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ABSTRACT

The research we report on in this paper is motivated by the
drive towards antenna array miniaturization: going from an array
of identical antennas that get spread out in space towards an ar-
ray of colocalized antennas with differing responses. We address
the problem of designing the colocated antenna array response for
two applications: diversity reception using maximum ratio com-
bining and MIMO communication capacity. The design criteria
are derived under specific models regarding the distribution of the
parameters of the frequency flat channel. We are particularly in-
terested in evaluating the performance of two opposite extremes in
terms of design: very selective beamspace type of operation versus
spatially allpass antennas. We also show that the pathwise channel
model converges for large number of paths to the stochastic chan-
nel model with separable correlation between TX and RX sides.

1. INTRODUCTION

In future wireless communications, antenna arrays will play a cen-
tral role. In general, the main motivation to use multiple-element
arrays at the receiver and/or at the transmitter is the added spatial
dimension that can be used to enhance the overall network perfor-
mance. Roughly speaking the benefit obtained from the multiple
antennas grows as a function of the number of antenna elements.

The physical size of an array limits the number of the antenna
elements that can be used, especially at the mobile terminal side.
For example, it is a well known fact that to fully exploit the added
spatial dimension with an array that consists of identical elements,
the elements should have half-wavelength spacing.

Recently there have been studies showing that colocalized an-
tenna arrays consisting of only one physical antenna element are
useful in obtaining spatial diversity. An example of such a colocal-
ized antenna is a biconical horn antenna where the different array
“elements” are obtained by exciting different modes of the antenna
[1, 2]. The benefit obtained by using colocated antenna arrays is
the reduced size of the overall antenna. Spatial diversity means that
a given antenna has a response that varies with the position of the
antenna in space. Spatial diversity at a small spatial scale is in fact
due to angular diversity, which means that a given point in space
multiple wavefronts arrive from different angles. A given antenna
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response will combine these wavefronts into a superposition that
varies with position. At a larger spatial scale, other sources of spa-
tial diversity arise to variations in the wavefront scenario. Hence,
small arrays of identical antennas pick up mostly angular diver-
sity. This diversity can equally well be picked up by colocated
antennas with differing angular responses, leading to different su-
perpositions of the same set of wavefronts.

In this paper we study the design of the colocated antenna ar-
ray response for two applications: diversity reception using max-
imum ratio combining and MIMO communication capacity. We
take full freedom to design the arrays’ steering vector as a func-
tion of the angle of an incoming/departing signal. This is the major
difference to the previously published antenna array design results,
that have mainly been focusing on designing placements of (iden-
tical) array elements in order to enhance DOA estimation perfor-
mance. See, for example, [3, 4, 5] and references therein.

We obtain analytical results showing that in most of the cases
the array elements should be uncorrelated and have equal variances
(after averaging over angle distributions also). We show that this
kind of behavior is possible to obtain by two extremes in design,
spatially allpass elements where the phase response depends on the
angle distribution, or very selective totally sectorized antennas.

2. DIVERSITY RECEPTION

2.1. Array design

We first consider antenna array design for diversity reception using
MRC combining. Assume that a single narrowband signal under-
goes multipath propagation and arrives to anN element antenna
array fromL directionsθ1, θ2, . . . , θL. The time delays associated
to the multipaths are assumed to be much smaller than the inverse
bandwidth of the signal, so there is no delay spread. We consider
the baseband equivalent signal model

x(t) = A(θ)cs(t) + v(t),

wherex(t) is anN × 1 received signal vector,s(t) is the trans-
mitted signal,θ = [θ1, θ2, . . . , θL]T ,

A(θ) = [a(θ1), a(θ2), . . . , a(θL)]

is anN × L matrix ofN × 1 steering vectorsa(θ) andv(t) is an
N × 1 noise vector. For notational convenience we simply write
A instead ofA(θ) when there is no possibility of confusion. The
vectorc = [c1, . . . , cL]T contains the random multipath complex



amplitudes, which are assumed to be of zero mean, circular com-
plex Gaussian with different variances, and mutually independent,
i.e. ci ∼ CN (0, σ2

i ). We also assume that the DOAsθi are ran-
dom, i.i.d., and independent of the fading coefficients. The overall
channel from the transmitter to the array elements is given by a
vectorh = A(θ)c.

