, it has been shown
recently [2] in the context of blind channel estimation that
the CRB for estimating a channel under the constraint that
the unknown symbols belong to a finite alphabet (FA) boils
down to the CRB for channel estimation when those same
symbols are perfectly known (the estimation from training
case). This is quite intuitive since the CRB exploits only
local information in the neighborhood of the true param-
eter values (here the unknown symbols). And simultane-
ously expressing that the symbols belong to a FA and that



their error is local leads automatically to the requirement
that this error be zero. Now, for channel estimation, we
consider the channel as the parameters of interest whereas
the unknown symbols are nuisance parameters. For the
MFB on the other hand, we consider joint estimation of
deterministic symbols, focus on one symbol a; and express
finite alphabet (FA) constraints on the values of all other
symbols. Since the CRB works locally, the discrete ambi-
guity of the FA constraint leads locally to perfectly known
other symbols. Hence the CRB for the symbol of interest
ay (unbiased estimators!) leads to:
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For the MFB with unknown channel (no CSIR), we have
almost the same problem. However, we consider one of the
symbols as the parameters of interest and all other param-
eters (channel and other symbols) are nuisance parameters.
Now, when we express that the other symbols belong to a
FA, then this again boils down to making the other sym-
bols known. The channel estimation on the other hand is
coupled with the estimation of all the symbols. While the
MFB does not express a FA constraint for the symbol of
interest, we propose to relax the CRB by assuming that
the coupling of the channel estimation with the symbols is
based on symbols that are all subject to the FA constraint
(the symbol of interest included). The estimation of the
symbol of interest in turn is then based on the channel and
the other symbols that remain under FA constraint and
hence are equivalently known. This interpretation of the
MFB, extended to the case of unknown channel, remains
consistent with the common interpretation that the MFB
corresponds to neglecting probability of error.

This setting allows to incorporate straightforward chan-
nel estimation from the known symbols. In the case of
white Gaussian additive noise, this leads to channel esti-
mation error that is independent of the channel noise for
the symbol to be detected. In order to have results that
mimick the capacity analysis, non-causal channel estima-
tion should be considered. However, we can also analyze
the perhaps more realistic/pragmatic cases of causal filter-
ing or fixed-lag smoothing.

III. (MIMO WIRELESS) CHANNEL MODELS

In order to improve channel estimation and reduce MFB
loss, it is advantageous to exploit correlations in the chan-
nel, if present. For time-varying channel, two channel mod-
els can be considered according to two transmission modes:
1. continuous transmission: in this case the vectorized
channel impulse response can be modeled as a (locally)
stationary vector signal; limited bandwidth usually allows
downsampling w.r.t. symbol rate; stationarity can only be
local due to slow fading
2. bursty transmission: in this case, the time axis is cut
up in bursts, the channel (down)samples within each burst
can be rerepresented in terms of Basis Expansion Models
(BEMs); limited bandwidth leads to limited BEM terms.

Both models are equivalent as long as the temporal cor-
relation structure in the continuous mode gets properly
transformed to intra and inter burst correlation between
BEM coefficients.

Fig. 1.
tennas.

MIMO transmission with Np transmit and Ng receive an-

A. Specular Wireless MIMO Channel Model

Now consider a MIMO transmission configuration as de-
picted in Fig. 1. We get for the impulse response of the
time-varying channel h(¢,7) [11]

Np
h(t, kT) = ZAi(t) e fit ap(¢) ag(6;) p(kT —7;) . (2)

The channel impulse response h has per path a rank 1
contribution in 3 dimensions; there are Np pathwise con-
tributions where

o A;: complex attenuation

o f;: Doppler shift

0;: angle of departure

¢;: angle of arrival

o 7;: path delay

o a(.): antenna array response

o p(.): pulse shape (TX filter)

The fast variation of the phase in e/ fi* and possibly the
variation of the A; correspond to the fast fading. All the
other parameters (including the Doppler frequency) vary
on a slower time scale and correspond to slow fading.

