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Abstract

This paper considers communication over coherent multiple-input multiple-output (MIMO)
flat fading channels where the channel is only known at the receiver. For this setting, we in-
troduce the class of LAttice Space-Time (LAST) codes. We show that these codes achieve
the optimal diversity-vs-multiplexing tradeoff defined by Zheng and Tse under generalized
minimum Euclidean distance lattice decoding. Our scheme is based on a generalization of
Erez and Zamir mod: scheme to the MIMO case. In our construction the scalar “scaling”

of Erez-Zamir and Costa Gaussian “Dirty-Paper” schemes is replaced by the minimum
mean square error generalized decision-feedback equalizer (MMSE-GDFE). This result
settles the open problem posed by Zheng and Tse on the construatiqplioft coding and
decoding schemes that achieve the optimal diversity-vs-multiplexing tradeoff. Moreover,
our results shed more light on the structure of optimal coding/decoding techniques in delay
limited MIMO channels, and hence, opens the door for novel approaches for space-time
code constructions. In particular; 1) we show that MMSE-GDFE plays a fundamental role
in approaching the limits of delay limited MIMO channels in the high SNR regime, unlike
the AWGN channel case and 2) our random coding arguments represent a major depar-
ture from traditional space-time code designs based on the rank and/or mutual information
design criteria.

Keywords: Lattice coding and decoding, minimum mean square error (MMSE) equalization,
multiple-input multiple-output (MIMO) channels, diversity-vs-multiplexing tradeoff.
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1 Introduction

Since the seminal work of Teletar [1], Foschini and Gans [2], Tardldd. [3], and Gueyet al.

[4], multiple antenna transmission/reception has emerged as a key tool to achieve high spectral
and power efficiency in wireless communications. Loosely speaking, schemes that exploit both
the classical Shannon degrees of freedom (time-frequency) and the additional spatial degrees
of freedom (antennas) in order to achieve reliable transmission of information are nicknamed
Space-Time Codexfter [3]. The literature on space-time coding is huge (see for example [5]
and references therein). Several settings have been developed on the basis of different physical
motivations and, for each setting, information theoretic results and associated coding schemes
have been developed.

Perhaps the most basic setting (originally treated in [1, 2] from the information theoretic
viewpoint and in [3, 4] from the code construction viewpoint) consists of the quasi-static frequency-
flat fading M -transmitN -receive multiple-input multiple-output (MIMO) channel with no chan-
nel knowledge at the transmitter and perfect channel knowledge at the receiver. The complex
baseband model is defined'by

yi =/ —Hx+wi, t=1,...,T 1)

where{x¢ € CM : ¢ = 1,...,T} is the transmit signayf € CV : ¢t = 1,...,T} is the
received signal{w¢ € CV : ¢t = 1,...,T} denotes the channel Gaussian noise, assumed
temporally and spatially white with i.i.d. entries N (0, 1), andH* is the N x M channel
matrix with the(i, j)-th element.; representing the fading coefficient between itk transmit

and thei-th receive antenna. The fading coefficients are further assumed to be-i.Ng:(0, 1)

and remain fixed for = 1,...,T, whereT is the duration of a space-time codeword (block
length). By enforcing the input constraint

T

1

. |ng2] <M, (2)
t=1

the parametep takes on the meaning aiveragesignal-to-noise ratio (SNR) per receiver an-
tenna. The channel matrH is assumed to be perfectly known at the receiver and completely
unknown at the transmitter.

E

INotation: the superscript denotes complex quantities,denotes transpose afiddenotes Hermitian trans-
pose. The notatior ~ /\/’C(u., ¥)) indicates thaw is a proper complex Gaussian random vector with megan
and covariance matriX. For real Gaussian random vector we use the notatien\ (u, ). The acronym i.i.d.
means “independent and identically distributed”. We &s@ denote exponential equality, i.¢(z) = z* means
thatlim, o, 222} — p > and< are used similarly. For a bounded Jordan-measurable r&jionR™, V(R)

log z

denotes the volume GR.



The quasi-static MIMO fading channel defined above is not information-stable [6] and has
a zero Shannon capacity. This means that the channel reliability function is also equal to zero
and that the error probability of any coding scheme with positive rate is bounded away from
zero. On the other hand, it can be easily shown that the error probability of a given coding
scheme with a constant rate behaves likp~?) for large p, whered < M N depends on the
coding scheme and is callélde diversity gairi3, 4]. It is also well known that the capacity of
the ergodic MIMO channel treated in Plehaves likeD(min{ M, N'} log p) for largep.

The linear growth of the “pre-log” factor in the ergodic MIMO channel capacity motivated
several researchers to consider coding schemes thatséndin(/N, M) (independent) infor-
mation symbols per channel use (P€Ujhe integer- was referred to as thaultiplexing gain
of the schemeas it (roughly) corresponds to creatingarallel communication channels be-
tween the transmitter and receiver. In [3], the coding problem for the above channel was stated
as follows: for each desired diversity gaihmaximize the multiplexing gain. Early works
considereaonstraineccoding ensembles (e.g., trellis or block codes over discrete QAM signal
sets of a given size). For these ensembles, there exists indeed a tradeoff hétvebnas
dictated by the Singleton bound [3]. Later on, it was recognized that this tradeoff is not a funda-
mental feature of the channel defined above, but it is due to the additional constraints put on the
coding ensemble (see [7]). If no additional constraint beyond the standard average input power
(2) is imposedstructuredspace-time coding schemes achieving “full-rate™={ min(M, NV))
and “full-diversity” (d = M N) can be explicitly constructed [8, 7]. Furthermore, when these
codes are linear over the field of complex numbers (e.g., [7]), they lend themselves to efficient
decoding algorithms using number theoretic tools [9].

The problem of characterizing the optimal diversity-vs-multiplexing tradeoff was well-
posed and solved by Zheng and Tse in [10]. For giwénV andT, the authors considered
a family of space-time codg®’,} indexed by their operating SNR such that the codé, has
rate R(p) bits PCU and error probabiliti.(p). For this family, the multiplexing gain and the
diversity gaind are defined as follows

r 2 hmM and d = —limw.

p—oo log p p—oo  logp

(3)

In [10], the optimal tradeoff curvé*(r), yielding for each- the maximum possiblé, was found
for unrestricted coding and ML decoding. In particular, for any block lefigth N+ M —1 the
optimal tradeoff is given by the piecewise linear function joining the paitits\/ — k)(N —k))
fork=0,...,min{M,N}.

