
Institut Eurécom
Department of Corporate Communications

2229, Route des Cretes
B.P. 193

06904 Sophia-Antipolis FRANCE

Research Report RR-03-095
How to address secure multicast with a customer

perspective?
November 2003

Melek Önen , Refik Molva

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email :
�
onen,molva � @eurecom.fr

1Institut Eurécom’s research is partially supported by its industrial members : Bouygues Télécom,
Fondation d’entreprise Groupe Cegetel, Fondation Hasler, France Télécom, Hitachi, ST Microelec-
tronics, Swisscom, Texas Instruments, Thales

1

Abstract

Even though multicast rekeying is one of the most visited areas in network
security, solutions still are severely lacking with respect to reliability and real cus-
tomer expectations. Since any rekeying operation causes the update of all mem-
bers’ keying material, long-lived members are strongly affected by frequent mem-
bership changes.

In this paper, we suggest a new approach that takes into account different re-
cipient categories based on their “loyalty” and that treats each category differently
by offering better service to more loyal recipients. In our first solution, we propose
to restructure the Logical Key Hierarchy (LKH) scheme by separately regrouping
members based on their membership duration aiming at preserving members with
long duration membership from the impact of rekeying operations caused by ar-
rivals or departures of short-lived members. We then propose an extensive method
for computing system parameters like rekeying intervals based on the customer
satisfaction criteria.

2

1 Introduction

Multicast rekeying is one of the most visited areas in network security. Yet the
existing solutions still are severely lacking with respect to reliability and real-life
customer expectations. In this paper, we suggest a new approach that takes into
account different recipient categories based on the “loyalty” concept and that treats
each category differently by offering better service to more loyal recipients. In our
first solution as presented here we take a simple definition of loyalty based on the
membership duration with respect to the multicast group. Our solution then aims
at preserving loyal members with long-duration membership from the impact of
rekeying operations caused by less loyal members whose membership is shorter
by definition. A typical metaphor for this goal is given in real life in the case
of a meeting in a room : the goal of organizers is to preserve the participants of
a meeting from frequent openings of the door by other people in search of their
meeting door.

Most of existing multicast rekeying solutions require reliable delivery of new
keys to members for group rekeying. In particular, in the Logical Key Hierarchy
(LKH) scheme proposed by Wong et al. [1] and Wallner et al. [2] and proved to be
communication optimal in [3], the key server uses keys of one rekeying interval to
encrypt new keys of the subsequent one. Therefore, there is a strong dependency
between keys of subsequent intervals. When a new key doesn’t reach its intended
recipient because of some packet losses, in the following rekeying interval, mem-
bers affected by these losses will not be able to access future rekeying material.

Recently, some studies [4, 5, 6] have focused on this issue and different relia-
bility schemes using Forward Error Correction (FEC) [7] or retransmission tech-
niques (ARQ) have been proposed aiming at reducing the probability of losses in
a rekeying. However, in all proposed solutions, the LKH scheme still suffers from
the “one affects all” scalability failure [8] which occurs when the arrival or depar-
ture of a member affects the whole group. Each arrival or departure of a single
member causes the update of at least one key with all members. Consequently,
members who don’t leave the group during the entire session can be strongly af-
fected by frequent membership changes. From a commercial point of view it is
unfair for a member who’ll stay until the end of the session to be equally treated
with short-lived members.

In this paper, we investigate how to assure higher reliability for members stay-
ing in the group during almost the whole session. To achieve this aim, we propose
a restructuring of the key tree and split the group into 2 different sets with regards
to members’ membership duration. The reliability assurance1 for members of each

1In this paper, we only deal with the reliability of rekey packets; the reliability of data packets

3

different set will increase proportionally with the membership duration of the cor-
responding members.

We first briefly describe the LKH scheme and review its failures in terms of
scalability and reliability. We then introduce our solution based on a new partition-
ing scheme. After summarizing the partitioning idea, we describe the proposed
protocol and give some results on optimized system parameters aiming at offering
the best reliability to members with long duration membership.

