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Abstract— The Multiple Input Multiple Output (MIMO)
channel results from the use of Multiple Transmit and Mul-
tiple Receive antennas, which allows to achieve high spectral
efficiency by spatial multiplexing. The high number of coef-
ficients in the channel response (number of TX antennas by
number of RX antennas by delay spread) allows to achieve
high diversity and to improve the outage capacity, but at the
same time represents a challenge for channel estimation as it
imposes the use of a longer Training Sequence(TS) leading
to a rate loss. In this paper, we augment the TS artificially
by including the blind part (unknown symbols) information
and the non pure training information, this allows to reduce
the TS length needed for channel estimation and hence to
save rate. We use semiblind approaches that exploit both
training and blind information. These techniques have a
complexity not immensely much higher than that of train-
ing based techniques. For the flat channel case, the tech-
nique we present achieves the Cramer-Rao Bound. In the
frequency-selective channel case we use a quadratic semib-
lind criterion that combines a training based least-squares
criterion with a blind criterion based on linear prediction.

I. INTRODUCTION

Consider linear digital modulation over a linear channel
with additive Gaussian noise. Assume that we have Ny,
transmitters and N, receiving channels. If the channel is
assumed to be flat, then the (symbol rate) sampled received
signal at discrete time k can be written as:

Nio

yi(k) = th’jaj(k) + vi(k) (1)

where the a;(k) are the transmitted symbols from source
J, hij is the (overall) channel response from transmitter j
to receiver ¢ and v;(k) is the additive noise at the same
receiver. The discrete-time RX signal can be represented
in vector form as:

Nia
Yi = »_hja;(k) +vi = Hay + v
j=1

y1(k) v (k) h;
Y = y Vi = ) hJ = )
YN, (k) UN,, (k)

H=[h--hy,], ap = [ay(k) -~ an,, (k)]"

Superscripts T, H denote transpose and Hermitian trans-
pose respectively.
The multichannel aspect leads to a signal subspace when

hn,.j

Niz < Npg, since y,, = Hay + vi. The existence of this
signal subspace has led to the development of a wealth of
blind channel estimation techniques over the last decade.
Some of these techniques are relatively simple due to the
modeling of the unknown input symbols as either determin-
istic unknowns (deterministic input case) or uncorrelated
random variables (without exploiting their finite alphabet
nature). The latter (uncorrelated) case is also called the
Gaussian input case because (only) second-order statistics
are exploited. However, when Ny, > N,,, there is no deter-
ministic blind channel information and only limited Gaus-
sian information. Even when Ny, < N,,, most of these
blind techniques are not very robust and leave channel am-
biguities. These ambiguities can range from a simple scalar
ambiguity factor for Single-Input Multiple-Output (SIMO)
channels to a square Ny, X Ny, matrix for Multiple-Input
Multiple-Output (MIMO) channels [1], [2].

On the other hand, all current standardized communica-
tion systems employ some form of known inputs to allow
channel estimation. The channel estimation performance
in those cases can always be improved by a semiblind ap-
proach which exploits both training and blind information.
The training information allows to resolve the blind ambi-
guities and robustifies the channel estimates. The purpose
of this paper is to introduce semiblind techniques of which
the complexity is not immensely much higher than that of
training based techniques.

To use the second-order statistics the input samples are
modeled as i.i.d. white centered Gaussian inputs aj ~
CN(0,021y,,), the independent noise is considered to be
i.i.d. white Gaussian v ~ CN(0,02Iy,,) and SNR =
2
”—g = p. The received signal frame contains two parts:
v
- Training Sequence of Nrg pilot symbol vectors. The
training received signal follows a non-zero mean Gaussian
distribution: yI*/H ~ CN(Hal®, o%1y,,).
- Blind part of Np data symbol vectors. These follow a
zero mean Gaussian distribution: y, /H ~ CN(0,02 Iy, +
o2HHY).
Below we assume the noise power o2 to be known by the
receiver.

