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Abstract

This paper considers communication over coherent multiple-input multiple-output (MIMO)

flat fading channels where the channel is only known at the receiver. For this setting, we in-

troduce the class of LAttice Space-Time (LAST) codes. We show that these codes achieve

the optimal diversity-vs-multiplexing tradeoff defined by Zheng and Tse under generalized

minimum Euclidean distance lattice decoding. Our scheme is based on a generalization of

Erez and Zamir mod-Λ scheme to the MIMO case. In our construction the scalar “scaling”

of Erez-Zamir and Costa Gaussian “Dirty-Paper” schemes is replaced by the minimum

mean square error generalized decision-feedback equalizer (MMSE-GDFE). This result

settles the open problem posed by Zheng and Tse on the construction ofexplicitcoding and

decoding schemes that achieve the optimal diversity-vs-multiplexing tradeoff. Moreover,

our results shed more light on the structure of optimal coding/decoding techniques in delay

limited MIMO channels, and hence, opens the door for novel approaches for space-time

code constructions. In particular; 1) we show that MMSE-GDFE plays a fundamental role

in approaching the limits of delay limited MIMO channels in the high SNR regime, unlike

the AWGN channel case and 2) our random coding arguments represent a major depar-

ture from traditional space-time code designs based on the rank and/or mutual information

design criteria.

Keywords: Lattice coding and decoding, minimum mean square error (MMSE) equalization,

multiple-input multiple-output (MIMO) channels, diversity-vs-multiplexing tradeoff.
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1 Introduction

Since the seminal work of Teletar [1], Foschini and Gans [2], Tarokhet al. [3], and Gueyet al.

[4], multiple antenna transmission/reception has emerged as a key tool to achieve high spectral

and power efficiency in wireless communications. Loosely speaking, schemes that exploit both

the classical Shannon degrees of freedom (time-frequency) and the additional spatial degrees

of freedom (antennas) in order to achieve reliable transmission of information are nicknamed

Space-Time Codesafter [3]. The literature on space-time coding is huge (see for example [5]

and references therein). Several settings have been developed on the basis of different physical

motivations and, for each setting, information theoretic results and associated coding schemes

have been developed.

Perhaps the most basic setting (originally treated in [1, 2] from the information theoretic

viewpoint and in [3, 4] from the code construction viewpoint) consists of the quasi-static frequency-

flat fadingM -transmitN -receive multiple-input multiple-output (MIMO) channel with no chan-

nel knowledge at the transmitter and perfect channel knowledge at the receiver. The complex

baseband model is defined by1

yc
t =

√
ρ

M
Hcxc

t + wc
t , t = 1, . . . , T (1)

where{xc
t ∈ CM : t = 1, . . . , T} is the transmit signal,{yc

t ∈ CN : t = 1, . . . , T} is the

received signal,{wc
t ∈ CN : t = 1, . . . , T} denotes the channel Gaussian noise, assumed

temporally and spatially white with i.i.d. entries∼ NC(0, 1), andHc is theN × M channel

matrix with the(i, j)-th elementhc
ij representing the fading coefficient between thej-th transmit

and thei-th receive antenna. The fading coefficients are further assumed to be i.i.d.∼ NC(0, 1)

and remain fixed fort = 1, . . . , T , whereT is the duration of a space-time codeword (block

length). By enforcing the input constraint

E

[
1

T

T∑
t=1

|xc
t |2

]
≤ M, (2)

the parameterρ takes on the meaning ofaveragesignal-to-noise ratio (SNR) per receiver an-

tenna. The channel matrixHc is assumed to be perfectly known at the receiver and completely

unknown at the transmitter.
1Notation: the superscriptc denotes complex quantities,T denotes transpose andH denotes Hermitian trans-

pose. The notationv ∼ NC(µ,Σ) indicates thatv is a proper complex Gaussian random vector with meanµ

and covariance matrixΣ. For real Gaussian random vector we use the notationv ∼ N (µ,Σ). The acronym i.i.d.

means “independent and identically distributed”. We use
.= to denote exponential equality, i.e.,f(z) .= zb means

that limz→∞
log f(z)

log z = b, ≥̇ and≤̇ are used similarly. For a bounded Jordan-measurable regionR ⊂ Rm, V (R)
denotes the volume ofR.
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The quasi-static MIMO fading channel defined above is not information-stable [6] and has

a zero Shannon capacity. This means that the channel reliability function is also equal to zero

and that the error probability of any coding scheme with positive rate is bounded away from

zero. On the other hand, it can be easily shown that the error probability of a given coding

scheme with a constant rate behaves likeO(ρ−d) for largeρ, whered ≤ MN depends on the

coding scheme and is calledthe diversity gain[3, 4]. It is also well known that the capacity of

the ergodic MIMO channel treated in [1]2 behaves likeO(min{M,N} log ρ) for largeρ.

The linear growth of the “pre-log” factor in the ergodic MIMO channel capacity motivated

several researchers to consider coding schemes that sendr ≤ min(N, M) (independent) infor-

mation symbols per channel use (PCU)3. The integerr was referred to as themultiplexing gain

of the scheme, as it (roughly) corresponds to creatingr parallel communication channels be-

tween the transmitter and receiver. In [3], the coding problem for the above channel was stated

as follows: for each desired diversity gaind, maximize the multiplexing gainr. Early works

consideredconstrainedcoding ensembles (e.g., trellis or block codes over discrete QAM signal

sets of a given size). For these ensembles, there exists indeed a tradeoff betweend andr as

dictated by the Singleton bound [3]. Later on, it was recognized that this tradeoff is not a funda-

mental feature of the channel defined above, but it is due to the additional constraints put on the

coding ensemble (see [7]). If no additional constraint beyond the standard average input power

(2) is imposed,structuredspace-time coding schemes achieving “full-rate” (r = min(M, N))

and “full-diversity” (d = MN ) can be explicitly constructed [8, 7]. Furthermore, when these

codes are linear over the field of complex numbers (e.g., [7]), they lend themselves to efficient

decoding algorithms using number theoretic tools [9].

The problem of characterizing the optimal diversity-vs-multiplexing tradeoff was well-

posed and solved by Zheng and Tse in [10]. For givenM, N andT , the authors considered

a family of space-time codes{Cρ} indexed by their operating SNRρ, such that the codeCρ has

rateR(ρ) bits PCU and error probabilityPe(ρ). For this family, the multiplexing gainr and the

diversity gaind are defined as follows

r
4
= lim

ρ→∞
R(ρ)

log ρ
and d

4
= − lim

ρ→∞
log(Pe(ρ))

log ρ
. (3)

In [10], the optimal tradeoff curved?(r), yielding for eachr the maximum possibled, was found

for unrestricted coding and ML decoding. In particular, for any block lengthT ≥ N +M−1 the

optimal tradeoff is given by the piecewise linear function joining the points(k, (M−k)(N−k))

for k = 0, . . . , min{M, N}.
2The ergodic MIMO channel is obtained by replacing the random constant matrixHc by the ergodic matrix

process{Hc
t} such that eachHc

t is identically distributed asHc in the model (1).
3A channel use corresponds to the transmission of the input vectorxc

t in parallel from theM transmit antennas.
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Zheng and Tse further showed that the optimal tradeoff curve is achieved in theM = 2, N =

1 case by the Alamouti scheme [11] and, in the limit ofT → ∞, by the so-called D-BLAST

scheme [12] withGaussian code ensemblesand MMSE-DFE processing. The conclusion of

their work provides the motivation for this paper:“It should be noted that other than for the

2 × 1 channel (for which the Alamouti scheme is optimal), there is no explicitly constructed

coding scheme that achieves the optimal tradeoff curve for anyr > 0. This remains an open

problem.” [10].

The quest for explicit coding schemes that exploit the multiplexing and diversity gains avail-

able in MIMO channels has generated very intensive work. Earlier works have been largely

inspired by suboptimal schemes like the orthogonal designs [13] or the BLAST architecture

[12] (e.g., [14]). More recent works have been inspired by Zheng and Tse characterization of

the fundamental diversity-vs-multiplexing tradeoff. For example, a structured coding scheme

achieving the optimal tradeoff in the caseM = N = 2 for block lengthT = 2 under ML de-

coding was recently presented in [15]. In this paper we provide a general answer to the problem

posed by Zheng and Tse by exhibiting explicit coding schemes that achieved?(r) for anyM

andN , and block lengthT ≥ M + N − 1.

In order to facilitate the goal of achieving the optimal tradeoff, we first introduce a novel

class of space-time codes obtained from lattices. The main idea of LAttice Space-Time (LAST)

codes is to carve the space-time code directly from a properly constructed lattice. LAST cod-

ing is a non-trivial generalization of linear dispersion (LD) coding [16] as shown in the sequel.

Here, we observe that some code constructions that have been proposed under the namelat-

tice space-time codesin recent literature do not benefit from the generalization proposed in

this paper, and hence, are more appropriately categorized as LD codes (e.g., [17], [18]). One

important feature of lattice codes is that they can be decoded by a class of efficient decoders

known aslattice decoders. Lattice decoding algorithms disregard the boundaries of the lattice

code and find the point of the underlying (infinite) lattice closest (in some sense) to the received

point. If a point outside the lattice code boundaries is found, an error is declared. Lattice de-

coding allows for significant reductions in complexity, compared to maximum likelihood (ML)

decoding, since 1) it avoids the need for complicatedboundary control[9] and 2) It allows for

using efficient preprocessing algorithms (e.g., the LLL algorithm [19]) which are known to offer

significant complexity reduction.

