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Abstract

The asymptotic theoretic capacity of a MIMO system is derived when considering Rice distribution entries. Although the Rice
distribution is well known to enhance the capacity performance with respect to the Rayleigh distribution in the SISO case, this
assumption is seriously put into doubt in the MIMO case. Indeed, the conditions under which line of sight improves or not the
capacity are still not well understood. This contribution determines the parameters of interest for analyzing Rice MIMO models and
gives an explicit theoretic answer to the previous question.

I. INTRODUCTION

The problem of analyzing channel models is crucial for the efficient design of wireless systems [1]. Unlike the Additive White
Gaussian channel, the wireless channel suffers for constructive/destructive interference signaling [2]. This yields a randomize
channel with arbitrary statistics. Recently [3], [4], the need to increase spectral efficiency has motivated the use of multiple
antennas at both the transmitter and the receiver side. Hence, in the case of the i.i.d Gaussian model and channel knowledge
the receiver, it has been proved [5] that the ergodic capacity increase is min(r,t) bits per second per hertz for every 3dB increas
(r is the number of receiving antennas arnid the number of transmitting antennas) at high SNRowever, for other channel
models, results are still unknown and may seriously put into doubt the MIMO hype. In particular, the effect of line of sight on the
overall performance has still not been analyzed theoretically. Even though recent papers [6] have shown that the Rice distributio
may incur a loss with respect to the i.i.d Rayleigh case, under what conditions this result is always true is still an open problem a
recently put into question in [7]. Before going further, let us introduce the model if interest.

A. Channel Model

We assume that the transmission takes places between a mobile transmitter and receiver (see figure 1). The transmitter he
antennas and the receiver haantennas. Moreover, we assume that the input transmitted signal goes through a time invariant
linear filter channel. Finally, we assume that the interfering noise is additive white Gaussian. The transmitted signal and receive

signal are therefore related as:
y(t) = \/g/ert(T)a:(t — 7)dr + n(t)

Y(f) = \/éert(f)X(f) NG

pis the received SNRY (f) is ther x 1 received vector (Fourier transform of the time sign@l), X (f) is thet x 1 transmit
vector (Fourier transform of the time signa(t)), N(f) is anr x 1 additive standardized white Gaussian noise vector (Fourier
transform ofn(t)). In all the following, without loss of generality, we will consider a channel with real entries. We will suppose
that the average energy power of the channel is normalized such Bétrace(HH™)) = 1 and use the notatiofi = %C for

any matrixC'.

and

B. Satement of the problem

Although a Rice distribution is well known to enhance the performance with respect to the Raleigh one in the SISO case
these results cannot be straightforwardly extended to the MIMO case. Indeed, suppose that the channel matrix is determinist
with equal entries 1 (this is a limiting case of a Rice distribution with variance 0). In this case, the mutual information per
receiving antenna with input Gaussian entries and covariance ritkix ) = Iis given by:C = llog,det(I, + ZHHT) =
} S logy(1+ 2Xi). Inthis case, sincBIH" is rank one, it has one single eigenvalue equattand the capacity tends to:
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LIn the single antenna additive Gaussian channel, 1 bit per second per hertz can be achieved with every 3dB increase at high SNR



C = Llog,(1+ pr) — 0 whenr — oo. This result shows that the line of sight component has a dramatic effect on the mutual

inforn’rlation since it is well known that in the independent Rayleigh fading case, the capacity per antenna is constant.

However, suppose now that the mean of the different line of sight components are such as thdlilatrix= tI, then:
C =15 logy(1+ p) = logy(1 + p) which is non-zero.

Although we have have only taken two extreme cases (the variance of the Rice distribution has not been taken into account
these trivial examples show that a more profound analysis should be conducted for determining the parameters governing tt

performance of the Rice distribution with respect to the i.i.d zero mean Gaussian case (i.i.d zero mean Gaussian entries).

Il. MUTUAL INFORMATION FOR ARICE MODEL
A. Rice Model

We suppose in this section line of sight components in the MIMO transmission scheme. The frequengy patbsssumed
to have different meap; ; (zero or not) but the same variancé.

In this case, the channel can be writtenfAs= A + B where A is the deterministic line of sight component part of the matrix
such as each entry;; = «;; and B is a gaussian zero mean i.i.d matrix such as each éntriyas a variance af2. In order to
derive the asymptotic channel mutual information, we will make the following assumption.