2The ergodic MIMO channel is obtained by replacing the random constant nk&trbxy the ergodic matrix

process H¢} such that eacH is identically distributed a¥1¢ in the model (1).
3A channel use corresponds to the transmission of the input vegtorparallel from theM transmit antennas.
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Zheng and Tse further showed that the optimal tradeoff curve is achievedih the, N =
1 case by the Alamouti scheme [11] and, in the limitlof— oo, by the so-called D-BLAST
scheme [12] withGaussian code ensembleend MMSE-DFE processing. The conclusion of
their work provides the motivation for this papéit should be noted that other than for the
2 x 1 channel (for which the Alamouti scheme is optimal), there is no explicitly constructed
coding scheme that achieves the optimal tradeoff curve forrany0. This remains an open
problem.” [10].

The quest for explicit coding schemes that exploit the multiplexing and diversity gains avail-
able in MIMO channels has generated very intensive work. Earlier works have been largely
inspired by suboptimal schemes like the orthogonal designs [13] or the BLAST architecture
[12] (e.g., [14]). More recent works have been inspired by Zheng and Tse characterization of
the fundamental diversity-vs-multiplexing tradeoff. For example, a structured coding scheme
achieving the optimal tradeoff in the cadé = N = 2 for block lengthT" = 2 under ML de-
coding was recently presented in [15]. In this paper we provide a general answer to the problem
posed by Zheng and Tse by exhibiting explicit coding schemes that acftievefor any M
andN, and block length" > M + N — 1.

In order to facilitate the goal of achieving the optimal tradeoff, we first introduce a novel
class of space-time codes obtained from lattices. The main idea of LAttice Space-Time (LAST)
codes is to carve the space-time code directly from a properly constructed lattice. LAST cod-
ing is a non-trivial generalization of linear dispersion (LD) coding [16] as shown in the sequel.
Here, we observe that some code constructions that have been proposed under th-name
tice space-time codes recent literature do not benefit from the generalization proposed in
this paper, and hence, are more appropriately categorized as LD codes (e.g., [17], [18]). One
important feature of lattice codes is that they can be decoded by a class of efficient decoders
known aglattice decodersLattice decoding algorithms disregard the boundaries of the lattice
code and find the point of the underlying (infinite) lattice closest (in some sense) to the received
point. If a point outside the lattice code boundaries is found, an error is declared. Lattice de-
coding allows for significant reductions in complexity, compared to maximum likelihood (ML)
decoding, since 1) it avoids the need for complicdiedndary contro[9] and 2) It allows for
using efficient preprocessing algorithms (e.g., the LLL algorithm [19]) which are known to offer
significant complexity reduction.

It is well known that lattice codes achieve the capatity(1 + p) of standard single-input
single-output (SISO) unfaded additive white Gaussian noise (AWGN) channels under ML de-
coding [20, 21]. For a long time lattice codes were believed to achieve a rate equal to only
log(p) under lattice decoding. Recently, Erez and Zamir have shown that lattice coding and de-
coding indeed achieve the full AWGN capadityg(1+ p) provided that transmitter and receiver
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share a common randomness in the form of a dither signal [22]. Their construction is based on
nested lattices (i.e., Voronoi codes) and lattice decoding is applied to the received signal after
an appropriate scaling. The scaling coefficient that does the “magic” in Erez and Zamir scheme
corresponds to the linear MMSE estimator of the channel input from the channel output. The
fundamental role played by minimum mean square error (MMSE) estimation in this problem
has been further illuminated by Forney in [23].

The main contribution of this paper is Theorem 6, stating that LAST codes achieve the op-
timal diversity-vs-multiplexing tradeoff under generalized minimum Euclidean distance lattice
decoding. The key ingredient in our proof is a non-trivial extension of Erez and Zamir scheme
to the case of MIMO channels. It turns out that MMSE estimation plays a fundamental role
in this scenario as well, but the MMSE estimator takes on the form of the MMSE generalized
decision feedback equalizer (MMSE-GDFE) introduced in [24].

In addition to the main result, the analysis and technical arguments developed here allow
for many interesting insights on the structure of optimal space-time coding and decoding tech-
nigues. In particular:

1. We show that MMSE estimation plays a fundamental role in allowing lattice decoding to
achieve the optimal diversity-vs-multiplexing tradeoff. In fact, through theoretical anal-
ysis and representative numerical examples, we show thatative implementation of
minimum Euclidean distance lattice decoding without MMSE estimation entails signifi-
cant losses in the achievable diversity-vs-multiplexing tradeoff.

2. In our random coding arguments we use ensembles of lattice codes whgpboalfer an
AWGN channel. In other words, we do not impose amace-time structuren the en-
semble of codes and yet we establish that these ensembles achieve the optimal diversity-
vs-multiplexing tradeoff. This represents a marked departure from traditional space-time
code design techniques aimed at optimizing the coding gain [3] and/or mutual informa-
tion [16]. More surprisingly, our simulation experiments show that the performance of
randomly selected LAST codes under lattice decoding (with MMSE estimation) rivals
that of the state of the art codes available in the literature under ML decoding.

3. In addition to the optimality of the mod-construction with respect to the diversity-vs-
multiplexing tradeoff in the high SNR regime, we establish the asymptotic optimality of
this construction in terms of closing the gap to the outage probability for an arbitrary
SNR. Specifically, we show that 88— oo, the probability of error achievable with this
scheme approaches the outage probability (assuming i.i.d. Gaussian inputs).

4. The optimality of lattice decoding proves that maximizing the well known “rank and
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determinant design criteria” [3, 43 not a necessary condition for approaching the fun-
damental limits of delay limited MIMO channels. These design criteria are inspired by a
pairwise probability of error analysis which fails in predicting the performance of lattice
decoding due to the infinite number aftual codewords as seen by the decoder. It re-
mains to be seen if these criteria will play a role in further optimizing the performance of
certain LAST codes.

5. In the generalized mod-construction, we follow in the footsteps of Erez and Zamir and
use a random lattice translate (i.e., dither). It will become clear in the sequel, however,
that the optimality of the proposed scheme will still hold if the dither is replaced by
the optimal lattice translate We further elaborate on the role of the random dither in
Section 3.3.

6. As a side result, we also establish the optimality of spherical lattice codes (the shaping
region is a sphere) under lattice and ML decoding. For these codes, encoding requires
the storage of the whole codebook. Voronoi codes (i.e., nested lattices), therefore, enjoy
an important advantage over spherical lattice codes due to their low encoding complexity
[25].

Before we proceed further, a brief remark about the notion of “explicit” coding schemesiis in
order. Zheng and Tse proved the achievability'gf-) by using a Gaussian i.i.d. random coding
ensemble (i.e., unrestricted coding) and maximum likelihood (ML) decoding. These codes have
no structure, and hence, encoding requires storage of the whole codebook and decoding requires
exhaustive search over all the codewords. The codes proposed in this paper are explicit in the
sense that we use ensembles of lattice codes and lattice decoding. This allows for developing
efficient decoding techniques inspired by algorithms that search for the closest lattice point
(e.g., [26, 9]). The complexity of the decoding algorithm is, therefesegctly the same as
lattice decoding for single-input single-output (SISO) AWGN channel§[2a# no additional
complexity is entailed by the use of multiple antennas. This is precisely the same sense in which
Alamouti code is arxplicit construction [10].