It is well known that lattice codes achieve the capacitylog(1 + ρ) of standard single-input

single-output (SISO) unfaded additive white Gaussian noise (AWGN) channels under ML de-

coding [20, 21]. For a long time lattice codes were believed to achieve a rate equal to only

log(ρ) under lattice decoding. Recently, Erez and Zamir have shown that lattice coding and de-

coding indeed achieve the full AWGN capacitylog(1+ρ) provided that transmitter and receiver
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share a common randomness in the form of a dither signal [22]. Their construction is based on

nested lattices (i.e., Voronoi codes) and lattice decoding is applied to the received signal after

an appropriate scaling. The scaling coefficient that does the “magic” in Erez and Zamir scheme

corresponds to the linear MMSE estimator of the channel input from the channel output. The

fundamental role played by minimum mean square error (MMSE) estimation in this problem

has been further illuminated by Forney in [23].

The main contribution of this paper is Theorem 6, stating that LAST codes achieve the op-

timal diversity-vs-multiplexing tradeoff under generalized minimum Euclidean distance lattice

decoding. The key ingredient in our proof is a non-trivial extension of Erez and Zamir scheme

to the case of MIMO channels. It turns out that MMSE estimation plays a fundamental role

in this scenario as well, but the MMSE estimator takes on the form of the MMSE generalized

decision feedback equalizer (MMSE-GDFE) introduced in [24].

In addition to the main result, the analysis and technical arguments developed here allow

for many interesting insights on the structure of optimal space-time coding and decoding tech-

niques. In particular:

1. We show that MMSE estimation plays a fundamental role in allowing lattice decoding to

achieve the optimal diversity-vs-multiplexing tradeoff. In fact, through theoretical anal-

ysis and representative numerical examples, we show that thenaive implementation of

minimum Euclidean distance lattice decoding without MMSE estimation entails signifi-

cant losses in the achievable diversity-vs-multiplexing tradeoff.

2. In our random coding arguments we use ensembles of lattice codes which aregoodfor an

AWGN channel. In other words, we do not impose anyspace-time structureon the en-

semble of codes and yet we establish that these ensembles achieve the optimal diversity-

vs-multiplexing tradeoff. This represents a marked departure from traditional space-time

code design techniques aimed at optimizing the coding gain [3] and/or mutual informa-

tion [16]. More surprisingly, our simulation experiments show that the performance of

randomly selected LAST codes under lattice decoding (with MMSE estimation) rivals

that of the state of the art codes available in the literature under ML decoding.

3. In addition to the optimality of the mod-Λ construction with respect to the diversity-vs-

multiplexing tradeoff in the high SNR regime, we establish the asymptotic optimality of

this construction in terms of closing the gap to the outage probability for an arbitrary

SNR. Specifically, we show that asT →∞, the probability of error achievable with this

scheme approaches the outage probability (assuming i.i.d. Gaussian inputs).

4. The optimality of lattice decoding proves that maximizing the well known “rank and
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determinant design criteria” [3, 4]is not a necessary condition for approaching the fun-

damental limits of delay limited MIMO channels. These design criteria are inspired by a

pairwise probability of error analysis which fails in predicting the performance of lattice

decoding due to the infinite number ofvirtual codewords as seen by the decoder. It re-

mains to be seen if these criteria will play a role in further optimizing the performance of

certain LAST codes.

5. In the generalized mod-Λ construction, we follow in the footsteps of Erez and Zamir and

use a random lattice translate (i.e., dither). It will become clear in the sequel, however,

that the optimality of the proposed scheme will still hold if the dither is replaced by

the optimal lattice translate4. We further elaborate on the role of the random dither in

Section 3.3.

6. As a side result, we also establish the optimality of spherical lattice codes (the shaping

region is a sphere) under lattice and ML decoding. For these codes, encoding requires

the storage of the whole codebook. Voronoi codes (i.e., nested lattices), therefore, enjoy

an important advantage over spherical lattice codes due to their low encoding complexity

[25].

Before we proceed further, a brief remark about the notion of “explicit” coding schemes is in

order. Zheng and Tse proved the achievability ofd?(r) by using a Gaussian i.i.d. random coding

ensemble (i.e., unrestricted coding) and maximum likelihood (ML) decoding. These codes have

no structure, and hence, encoding requires storage of the whole codebook and decoding requires

exhaustive search over all the codewords. The codes proposed in this paper are explicit in the

sense that we use ensembles of lattice codes and lattice decoding. This allows for developing

efficient decoding techniques inspired by algorithms that search for the closest lattice point

(e.g., [26, 9]). The complexity of the decoding algorithm is, therefore,exactly the same as

lattice decoding for single-input single-output (SISO) AWGN channels[22]5 and no additional

complexity is entailed by the use of multiple antennas. This is precisely the same sense in which

Alamouti code is anexplicitconstruction [10].

The rest of this paper is organized as follows. In Section 2, we review the required results

from lattice theory and introduce the class of LAttice Space-Time (LAST) codes. We establish

the optimality of LAST codes with generalized minimum Euclidean distance lattice decoding

in Section 3. We develop our main result in two steps. First, in Section 3.1, we show that

the naive implementation of lattice decoding can entail significant performance losses. Then,

4The optimal lattice translate will be defined rigorously in the sequel.
5Assuming the dimensionality and rate are the same.
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we introduce the generalized mod-Λ construction and establish its optimality in Section 3.2.

Section 4 presents numerical results that validate our theoretical claims. Finally, we offer some

concluding remarks and an outlook on future work in Section 5. In order to enhance the flow of

the paper, all the proofs are deferred to the Appendices.

2 Lattices and LAST codes

We will recall here some notation and results from lattice theory (e.g. [27, 22, 28]) that will be

used throughout the paper. Anm-dimensional real latticeΛ is a discrete additive subgroup of

Rm defined asΛ = {Gu : u ∈ Zm}, whereG is them ×m (full rank) generator matrix ofΛ.

The fundamental Voronoi cellV of Λ is the set of pointsx ∈ Rm closest to0 than to any other

pointλ ∈ Λ. The fundamental volume ofΛ is

Vf (Λ)
4
= V (V) =

∫

V
dx =

√
det(GTG).

The second-order moment ofΛ is defined asσ2(Λ)
4
= 1

mVf (Λ)

∫
V |x|2dx and the normalized

second-order moment is defined as

G(Λ)
4
=

σ2(Λ)

Vf (Λ)2/m
.

The covering radiusrcov(Λ) is the radius of the smallest sphere centered in the origin that

containsV. The effective radiusreff(Λ) is the radius of the sphere with volume equal toVf (Λ).

A sequence of lattices{Λm} of increasing dimension isgood for covering[28] if their

covering efficiency satisfies

ηcov(Λm)
4
=

rcov(Λm)

reff(Λm)
→ 1 (4)

and it isgood for MSE quantizationif

G(Λm) → 1

2πe
(5)

It can be shown (see [28] and references therein) that goodness for covering implies goodness

for MSE quantization. Such lattice sequences exist, as shown in [28] (see also [29]). It is also

known that if{Λm} is a sequence of lattices good for MSE quantization, with fixed second-order

momentσ2, then a random vector uniformly distributed overV(Λm) converges in distribution

(in the sense of divergence) to a Gaussian i.i.d. random vector with per-component variance

equal toσ2 [30].

In the rest of this paper, ensembles of lattices satisfying the Minkowski-Hlawka theorem

play a very important role. For the sake of completeness, we recall the Minkowski-Hlawka

theorem in the form given in [27]:
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Theorem 1 Let f : Rm → R be a Riemann integrable function of bounded support (i.e.,

f(z) = 0 if |z| exceeds some bound). For anyε > 0 there exist ensembles{Λ} of lattices

with fundamental volumeVf and dimensionm such that
∣∣∣∣∣EΛ

[ ∑

z∈Λ,z 6=0

f(z)

]
− 1

Vf

∫

Rm
f(z)dz

∣∣∣∣∣ ≤ ε (6)

¤

As a corollary we have that, for any bounded Jordan-measurable setR ⊂ Rm, there exist

lattice ensembles{Λ} such that

EΛ [|Λ∗ ∩R|] ≈ V (R)

Vf

(7)

whereΛ∗ = Λ− {0} and the approximation in (7) can be made as tight as desired.

Finally, we will need the following result, proved in [22].

Theorem 2 For any R > 0, there exist sequences of nested latticesΛm ⊆ Λ′m of increasing

dimensionm such that:

1. The cardinality of the partitionΛ′m/Λm satisfies

1

m
log |Λ′m/Λm| → R.

2. For eachm, Λ′m is randomly selected in an ensemble that asymptotically satisfies Theorem

1, in the limit ofm →∞.

3. {Λm} is a sequence of lattices that are good for covering (i.e., they satisfy (4)) and conse-

quently is also a sequence of lattices that are good for MSE quantization (i.e., they satisfy

(5)).

¤

An m-dimensional lattice codeC(Λ,u0,R) is the finite subset of the lattice translateΛ+u0

inside theshaping regionR, i.e.,C = {Λ + u0} ∩R, whereR is a bounded measurable region

of Rm. For anyΛ andR, there existsu?
0 such that

|C(Λ,u?
0,R)| ≥ V (R)

Vf (Λ)
. (8)
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Now, we go back to our space-time coding problem and introduce the class of LAST codes.

In order to simplify the presentation, it is useful to introduce the real channel model, equivalent

to (1),

y = Hx + w, (9)

where we definex = (xT
1 , . . . ,xT

T )T with xT
t =

[
Re{xc

t}T, Im{xc
t}T

]T
, w = (wT

1 , . . . ,wT
T )T

with wT
t =

[
Re{wc

t}T, Im{wc
t}T

]T
, and

H
4
=

√
ρ

M
I⊗

([
Re{Hc} −Im{Hc}
Im{Hc} Re{Hc}

])
(10)

is the2NT × 2MT block-diagonal real channel matrix consisting of the same2N × 2M di-

agonal block repeatedT times (I is the identity matrix of dimensionT here and⊗ denotes the

Kronecker product). The design of space-time signals, therefore, reduces to the construction of

a codebookC ⊆ R2MT satisfying the input constraint

1

|C|
∑
x∈C

|x|2 ≤ MT

(equivalent to (2)) and enjoying certain desirable properties. The space-time coding rate is given

by R = 1
T

log2 |C| bits PCU.