B. MIMO Channel Prediction

Consider vectorizing the impulse response coeflicients
Np

(N x1) h(t) =vec{h(t,)} = Y _h, A;(t) e /it (3)
=1

where h; = vec{ar(¢;) a%(6;) p(.—7;)} and the total num-
ber of coefficients becomes N = Ny Nr N, = number of TX
antennas times number of RX antennas times delay spread.
Due to the Doppler shift, the phase of the path complex
amplitude is varying rapidly. The actual path amplitude is
not varying rapidly unless what we consider to be a spec-
ular path is already the superposition of multiple paths
that are not resolvable in delay, Doppler and angles. With



fi € (—fa, fa), the Doppler shift for path i, the (fast fad-
ing) variation is bandlimited and hence the channel should
be perfectly predictible! (not so due to the slow fading: the
slow parameters such as delays and angles will vary even-
tually). When only the fast fading is taken into account
as temporal variation, the matrix spectrum Sy (f) of the
vectorized channel can be doubly singular:

1. if A;(t) = A; and Np finite: spectral support singular-
ity: sum of cisoids!

2. if N, < N: matrix singularity, limited source of ran-
domness (limited diversity)

When the channel spectral support becomes singular, the
channel becomes perfectly predictible. Hence channel pre-
diction should play an important role in channel estima-
tion.

C. Subspace AR Channel Model

After sampling the temporal variation at ¢ = kT, the
vectorized impulse response can be represented as
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where A[k] = [A;(kT)e?™ 1*T ... An (KT) e/ fne kT|T
contains the fast fading part and H=[h, ---hy_].

The important issue here is that the spectral modeling of
the channel coefficient temporal variation should be done
in a transform domain and not on the channel impulse re-
sponse coefficients themselves. Since each such coefficient
can be the result of the contributions of many paths, the
dynamics of the temporal variation of the coefficients are
necessarily of higher order, compared to the variation of
A;(kT) e72m i kT which can be of an order as low as one
(when A;(kT) is constant; the cisoid e/2™ i ¥T" is perfectly
predictible with first-order linear prediction). Also, if the
impulse response coefficients are modeled directly, then
their (spatial and delay-wise) correlation has to be taken
into account: Sy, (f) cannot be modeled accurately as di-
agonal, whereas S AA (f) can.

So the diagonal elements of A[k] are modeled as decor-
related stationary scalar processes. The channel distribu-
tion is typically taken to be complex Gaussian. If the fast
parameters A[k] are not too predictible, then the estima-
tion errors of the slow parameters H should be negligible
(change only with slow fading, hence their estimation error
should be small). From (4) we obtain the spectrum

Shh(f) =H Spa(f) HY. ()
~—
diag.

The components of A[k] can conveniently be modeled as
AR processes, each spanning only a fraction of the Doppler
range (—fq4, f4)- In fact, a subsampled version of the fast
parameters A[k] could be introduced, with the subsampled
rate corresponding to the (maximum) Doppler spread. A
stationary (AR) model can be taken for the subsamples and
the other samples can be obtained by linear interpolation
from the subsamples. This is the case of a BEM with a
single basis function: the interpolation filter response.

D. Separable Correlation Channel Model

The subspace channel model is appropriate when the
channel is fairly specular, with limited diversity so that
the number of paths is not large w.r.t. the total number of
channel coefficients. Now consider the other extreme of rich
diversity, when Np > N, in which case the dynamics of all
paths get mixed up and the spatial-delay correlations be-
tween the channel impulse response elements become sep-
arable [8]. The spectrum of the temporal variation of the
in this case diffuse channel can then be written as

Shh(f) = R; ® Rt ® Rr Sa(f) (6)

where

R,: correlation matrix between delays, typically diagonal
with power delay profile

Rr: TX side spatial correlation matrix

Rp: RX side spatial correlation matrix

Sa(f): scalar common Doppler spectrum of all impulse re-
sponse coefficients.