The rest of this paper is organized as follows. In Section 2, we review the required results
from lattice theory and introduce the class of LAttice Space-Time (LAST) codes. We establish
the optimality of LAST codes with generalized minimum Euclidean distance lattice decoding
in Section 3. We develop our main result in two steps. First, in Section 3.1, we show that
the naiveimplementation of lattice decoding can entail significant performance losses. Then,

4The optimal lattice translate will be defined rigorously in the sequel.
SAssuming the dimensionality and rate are the same.



we introduce the generalized maddeonstruction and establish its optimality in Section 3.2.
Section 4 presents numerical results that validate our theoretical claims. Finally, we offer some
concluding remarks and an outlook on future work in Section 5. In order to enhance the flow of
the paper, all the proofs are deferred to the Appendices.

2 Lattices and LAST codes

We will recall here some notation and results from lattice theory (e.g. [27, 22, 28]) that will be
used throughout the paper. Am-dimensional real latticd is a discrete additive subgroup of
R™ defined as\ = {Gu : u € Z"}, whereG is them x m (full rank) generator matrix oA.

The fundamental Voronoi celf of A is the set of pointk € R™ closest td) than to any other
point A € A. The fundamental volume o is

Vi(A) 2 V(V) = [ dx = /de(GTG).

The second-order moment ¢f is defined asr?(A) =
second-order moment is defined as

m J,, [x|?dx and the normalized
a>(A)
Vi(A)2/m:
The covering radius..,(A) is the radius of the smallest sphere centered in the origin that
contains). The effective radius.4(A) is the radius of the sphere with volume equalidA).
A sequence of lattice$A,,} of increasing dimension igood for covering[28] if their
covering efficiency satisfies

G(A) =

é Tcov (Am)

Neov(Am) rehn) 1 (4)
and it isgood for MSE quantizatioifi
1
A -
G(An) = 5 — (5)

It can be shown (see [28] and references therein) that goodness for covering implies goodness
for MSE quantization. Such lattice sequences exist, as shown in [28] (see also [29]). It is also
known thatif{A,, } is a sequence of lattices good for MSE quantization, with fixed second-order
momento?, then a random vector uniformly distributed owéfA,,) converges in distribution
(in the sense of divergence) to a Gaussian i.i.d. random vector with per-component variance
equal too? [30].

In the rest of this paper, ensembles of lattices satisfying the Minkowski-Hlawka theorem
play a very important role. For the sake of completeness, we recall the Minkowski-Hlawka
theorem in the form given in [27]:



Theorem 1 Let f : R™ — R be a Riemann integrable function of bounded support (i.e.,
f(z) = 0if |z| exceeds some bound). For any> 0 there exist ensemblgs\} of lattices
with fundamental volumg; and dimensiom: such that

EA[ > f=

zcN,z#0

<e (6)

OJ

As a corollary we have that, for any bounded Jordan-measurable sefR™, there exist
lattice ensemble$§A} such that

Ex [[A"NRI|] =~ %f) (7)

whereA* = A — {0} and the approximation in (7) can be made as tight as desired.
Finally, we will need the following result, proved in [22].

Theorem 2 For any R > 0, there exist sequences of nested lattidgsC A/ of increasing
dimensionn such that:

1. The cardinality of the partition\/ /A, satisfies
1 /
—log |A],/Am| — R.
m

2. Foreachm, A/, is randomly selected in an ensemble that asymptotically satisfies Theorem
1, in the limit ofm — oo.

3. {A,.} is asequence of lattices that are good for covering (i.e., they satisfy (4)) and conse-
quently is also a sequence of lattices that are good for MSE quantization (i.e., they satisfy

(5)).
0
An m-dimensional lattice cod@(A, uy, R) is the finite subset of the lattice translate- u,

inside theshaping regiorR, i.e.,C = {A +up} N'R, whereR is a bounded measurable region
of R™. For anyA andR, there existsy; such that

. V(R)
‘C(Av Uy, R)| 2 Vf(A) .

(8)



Now, we go back to our space-time coding problem and introduce the class of LAST codes.
In order to simplify the presentation, it is useful to introduce the real channel model, equivalent
to (1),
y = Hx + w, (9)

where we definex = (x{,...,xJ)"T with x] = [Re{x{}", Im{xf}T]T, w=(w],...,wh)T
with w/ = [Re{wf}T,Im{wf}T}T, and

s [P
H2 /L1
e (

is the2NT x 2MT block-diagonal real channel matrix consisting of the s&iNex 2M di-

agonal block repeateéd times ( is the identity matrix of dimensiofi’ here andx denotes the
Kronecker product). The design of space-time signals, therefore, reduces to the construction of
a codebook’ C R?MT satisfying the input constraint

Re{H‘} —Im{H¢}
Im{H°} Re{H¢} ]) (10)

1 2

c ; x| < MT
(equivalent to (2)) and enjoying certain desirable properties. The space-time coding rate is given
by R = 1 log, |C| bits PCU.

We say that a space-time coding schemefidladimensionalLAST code if its codebook is
a lattice code, i.e., i€ = C(A,ug, R), for some2M T-dimensional lattice\, translation vector
u, and shaping regioRk.

We used the terrfull-dimensionalin the above definition to highlight the fact that the di-
mensionality of the underlying lattice is equal to the number of (real) degrees of freedom offered
by the channel. As demonstrated in Section 4, one can obtain LD codes as special cases of the
LAST coding framework for a particular choice of the shaping region. The generalization from
LD to LAST coding is instrumental in approaching the fundamental limits of MIMO channels,
as we will show next.

3 Achieving the optimal tradeoff with LAST codes

In this section we consider LAST codes undkgtice decoding By lattice decoding we refer

to the class of decoding algorithms whidb nottake into account the shaping regi@ In

other words, a lattice decoder finds the point of the underlying (infinite) lattice tramslate,

that is closest (according to a suitable decoding metric) to the received point, irrespective of
whether this point is iR or not. As observed in Section 1, this allows for exploiting the



algebraic structure of the underlying lattice to reduce the complexity of the search algorithm. In
order to further limit the complexity, we restrict ourselves to the class of generalized minimum
Euclidean distance lattice decoders defined by

7 = arg minT\rera—Ezy?, (11)

2eZ*
whereI andE are matrices that will be defined in the sequel ansl a translation vector. It is
well-known that this class of algorithms lends itself to an efficient implementation using the so
calledsphere decodgfe.qg., [9] and references therein).