We say that a space-time coding scheme is afull-dimensionalLAST code if its codebook is

a lattice code, i.e., ifC = C(Λ,u0,R), for some2MT -dimensional latticeΛ, translation vector

u0 and shaping regionR.

We used the termfull-dimensionalin the above definition to highlight the fact that the di-

mensionality of the underlying lattice is equal to the number of (real) degrees of freedom offered

by the channel. As demonstrated in Section 4, one can obtain LD codes as special cases of the

LAST coding framework for a particular choice of the shaping region. The generalization from

LD to LAST coding is instrumental in approaching the fundamental limits of MIMO channels,

as we will show next.

3 Achieving the optimal tradeoff with LAST codes

In this section we consider LAST codes underlattice decoding. By lattice decoding we refer

to the class of decoding algorithms whichdo not take into account the shaping regionR. In

other words, a lattice decoder finds the point of the underlying (infinite) lattice translateΛ + u0

that is closest (according to a suitable decoding metric) to the received point, irrespective of

whether this point is inR or not. As observed in Section 1, this allows for exploiting the
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algebraic structure of the underlying lattice to reduce the complexity of the search algorithm. In

order to further limit the complexity, we restrict ourselves to the class of generalized minimum

Euclidean distance lattice decoders defined by

ẑ = arg min
z∈Z2MT

|Γy + a−Ξz|2 , (11)

whereΓ andΞ are matrices that will be defined in the sequel anda is a translation vector. It is

well-known that this class of algorithms lends itself to an efficient implementation using the so

calledsphere decoder(e.g., [9] and references therein).

3.1 The suboptimality of “naive” lattice decoding

Before introducing the optimal scheme, we investigate the achievable performance of LAST

codes under straightforward application of lattice decoding. In thisnaive implementation, we

setΓ to be the identity matrix andΞ = HG, whereG is the generator matrix ofΛ. We

shall observe that the suboptimality of this naive lattice decoding, as compared to ML, entails a

significant loss in the achievable diversity-vs-multiplexing tradeoff in most cases.

For a fixed, non-random, channel matrixHc, we have the following result.

Theorem 3 Suppose thatHc has rankM , then the rate

Rld(H
c, ρ)

4
= M log ρ + log det

(
1

M
(Hc)HHc

)
(12)

is achievable by LAST coding and minimum Euclidean distance lattice decoding.

Proof. The proof relies on using LAST codes obtained from lattice ensembles satisfying

Theorem 1 with a suitable translation vector and a spherical shaping region. The proof is based

on the technical machinery introduced by Loeliger in [27]. In particular, the enabling tool in the

analysis is Loeliger’s ambiguity decoder. The details are presented in Appendix B. ¤
We observe that the suboptimality ofRld in Theorem 3 is analogous to the loss of *one*

in the SNR suffered by lattice decoding in SISO AWGN channels [27]. Next, we consider a

random channel matrixHc as defined in (1) and obtain an achievable diversity-vs-multiplexing

tradeoff curve for LAST codes under naive lattice decoding. Following [10], we consider a

family of LAST codesCρ for fixedM andT , obtained from lattices of a given dimension2MT

and indexed by their operating SNRρ. The codeCρ has rateR(ρ) and error probabilityPe(ρ)

(this is the average block error probability for a fixed code, where averaging is with respect to

the random channel matrixHc). We have the following result.
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Theorem 4 For M ≤ N and any block lengthT ≥ 1, there exists a sequence of full dimen-

sional LAST codes that achieves diversity gain

d(r) = min{T, 1 + N −M}(M − r) (13)

for r ∈ [0, M ] under naive minimum Euclidean distance lattice decoding. This coincides with

the optimald?(r) for T = 1 (space-only coding) and squared channel matrix (M = N ), or for

anyN ≥ M , T ≥ 1 + N −M , in the high-rate segmentr ∈ [M − 1,M ].

Proof. The proof is deferred to Appendix C.

¤
Theorem 4 shows that full dimensional LAST coding with thenaiveapplication of lattice

decoding is optimal (in terms of the diversity-vs-multiplexing tradeoff) only in a few cases. On

the contrary, it fails to take full advantage of larger block lengths (T > 1) and/or larger receiver

diversity (N > M ) for multiplexing gainsr < M − 1. In fact, the difference between this

achievable tradeoff and the optimal tradeoff widens asr decreases. While we realize that this is

only a lower bound on the achievable diversity gain, yet this bound highlights the loss in perfor-

mance entailed by lattice coding under lattice decoding. Furthermore, the numerical examples

in Section 4 will validate this claim. The reason of this suboptimality can be traced back to the

loss in the achievable rate of Theorem 3 with respect to the optimal (under unrestricted coding

and decoding) achievable rate. The following two remarks are now in order.

1. In SISO AWGN channels, one can easily see that the loss in performance entailed by

the naive implementation of lattice decoding vanishes as the SNR increases. On the other

hand, Theorem 4 argues that the corresponding loss in quasi-static MIMO fading channels

persistseven asρ → ∞. This can be explained by noting that even with highaverage

SNR, some of the channel eigenvalues can assume very small instantaneous values. With

the straightforward application of lattice decoding, thosefadedeigenvaluesabsorball the

energy of the transmitted signal, and hence, result in significant performance degrada-

tions. In the next section, we will show that by using a MMSE-GDFE front end one can

neutralizethe effect of those faded eigenvalues and achieve the optimal tradeoff.

2. One can achieve other points on the optimal diversity-vs-multiplexing tradeoff by reduc-

ing the dimensionality of the lattice code and using aclevermultiplexing scheme. For

example, one can show that diagonal LAST codes (i.e., only one antenna is active at any

point in time), based on lattices of dimension2M , achieve the pointd = MN, r = 0.

The proof follows from the same technical machinery used to prove Theorem 4. The

suboptimality of this approach manifests itself in the fact thatthe same schemefails to
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achieve all the points on the tradeoff curvesimultaneously. This suboptimality yields

performance degradation for the schemes with low multiplexing gain at high transmis-

sion rates and performance degradation for the schemes with low diversity gains at high

SNR. The scheme proposed in the next section avoids this drawback, and hence, allows

for approaching the fundamental limits of MIMO channels with arbitrary parameters.

3.2 The generalized mod-Λ scheme and its optimality

In [22], Erez and Zamir showed that nested lattice codes achieve the AWGN channel capac-

ity under lattice decoding, provided that the lattice decoder is modified by including a linear

MMSE estimation stage and a random dither signal is used (implying a common randomness

at transmitter and receiver). Random dithering renders the MMSE estimation error signal in-

dependent of the transmitted codeword (see also [23]). For a reason that will appear clearly

later, we shall nickname Erez-Zamir scheme the “mod-Λ scheme”. In this section we present

a non-trivial generalization of the mod-Λ scheme to MIMO channels. We show that for fixed

Hc andT →∞ LAST codes with the mod-Λ scheme achieve rates up to theoptimal informa-

tion rate6 log det
(
I + ρ

M
(Hc)HHc

)
. We show also that LAST codes with the mod-Λ scheme

achieve all points on the optimal diversity-vs-multiplexing tradeoff curved?(r), for block length

T ≥ M + N − 1.

We start by defining nested lattice codes (or Voronoi codes).

Definition 1 Let Λc be a lattice inRm and Λs be a sublattice ofΛc. The nested lattice code

defined by the partitionΛc/Λs is given by

C = Λc ∩ Vs

whereVs is the fundamental Voronoi cell ofΛs. In other words,C is formed by the coset leaders

of the cosets ofΛs in Λc. We also define the lattice quantization function

QΛ(y)
4
= arg min

λ∈Λ

|y − λ|

and the modulo-lattice function

[y] mod Λ
4
= y −QΛ(y).

3

6This is the largest achievable information rate under the input constraintE[xxT] = 1
2I.

12



We say that a LAST code is nested if the underlying lattice code is nested. With nested

codes, the information message is effectively encoded into the cosets ofΛs in Λc.

The proposed mod-Λ scheme works as follows. Consider the nested LAST codeC defined

by Λc (thecoding lattice) and by its sublatticeΛs (theshaping lattice) in R2MT . Assume that

Λs has a second-order momentσ2(Λs) = 1/2 (so thatu uniformly distributed overVs satisfies

E[|u|2] = MT ). The transmitter selects a codewordc ∈ C, generates a dither signalu with

uniform distribution overVs and computes

x = [c− u] mod Λs (14)

The signalx is then transmitted on the MIMO channel. Lety denote the corresponding channel

output (we use the real channel model (9)). We replace thescalarscaling of [22] by a matrix

multiplication by the forward filter matrixF of the MMSE-GDFE [24]. Moreover, instead of

just adding the dither signalu at the receiver (as in [22]), we add the dither signal filtered by

the upper triangular feedback filter matrixB of the MMSE-GDFE. The definitions and some

useful properties of the MMSE-GDFE matrices(F,B) are given in Appendix A.