After maximum ratio combining, the channel part becomes

ξ = ||h||2,

where|| · || denotes the Euclidean vector norm.
From a diversity point of view we would likeξ to have a high

average value and vary as little as possible around the average
value. A good way to describe this behavior is via the normalized
variance

σ2
ξ

(E{ξ})2 =
E{|ξ|2}
(E{ξ})2 − 1, (1)

whereσ2
ξ denotes the variance ofξ andE denotes the expecta-

tion operator. The variance and the expectation are calculated with
respect to all random variables, i.e. with respect to the complex
amplitudes and the angles. Our goal is to design a steering vector
a(θ) that minimizes the above characteristic of variation.

The properties that an optimal steering vector should fulfill are
given by the following theorem.

Theorem 1 A steering vectora(θ) minimizes the criterion (1) if
and only if the following conditions are fulfilled.

(i)
Eθ{ai(θ)ak(θ)∗} = 0, i 6= k (2)

(ii)
||a(θ)||2 = c > 0 w.p.1 (3)

(iii)
Eθ|ai(θ)|2 =

c

N
∀i (4)

Proof: See the appendix.
To summarize, the elements of an optimal array should be

uncorrelated, the array should have constant response to all the
directions where the density function of the DOAs is positive,
and the array elements should have equal variances. Furthermore,
sinceE(ξ) =

∑L
i=1 σ2

i E{||a(θ)||2} (see the appendix),E(ξ)
gets maximized by maximizingc in (3).

2.2. Solution Examples

How can we then choose a steering vector that satisfies the con-
straints (2) – (4). In what follows we give two different type of
solutions: array of allpass elements and array of completely sec-
torized elements. We assume that||a(θ)|| = 1 ∀θ.

2.2.1. Arrays of spatial allpass elements

If the modulus of the elements of the steering vector does not de-
pend onθ, we know that generally

ai(θ) =
1√
N

ejfi(θ),

wherefi(θ) is some function ofθ.
One solution satisfying (2) is, for example,

ai(θ) =
1√
N

ej2π(α−i)Fθ(θ),

whereFθ is the cumulative distribution function of the DOAs and
α ∈ R. Note that in this case the random variableFθ(θ) is uni-
formly distributed on the interval[0, 1) and hence fori 6= k

Eθ{ai(θ)a
∗
k(θ)} =

1

N

∫ 1

0

ej2π(k−i)udu = 0.

A more general solution is given by

ai(θ) =
1√
N

ej(2π(α±i)rFθ(θ)+φi), (5)

whereα ∈ R, r is a positive integer andφi is a constant phase for
elementi.

It is interesting to note that if the p.d.f. of the angles isfθ(θ) =
1
2

cos(θ)I[−π/2,π/2](θ), the c.d.f. is1
2
(sin(θ) + 1) and by letting

α = 1, r = 1 φi = −iπ and using the “plus sign” in (5) we get

ai(θ) =
1√
N

e−j2π(i−1) 1
2 sin(θ)

In other words, if the distribution of the angles is the cosine dis-
tribution over the interval[−π/2, π/2], the resulting array max-
imizing the diversity is a ULA withλ/2 spacing (λ denotes the
wavelength of the signal). The parameterr in this case describes
the interelement spacing of the ULA. In general, the array in case
of cosine angle distribution could be a ULA with(rλ)/2 spacing.

2.2.2. Arrays of spatially sectorized elements

If we allow the modulus of the elements of the steering vector
to depend onθ, a possible solution is to use completely spatially
sectorized elements. Letf(θ) be the density function of the angles
and letΘ = {θ : f(θ) > 0}. DefineΘ1, . . . , ΘN such that

N⋃
i=1

Θi = Θ

and
Θi ∩Θj = ∅, i 6= j

Finally let
ai(θ) = IΘi(θ), i = 1, . . . , N. (6)

Here

IΘi(θ) =

{
1 θ ∈ Θi

0 θ 6= Θi

If Θi:s are chosen such thatP [θ ∈ Θi] = 1
N

, the conditions are
fulfilled. An array corresponding to the steering vector defined in
(6) is consist from completely sectorized elements. Note that the
sectorization implies automatically the condition (2). The condi-
tion (3) implies that an particular element must have a constant
modulus in the sector. Finally condition (4) implies that the size of
the element’s sector must be such thatP [θ ∈ Θi] = 1

N

3. MIMO COMMUNICATION CAPACITY

3.1. Pathwise channel model versus separable spatial correla-
tion channel model

We now turn our attention to design steering vectors maximizing
the ergodic capacity of MIMO (Multi Input Multi Output) channel
with N receive andM transmit antennas.