E. Frequency-Flat MIMO Channel

In this case (4) contains only the impulse response coef-

ficient at k = 0: h = HA, possibly + Agh for the direct
path, |go| = 1. The correlations are captured by H.
Special case: Separable spatial correlation model:
H=RY*GRIN?* = H=RINRY?, A =vec(G).
In the case of continuous transmission, a stationary model
is taken for a subsampled version of the fast parameters,
the bandwidth of which corresponds to the (maximum)
Doppler spread. It can be remarked that deterministic
channel identifiability requires reduced bandwidth channel
evolution in the case of delay spread or multiple inputs.
For instance, if H = I, then the bandwidth reduction fac-
tor has to be at least N times the delay spread expressed
in symbol periods.

IV. MFB ANALYSIS

The channel estimation problem in the case of an AR
model for A[k] boils down to a Kalman filtering /smoothing
problem. The underlying state-space model is time-varying
due to the transmitted symbols and hence no (determin-
istic) regime for the Kalman filter quantities is reached.
However, since the transmitted symbols can be modeled
as stationary sequences, the Kalman filter will reach a sta-
tionary steady-state that can be analyzed in more detail.

The MFB without CSIR can be compared to the MFB
with CSIR; the ratio between the two can be expressed in
terms of a misadjustment, similar to the MSE analysis for
the LMS algorithm. We shall consider in detail the SISO
flat channel case and the MIMO OFDM case.

A. SISO Flat Channel Case

The RX signal can be written as: y[k] = h[k] a[k] + v[k]
with additive white Gaussian noise. Multiplying both sides
with a*[k] yields y[k]a*[k] = h[k]|a[k]|* + v[k]a*[k]. The
relative lowpass nature of h[k] will lowpass filter |a[k]|?,
and hence we can write equivalently y[k]a*[k] = h[k] o2 +



v[k]a*[k].

estimate

This leads to the following first crude channel

R[k] = h[k]+% v[k]a*[k] = h[k]-R[K]. (7)

a

— ylka'[H] =

The known symbols plus Gaussian noise lead to INz[k] being

(f) =
serve that the white symbols a[k] will tend to decorrelate

possibly correlated noise. The noncausal Wiener filter to
~ . 2 g
extract h[k] from h[k] is %,
1 2
=/ #{}g?ﬁdf. We can
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Gaussian with white spectrum S;7 g—; One can ob-

yielding the refined

estimate h[k] with MSE a%
rewrite the RX signal as

y[K] = hlk] a[k] + o[k] = B[K] a[k] + h[K] alk] + o[k]  (8)

where h[k] a[k] is approximately uncorrelated with v[k] or
a[k] for sufficiently low Wiener filter bandwidth. At mod-
erate or high SNR, we can focus on the equivalent increase
in channel noise or misadjustment

M=t 9)
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for which we require M < 1 for the MFB to remain un-
affected due to channel estimation error/absence of CSIR.
We find

o2 Spi(f)
M= /%0251111 + 02

which can also be seen to be the coefficient at time 0 of
the Wiener filter. For a rectangular Doppler spectrum in

[—fd, fd] we ﬁnd

df (10)

<1
<1
0.2
deterministic — ¥
Doppler Bayesian
Doppler

where the first factor corresponds to the exploitation of the
deterministic Doppler information (bandwidth) whereas
the second factor corresponds to the statistical information
(Doppler profile).

B. MIMO OFDM Case

Assume the channel variation within an OFDM symbol
to be negligible ((limiting) case of a single-mode BEM with
inter burst correlation). At tone n in OFDM symbol k we
get

Ynlk] = Hnlk] an[k] + va[k] . (12)
" N N N
NRXI NRXNT NT><1 NR><1

where Saa(f) = 02 In, , Svv(f) = 02 In,- Using a (even-
tually refined) channel estimate, we get
ﬁn[k] an[k] + ﬁn (k] an[k] + v, [K]

yalkl = (13)

which leads us to introduce a misadjustment (either assum-
ing the channel MSE to be tone independent or taking the
average value)

M =

(14)

Without exploiting any correlation between channel co-
efficients at different tones or OFDM symbols, we get
M = Nr > 1! By imposing a deterministic delay spread
limitation of N, samples, we get M = Np ﬁ—; where Np
is the total number of tones (OFDM block size). For the
corresponding vectorized channel impulse response in the
time domain, we obtain

B[k .