By construction, we havex = c− u + λ with λ = −QΛs(c− u). Then, we can write

y′ = Fy + Bu

= F (H(c− u + λ) + w) + Bu

= B(c + λ)− [B− FH] (c− u + λ) + Fw

= B(c + λ)− [B− FH]x + Fw

= B(c + λ) + e′. (15)

By construction,x is uniformly distributed overVs and is independent ofc. One can also rewrite

(15) as

y′ = Bc′ + e′ (16)

wherec′ ∈ Λs + c. The remarkable fact in (15) and (16) is that the desired signalc is now

translated by an unknown lattice pointλ ∈ Λs. However, sincec andc′ = c + λ belong to

the same coset ofΛs in Λc, this translation does not involve any loss of information (recall that

information is encoded in the cosetΛs + c, rather than in the codewordc itself). It follows that

in order to recover the information message, the decoder has to identify the cosetΛs + c that

containsc′. This is achieved in two steps. The decoder first finds

ẑ = arg min
z∈Z2MT

|y′ −BGz|2 (17)

whereG is the generator matrix of the channel coding latticeΛc (notice that (17) corresponds

to applying the generalized minimum Euclidean distance lattice decoder defined in (11) to the
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channel outputy with the choicesΓ = F, Ξ = BG anda = Bu.). Then, the decoded

codeword is given by

ĉ = [Gẑ] mod Λs. (18)

In a nutshell, lattice decoding as described above follows naturally as a consequence of

the mod-Λ scheme: lattice decoding is not just a trick to make the receiver simpler, but it is

an essential component of the whole construction. Finally, we note that because of the block

diagonal structure ofH, B is also block diagonal with the2M × 2M upper triangular blockB′

repeatedT times. By construction we have

det
(
BTB

)
= det

(
(B′)TB′)T

= det
(
I +

ρ

M
(Hc)HHc

)2T

(see Appendix A).

The optimality of LAST codes with the mod-Λ scheme and lattice decoding, in the limit of

largeT , is given by the following result.

Theorem 5 For a fixed non-random channel matrixHc, the rate

Rmod(H
c, ρ)

4
= log det

(
I +

ρ

M
(Hc)HHc

)
(19)

is achievable by mod-Λ LAST coding.

Proof. We consider a sequence of nested lattices satisfying Theorem 2. Hence, the MMSE-

GDFE estimation error signal

e′ = − [B− FH]x + Fw (20)

converges in distribution (in the sense of divergence) to the noise vectorw ∼ N (0, 1
2
I). This

follows from Lemma 1 of Appendix A and from the fact thatΛs is asymptotically good for

MSE quantization, implying thatx → N (0, 1
2
I) asT →∞.

Intuitively, in the limit for largeT , the channel (16) resulting from the mod-Λ construction

is equivalent to sending a pointc′ ∈ Λc through a linear channel with matrixB plus an asymp-

totically Gaussian error signale′ independent ofc′. If e′ was exactly Gaussian, the same steps

in the proof of Theorem 3 would apply to this setup and we would see immediately that there

exists a sequence of nested lattices such that, for sufficiently largeT , the probability of error

can be made smaller than any desiredε > 0 provided that

R <
1

2
log det

(
(B′)TB′) = log det

(
I +

ρ

M
(Hc)HHc

)
.

Note also that this holds for anyHc (also of non-full column rank), sinceB is always invertible

(for any finite SNRρ).
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The only technical difficulty is that here the errore′ is not exactly Gaussian for any finiteT .

In Appendix D we show that despite this problem the achievable rate is indeed given by (19),

as if the estimation error was exactly Gaussian. ¤
Next, we consider the achievable diversity-vs-multiplexing tradeoff for LAST codes under

the mod-Λ scheme. Suppose we have a family of nested latticesΛs(ρ) ⊆ Λc(ρ) of fixed dimen-

sion2MT , indexed byρ. As ρ →∞, the ratio|Λc(ρ)/Λs(ρ)| increases asρrT for somer > 0.

This implies that the rate of the corresponding nested LAST codes isCρ is R(ρ) = r log ρ. We

shall show that there exist families of nested LAST codes for which the corresponding diversity

gain isd?(r). This is stated in the following theorem, which is the central contribution of this

paper.

Theorem 6 There exists a sequence of nested LAST codes with block lengthT ≥ M+N−1 that

achieves the optimal diversity-vs-multiplexing tradeoff curved?(r) for all r ∈ [0, min{M, N}]
under the mod-Λ scheme.

Proof. The main difficulty here is that we wish to prove the result for any fixed block length

T ≥ M + N − 1. Hence, we cannot use the sequences of nested lattices of Theorem 2, since

for these sequences the coding latticeΛc satisfies Theorem 1 (the Minkowski-Hlawka theorem)

only asymptotically forT → ∞. On the other hand, Theorem 1 holds for any finiteT . This

motivates us to use the ensemble of lattices defined in [27] as coding lattice ensemble here.

The key observation is that in order to achieve the diversity-vs-multiplexing optimal tradeoff

we do not need a very “clever” shaping lattice. Indeed, any sequence of shaping lattices with

finite covering efficiency (i.e., for whichηcov, as a function of the SNRρ, is uniformly bounded

by a constantβ < ∞) can be used to achieve the optimal tradeoff. The details of the proof

are given in Appendix E. Obviously, in any practical code construction one would look for

a good shaping lattice, in order to achieve better power efficiency for finiteρ (recall that the

diversity-vs-multiplexing tradeoff is achieved asymptotically for largeρ). ¤
It follows immediately from the arguments used to prove Theorems 5 and 6 that the mod-Λ

construction achieves an average probability of error equals to the outage probability, assuming

white Gaussian inputs, in the limit of a large block length (i.e.,T →∞).

3.3 Where is the magic?

The generalized mod-Λ construction presented in the previous section has three main ingre-

dients: 1) the nested lattice structure, 2) the random dither, and 3) the MMSE-GDFE lattice

decoding. We now attempt to identify the roles of these three elements, and hence, highlight

the various advantages offered by the generalized mod-Λ construction. To this end, we resort
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back to thesphericalLAST codes used in Section 3.1 and characterize their performance under

MMSE-GDFE lattice decoding without dithering.

Theorem 7 There exists a sequence of spherical LAST codes with block lengthT ≥ M +

N − 1 that achieves the optimal diversity-vs-multiplexing tradeoff curved?(r) for all r ∈
[0, min{M,N}] under MMSE-GDFE lattice decoding. The coding/decoding scheme need no

common randomness, i.e., achievability is obtained for a sequence of fixed codebooks.

Proof. The main idea in the proof is to replace the random dither with theoptimal translate

and the shaping lattice with a sphere. In order to exploit the techniques used in the proof of

Theorem 6, we add a dither which is uniformly distributed over the Voronoi cell of the coding

lattice at the decoder. Adding such a dither cannot improve the performance of the receiver,

and requires no common randomness since the dither is generated by the receiver and it is not

known by the transmitter. The proof then follows in the footsteps of the proof of Theorem 6 as

detailed in Appendix F. ¤
Theorem 7 argues that lattice coding (without random dithering and nesting) and MMSE-

GDFE lattice decoding aresufficient to achieve the optimal diversity-vs-multiplexing tradeoff.

As a corollary of Theorem 7, it is straightforward to see that spherical lattice coding with ML de-

coding also achieve the optimal tradeoff. In fact, ML decoding cannot be worse than minimum

Euclidean distance lattice decoding. Now, we can identify the following additional advantages

offered by random dithering and nested (Voronoi) coding.

1. The random dither renders the noise signal independent of the transmitted codeword. This

fact along with the geometric uniformity of lattice coding (under lattice decoding) imply

that the probability of error is independent of the transmitted codeword in the generalized

mod-Λ construction. Hence, all the claims regarding the average probability of error

extend naturally to the maximum probability of error. As it is clearly seen in the proof

of Theorem 7, this is not generally true in the case of spherical lattice coding with the

optimal translate, under both lattice decoding and ML decoding.

2. In practice, finding the optimal translate for spherical LAST codes may be prohibitive

(especially for large dimensions). In these cases, randomizing the choice of the translate

(i.e., the random dither) avoids the bad choices and saves computational power. More-

over, with the random dither, the transmitted power is also independent of the transmitted

codeword.

3. While the complexity of lattice decoding isalmost7 independent of the shaping region, the

7With Voronoi codes, there is a slight increase in decoding complexity due to the last step of identifying the

coset.
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encoding complexity of spherical LAST codes is significantly higher than that of Voronoi

LAST codes. The lack of structure in the carving region of spherical codes results in a

look-up table encoder whereas encoding Voronoi codes reduces, again, to the search for

the closest lattice point problem [25].

4 Numerical results

In this section, we present a selected set of numerical examples. Those examples are chosen

to highlight three main points, namely: 1) the potential performance gains possible with LAST

coding, 2) the gain offered by MMSE-GDFE lattice decoding over naive lattice decoding, and 3)

the ability of random LAST coding with MMSE-GDFE lattice decoding to achieve the optimal

diversity-vs-multiplexing tradeoff.

In order to illustrate the first point, we compare LAST coding with linear dispersion (LD)

coding in Figure 1. We first observe that LD coding can be obtained as a special case of LAST

coding as follows. After proper scaling and translation, the matrix codewords in an LD code

can be written as [16]

S(u) =
m∑

`=1

G`u`, (21)

whereu` ∈ {0, ..., Q − 1}, Q is the size of the input PAM constellation,m = 2MT , and

{G` ∈ R2M×T , ` ∈ {1, ..., 2MT}} are the spreading matrices of the LD code. By letting

g` = vec(G`), GLD = [g1, ...,gm], andΛLD
m = {GLDu : u ∈ Zm}, we can now obtain the

vector representation of the LD code as the intersection ofΛLD
m with the regionRLD defined as

theimageof them-dimensional hypercube under the mappingGLD (i.e,RLD = {x = GLDu :

u ∈ Rm, 0 ≤ u` ≤ Q− 1, ` = {1, ...,m}).
In Figure 1, we use the same generator matrix for both the LAST and the LD codes and

report the performance with ML decoding. The difference in the performance can be, therefore,

attributed to the the difference in the shaping region. In fact, the dependence of the shaping

region in LD coding on the generator matrix of the lattice implies a fundamental limit on the

achievable minimum Euclidean distance and coding gain of this class of codes (as argued in

[7]). By relaxing this constraint on the shaping region, LAST coding avoids this limitation.