3.1 The suboptimality of “naive” lattice decoding

Before introducing the optimal scheme, we investigate the achievable performance of LAST
codes under straightforward application of lattice decoding. Inrthigeimplementation, we
setT' to be the identity matrix an®& = HG, whereG is the generator matrix ak. We
shall observe that the suboptimality of this naive lattice decoding, as compared to ML, entails a
significant loss in the achievable diversity-vs-multiplexing tradeoff in most cases.

For a fixed, non-random, channel matki, we have the following result.

Theorem 3 Suppose thal* has rank)M, then the rate
1
Ria(H, p) = Mlog p + log det (M(HC)HHC) (12)
is achievable by LAST coding and minimum Euclidean distance lattice decoding.

Proof. The proof relies on using LAST codes obtained from lattice ensembles satisfying
Theorem 1 with a suitable translation vector and a spherical shaping region. The proof is based
on the technical machinery introduced by Loeliger in [27]. In particular, the enabling tool in the
analysis is Loeliger's ambiguity decoder. The details are presented in Appendix B. [J

We observe that the suboptimality &f4 in Theorem 3 is analogous to the loss of *one*
in the SNR suffered by lattice decoding in SISO AWGN channels [27]. Next, we consider a
random channel matrik¢ as defined in (1) and obtain an achievable diversity-vs-multiplexing
tradeoff curve for LAST codes under naive lattice decoding. Following [10], we consider a
family of LAST code<C,, for fixed M/ andT’, obtained from lattices of a given dimensidh/ T’
and indexed by their operating SNR The codeC, has rateR(p) and error probability?, (p)

(this is the average block error probability for a fixed code, where averaging is with respect to
the random channel matrb{<). We have the following result.
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Theorem 4 For M < N and any block lengthi” > 1, there exists a sequence of full dimen-
sional LAST codes that achieves diversity gain

dir) =min{T, 1+ N — M}(M —r) (13)

for r € [0, M] under naive minimum Euclidean distance lattice decoding. This coincides with
the optimald*(r) for T'= 1 (space-only coding) and squared channel matfik £ V), or for
anyN > M,T > 1+ N — M, in the high-rate segmentc [M — 1, M].

Proof. The proof is deferred to Appendix C.
O

Theorem 4 shows that full dimensional LAST coding with tieve application of lattice
decoding is optimal (in terms of the diversity-vs-multiplexing tradeoff) only in a few cases. On
the contrary, it fails to take full advantage of larger block lengifis=(1) and/or larger receiver
diversity (N > M) for multiplexing gainsr < M — 1. In fact, the difference between this
achievable tradeoff and the optimal tradeoff widens decreases. While we realize that this is
only a lower bound on the achievable diversity gain, yet this bound highlights the loss in perfor-
mance entailed by lattice coding under lattice decoding. Furthermore, the numerical examples
in Section 4 will validate this claim. The reason of this suboptimality can be traced back to the
loss in the achievable rate of Theorem 3 with respect to the optimal (under unrestricted coding
and decoding) achievable rate. The following two remarks are now in order.

1. In SISO AWGN channels, one can easily see that the loss in performance entailed by
the naive implementation of lattice decoding vanishes as the SNR increases. On the other
hand, Theorem 4 argues that the corresponding loss in quasi-static MIMO fading channels
persistseven asp — oo. This can be explained by noting that even with haylerage
SNR, some of the channel eigenvalues can assume very small instantaneous values. With
the straightforward application of lattice decoding, thfzstedeigenvaluesbsorball the
energy of the transmitted signal, and hence, result in significant performance degrada-
tions. In the next section, we will show that by using a MMSE-GDFE front end one can
neutralizethe effect of those faded eigenvalues and achieve the optimal tradeoft.

2. One can achieve other points on the optimal diversity-vs-multiplexing tradeoff by reduc-
ing the dimensionality of the lattice code and usingl@ver multiplexing scheme. For
example, one can show that diagonal LAST codes (i.e., only one antenna is active at any
point in time), based on lattices of dimensidh/, achieve the poind = MN,r = 0.

The proof follows from the same technical machinery used to prove Theorem 4. The
suboptimality of this approach manifests itself in the fact thatsame scheméails to
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achieve all the points on the tradeoff cursienultaneously This suboptimality yields
performance degradation for the schemes with low multiplexing gain at high transmis-
sion rates and performance degradation for the schemes with low diversity gains at high
SNR. The scheme proposed in the next section avoids this drawback, and hence, allows

for approaching the fundamental limits of MIMO channels with arbitrary parameters.

3.2 The generalized modA scheme and its optimality

In [22], Erez and Zamir showed that nested lattice codes achieve the AWGN channel capac-
ity under lattice decoding, provided that the lattice decoder is modified by including a linear

MMSE estimation stage and a random dither signal is used (implying a common randomness
at transmitter and receiver). Random dithering renders the MMSE estimation error signal in-
dependent of the transmitted codeword (see also [23]). For a reason that will appear clearly

later, we shall nickname Erez-Zamir scheme the “moseheme”. In this section we present
a non-trivial generalization of the matl-scheme to MIMO channels. We show that for fixed
H¢andT — oo LAST codes with the modx scheme achieve rates up to thy@imalinforma-
tion raté log det(I + £ (H*)"H*). We show also that LAST codes with the madscheme
achieve all points on the optimal diversity-vs-multiplexing tradeoff cuf\(e), for block length
T>M+N —1.

We start by defining nested lattice codes (or Voronoi codes).

Definition 1 Let A, be a lattice inR™ and A, be a sublattice of\.. The nested lattice code
defined by the partition./A; is given by

C=A.NV;s

where); is the fundamental Voronoi cell df,. In other words( is formed by the coset leaders
of the cosets af, in A.. We also define the lattice quantization function

Qa(y) = arg min|y — A
AeA
and the modulo-lattice function

[y] mod A =y —Qaly).

®This is the largest achievable information rate under the input consiaint’ | = 1.

12



We say that a LAST code is nested if the underlying lattice code is nested. With nested
codes, the information message is effectively encoded into the coskjsrof\..

The proposed mod-scheme works as follows. Consider the nested LAST ¢bdefined
by A. (the coding lattic§ and by its sublatticé\, (the shaping latticg in R?M7, Assume that
A, has a second-order momertt(A,) = 1/2 (so thatu uniformly distributed ovei, satisfies
E[|ul?] = MT). The transmitter selects a codewards C, generates a dither signalwith
uniform distribution ove/, and computes

x = [c —u] mod Ay (14)

The signalk is then transmitted on the MIMO channel. lyetlenote the corresponding channel
output (we use the real channel model (9)). We replacesthéar scaling of [22] by a matrix
multiplication by the forward filter matri¥' of the MMSE-GDFE [24]. Moreover, instead of
just adding the dither signal at the receiver (as in [22]), we add the dither signal filtered by
the upper triangular feedback filter mati of the MMSE-GDFE. The definitions and some
useful properties of the MMSE-GDFE matricds, B) are given in Appendix A.