Assumption 1: The matrix sizel AAT grows large with3 = % remaining fixed such as the empirical eigenvalue distribution

F,,f‘?T of $ AA” converges in distribution to a fixeld A4 .
In this case, let us express the average energy power of the channel:

1 1
—tE(trace(HHT)) = —tE(trace(AAT +BBT + ABT + BAT))
r r

1
= —tE(trace(AAT +BBT))
r
1 ——T
= EZafj +0? — /)\dFAA (\) + o2
]
In order to compare the performance with the i.i.d Gaussian case, the following constraint issplt on

02:1—/AFﬂT()\)20

B. Result

In the case of the previous Rice Model, the following theorem holds:
Theorem1: Ast — oo with r = t, the asymptotic mutual information with Gaussian input entries is given by:

o _/P 1,1 Ay
e T Jo @y AT )

-1\ Y1

v (5) =
dFAA" ()

PA+ 1% + po? (1 — B)y

o2 =1— [ MFAA ()

The proof of this theorem is provided in section VI and is based on results due to Girko [8]. This theorem is quite useful as it
highlights that only the limiting distribution of the mean matr%x&AT matters (and not at all the explicit values of the mean).
Note that the formulais general enough to incorporate the asymptotic capacity of the Rayleigh channel as a special case (by lettir
dFAAT ()) = §())). Note also that the previous formula is also valid in the complex case.

with

w=1+ﬁwﬁ/



IIl. SIMULATIONS

In all the following, we assume that= t. Many scenarios of the mean matrix can be taken into account. As an example,
let us assume the best scenario for the line of sight components i.e the deterministic line of sight component A has equal entrie

a;; = (—a, ) such as the columns of matrik are orthogonal. In this caséFﬂT A) = §(A — o?) and since’ = 1, we have:
J

(1—a?)p¥

=1
+ pa2 + W2

i L) pl(1 = a)m T (=1) 4 1)
Pl pa?+((1—a)mAA" (=1) 4 1)2

and the asymptotic mutual information is solution of:

Crice = [ gtz (1= 5 )
e o 2In(2)p P M ) 0

In figure 2, we have plotted the mutual information veraufer an8 x 8 complex MIMO system with an orthogonal mean matrix

at an SNR of 10dB. As one can see, the theoretical formula matches the asymptotic curves with a quite small number of antenne
The best performance in this case is obtained whea 1. However, one should note that for< « < 0.5, orthogonal Rice

fading has nearly no impact on the performance and behaves as complete zero mean i.i.d entries. In other words, orthogonal Ri
fading achieves a significant gain only when the mean is superior to the variance.

IV. CONCLUSIONS

In this contribution, we have studied the influence of line of sight components on the overall performance of MIMO systems.
Although in the SISO case, it is well acknowledged that the capacity of Rice fading outperforms Rayleigh fading, in the MIMO
case, this result does not hold: the capacity in this case depends only on the limiting behavior of the eigenvalues of the mea
matrix through an implicit equation given by theorerh 1
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VI. PROOF OFTHEOREM 1
To derive the proof, we will use the following theorem due to Girko [8]:
Theorem 2: Assume that the random entrib%), i=1,...,rp,andj = 1,...,t, of the matrixH,, «; = (h(t))f 11 are
independent for any,

E(hg)) = a,ﬁ?, Var(hgz)) (o Z(j)) , 0< hm mf 7 < h?ibogp 7 < 00,
Lo, S o]
£)\2 £)\2
L | ®
j=1,..., t U= = i
t Tt 1
(t) (t)
su ma o) | + Q. < 00, 2
tpizl,.?(.,rt ]Zl| K | ;| * | ()
j=1,...,t = = i

Lindeberg’s condition is supposed to be satisfied, i.e., for every0,

lim max ZE h(t {| h(t 5;) |> 7}

t—00 j=1,...,71¢

+ZEh(t) AP B~ > = 0 (3)

2Note that the conclusion here differ with respect to [7] as we constrain ourselves in all the study to a power limited channel



MTt{m)HTtXtHzlxt} = rt_l ZX{W : )\k < x}7 (4)

and\; > ... > )\, are the eigenvalues of the random maiiix, ., H’
Then W|th probability one,

reXt:
tlggo | e, {2, H”“tXtHZ;Xt} - F.,(z) =0, (5)

whereF,., (z) is the random distribution function whose Stieltjes transform is given by the formula

o0
/ (r — Z)_ldFm( ) =7, TT[CI + A, xtCqy Artxt] ) (6)
0
z=u+iv, v#0, Ay, xt = (agl))jzll 7777 ,» andCy = (c1:0i5);—; andCsy = (c2:0i)} ;—, are diagonal matrices with
t
Clp = —Z+Z( ;S;)) {[Itxt metHTtXt] }'j’ p=1,...,1,
j=1
Tt
co, = 1+ 2(052)2 {[_ZIT‘tX‘r‘t + H7'1,><tHZ;><t]_1}jj s k=1,....¢,

ptlim {c1p—pp} =0, andptlim {car =i} =0,p=1,...,r,k=1,....t wherethe variableg, andy,, satisfy the following
system of canonical equations

t
o = =2ty (oS {05+ AT B T Ao Y P =1 Y
wk = 1+Z(U§Z))2{[[ ZJ()OZ)IJ 1+A71><t[ sz ]z] 1A7Ttxt]_ }jj7 k:Lat (8)

There exists a unique solution of the previous system of the canonical equations in the class of analytic functions

K = {Imy,(z) <0, Imp(2) >0, Imz >0, k=1,...,t, p=1,...,7r}.