We remark that the performance trend in Figure 1 was observed for other random choices of

generator matrices (the results are not reported here for brevity).

Figure 2 illustrates the second point. In this figure, one can see that the naive application

of lattice decoding allows for achieving full diversityonly with vertical codes (T = 1) in

symmetric configurations (N = M ). For largerT , only by utilizing an MMSE-GDFE front
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end one can achieve full diversity with lattice decoding. Finally, Figures 3 and 4 validate the

achievability of the optimal tradeoff with LAST coding and MMSE-GDFE lattice decoding.

These figures report the performance ofrandom ensemblesof spherical and nested LAST codes

(obtained via Construction A where(n = 2MT, p, k) are the parameters of the linear code

[27]) in a2× 2 MIMO system. As argued in [7], the optimality of the approach is illustrated in

the constant gap between the probability of error curves and the outage probability at different

SNRs and different rates (at sufficiently high SNR). Furthermore, the small gap between the

performance ofrandomLAST codes and the outage probability (2 − 4 dB at10−5 block error

rate) demonstrates that these codes rival the best ones available in the literature.

5 Conclusions

In this paper, we developed a novel framework for constructing optimal coding/decoding schemes

for delay limited MIMO fading channels. In particular, we introduced the class of LAST codes.

Within this class, we proposed a generalization of Erez and Zamir mod-Λ construction and

proved its optimality with respect to the diversity-vs-multiplexing tradeoff. Through this gen-

eralization, we established the central role of MMSE-GDFE in approaching the fundamental

limits of MIMO channels in the high SNR regime. Our results settle the open problem posed

by Zheng and Tse on the existence of explicit coding constructions that achieve the optimal

diversity-vs-multiplexing tradeoff. Furthermore, we prove the existence of lattice codes which

are good for both AWGN channels and delay limited MIMO fading channels. The random cod-

ing arguments developed in this work can offer valuable guidelines for future works on optimal

code constructions and low complexity decoding algorithms. Our current investigations explore

two directions: 1) using the number theoretic tools proposed in [8] to further optimize the LAST

codes (i.e., minimize the gap to the outage) and 2) developing low complexity variants of the

generalized minimum Euclidean distance lattice decoder and a more precise characterization of

the complexity of such decoders.

Appendices
In Appendix A, we review some known facts about MMSE-GDFE which will be needed

later in the proofs. In the rest of the Appendices, we detail the proofs of our results.

A The MMSE-GDFE

Consider the real additive-noise MIMO linear channely = Hx+w, wherex andw have mean

zero, covarianceE[xxT] = E[wwT] = I, and are mutually uncorrelated and whereH ∈ Rn×m.
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The MIMO matched filter is given by the linear transformation defined by the matrixHT, and

its output is

ymf = HTy = HTHx + wmf (22)

wmf has covarianceHTH.

The standard derivation of the MMSE-GDFE forward and feedback filter matrices is briefly

outlined as follows. We seek a decision-feedback equalizer in the form

z = Fmfymf − (Bmf − I)x̂ (23)

whereFmf ,Bmf ∈ Rm×m, andBmf is upper triangular and monic (i.e., it has unit diagonal

elements). The vector̂x contains an estimate (hard-decisions) of the transmitted symbolx

based on the equalizer outputz. Thanks to the strictly upper triangular form ofBmf − I, (23)

is recursively computable from them-th to 1st component (going upward). Assumingx̂ = x

(ideal feedback assumption), we findFmf andBmf such that the mean-square estimation error

(MSE)E[|e|2], wheree = z− x, is minimized.

This can be obtained by imposing the orthogonality conditionE[eyT
mf ] = 0, by solving first

with respect toFmf as a function ofBmf , and then finding the optimalBmf under the upper

triangular and monic constraint.

After solving forFmf , we obtain

Fmf = Bmf

[
HTH + I

]−1
= BmfΣ

−1 (24)

where we define thesystem covariance matrixΣ
∆
= HTH + I.

By substituting (24) into the expression ofe, we obtain

e = BmfΣ
−1ymf −Bmfx = Bmfd

where we letd
∆
= Σ−1ymf − x. SinceBmf is upper triangular and monic,e can be interpreted

as a prediction error. Namely, we can write

ek = dk +
m∑

j=k+1

bk,jdj

Therefore,−∑m
j=k+1 bk,jdj is the linear MMSE estimate ofdk from the samplesdk+1, . . . , dm

(identified with the “past” of the sequenced with respect to thek-th component). Again by

applying the orthogonality principle and using the fact thatBmf must be the upper triangular

we obtain that the MSE is minimized ifBmf is the whitening filter ford (i.e., it makes the

covariance matrix ofe diagonal).
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After some algebra, we get thatE[ddT] = Σ−1 (notice thatΣ is always invertible). Let the

Cholesky decomposition ofΣ be

Σ = BT
mf∆Bmf

whereBmf is upper triangular and monic and∆ is diagonal with positive diagonal elements. It

is immediate to check that

E[eeT] = E[BmfddTBT
mf ] = ∆−1

is diagonal, as desired. By substituting in (24), we obtain the corresponding forward filter

matrix as

Fmf = ∆−1B−T
mf

Any left-multiplication by a non-singular diagonal matrix of bothFmf andBmf yields an equiv-

alent MMSE-GDFE. In particular, we multiply by∆1/2 in order to make the covariance of the

estimation errore equal toI, and we obtain the MMSE-GDFE applied directly on the original

channel output in the form

z = Fy − U(B)x̂

whereB = ∆1/2Bmf , U(·) takes the strictly upper triangular part of its argument, andF =

B−THT. Under the ideal feedback assumption, the resulting error signale = z− x has covari-

anceI.

Interestingly, we can define the augmented channel matrix

H̃ =

[
H

I

]

and its QR decomposition,

H̃ = Q̃R

whereQ̃ ∈ R(n+m)×m has orthonormal columns andR ∈ Rm×m is upper triangular with

positive diagonal elements. Moreover, we denote byQ = HR−1 the uppern ×m part ofQ̃.

Then, it is immediate to show that

B = R

F = QT (25)

Moreover, by construction we haveBTB = H̃TH̃ = I + HTH.

Finally, we have the following

Lemma 1 Letv = (B − FH)x + Fw, wherex andw are uncorrelated, with mean zero and

covariance matrixI. Then,E[vvT] = I.
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Proof. We haveE[vvT] = (B− FH)(B− FH)T + FFT. First, notice that

FH = QTH

= B−THTH

= B−T(HTH + I)−B−T

= B−B−T (26)

and that

FFT = B−THTHB−1

Hence,

E[vvT] = B−TB−1 + B−THTHB−1

= B−T(I + HTH)B−1

= I (27)

¤

B Proof of Theorem 3

We consider an ensemble of2MT -dimensional random lattices{Λ} with fundamental volume

Vf satisfying Theorem 1. The random lattice codebook isC(Λ,u0,R), for some fixed trans-

lation vectoru0 and whereR is the2MT -dimensional sphere of radius
√

MT centered in the

origin. Hence, for eachx ∈ C(Λ,u0,R) the input constraint|x|2 ≤ MT is satisfied.

SinceHc has rankM , the pseudoinverse ofH is given by [31]

H† =
(
HTH

)−1
HT (28)

and satisfiesH†H = I. Without loss of generality we consider the following decoder. In the

first step, we apply the linear zero-forcing (ZF) equalizer given byH† in order to obtain

r = H†y = x + e, (29)

wherex ∈ Λ is the transmitted point ande = H†w, is a noise vector∼ N (0, 1
2
(HTH)−1).

In the second step, we apply theambiguity lattice decoderof [27]. This decoder is defined by

a decision regionE ⊂ R2MT and outputŝx ∈ Λ if r ∈ E + x̂ and there exists no other point

x′ ∈ Λ such thatr ∈ E + x′. We define the ambiguity eventA as the event that the received

pointr belongs to{E+x}∩{E+x′} for some pair of distinct lattice pointsx,x′ ∈ Λ. If x̂ 6= x

orA occur, we have error.
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For givenΛ andE we have

Pe(E|Λ) ≤ Pr(e /∈ E) + Pr(A) (30)

By taking the expectation over the ensemble of random lattices, from Theorem 4 of [27] we

obtain

Pe(E)
4
= EΛ[Pe(E|Λ)] ≤ Pr(e /∈ E) + (1 + δ)

V (E)

Vf

(31)

for arbitraryδ > 0.

We choose as decision region the ellipsoid defined by

ET,γ
4
=

{
z ∈ R2MT : zTHTHz ≤ MT (1 + γ)

}
(32)

It follows from standard typicality arguments that for anyε > 0 andγ > 0 there existsTγ,ε such

that for allT > Tγ,ε

Pr(e /∈ ET,γ) < ε/2 (33)

Hence, for sufficiently largeT , there exists at least a latticeΛ? in the ensemble with error

probability satisfying

Pe(ET,γ|Λ?) ≤ ε/2 + (1 + δ)
V (ET,γ)

Vf

(34)

For this lattice, we choose the translation vectoru?
0 such that (8) holds. By letting|C(Λ?,u?

0,R)| =
exp(TR), we can write

Pe(Λ
?, ET,γ) ≤ ε/2 + (1 + δ)

V (ET,γ) exp(TR)

V (R)
(35)

¿From standard geometry formulas, we have

V (ET,γ)

V (R)
= (1 + γ)MT det

(
HTH

)−1/2

= (1 + γ)MT

(
M

ρ

)MT

det
(
(Hc)HHc

)−T
(36)

where we have used the definition ofH in terms ofHc.