The maximization is done by assuming a specific flat fading
channel model, where the elements of the channel matrix are cor-
related and the correlation is separable between the transmit and
receive array [6, 7, 8]. We call this channel model separable spatial
correlation channel model. To make the discussion more general,
we first show that this channel model is obtained asymptotically
from a more general pathwise channel model [9].

Let y be the receivedN × 1 signal vector. In this part we
consider the following single user linear channel model

y = Hx + v, (7)

wherex is theM × 1 transmitted signal vector andv is theN × 1
noise vector which is assumed to be complex circular Gaussian
with covariance matrixσ2

vI.
In the pathwise channel model theN × M MIMO channel

matrix is given by

H = s−1
L

L∑
l=1

cla(θl)b
T (φl), (8)

whereL is the number of multipaths andcl, i = 1, . . . , L denote
the complex multipath amplitudes. Vectora(θ) is the steering vec-
tor of the receive array andθ1, . . . , θL are the DOAs of the mul-
tipath components. Similarlyb(φ) is theM × 1 steering vector
of the transmit antenna array andφ1, . . . , φL denote the angle of
departure of the multipath components. For further discussion of
the above channel model see, for example, [9]. We assume that the
cl ∼ CN (0, σ2

l ). The normalizing constantsL in the model is the
square root of the sum of the path variances, i.e.s2

L =
∑L

l=1 σ2
l .

The anglesθi ∼ θ are assumed to be i.i.d. and anglesφi ∼ φ are
assumed to be i.i.d. Finally all random variables are assumed to be
mutually independent.

The following theorem states the connection between the path-
wise and separable spatial channel models.

Theorem 2 LetH be as in (8). WriteΣa = E{a(θ)aH(θ)} and
Σb = E{b(φ)bH(φ)}. Assume that for a givenε > 0 and L
sufficiently large

σk < εsL, k = 1, . . . , L.

Then, asL → ∞, H converges in distribution to that of the ran-
dom matrix

Σ1/2
a WΣ

T/2
b , (9)

whereW is anN × M random matrix with i.i.d. elements that
are complex circular Gaussian with mean0 and variance1.

The channel matrix in (9) is the channel matrix that is used in the
separable spatial correlation channel model.

3.2. Antenna array design

In what follows we assume that the channel matrix is distributed as
given in (9). Because of Theorem 2, the obtained results are also
approximately valid for the channel model given in (8), when the
number of multipaths is large. The analysis is performed under the
constraintsE{||a(θ)||2} = 1 andE{||b(φ)||2} = 1.

Assume that the realization of the channelH is known at the
receiver, but not at the transmitter. Assume also that the input vec-
tor x is complex circularly symmetric Gaussian with covariance

matrix Q. In this case the mutual information between the chan-
nel input and output is given by

I(Q) = E{log det

[
I +

1

σ2
v

HQHH

]
},

and the ergodic capacity under the power constraintE{xHx} ≤ 1
is [10]

C = max
Q:tr{Q}≤1

I(Q).

Our goal is to design array steering vectorsa(θ) andb(φ) such
that the ergodic capacity is maximized.

Under the channel model given in (9), the mutual information
is

I(Q) = E{log det(I + ρΣ1/2
a WΣ

T/2
b QΣ

∗/2
b W HΣH/2

a },
(10)

whereρ = 1
σ2

v
.

Write Σa = UaΛaUH
a andΣb = U bΛbU

H
b according to

the standard eigenvalue decomposition. If the matrix square roots
are considered to be hermitian symmetric,Σ

1/2
a = UaΛ

1/2
a UH

a

andΣ
1/2
b = U bΛ

1/2
b UH

b . It is straightforward to show that

I(Q) = E{log det(I + ρΛ1/2
a WΛ

1/2
b Q′Λ

1/2
b W HΛ1/2

a )},

whereQ′ = UT
b QU∗

b .

3.2.1. Receiver side

LetΓ be the hermitian symmetric square root matrix ofΛ
1/2
b Q′Λ

1/2
b .

Note that

I(Q) = E log det(I + ρΓW HΛaWΓ)}. (11)

Since tr{Λa} = 1 and for anyN × N unitary matrixU the dis-
tribution ofΓW HU is the same as the distribution ofΓW H , the
results presented in [10] now imply that foranyΓ, the matrixΛa

that maximizes the expression (11) is given by

Λa =
1

N
I.