By construction, we have = ¢ — u + A with A = —Qx_(c — u). Then, we can write

y’ = Fy+Bu

= F(H(c—u+A)+w)+Bu

= B(c+A)—[B-—FH](c—u+A)+Fw

= B(c+A)—[B—-FH|x+Fw

= B(c+A)+¢€. (15)
By constructionx is uniformly distributed ovel; and is independent ef One can also rewrite
(15) as

y =Bc +¢ (16)

wherec’ € A; + c¢. The remarkable fact in (15) and (16) is that the desired signginow
translated by an unknown lattice poikte A,. However, since andc’ = ¢ + A belong to
the same coset of, in A, this translation does not involve any loss of information (recall that
information is encoded in the cos&t + c, rather than in the codeworditself). It follows that

in order to recover the information message, the decoder has to identify theAgoset that
containsc’. This is achieved in two steps. The decoder first finds

. : ;o 2
z = argzer%g&n ly' — BGz| (a7)

whereG is the generator matrix of the channel coding latticgnotice that (17) corresponds
to applying the generalized minimum Euclidean distance lattice decoder defined in (11) to the
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channel outputy with the choiced” = F, E = BG anda = Bu.). Then, the decoded
codeword is given by
¢ = [Gz] mod A,. (18)

In a nutshell, lattice decoding as described above follows naturally as a consequence of
the modA scheme: lattice decoding is not just a trick to make the receiver simpler, but it is
an essential component of the whole construction. Finally, we note that because of the block
diagonal structure dfl, B is also block diagonal with th&M x 2M upper triangular blocB’
repeated’ times. By construction we have

det(BTB) = det((B))"B)" = det(I + ﬁ(HC)HHcyT

(see Appendix A).
The optimality of LAST codes with the mod-scheme and lattice decoding, in the limit of
largeT, is given by the following result.

Theorem 5 For a fixed non-random channel mati#&¢, the rate
c Ay ﬁ c\Hyye
Rumoa(HE, p) 2 log det (I + L (H)'H ) (19)
is achievable by mod-LAST coding.

Proof. We consider a sequence of nested lattices satisfying Theorem 2. Hence, the MMSE-
GDFE estimation error signal

¢ =—[B-—FH|x+Fw (20)

converges in distribution (in the sense of divergence) to the noise vector\/ (0, %I). This
follows from Lemma 1 of Appendix A and from the fact that is asymptotically good for
MSE quantization, implying that — A/(0, 1) asT — oc.

Intuitively, in the limit for largeT’, the channel (16) resulting from the madeonstruction
is equivalent to sending a poiat € A, through a linear channel with matrB plus an asymp-
totically Gaussian error signal independent o€'. If ¢ was exactly Gaussian, the same steps
in the proof of Theorem 3 would apply to this setup and we would see immediately that there
exists a sequence of nested lattices such that, for sufficiently Tar¢fee probability of error
can be made smaller than any desited 0 provided that

1 NTR" — ﬁ c\Hyyce
R < Jlogdet((B)"B') = log det(I+ L (H*)"H") .

Note also that this holds for arif¢ (also of non-full column rank), sind8 is always invertible
(for any finite SNRp).
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The only technical difficulty is that here the erkgiis not exactly Gaussian for any finite
In Appendix D we show that despite this problem the achievable rate is indeed given by (19),
as if the estimation error was exactly Gaussian. O

Next, we consider the achievable diversity-vs-multiplexing tradeoff for LAST codes under
the modA scheme. Suppose we have a family of nested latticés) C A.(p) of fixed dimen-
sion2MT, indexed byp. As p — oo, the ratio|A.(p)/As(p)| increases ag™” for somer > 0.
This implies that the rate of the corresponding nested LAST codgsissR(p) = rlogp. We
shall show that there exist families of nested LAST codes for which the corresponding diversity
gain isd*(r). This is stated in the following theorem, which is the central contribution of this
paper.

Theorem 6 There exists a sequence of nested LAST codes with block IEngth/ + N —1 that
achieves the optimal diversity-vs-multiplexing tradeoff cutye) for all » € [0, min{ M, N}]
under the mod\ scheme.

Proof. The main difficulty here is that we wish to prove the result for any fixed block length
T > M + N — 1. Hence, we cannot use the sequences of nested lattices of Theorem 2, since
for these sequences the coding latticesatisfies Theorem 1 (the Minkowski-Hlawka theorem)
only asymptotically forl’ — oo. On the other hand, Theorem 1 holds for any fiffite This
motivates us to use the ensemble of lattices defined in [27] as coding lattice ensemble here.
The key observation is that in order to achieve the diversity-vs-multiplexing optimal tradeoff
we do not need a very “clever” shaping lattice. Indeed, any sequence of shaping lattices with
finite covering efficiency (i.e., for which..,, as a function of the SNR, is uniformly bounded
by a constanty < oo) can be used to achieve the optimal tradeoff. The details of the proof
are given in Appendix E. Obviously, in any practical code construction one would look for
a good shaping lattice, in order to achieve better power efficiency for finjtecall that the
diversity-vs-multiplexing tradeoff is achieved asymptotically for lapye O

It follows immediately from the arguments used to prove Theorems 5 and 6 that thd mod-
construction achieves an average probability of error equals to the outage probability, assuming
white Gaussian inputs, in the limit of a large block length (ifé~ o).

3.3 Where is the magic?

The generalized mod- construction presented in the previous section has three main ingre-
dients: 1) the nested lattice structure, 2) the random dither, and 3) the MMSE-GDFE lattice
decoding. We now attempt to identify the roles of these three elements, and hence, highlight
the various advantages offered by the generalized modnstruction. To this end, we resort
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back to thesphericalLAST codes used in Section 3.1 and characterize their performance under
MMSE-GDFE lattice decoding without dithering.

Theorem 7 There exists a sequence of spherical LAST codes with block |&hgth M +
N — 1 that achieves the optimal diversity-vs-multiplexing tradeoff cute) for all r €
[0, min{ M, N}| under MMSE-GDFE lattice decoding. The coding/decoding scheme need no
common randomness, i.e., achievability is obtained for a sequence of fixed codebooks.