2 Problem Statement

The LKH scheme was proposed independently by Wong et al. [1] and Wallner
et al. [2] and proved to be communication optimal. After giving a brief description
of the scheme, we review its shortcomings in terms of scalability and reliability.

2.1 Logical Key Hierarchy : LKH

In this scheme, the key server constructs and maintains an almost balanced
tree with � leaves and � is the group size. A random key is attributed to each
node where each leaf node corresponds to a unique member of the group. The
key corresponding to the root node is the data encryption key. Each member ���
receives the set of keys corresponding to the path from the root of the tree to its
corresponding leaf. Referring to the example in figure 1, ��� would receive the key
set

���	��
�� �
��	�
���� � where
�	�

represents the data encryption key.
To remove a member from the group, all keys associated with the vertices of the

path from the root to the leaf corresponding to the leaving member are invalidated.
The rekey operation then consists of substituting for these invalidated keys with
new values and broadcasting the new values in key envelopes encrypted under
keying material known by remaining members. As depicted in figure 1, if member��� leaves the group,

� � ,
� � and

���
are updated with

� � ’,
� � ’ and

�	�
’, respectively.

The key server then broadcasts ��������� ������
 ������� ���� �
 � � !" � ���� �
 � � ! � � ���� � and ��� #$� ���� � .
To add a member, the key server extends the tree with an additional leaf. The

server marks again all keys associated with the vertices on the path from the leaf to
the root as invalid. A random key is assigned to the new leaf and transmitted with
a secure unicast channel. All other nodes in the path are updated with the same
algorithm as the rekeying operation for a leaving member.

lies beyond our concern.

4

k0

R
1

R
2

R
3 R

4
R

5
R

6
R

7 R
8

k1

k3

k8 k k10 k12

k

k2

k7

k14k13 k

k4

9

5

15

Figure 1: An Example of the LKH scheme

2.2 Shortcomings of LKH

Although the LKH scheme has been proved to be optimal in [3], it still suffers
from some drawbacks in terms of scalability and reliability. Hence, when there
are frequent arrivals or departures, individual rekeying becomes inefficient and the
key server needs a strong reliable key delivery protocol because of the existing
dependency between keys of subsequent different intervals.

2.2.1 Individual rekeying

At each arrival or departure of a member, the key server needs to immediately
rekey the whole group in order to ensure backward and forward secrecy [8] which
respectively prevents a member from accessing the data sent before its arrival or
after its departure. However, individual rekeying is relatively inefficient in large
groups where join/leave requests happen very frequently. For example, referring
to the example in figure 1, if members �

and ��� leave the group one after the
other with a very short delay between the two departures, the key server will need
to modify twice, the keys located at same vertices in the tree. If on the contrary,
the key server had regrouped these two departures in one rekeying operation, the
rekeying cost would be reduced by a half.

Batched rekeying algorithms have therefore been proposed in [9] whereby
leave and join requests collected during an interval are processed by rekeying oper-
ations performed during the subsequent interval. An evaluation of the batch rekey-
ing scheme in [9] shows a clear advantage over individual rekeying. Considering
a group of 4096 members regrouped in a key tree of degree 4, in the case of 400

5

leaving members, batch rekeying requires approximatively 2147 encrypted keys
while individual rekeying requires 9600 keys.

2.2.2 Key dependency

Although batch rekeying improves the efficiency of LKH by reducing the rekey-
ing cost, it doesn’t completely solve the synchronization problem between each
member and the key server [5]. At a new rekeying interval, the key server uses
the keys of the previous interval to encrypt new keys. Because of this strong de-
pendency between keys, when a member looses some rekeying packets during a
rekeying interval, it needs to contact the key server to refresh its key set, otherwise
it will never again be able to decrypt multicast data sent after this rekeying interval
even if it still is member of the group. Thus, the key server needs to ensure the re-
ceipt of keys by a maximum number of members before the beginning of the next
rekeying interval.

Furthermore, since all members need to update their set of keys at every rekey-
ing interval, frequent arrivals and departures should not affect members that are
supposed to stay in the group until the end of the session. The key server must
thus minimize the impact of rekeying due to the frequent dynamics of short-lived
members on members that remain over longer periods of time since the service is
offered to them for the entire session. This problem is discussed in the following
sections and thanks to the partitioning scheme, the reliability assurance to each
partition increases based on members’ membership duration.