Applying Theorem 2 to the case of a matkkwith constant variances Z(]t) )2 = "TQ we can derive the Stieltjes transform of the
matrix w when the dimensions of the matrix tend to infinity with constant ratio. Condition (1) of Theorem 2 is always
verified thanks to the assumption thatr(h (n)) . Condition (2) follows from the hypothesis that the eigenvalue distribution
of matrix $ A,, AL ., converges weakly to a determlnlstlc function and the constrq{n?&dFAA (A) < 1. Condition (3)

always is satisfied for Gaussian entries with variaﬁfeeln fact,Vr,e > 0 there exists &(e, 7) such that

. ZProb{| Ao > 1)+ ZProbﬂ h —all 1> 7} 9)
_ (e, T() +ri(e, 7)) (Prob (3 — ol > 7} + Prob{hl) — o) < fT}) (10)
20 t+rt \/;/ o5 da (11)
_ 20 (t(g,tz,t)”(gﬁ)) 0 (T tifﬁ)) (12)

< e (13)



Let®" and®* denote the diagonal matrices;¢:);";—, and(d;;¢); ;_, respectively. Then the canonical system of equations
(7) and (8) can be rewritten as follows:

9
o 1 “1ry _
Yp = —z+ i Z {[(@jwi)ij_l + ;AZ;Xt[éiﬁO 1]i,j:1AT‘t><t] 1} s p=1,...,m,
=1 3J
o? 1 !
= —z+ Ttrace {lIl(t) + ;A,.txt(@(”))_lAzxt] k=1, (14)
and
o & T 1 —11t T 1-1
Y = 1+ & Z [(5ij90i)i,j=1 + gArtxt[éijl/f ]i,j:lAmxt] 0 k=1,....t
j=1 23
o? 1 -1
= 1+ Ttrace |:@(Tt) + ;Artxt(‘:[’(t))lAZ;xt] > k= ]-7 oot (15)
Itis apparent thap,, p = 1,...,r, are all equal and the same holds for, £k = 1, ...,t. Let us denote their value respectively
by ¢ andi. Then the canonical system of equations (14) and (15) is reduced to a system of two equations
o? Ll -
p = —z+ Ttrace VI + ¢ ;ArtxtATtXt
0280 L7 -
= —z+ Ttrace {gm/;lt + EArtxtATtXt] (16)
= —z+0°0Ki(p,9)
and
o? 1 -t
v = 1+ ?trace {@I” + ‘I’_lgArtxtA,th]
o? 1 -t
= 1+ thrace [(pwl,.t + ;AnxtAZ;xt]
= 14 0%)Ka(p,0) 17

where K (¢, %) = Ltrace [puT; + LmathbfAT Ay x] ' andKa(p,v) = Ltrace [p¢lL,, + LA, AT ] 7" Itis easy
to verify that the following relatiord<; (¢, ) = Ka(p, ) + % holds. From Equation (17) we obtain

_v-1
Kalp ) = = (18)
 can be derived from Equation (16) and Equation (18) as functian ¢fideed,
py—-1 1-p
o = oot (g )
—1 1—
g0<102¢02w ) = —z+02 ?/)ﬂ
% = —z40? 1 ; p
p = —2+o*(1-p) (19)

The fixed point equation of theorem 1 in the unknown variabtan be derived from Equation (19) and Equation (17) through:
—1
t

P(z)=1+ 02%:— trace [(—211)2 +o0%(1— By, + %AmxtAT . (20)

e Xt
t
Asymptotically, as; = St — oo, we obtain

dFAA" ()
— 2% +02(1 =By

ve) =1+ a*0s [ 5 1)



The Stieltjes transform 7 (2) can be derived using Equation (6) which yields:

K
_ oY) -1
T (23)
The capacity is given byC'rice (p) = [ log,(1 + p/\)dFﬁT(,\)
dCRice o 1 o A TaY
dp  2In(2) /0 1+ p)\dF ()

with
po?

AN dFA4 ()
w(p)_1+awﬁ/m+wuwﬁa—mw

Orthogonal mean matrix
T T

—_1) _¢(E) -1
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— — Simulation with 8 x 8 MIMO system
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