Hence the optimal array in the receive side should have uncorre-
lated elements with equal variances.

3.2.2. Transmission side

The remaining task is to maximize

C′ = max
Q:tr{Q}≤1

I ′(Q),

where

I ′(Q) = E{log det(I + ρ/NWΛ
1/2
b Q′Λ

1/2
b W H)},

with respect toΣb. Unfortunately, giving a general solution is
not possible, because the optimal solution depends on the value of
ρ/N . To see this, letρ/N << 1 (low SNR). In this case we may
use a first order approximation

I ′(Q) ≈ Etr{ρ/NWΛ
1/2
b Q′Λ

1/2
b W H}

= ρ
M

N
tr{ΛbQ

′}.



For anyΛb, the optimal matrixQ′ is given by

Q′ = diag{0, . . . , 0, 1, . . . , 0},

where the only nonzero diagonal element is in the position cor-
responding to the largest diagonal element ofΛb (if there is no
unique maximum, we may choose a position of any of the ”max-
imum” elements). Hence in this caseC′ ≈ ρM/Nλi, whereλi

is the maximum eigenvalue ofΛb. Because trΛb = 1, the opti-
mal covariance matrix should be of the formΣb = bbH , where
||b||2 = 1.

On the other hand, whenN ≥ M andρ/N >> 1 (high SNR),
we may use an approximation

I ′(Q) ≈ E log det{ρ/NWΛ
1/2
b Q′Λ

1/2
b W H}

= log det{Λb}+ log det{Q}+ constant

Therefore, in this case the optimal matrix is given byΣb = 1
M

I.
WhenN < M andρ/N >> 1, the maximization of

E{det(WΛ
1/2
b Q′Λ

1/2
b W H)},

leads toΛb of the form

1

N

[
IN 0N×(M−N)

0(M−N)×N 0(M−N)×(M−N)

]
.

In this case the eigenvectors ofΣb are arbitrary.

3.3. Solution examples

Since for the optimal receive array the array covariance matrix
should be a constant times the identity matrix, the two examples
given in the case of diversity reception fulfill the design criterion.
For the receive array for high SNR case these two examples are
also (approximately) optimal, whenN ≥ M . For low SNR case
the covariance matrix of an optimal array should have rank one.
Hence for optimal transmitter array the steering vector should be
constant as a function of the angle, or that the transmit array should
have only one antenna. The latter case is of course more realizable.

4. CONCLUSION

In the paper we showed that for most of the cases, an optimal ar-
ray should have uncorrelated elements and the elements should
have equal variances. The examples then show that this behavior
may be obtained, for example, by two extremes: spatially allpass
elements or completely sectorized elements. In case of spatially
allpass elements the elements’ phase responses depend on the dis-
tribution of the angles whereas for sectorized antennas the widths
of the sectors depend on the angle distribution.

In practice it is hard to state which solution is more robust to
deviations from the assumed angle distribution. In the sectorized
solution the elements are always uncorrelated but the requirement
of equal variances may be easily violated. On the other hand, in
the spatial allpass solution the equal variance assumption is always
satisfied, but a small deviation from the assumed angle distribution
may cause the elements to be correlated.

In theory, robustifying (hardly realizable) solutions exist. For
example, a robustifying sectorized solution consists of choosing
the array to have spatial comb filter like sectors, i.e. one element
has many sectors of small width and the sectors of the differing

elements are beside each other. In this case the equal variance
condition holds approximately, if the distribution of the angles is
smooth enough inside the sectors.

Further work might involve consideration of outage capacity,
and channel knowledge at the transmitter.

A. PROOFS OF THE RESULTS

A.1. Proof of theorem 1

In what follows we use the notationEc (Eθ) to denote expecta-
tion with respect to the complex amplitudes (DOAs). We start by
calculating the expected value ofξ. It is given by

E{ξ} = EθEc{cHAHAc} = Eθtr{AHAEc{ccH}}

=

L∑
i=1

σ2
i Eθi ||a(θi)||2

= E||a(θ)||2
L∑

i=1

σ2
i ,

where the last equality follows from the i.i.d. assumption of the
angles.