Proof. The main idea in the proof is to replace the random dither wittofitenaltranslate
and the shaping lattice with a sphere. In order to exploit the techniques used in the proof of
Theorem 6, we add a dither which is uniformly distributed over the Voronoi cell of the coding
lattice at the decoder. Adding such a dither cannot improve the performance of the receiver,
and requires no common randomness since the dither is generated by the receiver and it is not
known by the transmitter. The proof then follows in the footsteps of the proof of Theorem 6 as
detailed in Appendix F. O

Theorem 7 argues that lattice coding (without random dithering and nesting) and MMSE-
GDFE lattice decoding argufficient to achieve the optimal diversity-vs-multiplexing tradeoff.
As a corollary of Theorem 7, it is straightforward to see that spherical lattice coding with ML de-
coding also achieve the optimal tradeoff. In fact, ML decoding cannot be worse than minimum
Euclidean distance lattice decoding. Now, we can identify the following additional advantages
offered by random dithering and nested (Voronoi) coding.

1. The random dither renders the noise signal independent of the transmitted codeword. This
fact along with the geometric uniformity of lattice coding (under lattice decoding) imply
that the probability of error is independent of the transmitted codeword in the generalized
mod-A construction. Hence, all the claims regarding the average probability of error
extend naturally to the maximum probability of error. As it is clearly seen in the proof
of Theorem 7, this is not generally true in the case of spherical lattice coding with the
optimal translate, under both lattice decoding and ML decoding.

2. In practice, finding the optimal translate for spherical LAST codes may be prohibitive
(especially for large dimensions). In these cases, randomizing the choice of the translate
(i.e., the random dither) avoids the bad choices and saves computational power. More-
over, with the random dither, the transmitted power is also independent of the transmitted
codeword.

3. While the complexity of lattice decoding@most independent of the shaping region, the

"With Voronoi codes, there is a slight increase in decoding complexity due to the last step of identifying the
coset.
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encoding complexity of spherical LAST codes is significantly higher than that of Voronoi
LAST codes. The lack of structure in the carving region of spherical codes results in a
look-up table encoder whereas encoding Voronoi codes reduces, again, to the search for
the closest lattice point problem [25].

4 Numerical results

In this section, we present a selected set of numerical examples. Those examples are chosen
to highlight three main points, namely: 1) the potential performance gains possible with LAST
coding, 2) the gain offered by MMSE-GDFE lattice decoding over naive lattice decoding, and 3)
the ability of random LAST coding with MMSE-GDFE lattice decoding to achieve the optimal
diversity-vs-multiplexing tradeoff.

In order to illustrate the first point, we compare LAST coding with linear dispersion (LD)
coding in Figure 1. We first observe that LD coding can be obtained as a special case of LAST
coding as follows. After proper scaling and translation, the matrix codewords in an LD code
can be written as [16]

S(u) = Z Gg’d@, (21)
=1

whereu, € {0,...,Q — 1}, @ is the size of the input PAM constellatiom = 2M7T, and
{G, € R*MXT ¢ ¢ {1,..,2MT}} are the spreading matrices of the LD code. By letting
g = vedGy), Grp = [g1, -, 8m), aNdALP = {GIPu : u € Z™}, we can now obtain the
vector representation of the LD code as the intersectioki6fwith the regiorR-? defined as
theimageof them-dimensional hypercube under the mappiit? (i.e, R*P = {x = GLPu:
ueR"0<u <Q—-1¢0={1,..,m}).

In Figure 1, we use the same generator matrix for both the LAST and the LD codes and
report the performance with ML decoding. The difference in the performance can be, therefore,
attributed to the the difference in the shaping region. In fact, the dependence of the shaping
region in LD coding on the generator matrix of the lattice implies a fundamental limit on the
achievable minimum Euclidean distance and coding gain of this class of codes (as argued in
[7]). By relaxing this constraint on the shaping region, LAST coding avoids this limitation.
We remark that the performance trend in Figure 1 was observed for other random choices of
generator matrices (the results are not reported here for brevity).

Figure 2 illustrates the second point. In this figure, one can see that the naive application
of lattice decoding allows for achieving full diversignly with vertical codesT = 1) in
symmetric configurationsN = M). For largerT’, only by utilizing an MMSE-GDFE front
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end one can achieve full diversity with lattice decoding. Finally, Figures 3 and 4 validate the
achievability of the optimal tradeoff with LAST coding and MMSE-GDFE lattice decoding.
These figures report the performanceaidom ensembled spherical and nested LAST codes
(obtained via Construction A where = 2MT, p, k) are the parameters of the linear code
[27]) in a2 x 2 MIMO system. As argued in [7], the optimality of the approach is illustrated in
the constant gap between the probability of error curves and the outage probability at different
SNRs and different rates (at sufficiently high SNR). Furthermore, the small gap between the
performance ofandomLAST codes and the outage probabili/{ 4 dB at10~° block error

rate) demonstrates that these codes rival the best ones available in the literature.

5 Conclusions

In this paper, we developed a novel framework for constructing optimal coding/decoding schemes
for delay limited MIMO fading channels. In particular, we introduced the class of LAST codes.
Within this class, we proposed a generalization of Erez and Zamir modnstruction and
proved its optimality with respect to the diversity-vs-multiplexing tradeoff. Through this gen-
eralization, we established the central role of MMSE-GDFE in approaching the fundamental
limits of MIMO channels in the high SNR regime. Our results settle the open problem posed
by Zheng and Tse on the existence of explicit coding constructions that achieve the optimal
diversity-vs-multiplexing tradeoff. Furthermore, we prove the existence of lattice codes which
are good for both AWGN channels and delay limited MIMO fading channels. The random cod-
ing arguments developed in this work can offer valuable guidelines for future works on optimal
code constructions and low complexity decoding algorithms. Our current investigations explore
two directions: 1) using the number theoretic tools proposed in [8] to further optimize the LAST
codes (i.e., minimize the gap to the outage) and 2) developing low complexity variants of the
generalized minimum Euclidean distance lattice decoder and a more precise characterization of
the complexity of such decoders.

Appendices

In Appendix A, we review some known facts about MMSE-GDFE which will be needed
later in the proofs. In the rest of the Appendices, we detail the proofs of our results.

A The MMSE-GDFE

Consider the real additive-noise MIMO linear chanpet Hx + w, wherex andw have mean
zero, covarianc&[xx'] = E[ww'| = I, and are mutually uncorrelated and whefe= R"*™,
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The MIMO matched filter is given by the linear transformation defined by the mHtfixand
its output is
Yt = H'y = HTHx + wyy (22)

w,,¢ has covariancél"H.
The standard derivation of the MMSE-GDFE forward and feedback filter matrices is briefly
outlined as follows. We seek a decision-feedback equalizer in the form

7Z — meymf — (Bmf — I)i (23)

whereF ¢, B € R™*™, andB, is upper triangular and monic (i.e., it has unit diagonal
elements). The vectat contains an estimate (hard-decisions) of the transmitted sysabol
based on the equalizer output Thanks to the strictly upper triangular form Bf,; — I, (23)

is recursively computable from the-th to 1st component (going upward). Assumitig= x
(ideal feedback assumption), we filig,; andB,,; such that the mean-square estimation error
(MSE)E[|e|?], wheree = z — x, is minimized.