The second term in the upper-bound (35) can be made smaller thanε/2 for sufficiently large

T if

R <
1

T
log

V (R)

V (ET,γ)
= M log ρ + log det

(
1

M
(Hc)HHc

)
− γ′ (37)

whereγ′ → 0 asγ → 0. This shows the achievability of the rateRld(H
c, ρ) in (12) with

the ambiguity decoder. The final step in the proof follows by noticing that with this choice

of decision region in (32), the probability of error of the ambiguity decoder upper-bounds that

of the generalized minimum Euclidean distance lattice decoder (11) with the choicesΓ = I,

Ξ = HG anda = −Hu?
0.
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C Proof of Theorem 4

We consider an ensemble of2MT -dimensional random lattices{Λ} with fundamental volume

Vf satisfying Theorem 1. The random lattice codebook isC(Λ,u0,R), for some fixed trans-

lation vectoru0 and whereR is the2MT -dimensional sphere of radius
√

MT centered in the

origin. Hence, for eachx ∈ C(Λ,u0,R) the input constraint|x|2 ≤ MT is satisfied.

We upper-bound the average probability of error (average over the channel and over the

lattice ensemble) as

Pe(ρ)
4
= EΛ[Pe(ρ)] ≤ Pr(Rld(H

c, ρ) ≤ R(ρ)) + EΛ [Pr(error, Rld(H
c, ρ) > R(ρ)|Λ)] (38)

In order to computePr (Rld(H
c, ρ) ≤ R(ρ)), we follow in the footsteps of [10]. Denoting

R = r log(ρ) and det
(
(Hc)HHc

)
= ρ−

PM
i=1 αi, whereαi

4
= − log λi/ log ρ and where0 ≤

λ1 ≤ · · · ≤ λM are the eigenvalues of(Hc)HHc, we can write

Pr (Rld(H
c, ρ) ≤ R(ρ)) = Pr

(
M∑
i=1

αi ≥ M − r

)
(39)

Hence,

Pr (Rld(H
c, ρ) ≤ R(ρ)) = Eα

[
1

{
M∑
i=1

αi ≥ M − r

}]
(40)

Using the fact that{λ1, . . . , λM} follow a Wishart distribution [1, 10], it is possible to show that

Eα

[
1

{
M∑
i=1

αi ≥ M − r

}]
.
=

∫

B
exp

(
− log(ρ)

M∑
i=1

(2i− 1 + N −M)αi

)
dα (41)

whereB ⊆ RM is defined byα1 ≥ · · · ≥ αM ≥ 0 and by
∑M

i=1 αi ≥ M − r. As a consequence

of Varadhan’s lemma [32], we obtain

−dc
∆
= lim

ρ→∞
log Pr (Rld(H

c, ρ) ≤ R(ρ))

log ρ

= lim
z→∞

1

z
log

∫

B
exp

(
−z

M∑
i=1

(2i− 1 + N −M)αi

)
dα

= − inf
α∈B

M∑
i=1

(2i− 1 + N −M) αi (42)

which can be written more concisely as

Pr (Rld(H
c, ρ) ≤ R(ρ))

.
= ρ−dc , (43)
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It is straightforward to see that the minimization in the last line of (42) is achieved forα1 =

M − r andαi = 0 for all i > 1, yieldingdc = (1 + N −M)(M − r).

Now, let Pe (R(ρ)|α, Λ) denote the probability of error for a given choice ofΛ and rate

R(ρ) given that the channel matrix has determinant det((Hc)HHc) = ρ−
P

i αi and letB′ denote

the region defined byα1 ≥ · · · ≥ αM ≥ 0 and by
∑M

i=1 αi ≤ M − r. We have

EΛ [Pr (error, Rld(H
c, ρ) > R(ρ)|Λ)] =

∫
B′ p (α)EΛ[Pe (R(ρ)|α, Λ)]dα

.
=

∫
B′ exp

(
− log(ρ)

∑M
i=1(2i− 1 + N −M)αi

)
EΛ[Pe (R(ρ)|α, Λ)]dα (44)

In order to boundEΛ[Pe (R(ρ)|α, Λ)], we apply again the ambiguity decoder to the ZF channel

output (29) with decision regionET,γ defined in (32). LetHTH = VSVT, with V ∈ RM×M

orthogonal andS diagonal with non-negative (positive almost surely) diagonal elements. Then,

e′ = S1/2VTe, wheree is defined in (29), is∼ N (0, 1
2
I). Using this fact, we obtain the

Chernoff bound

Pr(e /∈ ET,γ) = Pr
(
eTHTHe ≥ MT (1 + γ)

)

= Pr
(|e′|2 ≥ MT (1 + γ)

)

≤ min
λ≥0

exp (−MT (λ(1 + γ) + log(1− λ)))

= (1 + γ)MT e−MTγ (45)

Using the optimal translate for every lattice in the ensemble and noticing that|Cρ| = ρrT , we

get

Vf ≥ V (R)ρ−rT (46)

whereR is the sphere of radius
√

MT centered in the origin. From Theorem 4 of [27] and (36)

we find, for all arbitraryδ > 0,

EΛ[Pe (R(ρ)|α, Λ)] ≤ (1 + γ)MT e−MTγ + (1 + δ)(1 + γ)MT
( ρ

M

)−MT

ρrT det
(
(Hc)HHc

)−T

= (1 + γ)MT
[
e−MTγ + c1ρ

−T(M−r−PM
i=1 αi)

]
(47)

wherec1 does not depend onρ.

Finally, we letγ = log ρ and we use (47) in (44). By applying again Varadhan’s lemma we

obtain that

EΛ [Pr (error, Rld(H
c, ρ) > R(ρ)|Λ)]

.
= ρ−dn , (48)

where

dn = inf
α∈B′

{
M∑
i=1

(2i− 1 + N −M − T )αi + T (M − r)

}
(49)
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It is easily seen that if1 + N −M ≤ T then the minimum is obtained by lettingα1 = M − r

andαi = 0 for all i > 1 and yieldsdn = (1 + N −M)(M − r), while if 1 + N −M > T then

the minimum is obtained forαi = 0, ∀ i, yieldingT (M − r). In the first case, the exponents

of the two terms in the upper-bound (38) coincide. In the second case, the second term of (38)

dominates the first term. We conclude that the exponent of the upper-bound is given by (13).

By using (43) and (48) in (38), we obtain that there exists at least a sequence of lattice codes

{C?
ρ} in the ensemble that achieves the diversity-vs-multiplexing tradeoff given by (13) . The

final statement of Theorem 4 follows by noticing that forT = 1 the optimal tradeoff is given

by [10] N(1 − r/M), that forM = N coincides with (13), and that for anyN ≥ M andT ≥
1+N −M we obtain the straight-line segment joining the points(r = M −1, d = N −M +1)

and(r = M,d = 0), which coincides withd?(r).

D Proof of Theorem 5

We consider an ensemble of2MT -dimensional nested lattices{Λs ⊆ Λc} satisfying Theorem

2. Consequently, asT → ∞ {Λc} asymptotically satisfies Theorem 1. We denote byVc and

Vs the fundamental volumes ofΛc andΛs, respectively. By construction,R = 1
T

log Vs/Vc and

Vc is fixed (constant withT ). Moreover,Λs has second-order momentσ2(Λs) = 1/2, so that

the input power constraint is satisfied (recall that the inputx of the mod-Λ channel is uniformly

distributed overVs).

SinceB is invertible, we obtain the equivalent channel output

y′′ = B−1y′ = c′ + e′′

wherec′ ∈ Λc. Then, we apply theambiguity lattice decoderof [27] with decision region

ET,γ
4
=

{
z ∈ R2MT : zTBTBz ≤ MT (1 + γ)

}
(50)

The probability of error for givenΛc is upper-bounded by

Pe(ET,γ|Λc) ≤ Pr(e′′ /∈ ET,γ) + Pr(A) (51)

whereA is the ambiguity event defined as in the Proof of Theorem 3. By taking the expectation

over the ensemble of random lattices, from Theorem 4 of [27] we obtain

Pe(E)
4
= EΛc [Pe(E|Λc)] ≤ Pr(e′′ /∈ ET,γ) + (1 + δ)

V (ET,γ)

Vc

(52)

whereδ → 0 asT →∞, since by construction the sequence{Λc} satisfies Theorem 1 for large

T . By using the fact thatVc = Vs exp(−TR) and that

V (ET,γ) = (1 + γ)MT det(BTB)−1/2V (B(
√

MT ))
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whereV (B(
√

MT )) is the volume of a2MT -dimensional sphere of radius
√

MT , we obtain

Pr(A) ≤ (1+δ) exp

(
−T

[
log det

(
I +

ρ

M
(Hc)THc

)
−M log(1 + γ)− 1

T
log

V (B(
√

MT ))

Vs

−R

])

(53)

Since{Λs} is a good sequence of lattice for MSE quantization and, by construction, the second-

order moment ofΛs is equal to1/2 for eachT , using standard geometry and Stirling formulas

it is easy to show that
1

T
log

V (B(
√

MT ))

Vs

→ 0

asT →∞. Therefore, sinceγ > 0 is arbitrary, we obtain the upper-bound

Pr(A) ≤ exp
(
−T

[
log det

(
I +

ρ

M
(Hc)THc

)
−R− γ′

])
(54)

whereγ′ → 0 asT → ∞. We conclude that for allε > 0 there exists a sequence of pairs of

nested lattices{Λs ⊆ Λ?
c} for which the ambiguity probability is upper-bounded byε/2, for

sufficiently largeT , provided that

R < log det
(
I +

ρ

M
(Hc)THc

)

The proof is then complete if we show thatPr(e′′ /∈ ET,γ) < ε/2 for arbitraryγ > 0, ε > 0 and

sufficiently largeT . Recalling the definition ofET,γ, this condition can be written in the more

convenient form

Pr(|e′|2 ≥ MT (1 + γ)) ≤ ε/2 (55)

wheree′ = − [B− FH]x + Fw is the MMSE estimation error signal andx ∼ Uniform over

Vs, w ∼ N (0, 1
2
I) are statistically independent.