3 The solution

In our solution, the key server builds a representation that regroups members
in different categories based on their membership duration. The degree of reliabil-
ity assurance for each category increases with their “loyalty” degree. In order to
achieve an almost full reliability solution for “loyal” members, the key server will
evaluate and adapt system parameters such as rekeying intervals’ length.

3.1 Partitioning

Frequent membership dynamics should rarely affect members who are sup-
posed to stay in the group during the whole session. To achieve this aim, the key
server needs to separately regroup members in � different sets with regards to the
time they have spent in the group and offer a more reliable delivery to those whose
membership duration is longer.

6

In [10], Almeroth et al. observed the group members’ behavior during an entire
multicast session. The authors realized that members leave the group either for a
very short period after their arrival or at the end of the session. Based on these
results, we define two real categories to distinguish members :

� short-duration members are supposed to leave the group a very short period
after their arrival;

� long-duration members are on the opposite supposed to stay in the group
during the entire session.

Since the key server cannot predict the time a member will spend in a multicast
session, it cannot decide if a member belongs to the short-duration category or
the long-duration one. Thus, we propose to separately regroup members into two
monitored categories. In this proposed partitioning, a new coming member is first
considered to be volatile. If this member spends more than a certain threshold time
� in the group, then it becomes permanent.

Thanks to this partitioning, permanent members will not be affected from
departures of volatile members but only from departures of members from their
subgroup which is supposed to be quasi-static. The reliability processing of each
monitored category will be different and the key server must guarantee to almost all
permanent members the receipt of all necessary keys with a very high probability
before the receipt of multicast data encrypted with these keys.

3.2 Rekeying the two monitored sets : Overview

As depicted in the previous section, members are separately regrouped in 2
disjoint sets :

� the set representing volatile members whose membership duration is less
than � ;

� the set representing permanent members whose membership duration has
exceeded � .

For efficiency reasons, each monitored category is represented by a key tree.
However, unlike the classical key tree approach, the key located at the root of
each tree is not the data encryption key which is unique for the whole group but it
corresponds to a key encryption key which is different for each tree.

Assuming that volatile members’ departures will happen very frequently, in
order to limit the number of leaving members and the extra-time they can stay in
the group, the key server sets

���
as short as possible. The common data encryption

7

key will thus be modified while rekeying volatile members. On the other hand,
since permanent members are assumed to stay longer in the group, the key server
grants a longer extra-time to these members after their real leaving-time. Thus, the
rekeying interval

���
will be set to be longer than

� �
. We define

���
as
����� � � �

.
Since the data encryption key is modified every

� �
with the rekeying of volatile

members, permanent members still would be affected by losses resulting from
this rekeying operation. Thus, during each

���
whereby no rekeying for perma-

nent members takes place, an additional feature of our scheme allows permanent
members to retrieve new data encryption keys resulting from rekeying operations
at each

� �
from their local keying material and without any information from the

key server.
After having defined the global rekeying architecture, the key server now needs

to adjust
� �

and
� �

with regards to system parameters. On one hand, to increase
the quality of service, the key server needs to increase as much as possible

� �
and���

to be able to offer almost full reliable delivery of necessary keys. On the other
hand, increasing these values implies to let more extra-time to leaving members
since rekeying is processed in a batch for efficiency reasons. As a result,

� �
and���

should be as small as possible for security reasons but large enough to offer a
better service to permanent members.

4 Protocol Description and Analysis

In this section, after presenting the rekeying process of our proposed protocol,
we describe how to optimize necessary system parameters in order to increase the
reliability factor to members with long duration membership.