This can be obtained by imposing the orthogonality conditigey ;] = 0, by solving first
with respect taF' ¢ as a function ofB,¢, and then finding the optimas,,,; under the upper
triangular and monic constraint.

After solving forF ¢, we obtain

Fut = B [HHTH+1] ' = B, S (24)

where we define theystem covariance matri SHH+L
By substituting (24) into the expression@fwe obtain

€= Bmfz_l}Imf - Bme - Bmfd

A _ . . . . .
where we ledd = X 'y,.s — x. SinceB, is upper triangular and monie,can be interpreted
as a prediction error. Namely, we can write

er=dv+ Y by
j=k+1
Therefore,~ 3", | b ;d; is the linear MMSE estimate af, from the samplegy.y, ..., d,
(identified with the “past” of the sequencewith respect to th&-th component). Again by
applying the orthogonality principle and using the fact tBafy must be the upper triangular
we obtain that the MSE is minimized B,; is the whitening filter ford (i.e., it makes the
covariance matrix o¢ diagonal).
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After some algebra, we get thafdd"] = X! (notice thatX is always invertible). Let the
Cholesky decomposition &t be
Y =B/, AB,;

whereB,; is upper triangular and monic aN is diagonal with positive diagonal elements. It
is immediate to check that

Elee'] = E[B,;dd'B/;| = A™!

is diagonal, as desired. By substituting in (24), we obtain the corresponding forward filter
matrix as
For=A'B_[

Any left-multiplication by a non-singular diagonal matrix of bdth,; andB,; yields an equiv-
alent MMSE-GDFE. In particular, we multiply bis /2 in order to make the covariance of the
estimation erroe equal tol, and we obtain the MMSE-GDFE applied directly on the original
channel output in the form

z =Fy —UB)X

whereB = AY?B,, U(-) takes the strictly upper triangular part of its argument, Ene-
B~TH'. Under the ideal feedback assumption, the resulting error sigaat — x has covari-
ancel.

Interestingly, we can define the augmented channel matrix

|7

H=QR

and its QR decomposition,

whereQ € R(+m™*m has orthonormal columns arl@ € R™*™ is upper triangular with
positive diagonal elements. Moreover, we denotepy- HR ! the uppem x m part of Q.
Then, it is immediate to show that

B = R
F = Q' (25)

Moreover, by construction we ha®®'B = HTH = I + HTH.
Finally, we have the following

Lemmal Letv = (B — FH)x + Fw, wherex andw are uncorrelated, with mean zero and
covariance matrid. ThenE[vv'] = L.
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Proof. We haveE[vv'] = (B — FH)(B — FH)" + FF. First, notice that

FH = Q™H
- B TH'H
- BTTHH+I)-B "
- B-B ' (26)

and that
FF' =B "TH'HB!

Hence,

Evv'] = B'B™'+B "H'HB™'
= BTOI+H'H)B™
=0 (27)

B Proof of Theorem 3

We consider an ensemble 2§/ 7T-dimensional random latticgs\ } with fundamental volume
V; satisfying Theorem 1. The random lattice codebook(i&, uy, R), for some fixed trans-
lation vectoru, and whereR is the2M T-dimensional sphere of radiugéM T centered in the
origin. Hence, for eack € C(A,uy, R) the input constraintx|* < MT is satisfied.

SinceH* has rank)/, the pseudoinverse @ is given by [31]

H' = (H'™H) 'H' (28)

and satisfiedI’H = I. Without loss of generality we consider the following decoder. In the
first step, we apply the linear zero-forcing (ZF) equalizer giveddhyn order to obtain

r=Hly =x+e, (29)

wherex € A is the transmitted point and = Hiw, is a noise vector A/(0, (HTH) ™).

In the second step, we apply taebiguity lattice decodenf [27]. This decoder is defined by
a decision regiof C R*MT and outputk € A if r € £ + X and there exists no other point
x" € A such thatr € £ + x'. We define the ambiguity event as the event that the received
pointr belongs to{ £ +x} N{€ +x'} for some pair of distinct lattice points x’ € A. If X # x

or A occur, we have error.
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For givenA and€ we have
P.(E|A) <Pr(e¢ &)+ Pr(A) (30)

By taking the expectation over the ensemble of random lattices, from Theorem 4 of [27] we
obtain

— A V(&
P.(E) = Ex[P.(E|N)] <Prle¢ &)+ (1 + 5)% (32)
f
for arbitraryy > 0.
We choose as decision region the ellipsoid defined by
Erqy = {z cR*MT . 2TH™Hz < MT(1 + 7)} (32)

It follows from standard typicality arguments that for any 0 andy > 0 there existg’, . such
that for allT > T, .
Pr(e ¢ Er,) <€/2 (33)

Hence, for sufficiently largd’, there exists at least a lattice" in the ensemble with error

probability satisfying

V(ET,"/)
Vi

For this lattice, we choose the translation veetpsuch that (8) holds. By letting (A*, ug, R)| =

exp(T'R), we can write

Pu(Ery|A) < €/2+ (1+9)

(34)

V(Er) exp(TR)
P.(A* <e/24(1 J
6( 75T,’Y) = 6/ + ( + 6) V<R) (35)
¢, From standard geometry formulas, we have
V(éry) _ MT Ty —1/2
VR, (1+~)""det(H"H)
M MT T
= (L+y)M (—) det((H)"H®) (36)
P

where we have used the definitionHfin terms ofH*.

The second term in the upper-bound (35) can be made smallet th&or sufficiently large
T if
V(R)
V(‘ST,W)
wherey’ — 0 asy — 0. This shows the achievability of the rafe,(H¢, p) in (12) with
the ambiguity decoder. The final step in the proof follows by noticing that with this choice
of decision region in (32), the probability of error of the ambiguity decoder upper-bounds that
of the generalized minimum Euclidean distance lattice decoder (11) with the chibiced,
2 = HG anda = —Hu;,.

1 1
R < 7 log = Mlog p + log det(M(Hc)“HC) - (37)
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C Proof of Theorem 4

We consider an ensemble 28/ T-dimensional random latticgs\ } with fundamental volume
V; satisfying Theorem 1. The random lattice codebooK(i&, uy, R), for some fixed trans-
lation vectoru, and whereR is the2M T-dimensional sphere of radiugM T centered in the
origin. Hence, for eacl € C(A, ug, R) the input constraintx|? < MT is satisfied.