II. MAXIMUM LIKELIHOOD CHANNEL ESTIMATOR

The Maximum Likelihood (ML) Channel Estimator, is
the one that maximize the Log Likelihood (LL) of the total



received signal:

LL(H) = lnp(Y/H)
= constant
Nrs
— 027" Y (v - Ha{%)" (y{* — Ha[")

k=1
Np

- > vy, + o2 HHY) 'y,
k=1

— Nglndet(o2Iy,, + 02 HHY)

= constant

+ =02 (YT —HATSH (YT — HATS)}

v

X LLre(H)
+ —Nptr{R*(H)R} — NgIndet R(H)

vl

LL,_:(H)

Ngp
where Y79 = [yIS o Yies, R = §= Zykka and
k=1
R(H) = o2ly,, + 02HH?. LL;s(H) and LLg(H) are
the Log Likelihood of the blind and the training parts.
The ML channel estimate is then:

Hyp = arg mI_aILx LL(H)

A. Information Matriz Issues

Let the Singular Value Decomposition (SVD) of the
channel be: H = UDQ = WQ where U(resp. Q) is a
Nyp X min{N,, Niz} (resp. min{Ny,, Niz } X Ni,) unitary
matrix, i.e UPU =1 (resp. QQY =1). Let W = W(a)
and Q = Q(B) be two bijective real parameterizations:
H = H(a, ). The blind part contains no information on
Q. The Fischer information matrix is then:

_ s (omp(Y/HN\T
JH) = EY55<78}1 )

Jp(H) + Jrs(H)
= M, Jg(a) ML + Jrs(H)

da

= (M@Q") ® In..) g

w = [R(vec(W))T S(vec(W))T]T and
) .

S(M) for any matrix M. Ey

denotes expectation w.r.t. Y. Jp(H) and Jrg(H) are the

Fischer information matrices of the blind and the training

parts. Jrs(H) can be evaluated easily:

. H
Jrs(H) = M (ATAT) @1y,

The MSE error of any unbiased channel estimate satisfies:
E|H|> > Efg CRB = trEgJ ' (H),

where CRB = trJ~!(H) is the Cramer-Rao Bound on the
estimate of the channel for a given channel realization. We
use Epg to average over a possible statistical distribution
of the channel.

For the design of the TS, the following theorem gives a use-
ful result:

Theorem 1 : For statistical channel H = WQ with Q
uniformly distributed over the Grassmann manifold, the
minimum of Egy CRB is achieved by a white training se-

H
quence: ATSATSY « 1.
Proof :
H
Let UTSDT5UT" be the eigen decomposition of
ATSATSY then
b

EHCRB = Eg tr [5D"° @ Ly, +
(MUTS™) @ Ty, 1My) Jg (@) (M(UTS™) @ Ty, | M) )L

8aT

- H
MUT") @ . m = M((QU™)) @ Ln,.] 5%
Given that UT® is unitary, QUTS has the same uniform
distribution as Q. On the other hand, Jg(a) is indepen-

dent of Q. Hence we can then conclude that the CRB is
independent of UT® and that:

~1
2

Egy CRB = Egytr <M1 Jp(a) MT + SDTS o1, NM) .
v

The second step is to show that Eyy CRB = f (D75) is a

convex function over the connex set DT > 0. Let DT =

diag(dl®,...,d}? ) and C the Hessian of f(D) (C;;

2
%dej), then it can be shown that for any real positive

vector x = [z1 ---zp,,]T > 0 (let X = diag(z1,...,znN,,)):
xI'Cx =

% Egtr (J2(H)(X Ly, (H)(X @ Ly,.)) >0

v

which follows from the fact that J(H) = M; Jg(a) M{ +

%DTS ® I, N, is symmetric positive definite. This shows
v

the convexity of Egy CRB = f (DT®) over the connex set
DTS > 0. Then Egy CRB has a global minimum under a

power constraint expressed on the trace of DT°. This leads
us to express the Lagrangian of this optimization problem:

L(DTSJ )‘) = f(DTS) + )‘ (tr(DTS) - Pconstrm'nt)

i = —(f—g Egptr (J 2(H) (L ® Lan,.)) + A =0

where I; is the matrix with 1 at the i** diagonal ele-
ment and zeros elsewhere. The solution to these equations
corresponds to DT being a multiple of identity. Hence
ATS ATST o< T achieves the global minimum of Eyy CRB.
This proves the theorem. O

-1
Asymptotic Behavior. If (ATSATSH) exists (per-

sistently exciting training sequence), and Ng >> p Nrg,
the Cramer-Rao Bound verifies:

1
Eyy CRB=tr E JoLH) P, O(—
H r H{TS( ) J;§<H>M1}+ (NB)



where O(+= ~; ) denotes a quantity of the order of 5 The
CRB is dominated by the part of the channel result-
ing from the projection on the orthogonal complement of

1
Jrd (H)M;. This corresponds to the channel part that
cannot be identified blindly, and hence gets identified only
by the training.

Semiblind Method. The results above motivate us to
propose the following method:
1- Estimate U and D from the Blind Part:

UD=W= argn‘l%l_x LLp(W)
2- Estimate Q from the Training Sequence Part:
Q= arngax LL7s(Q/W = W)

3- Fom H=W Q
This method is further elaborated in the following section.