For reasons that will become clear later, we consider a *noisier* system by adding the noise

vectorw2 to the received signal before processing (we will determine the variance ofw2 later).

So, we replacee′ by the sume′ + Fw2 in equation (55). In order to use the Chernoff bound

as in the proof of Theorem 4, we need to replace the self-noisex by a white Gaussian vectorg

(with a possibly higher variance). To this end, we follow in the footsteps of [22]. In particular,

following the argument of Lemma 11 in [22], we obtain that

fx(z) ≤ η2MT
cov fv(z), (56)

wherefx(z) is the pdf ofx, fv(z) is the pdf of a random vector uniformly distributed over the

covering sphereB(rcov), of radiusrcov = rcov(Λs) and whereηcov = rcov(Λs)/reff(Λs) denotes

the covering efficiency ofΛs.
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Let r =
√

MT+1
MT

rcov, and letσ2 denote the second-order moment of the sphereB(r). Using

standard geometry formulas we obtain

σ2 = G∗V (B(r))1/MT =
r2

2MT + 2
=

r2
cov

2MT
(57)

whereG∗ denotes the normalized second-order moment of a sphere in2MT dimensions.

Let g be a random2MT -dimensional vector∼ N (0, σ2I), and denote byfg(ν) its pdf. For

|z| = √
2MTσ = rcov we have

− 1

2MT
log fg(z) =

1

2
log 2πeσ2 (58)

Also, for |z| = rcov we have

− 1

2MT
log fv(z) =

1

2
log V (B(rcov))

1/MT

=
1

2
log

r2
cov

2(MT + 1)G∗

=
1

2
log

MTσ2

(MT + 1)G∗

=
1

2
log 2πeσ2 − 1

2
log

(
2πe

(
1 +

1

MT

)
G∗

)
(59)

By putting together (58) and (59), and from the fact thatfg(z) is decreasing in|z| while fv(z)

is zero for|z| > rcov and constant for|z| ≤ rcov, we obtain that, for allz ∈ R2MT ,

fv(z) ≤ exp

(
MT log

(
2πe

(
1 +

1

MT

)
G∗

))
fg(z) (60)

Moreover, by using the fact thatG∗ = (MT !)1/MT

2π(MT+1)
and the Stirling formulalog n! = n log n −

n + o(n), we obtain

MT log

(
2πe

(
1 +

1

MT

)
G∗

)
= o(MT )

therefore, the “blowing-up” factor in front offg(z) in (60) is a sub-exponentially increasing

functionexp(o(MT )) of T .

We define the error vector

ẽ = (B− FH)g + F(w + w2) (61)

where we choosew2 ∼ N (0, (σ2 − 1/2)I). Since the second-order moment of the covering

sphereB(rcov) is given byr2
cov/(2MT + 2) ≤ σ2, and it is certainly not smaller than the
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second-order moment ofVs, which by construction is equal to1/2, we have thatσ2 − 1/2 is

non-negative, hence the additional noisew2 is well-defined.

From the bounds developed above, it is immediate to conclude that

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤ exp(o(MT ))η2MT
cov Pr

(|ẽ|2 ≥ MT (1 + γ)
)

(62)

Notice thatg ∼ w+w2 ∼ N (0, σ2I). From Lemma 1 we obtain thatẽ ∼ N (0, σ2I), therefore,

we can use the same Chernoff bounding approach used in the proof of Theorem 4 and obtain

Pr
(|ẽ|2 ≥ MT (1 + γ)

) ≤
(

1 + γ

2σ2

)MT

exp

(
−MT

(
1 + γ

2σ2
− 1

))
(63)

By using (63) in (62) we obtain

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤ exp(o(MT ))η2MT
cov

(
1 + γ

2σ2

)MT

exp

(
−MT

(
1 + γ

2σ2
− 1

))

= exp

(
−MT

(
1 + γ

2σ2
− 1− log

1 + γ

2σ2
− 2 log ηcov − o(MT )

MT

))

≤ ε/2 (64)

where the last inequality holds for sufficiently largeT , sinceηcov → 1 (recall thatΛs is a good

sequence of lattices for covering) and by noticing that
1 + γ

2σ2
− 1− log

1 + γ

2σ2
> 0

for some arbitraryγ > 0, since the functionx− 1− log x is strictly positive forx ≥ 0, x 6= 1,

and sinceσ2 → 1/2 asT →∞. The fact thatσ2 tends to1/2 can be seen as follows:

σ2 =
r2
cov

2MT

=
η2

covreff(Λs)
2

2MT

=
η2

cov

2MT

[
Vs

V (B(1))

]1/MT

=
η2

cov

2MT

σ2(Λs)/G(Λs)

V (B(1))1/MT
(65)

Using the fact thatσ2(Λs) = 1/2 by construction, thatG(Λs) → 1
2πe

since{Λs} is good for

MSE quantization, and the formula

V (B(1)) =
πMT

Γ(MT + 1)

of the volume of the unit-radius sphere in2MT dimensions, we obtain thatlimT→∞ σ2 = 1/2.

This concludes the proof. Interestingly, we remark that by replacing the self noisex by a

Gaussian random vectorg of slightly larger variance and adding noisew2 provides only a

vanishing increase in error probability for large block lengthT .
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E Proof of Theorem 6

We consider the Loeliger ensemble of mod-p lattices defined in [27] (see also [22, 28]). For the

sake of completeness, we recall here its definition. Letp be a prime. The ensemble is generated

via Construction A, as the set of all lattices given by

Λp = κ
(
gZp + pZ2MT

)
(66)

wherep → ∞, κ → 0 is a scaling coefficient adjusted such that the fundamental volume

Vf = κ2MT p2MT−1 = 1, Zp denotes the field of mod-p integers, andg ∈ Z2MT
p is a vector with

i.i.d. components. We use a pair of self similar lattices for nesting. In particular, we take the

shaping lattice to beΛs = ζΛp, whereζ is chosen such thatr2
cov = 1/2 in order to satisfy the

input power constraint. The coding lattice is obtained asΛc = 1/τΛs, whereτ = bρr/2Mc in

order to satisfy the transmission rate constraint thatR(ρ)
.
= r log ρ. This yields the fundamental

volumes

Vf (Λs)
4
= Vs = ζ2MT (67)

Vf (Λc)
4
= Vc =

(
ζ

τ

)2MT

(68)

Since our proof relies on self similar lattices for constructing nested codes, we need to

establish that the lattices in the ensemble arereasonablygood for both channel coding and

shaping. Our first step is to expurgate the ensemble in (66) appropriately such that the remaining

lattices in the expurgated ensemble satisfy an upper-bound on the covering efficiency that grows

only logarithmically withρ. Let rp = reff/ log(ρ). Then, using the uniform distribution of the

lattice points and a simple union bounding argument (the same as the one used in [28]), we get

Pr{(Λp + B(rp)) is a packing} ≥ 1−
(

2rp + d

reff

)2MT

, (69)

where2d = κ
√

2MT is the diagonal of the elementary cube with sideκ. It then follows

that

Pr

{
ηpack =

rpack

reff

≥ 1

log(ρ)

}
= Pr{(Λp + B(rp)) is a packing}

≥ (log(ρ))2MT − (2 + d/reff)2MT

(log(ρ))2MT
, (70)

whered can be made as small as desired by lettingp →∞.
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This motivates us to expurgate the ensemble by removing the lattices withηpack < 1
log(ρ)

.

Now, we need to upper-bound the covering efficiency of lattices in the expurgated ensemble.

Without loss of generality, we consider a point “a” in the fundamental region at a distancercov

from the origin. Using the convexity of the fundamental region, we then construct a coneinside

the fundamental region with apex at “a” and axis passing through the origin by connecting “a”

to all the points in the projection of the packing sphere over the orthogonal subspace to the cone

axis. Since the volume of this cone is smaller than or equal to the fundamental volumeVf = 1,

one can see thatηcov ≤ ηmax = O
(
(log(ρ))2MT−1

)
for all lattices in the expurgated ensemble.

In order to use the Minkowski-Hlwaka theorem with the expurgated ensemble, we will need the

following relation

EΛexp (χ) ≤ (log(ρ))2MT

(log(ρ))2MT − (2 + d/reff)2MT
EΛp (χ) , (71)

whereEΛexp(.) is the expectation with respect to the expurgated ensemble,EΛp(.) is the

expectation with respect to the ensemble in (66)8, andχ is a non-negative random variable (i.e.,

χ ≥ 0).

We use again theambiguity lattice decoderof [27] with decision regionET,γ given in (50).

This way, we obtain the following upper bound on the average error probability (averaged over

the expurgated code ensemble for fixed channel matrix) as a modified version of (52) where

now δ → 0 asp →∞, Vc ≥ Vsρ
−rT , and equation (71) is enforced

Pr(A|Hc) ≤ (1+δ)
(log(ρ))2MT

(log(ρ))2MT − (2 + d/reff)2MT

(
(1 + γ)η2

max

)MT
ρrT det

(
I +

ρ

M
(Hc)HHc

)−T

.

(72)

Next, we consider the first term in the union bound, given byPr(|e′|2 ≥ MT (1 + γ)). This

term does not depend on the channel matrix, and as in the proof of Theorem 4 our goal is to

show that

Pr(|e′|2 ≥ MT (1 + γ))≤̇ρ−d?(r)

i.e., that this term can be neglected as it is exponentially vanishing with respect to the ambiguity

probability term.