4.1 Environment

Based on the results in [10], membership duration can be represented by two
exponential distributions where the mean duration of membership for short-duration
members and long-duration members is denoted by

�	�
and

��

, respectively. The

ratio of short-duration members over � , the total group size, is denoted by � .
Volatile and permanent members are separately regrouped in 2 respective key

trees � and � of degree � whose respective root keys are denoted by � � and � � .
The data encryption key ��������� is updated every

� �
at the same time as the update

of � . The update process for both trees is presented in section 2.1.
The update of � occurs every

���
where

����� � � �
. During one

���
, at each

� �
,

permanent members automatically retrieve their key without waiting any extra-
information from the key server. The key retrieval algorithm is described as follows

8

:

� ������� ����� ��� �	� ��
�� � �
 � ������� ��� � � (1)

Here PRF denotes a pseudo-random function (see [11] for further details) and pro-
vides forward secrecy for volatile members since they don’t have the knowledge
of � � .

4.2 Rekeying processing

A new coming member � � first joins the tree representing volatile members �
and receives the actual data encryption and its corresponding set of keys. Every

� �
,� � receives the new data encryption key and the necessary information to update

its keys like described in section 2.1. When � � ’s membership duration reaches
� , it is directly transfered to the key tree representing permanent members and it
receives the new � ��� ��� and its new set of key encryption keys without waiting the
next

� �
. After its transfer to � , each

� �
the data encryption key is automatically

computed and � is updated every
���

.

4.3 Optimizing system parameters

In the sequel of this section, we evaluate possible values for
� �

and
���

.
To evaluate

� �
, the key server computes the average number of leaving mem-

bers from the volatile set and from this information it evaluates an average rekey-
ing cost including the reliability factor which is not very large as for permanent
members. The reader can refer to [5] for the computation of the average rekeying
cost.

Assuming that the system is in a steady state, given all system parameters, the
mean number of volatile members leaving the key tree every

� �
is the sum of the

average leaving members from the two real categories, ie. long and short-duration
categories. We have :

� � � � � �������� ��������� ��� ���� � � � ���� ��� �!�����#" � (2)

Let $&%('*) � � � � be the average rekeying cost based on
� � 2 and the overhead of

packets ensuring reliability3 .
� �

must then satisfy the following inequality where
2To compute + � , the key server sums the average leaving members with short-duration and long-

duration membership. In the case of an exponential distribution with a mean , the probability that
a member leaves at - � is .0/21435- ��687:9�;=<&>�?A@ABDC .

3The overhead of packets ensuring reliability has been evaluated and analyzed both with FEC and
ARQ techniques.Details of this evaluation is not included in this paper due to space limitations

9

�
is the necessary bandwidth only reserved for the rekeying operation :

$&%('*) � � � ��� ��� � �
(3)

Symmetrically, the key server needs to adjust
���

in order to assure an arbitrarily
high degree of reliability to permanent members independently of the number of
leaving members in this subgroup. The worst rekeying cost corresponds to the case
where all keys of � except members’ individual keys need to be modified. This
case corresponds to the event when for every � members, 1 member leaves � , �
being the degree of the key tree.

Assuming that � � is permanent members’ group size, in the worst case, we
have

� � ������ and each of the remaining members needs to receive all keys located
on the path from the root to their corresponding leaf except the individual key. Thus
the rekeying cost is :

$&%�'*)�� � � � � � � � � � �
� �
	 � %� � � � � ��� � � (4)

Given these results the total cost must not exceed the given bandwidth. Thus� � � � � �
must follow the following inequality which again yields a lower bound

on
���

: � � $&%('*) � � � ��� $&%(')�� � � ��� ��� ���
(5)

Once the value of
���

and
� �

are determined, the next important parameter to be
estimated is � . The main criterion for the estimation of � is to keep the partition-
ing of members as perceived by the key server as close as possible to the real cat-
egories. However, there exists a tradeoff between � and the rekeying cost of each
tree, including the reliability overhead. Hence, if � were too small than the major-
ity of real short-duration members would be identified as permanent members and
this would again cause further reliability problems. On the other hand, if � were
too large, long-duration members would stay longer in the set of volatile members
and they then would always be affected from frequent membership changes. Thus,
the key server needs to adjust � aiming at reducing the number of penalized real
long-duration members.