ITI. GaussiaN SEMI-BLIND (GSB) APPROACH

The approach just described belongs to the Gaussian
category because the blind information it exploits involves
symbol second-order statistics. It is also semi-blind since
blind and training based parts get combined.

Solution Blind Part. We write the eigen decompositions
of the true and the estimated covariance matrices of the sig-

H
nal as: R = U (02Lpin(n,. N,.) +02D?) U + 02U U,
R = UeSeUf where the subscript e denotes sample es-
timates, and UL provides an orthonormal basis for the
orthogonal complement of U.

The Blind LL Part (up to a constant) is then:

LLp(H) = —Nptr{R'R} — NpIndet(c2I + 02D?) .

Theorem 2 : The solution of the Blind Part is:

« U corresponds to the min{ N¢z, Ny, } dominant eigenvec-
tors in U,

. ]5 matches the min{ Ny,

L (1S.—o2n,.14)""
. W UD
where |.|, takes the positive semidefinite part of its Her-
mitian argument.
Proof:
We first derive the solution for the unitary factor and
then for the diagonal factor. We rewrite the para-
metric covariance matrix as: R = URSRUg , where
Sr = diag(sp1,-..,5R,N,,) in which the sgp; are orga-
nized in increasing order (introduce also similarly S, =
diag(Se,is---,Se,N..))- We note that by construction for
Nig < Npg:

N} dominant eigenvalues of

7]- SiSNTm_Ntw

2 272 . :
S R,it+ Ny —min{Nea,Nro} = Oy +05d;" , 1 <i < min{ Ny, Ny }

— 2
SR,,' =0,

Let O = Ug U, , Ois a unitary Ny, x Ni, matrix. Let also
Hi = (URHRUR)” = (OSeOH)ii, 1= 1, .. -;Nrw- Then (up
to a constant):

LLp(H) = -—Ngtr{S,'0S.0"} — Nplndet(Sg)

— —NBE (pz/sR,+ln(3Rz))'

It can be shown [3] that (ui)i<i<n,, majorizes
(Se,i)1<i<Nres> 1€ Yot Se = Yooy pi and Yo sei <
Zle wi , 1 <k < N,;. Then the following result is proven

in [4]:

N,o Nyo
Doimt WifSRi > DT SejifSRyi
or equivently

—tr{0S.078'} < —tr{S.S;'}.

This shows that LLp(H) is maximized for O = Iy, _,
ie. Ugr = U, or equivalently that U corre-
sponds to the min{Ny,, N,,} dominant -eigenvectors
in U,. Let us now evaluate the optimal D =
diag(dy, - - -, dmin{N,e,Na})- LLgp(H) is separable in
the a monotonically increasing function for
0 ‘712;J+/ 0oy 1 <
i N;;}, and is monotonically decreasing

for d; > LSR,it Nvw—min{Nea,Noo} = O+ /00, 1 <
i < min{Ny;, N.;}. LLp(H) is hence maximized for
di = [SR,itNye—min{Nea,Noa} — O]+ /0a; 1 < i <
N, }, which are the dominant min{Ny,, N, } val-

min{Ny,,
ues of = (S, — af,INmJJr)lﬂ. This ends the proof. O

di, is
di < \/ [SR,i+ Nyp—min{Nya, Npa} —
min{ N,

<
<

Solution Training Part. Given the W estimate, the TS
LL part (up to a constant) becomes :

oy LLrs(Q/W = W)
— —tI‘{(YTS _ WQATS)H (YTS _ WQATS)

— 2R tr{ATSYTS'WQ) — tr(W WQATATS

Q")

Due to the quadratic constraint (QQ = I), the solution
is non trivial in general. However, for optimal training

ATS ATSH _ BTST, BTS > (), WHWQATSATSHQH _
pTs WHW, and the TS LL part is then (up to a constant):

2)

ATS ATSH o I,

LLrs(Q/W = 20,2 Rtr{ATSYTS"WQ} .

Theorem 3 : For white training sequence,
the solution for the Training Part is:

Q=vs?,

where S and V denote here the unitary factors of the Sin-

gular Value Decomposition of AT9YT9 W =8s Vv~
Proof: The maximization of (2) corresponds to a subspace
rotation problem and is solved in [2], [5].