Sincee′ is not Gaussian, we have to resort to a bounding technique analogous to what done

in the proof of Theorem 5. Again, we introduce a2MT -dimensional Gaussian random vector

g ∼ N (0, 0.5I) and define the modified error vector

ẽ = (B− FH)g + Fw. (73)

8It is straightforward to see that the same relation holds if the two ensembles are scaled with the same, but

arbitrary, factor.
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By proceeding exactly in the same way as in Section D, we conclude that

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤ exp(o(MT ))η2MT
max Pr

(|ẽ|2 ≥ MT (1 + γ)
)
. (74)

From Lemma 1 we obtain thatẽ ∼ N (0, 0.5I), therefore, we can use the usual Chernoff bound-

ing technique and obtain

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤ exp(o(MT ))η2MT
max (1 + γ)MT exp (−MTγ)

= exp

(
−MT

(
γ − log(1 + γ)− 2 log ηmax − o(MT )

MT

))

(75)

By lettingγ = log ρ, we obtain

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤̇ ρ−MT (76)

For T ≥ M + N − 1, the exponent ofPr (|e′|2 ≥ MT (1 + γ)) with respect tolog ρ is clearly

larger thand?(r) (whose maximum isMN ). Hence, we conclude that the first term in the union

bound is exponentially vanishing and can be neglected.

Having analyzed the average error probability (over the ensemble of nested LAST codes) of

the ambiguity decoder, we are now ready to conclude the proof of Theorem 6. We upper-bound

the average probability of error (averaged over the expurgated ensemble and over the channel)

as

Pe(ρ)
4
= EΛ[Pe(ρ)] ≤ Pr(Rmod(H

c, ρ) ≤ R(ρ)) + EΛc [Pr(error, Rmod(H
c, ρ) > R(ρ)|Λc)]

(77)

whereRmod(H
c, ρ) = log det(I + ρ

M
(Hc)HHc). Since the event{Rmod(H

c, ρ) ≤ R(ρ)} coin-

cides with the information outage probability with Gaussian i.i.d. inputs, the same analysis of

[10] applies here, yielding

Pr(Rmod(H
c, ρ) ≤ R(ρ))

.
= ρ−d?(r) (78)

We define again the normalized log-eigenvaluesαi
4
= − log λi/ log ρ, where0 ≤ λ1 ≤ · · · ≤

λM are the eigenvalues of(Hc)HHc. Following [10], we have

det
(
I +

ρ

M
(Hc)HHc

)
.
= exp


log(ρ)

min{M,N}∑
i=1

[1− αi]
+




Correspondingly, the outage event can be written in terms ofα as

B =

{
α ∈ Rmin{M,N}

+ :
∑

i

[1− αi]
+ ≤ r, , α1 ≥ · · · ≥ αmin{M,N}

}
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We letB′ denote the complement ofB, andPe(R(ρ)|α, Λc) denote the probability of error of

the MMSE-GDFE lattice decoder applied to the nested LAST code formed byΛc, Λs, of rate

R(ρ)
.
= r log ρ, for given channel with normalized log-eigenvaluesα. As for the second term

in (77), because of what said above, we have

EΛc [Pr(error, Rmod(H
c, ρ) > R(ρ)|Λc)]

.
=

∫

B′
p(α)EΛc [Pe(R(ρ)|α, Λc)]dα

≤̇
∫

B′
p(α) Pr(A|α)dα

.
=

∫

B′
exp


− log(ρ)




min{M,N}∑
i=1

(2i− 1 + |M −N |)αi + T




min{M,N}∑
i=1

[1− αi]
+ − r








 dα

(79)
.
= ρ−d?(r) (80)

where we have used the explicit expression (72) for the average (over the lattice ensemble)

ambiguity probability conditioned over the channel, i.e., with respect toα. The final result (80)

follows from noticing that (79) is identical to equation (20) in [10], that is, it is equivalent (in

the sense of
.
=) to the probability of error of random Gaussian codebooks under ML decoding.

¤

F Proof of Theorem 7

We reconsider LAST coding with spherical shaping region, as in the proof of Theorem 4, but

we shall replace standard lattice decoder by the MMSE-GDFE lattice decoding. Consider the

lattice codeC(Λ,u?
0,R) whereR = B(

√
MT ) is the2MT -dimensional sphere with radius√

MT , such that the input power constraint is satisfied for all codewords. For each choice ofΛ,

we use a translation vectoru?
0 such that (8) is satisfied (we know that suchu?

0 exists, possibly

not uniquely).

At the receiver, we consider the MMSE-GDFE lattice decoding defined by

ẑ = arg min
z∈Z2MT

|Fy −Bu?
0 −BGz|2 (81)

whereF,B are the MMSE-GDFE matrices defined in Section A, andG is the generator matrix

of Λ. If Gẑ + u?
0 is not inR, an error is declared.

As argued in previous proofs, the error probability of the above decoder is upper-bounded

by the error probability of the ambiguity decoder for the lattice translateΛ + u?
0 with decision
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regionET,γ defined in (50) applied to the modified channel outputy′′ = B−1y′, where we define

y′ = Bc− [B− FH]c + Fw = Bc + e′ (82)

wherec ∈ C(Λ,u?
0,R).

Assuming thatΛ belongs to an ensemble satisfying Theorem 1 we can upper-bound the

average probability of error, where now average is both with respect to the lattice ensemble and

with respect to the codewords of the lattice code, for fixed channel matrix, as

Pe(ET,γ)
4
= EΛ

[
1

|C|
∑
c∈C

Pr (error|Λ, c, ET,γ)

]

≤ Pr(|e′|2 ≥ MT (1 + γ)) + (1 + δ)(1 + γ)MT det
(
I +

ρ

M
(Hc)HHc

)−T

ρrT

(83)

wheree′ is distributed as−[B−FH]c+Fw with c ∼Uniform over the codebookC. It is clear

from the proof of Theorems 4 and 6 that Theorem 7 holds if we can show that the first term in

(83) satisfiesPr(|e′|2 ≥ MT (1 + γ)) ≤̇ ρ−d?(r).

We define the modified error signal

ẽ = e′ − [B− FH]u + Fw2

= −[B− FH]x + F(w + w2) (84)

whereu is uniformly distributed on the packing sphereB(rpack), whererpack denotes the pack-

ing radius ofΛ, andw2 is white Gaussian with a variance that will be specified later. By

construction,x is uniformly distributed over the region

R′ =
⋃
c∈C
{c + B(rpack)} (85)

of volumeV (R′) = |C|V (B(rpack)). This region is certainly contained in the sphereB(
√

MT +

rpack). Hence, we have that

fx(z) ≤ V (B(
√

MT + rpack))

|C|V (B(rpack))
fv(z), ∀ z ∈ R2MT

wherefx(z) denotes the pdf ofx andfv(z) denotes the pdf of a random vectorv, uniformly

distributed over the sphereB(
√

MT + rpack). Notice also that, for|C| = exp(TR) = ρrT , we

have
V (B(

√
MT + rpack))

|C|V (B(rpack))
=

(
1 +

√
MT

rpack

)2MT

ρ−rT
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We can replicate the proof technique used in Sections D) and E), that consists of replacingx

with v and successively replacingv by g ∼ N (0, σ2I), where

σ2 =
1

2

(
1 +

rpack√
MT

)2

≥ 1

2
(86)

We also choose the per-component variance ofw2 asσ2 − 1/2, that is non-negative.

By Lemma 1 in Section A we have that

(B− FH)g + F(w + w2) ∼ N (0, σ2I)

By applying the Chernoff bound on the Gaussian tail probabilityPr(|(B − FH)g + F(w +

w2)|2 ≥ MT (1 + γ)) we obtain the upper-bound

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤ exp(o(MT ))

(
1 +

√
MT

rpack

)2MT

ρ−rT ·

exp

(
−MT

(
1 + γ

2σ2
− 1− log

1 + γ

2σ2

))
(87)

Now, for each SNRρ we selectΛ in the Loeliger ensembleLp,2MT with fundamental volume

Vf (ρ) and arbitrarily largep. It turns out that since the shaping regionR = B(
√

MT ) does

not depend onρ, in order to achieve coding rateR(ρ) = r log ρ the fundamental volumeVf (ρ)

must vanish asρ−rT , i.e.,Vf (ρ)
.
= ρ−rT . Moreover, since these lattices satisfy the Minkowski-

Hlawka theorem (Theorem 1), it follows from Theorem 3 of [27] and Theorem 1 of [28] that

for almost all lattices in the ensemble, the packing efficiency

ηpack =

(
V (B(rpack))

Vf (ρ)

)1/2MT

=
rpack

reff

is lower-bounded by

ηpack≥̇1

2
(88)

for sufficiently largep. From a union bound argument similar to what was used in [28] to prove

the simultaneous goodnessof lattices, we can see that there exist latticesΛ? in the ensembles,

for increasingρ, such that their ambiguity probability is upper-bounded by the second term in

(83) and their packing efficiency is lower bounded by (88). For such lattices we have

rpack≥̇1

2

(
Vf

V (B(1))

)1/2MT
.
= ρ−r/2M

We conclude thatσ2 → 1/2 and
(

1 +

√
MT

rpack

)2MT

ρ−rT = O(1)
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Figure 1: Random LAST code versus random LD code.

asρ →∞.

Using these asymptotics in (87) and lettingγ = log ρ we obtain that

Pr
(|e′|2 ≥ MT (1 + γ)

) ≤̇ ρ−MT ≤̇ ρ−d?(r)

where the last inequality holds sinceT ≥ M + N − 1. This concludes the proof. ¤
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Figure 2: MMSE-GDFE lattice decoding versus naive lattice decoding.
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Figure 3: Random nested LAST codes with MMSE-GDFE lattice decoding achieve the optimal

diversity-vs-multiplexing tradeoff.
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Figure 4: Random spherical LAST codes with MMSE-GDFE lattice decoding achieve the op-

timal diversity-vs-multiplexing tradeoff.
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