We now proceed by calculating the expectationE{|ξ|2}. Us-
ing the result of the expectation of the product of Gaussian random
vectors [11] we get

Eθ{Ec|ξ|2} = EθEc{cHAHAccHAHAc}

=Eθ

{
Ec{cHAHAc}Ec{cHAHAc}

}
+Eθ{tr{AHAE{ccH}AHAE{ccH}}}

=Eθ

(
tr{AHAΣc}

)2

+ Eθtr
{

AHAΣcAHAΣc

}
,

whereΣc = E{ccH}. Now

Eθ

(
tr{AHAΣb}

)2

= E{

(
L∑

i=1

σ2
i ||a(θi)||2

)2

}

= (

L∑
i=1

σ4
i )E{||a(θ)||4}+ (

∑
i6=j

σ2
i σ2

j )
[
E{||a(θ)||2}

]2
,

and

Eθtr
{

AHAΣcAHAΣc

}
= Eθ||DAHAD||2F ,

where || · ||F denotes the Frobenius norm andD is the matrix
square root ofΣc: D = diag(σ1, σ2, . . . , σL). By noting that

||DAHAD||2F =

L∑
i=1

L∑
j=1

|σiσja
H(θi)a(θj)|2

we get

Eθ||DAHAD||2F =

L∑
i=1

σ4
i E||a(θi)||4

+
∑
i6=j

σ2
i σ2

j E{|aH(θi)a(θj)|2}

=

L∑
i=1

σ4
i E||a(θ)||4 +

∑
i6=j

σ2
i σ2

j ||Σa||2F



where

||Σa||2F = ||E{a(θ)aH(θ)}||2F

=

N∑
i=1

(E|ai(θ)|2)2 +
∑
i6=j

|E{ai(θ)a
∗
j (θ)}|2

The criterion (1) may hence be written as

σ2
ξ

(E{ξ})2 =
(2
∑L

i=1 σ4
i )E{||a(θ)||4}(

E||a(θ)||2
∑L

i=1 σ2
i

)2 +

∑
i

(
E{|ai(θ)|2}

)2
(E||a(θ)||2)2

+

∑
i6=j |E{ai(θ)a

∗
j (θ)}|2

(E||a(θ)||2)2 +

∑
i6=j σ2

i σ2
j

(
∑

i σ2
i )2

− 1

By using Jensen’s inequality we get that

E||a(θ)||4

(E||a(θ)||2)2 ≥ 1.

The equality is achieved if and only if||a(θ)||2 = E||a(θ)||2 with
probability one. Similarly Jensen’s inequality gives that∑N

i=1(E|ai(θ)|2)2

[E{||a(θ)||2}]2
≥ 1

N

and the equality is achieved if and only ifE|ai(θ)|2 = E{||a(θ)||2
N

∀i. Clearly ∑
i6=j

|E{ai(θ)a
∗
j (θ)}|2 ≥ 0.

Thus the theorem is proved.

A.2. Proof of theorem 2

Definehl = clb(φl)⊗a(θl). Note that vec(H) = s−1
L

∑L
l=1 hl,

E{hlh
T
l } = 0NM×NM ,

E{hlh
H
l } = E{|cl|2(bl ⊗ al)(b

H
l ⊗ aH

l )}

= σ2
l E{(blb

H
l )⊗ (ala

H
l )}

= σ2
l Σb ⊗Σa

= Σl.

Write h̃ = [<{h}T={h}T ]T . Note that

Σ̃l = E{h̃lh̃l
T }

=
σ2

l

2

[
<{Σb ⊗Σa} −={Σb ⊗Σa}
={Σb ⊗Σa} <{Σb ⊗Σa}

]
=

σ2
l

2
˜Σb ⊗Σa.

Let q be any fixed2MN -vector. Then under the condition on
the path variances stated in the theorem, the central limit theorem
states that s−1

L

∑L
l=1 qT h̃lq converges in distribution to

N(0, 1
2
qT ˜Σb ⊗Σaq) distribution (note that the caseqT ˜Σb ⊗Σaq =

0 corresponds to degenerate Gaussian distribution). Therefore we
may state that asymptotically

s−1
L

L∑
l=1

h̃l ∼
1√
2
( ˜Σb ⊗Σa)1/2w̃

where the elements of the2NM × 1 random vector̃w are i.i.d.
Gaussian with mean0 and variance1. Because of the structure of
the matrix ˜Σb ⊗Σa, asymptotically

s−1
L

L∑
l=1

hl ∼ (Σ
1/2
b ⊗Σ1/2

a )w,

where the elements of theMN × 1 random vectorw are i.i.d.
complex circular Gaussian with mean0 and variance1. The result
follows because

devec{(Σ1/2
b ⊗Σ1/2

a )w} = Σ1/2
a devec{w}ΣT/2

b .
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