IV. DETERMINISTIC SEMI-BLIND (DSB) APPROACH

In this section we don’t exploit known correlations of
the inputs, leading to only the exploitation of the sub-
space. The use of this approach is restricted to the case
when a noise subspace of the spatial covariance matrix
exists, i.e. Npp > Ni,. The blind information expresses
then the orthogonality of the channel to the noise subspace:



UubfH = 0. Using a weighted least squares approach we
combine the blind and training parts in a quadratic crite-
rion:

min (o3 %(|Y"* ~HAT|[} + Np|[O" "H"|[})

where ||[M]||2. = tr M"M is the Frobenius norm of M.
Further details about this approach can be found in [2].

V. MIMO FREQUENCY SELECTIVE CHANNEL

For a channel length of L symbol periods, the sampled
received signal can be written as follows:

L-1

Y = ZHlak—l + v .
=0

In this case the TS and Blind parts interfere, hence the
training and blind LL parts are no longer separable. To
continue to express the LL separately, we assume the use
of a cyclic prefix and neglect the effect of the interference
with the training signal when evaluating the blind LL.
Asymptotically in the length of the blind part Np and for
Np >> maxz(Ntg, L) this is correct, and leads (up to a
constant) to:

LLp(H)
Np-—1

=— Y Iy () (0N, + o2 H(fi) B (1)) "y (fx)
k=0

+Indet(o21y,, + o2 H(fr) HH(fk))]
Np—1

== Y[R (F)y(fr)y™ (fr) + Indet R (fi)]

Np—1

=— Y[R (fo)R(fr)) + Indet R™' ()]
k=0

where y(fx), H(fx) is the DFT of the sequence y,;, H;
at the normalized frequency f, = NLB, and R(f) =
y(f&)y (fr) is a highly noisy estimate of R(fx).

The maximization of LLg(H) leads to covariance match-
ing. The problem is then how to do covariance matching of
R(fx) with acceptable complexity. First, to take advantage
of the a priori knowledge of the finite channel length (only
R(k), k=—-L+1,-L+2,...,L —2,L — 1 are nonzero,
the R(k) sequence is the inverse DFT of R(f%)), we do
covariance matching in the time domain, this should allow
to reduce the complexity.

Second, to be able to do the covariance matching, we
have to use an appropriate parameterization of the channel

to characterize the channel from the correlation sequence
K-1

R(k). P(z) =1+ Z P;z ¢ is a predictor for the chan-

nel H(z) if P (2)H(z) = Hy. For N,; > Ny, the channel
predictor generically exists and is FIR for N,, > N, this
constitutes an appropriate parameterization of the channel:

H(z) =P '(:)UDQ =P ' (2)WQ.

For Npp > Nip and K > [

be evaluated from R(k), k = 0,...,K — 1, this fixes the
channel up to a unitary matrix: H(z) = P;(l(z)WQ
(R(z) — 021 =P (z) WWEP T (2)).

However unlike in the flat channel case, there is no trivial
method to estimate Q by ML. If we reduce the exploitation
of P(z)H(z) = Hy or P(q) Hy, = Hq 60 to W Hy =0
and P(q) Hy = 0, k£ > 0; and combining it with the train-
ing part in a weighted least squares approach, then the
result is a simple quadratic criterion. Further results on
this approach can be found in [2].

VI. SIMULATIONS

-‘ the predictor can

Fig. 1 to 6 consider the flat channel case with a blind
part of length N = 400, the channel is 4 x 2 (N, X Ni;)
for Fig. 1 and 2, 4 x 4 for Fig. 3 and 4, and 2 x 4 for Fig. 5
and 6. We compare the classical TS approach with the
GSB/DSB approaches and with the Cramer-Rao Bound
(CRB) in terms of normalized mean square estimation er-
ror (NMSE). In Fig. 1, 3 and 5 the performances are given
for different TS lengths with a fixed SNR p = 10db, when
for Fig. 2, 4 and 6 the performances are given for differ-
ent SNR with Nyg = 4. The results show that wherever
the condition Ng >> p Nrg is fulfilled, the proposed GSB
approach achieves the CRB. The GSB performances show
a linear behavior w.r.t the SNR, and outperform the TS
approach by a gap corresponding approximatively to the
relative reduction of the number of real parameters to be
estimated; for 4 x 2 : Ini8 = 6db, 4 x 4 : In32 = 3db

4

and 2 x 4: In 18 ~ 1db. The GSB saturates for very high

SNR due to the lack of consistency (in SNR) of the channel
part estimated blindly. This doesn’t appear in the case of
the DSB in which all information exploited is consistent in
SNR. However, the DSB is suboptimal when N,, > N,
(4 x 2) and its performance reduces to that of the TS ap-
proach for N,, < N,.
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