In order to define � , based on � corresponding to the ratio of short-duration
members in the real partitioning, the key server can limit the number of permanent
members to ��=� � � � . The number of permanent members in one

���
is thus

defined by the following expression4 :

� ��� � � � � ��� ���#� � � ���� � � � � ��� ����" (6)

4Here, � � corresponds to the number of members who didn’t leave the group during a period� . The probability that a member doesn’t leave the group before � where the time is distributed
exponentially with a mean , is : . /21�� � 6 7 < >�� BDC .

10

Thus, � that achieves the closest identification of real categories, should satisfy� ��� ���� � � � .

4.4 Example

We assume that � �����������
where

�����
of the group are short-duration mem-

bers with
� � �	�

minutes and
�
 �
�

hours. The bandwidth reserved for rekeying
is limited to 1 Mbps and the loss probability of a rekeying packet for each mem-
ber is independent and equal to � ���� . Based on the optimization method, we
then compute system parameters for an objective defined by a target probability
for the rekeying rate as perceived by a large fraction of permanent members. The
following setting for the rekeying intervals assures a quasi-certain rekeying rate for
permanent members, that is 99.99

�
of permanent members have ��� ��� � proba-

bility of receiving all rekeying packets :
� � � ��� '
��� � ������� '

Based on these values, we then are able to compute the threshold value �

that would best fit the real partitioning (
�����

short duration members). Using the
resulting value (�

��� �����), the protocol will eventually identify
�����

of members
as permanent.

5 Conclusion

Most of existing solutions in secure multicast are severely lacking with respect
to reliability and real customer expectations. Hence, in the LKH scheme, because
of the inherent strong dependency between keys of different subsequent intervals,
all members suffer from rekey packet losses regardless of their membership du-
ration. Thus, we propose to separately regroup members into two categories as
volatile and permanent members. A threshold value � sets the time at which a
volatile member is considered permanent. In order to offer higher reliability to
permanent members, the key server adjusts the rekeying intervals

� �
and

� �
of the

respective two sets after computing their corresponding rekeying cost. The evalua-
tion of the overhead of rekeying packets ensuring reliability is not included in this
paper due to space limitations. Moreover, to keep the partitioning of members as
perceived by the key server as close as possible to the real categories, the key server
adjusts the threshold value � with regards to the number of permanent members.

Our current work focuses on investigating the suitability of our classification
scheme to a range of membership distributions. Further validation of the analytical
results will involve trace based experimental evaluations.

11

References

[1] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using
key graphs. In ACM SIGCOMM 1998, pages 68–79, 1998.

[2] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for
multicast: Issues and architectures. Internet draft, Network working group,
september 1998, 1998.

[3] J. Snoeyink, S. Suri, and G. Varguese. A lower bound for multicast key
distribution. In IEEE Infocom, Anchorage, Alaska, April 2001.

[4] C. Wong and S. Lam. Keystone: a group key management system. In Pro-
ceedings of International Conference in Telecommunications, 2000.

[5] Y. R. Yang, X. S. Li, X. B. Zhang, and S. S. Lam. Reliable group rekeying :
A performance analysis. In ACM Sigcomm, San Diego, CA, August 2001.

[6] S. Setia, S. Zhu, and S. Jajodia. A comparative performance analysis of re-
liable group rekey transport protocols for secure multicast. In Performance,
Rome, Italy, September 2002.

[7] Luigi Rizzo. Effective erasure codes for reliable computer communication
protocols. ACMCCR: Computer Communication Review, 27, 1997.

[8] Suivo Mittra. Iolus: A framework for scalable secure multicasting. In
Proceedings of the ACM SIGCOMM’97 (September 14-18, 1997, Cannes,
France), 1997.

[9] Xiaozhou Steve Li, Yang Richard Yang, Mohamed G. Gouda, and Simon S.
Lam. Batch rekeying for secure group communications. In Tenth Interna-
tional World Wide Web conference, pages 525–534, 2001.

[10] K. Almeroth and M. Ammar. Collection and modelling of the join/leave
behavior of multicast group members in the mbone. In Proceedings of High
Performance Distributed Computing Focus Workshop (HPDC’96), Syracuse,
New York USA, August 1996.

[11] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In CRYPTO, pages 276–288, 1984.

12