= h[K)-h[K], Sgp(f) =02 Iy, o2 = . (15)

h g2 N B
Wiener smoothing of h[k] with Shh(H)(Spn(f) +a% In)!
yields the refined h[k] with resulting MMSE:

1
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B.1 Special Case I: Separable Correlation Model

Let Sy (f) = R-® Rr® Rg S4(f) and introduce eigen-
decompositions R = VAVH. We get E||h|?> =

(16)

3 -1
a%/1tr{(INJra%S;l(f)A,;l®A;1®A;1) }df

Assume now rank deficient correlations:

rectangular Doppler spectrum in [—fq, f4],

A7 = blockdiag{pr I-,.,0n, rp} €tc.

Then the channel power constrains these parameters as:

E|h|]> = / L {Sg(f)} df = prPrPrPaTRTTTr2fa-

The previous expression for E||h||> now becomes

E[h|”

Elfh)2 = — 2L
I+ % bl

Nepp < U%Neff (17)

where the effective number of (i.i.d.) channel coefficients
per OFDM symbol period reduces due to the correlations
from N to

1
N <Nr <Nt <N, 2<f, éE”h”z-i-l
= TR TT T d .
LR —=% LEL®+rrrrr.2fa
deterministic U _

Bayéian
B.2 Special Case II: Pathwise Channel Model

The subspace AR model leads to Spy, (f) = HSp A (f) HY

where Sp A (f) is diagonal and for uniqueness we can im-
pose the constraint diag{H?H} = Iy, .

MMSE becomes

1

= 2
E|h|? = a%/ tr

-2

The resulting

{(tve + 2 55, () o



If H¥H = Iy,, the total MMSE is the sum of the
MMSE for smoothing of Np independent SISO channels,
N5 ~ Np. When H”H # Iy,, this interaction between
paths only improves the estimation accuracy w.r.t. the in-
dependent paths case just mentioned.

V. CONCLUDING REMARKS

In the MFB without CSIR, the channel estimate is based
on smoothing using all (past and future) FA data. The
MFB without CSIR can be approached by iterative joint
channel estimation and data detection.

The only training that is needed in principle is to re-
solve the blind ambiguity due to a possible discrete con-
stellation rotation invariance. In practice, the amount of
training required is such that the iterative joint channel es-
timation/data detection procedure converges (semi-blind
channel estimation as considered in [10] but here with the
blind information based on FA). This amount of training
data should in any case be much smaller than when the
channel estimation is only based on training data [9].

Similar capacity w/o CSIR analysis [1] shows a capac-
ity degradation w.r.t. the case with CSIR due to chan-
nel estimation error and ensuing increased channel noise
with a channel estimate based on past FA data and future
Gaussian blind information [10]. This capacity analysis is
again related to the DFE canonical RX, as in the case with
CSIR. In the case of perfect CSIR the DFE uses as infor-
mation for detection the past perfectly known symbols and
the future received signal only. In the case without CSIR
the DFE uses this same information for channel estimation
also. The MFB with perfect CSIR on the other hand cor-
responds to the non-casual DFE: channel MF as forward
filter and channel-channel MF cascade minus middle tap
as feedback filter. In the case without CSIR, the channel
estimation becomes based on the same information as for
data detection: namely all past and future data, plus the
current symbol itself due to the FA constraint.

For frequency-flat channels, an alternative approach
for dealing with the absence of CSIR uses differential
(de)modulation in which case the channel parameter is
eliminated at the receiver and in fact the channel vari-
ation between two consecutive symbol periods translates
into an additional additive noise. It appears to be gen-
erally believed that in the case of rapid channel variation
a differential approach is preferable since channel estima-
tion errors become significant. However, one can see from
(10) or (11) that regardless of mobile speed the misad-
justment remains smaller than 1, which means an SNR
degradation that is less than the 3dB of a differential ap-
proach. Hence explicit channel estimation based (coher-
ent) approaches outperform differential approaches (when
performed optimally). Lately, more sophisticated multi-
symbol differential approaches have been introduced [12]
to virtually eliminate the 3dB loss. But those approaches
become in fact coherent approaches in disguise (apart from
the differential en/decoding of course).
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