We upper-bound the average probability of error (average over the channel and over the
lattice ensemble) as

P.(p) £ Ea[P.(p)] < Pr(Ru(HY, p) < R(p)) +Ex [Pr(error, Ry(H, p) > R(p)|A)] (38)

In order to computePr (R (H¢, p) < R(p)), we follow in the footsteps of [10]. Denoting
R = rlog(p) and def (H*)"H¢) = p~XiZioi wherea; = — log Ai/ log p and where) <
A < --- < )y are the eigenvalues ¢0H¢)"H¢, we can write

Pr(Ra(H?, p) < R(p)) = Pr (Z a; > M — r) (39)
Hence,
Pr(Ru(H®, p) < R(p)) = Ea [1 {Z a; > M — T}] (40)

Using the fact thaf A, ..., Ay, } follow a Wishart distribution [1, 10], it is possible to show that

M

Ex [1 {Zai >M —r}] = /Bexp <—log(p)2(2i —14+N-— M)ozi> da (41)

i=1

whereB C RM is defined byn; > --- > ay, > 0 and byzij‘i1 «a; > M —r. As a consequence
of Varadhan’s lemma [32], we obtain

A

o JogPr(Ru(H', ) < R(p)
p—00 log p

M
1
= lim -1 — 20 —1+N—M)a; | d
Zgg(}gog/gexp(zg(z + )a)a

=1

_dc

M

= —inf Y (2i—1+N—-M)a; (42)
aeB —

which can be written more concisely as

Pr(Ru(H", p) < R(p)) = p~*, (43)
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It is straightforward to see that the minimization in the last line of (42) is achievedfct
M —rando; = 0forall i > 1, yieldingd. = (1 + N — M)(M —r).

Now, let P, (R(p)|c, A) denote the probability of error for a given choice ofand rate
R(p) given that the channel matrix has determinant(dét)"Hc) = p~>: and let3’ denote
the region defined byt; > --- > a3, > 0 and byzij\i1 o; < M —r. We have

Ex [Pr (error Rig(He, p) > R(p)|A)] = [5 p (@) Ea[Pe (R(p)|x, A)]dex

= [ oxp (—1og(p) S, (2i = 1+ N = M)as) Ea[P. (Rp)|av, A)ldex— (44)
In order to boundt, [P, (R(p)|a, A)], we apply again the ambiguity decoder to the ZF channel
output (29) with decision regioéir, defined in (32). LeH™H = VSV, with V € RM*M
orthogonal and diagonal with non-negative (positive almost surely) diagonal elements. Then,
e’ = S!/2VTe, wheree is defined in (29), isv N (0,1I). Using this fact, we obtain the
Chernoff bound

Prle ¢ &r,) = Pr(e'H'He > MT(1+7))

Pr(|e']> > MT(1+7))

I)\Il>1101 exp (=MT (A(1 4 ) + log(1 — X))

= (14y)MTe M (45)

IN

Using the optimal translate for every lattice in the ensemble and noticingdhat ", we
get
Vi > V(R)p™" (46)
whereR is the sphere of radiug MT' centered in the origin. From Theorem 4 of [27] and (36)
we find, for all arbitraryd > 0,
MT _—MT mr (P TMT e\Hpgey T

EALP. (R(p)lov, A)] < (149 e 4 (14 0)(1+9)M7 (L) p det((H)*H)

= (1+y)MT efMTA/_i_clp—T(]V[—r—Zﬁlai)} (47)

wherec; does not depend gn
Finally, we lety = log p and we use (47) in (44). By applying again Varadhan’s lemma we
obtain that

EA [Pr (errora Rld(Hca p) > R<p)‘A>] = pidna (48)
where
M
dn:&22/{;(22—1—|—N—M—T)ozi—|—T(M—r)} (49)
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Itis easily seen that if + N — M < T then the minimum is obtained by letting = M — r

anda; = 0 foralli > 1 andyieldsd,, = (1 + N — M)(M —r), whileif 1 + N — M > T then

the minimum is obtained far; = 0, V4, yieldingT' (M — r). In the first case, the exponents

of the two terms in the upper-bound (38) coincide. In the second case, the second term of (38)

dominates the first term. We conclude that the exponent of the upper-bound is given by (13).
By using (43) and (48) in (38), we obtain that there exists at least a sequence of lattice codes

{C3} in the ensemble that achieves the diversity-vs-multiplexing tradeoff given by (13) . The

final statement of Theorem 4 follows by noticing that for= 1 the optimal tradeoff is given

by [10] N(1 — r/M), that forM = N coincides with (13), and that for any > M andT >

1+ N — M we obtain the straight-line segment joining the poimts- M —1,d = N — M +1)

and(r = M, d = 0), which coincides withi*(r).

D Proof of Theorem 5

We consider an ensemble 28/ 7-dimensional nested latticds\, C A.} satisfying Theorem
2. Consequently, 88 — oo {A.} asymptotically satisfies Theorem 1. We denotel/pyand
V, the fundamental volumes @f. andA,, respectively. By constructio} = %log Vs/V. and
V, is fixed (constant with’). Moreover,A, has second-order momemt(A,) = 1/2, so that
the input power constraint is satisfied (recall that the inpat the modA channel is uniformly
distributed oven;).

SinceB is invertible, we obtain the equivalent channel output

y' = B’ly’ =c +é€
wherec’ € A.. Then, we apply theambiguity lattice decodenf [27] with decision region
Ern = {z€RMT . 2'B"Bz < MT(1+17)} (50)
The probability of error for given\.. is upper-bounded by
P.(ér,|Ac) < Pr(e” ¢ Er,) + Pr(A) (51)

whereA is the ambiguity event defined as in the Proof of Theorem 3. By taking the expectation

over the ensemble of random lattices, from Theorem 4 of [27] we obtain

_ V(&

PL(E) 2 En[P.(E|A)] < Pr(e” ¢ &r.) + (1 + 5)% (52)
wherej — 0 asT — oo, since by construction the sequerice.} satisfies Theorem 1 for large

T. By using the fact that,. = V; exp(—T R) and that
V(Er,) = (14+7)MTdetB™B) 2V (B(VMT))
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whereV (B(v/MT)) is the volume of )M T-dimensional sphere of radiug)\/ T, we obtain

Pr(A) < (1+6) exp <—T log det(I + %(HC)THC) ~ Mlog(1 +7) — %log

(53)
Since{A,} is a good sequence of lattice for MSE quantization and, by construction, the second-
order moment of\, is equal tol /2 for eachT’, using standard geometry and Stirling formulas
it is easy to show that

1 V(B(/MT))

T log v — 0
asT — oo. Therefore, since > 0 is arbitrary, we obtain the upper-bound
P c\Tgyc /
< _ LA — R —
Pr(A) < exp( T [logdet<1—i— M(H ) H ) R fyD (54)

wherey’ — 0 asT — oo. We conclude that for af > 0 there exists a sequence of pairs of
nested lattice§ A, C A’} for which the ambiguity probability is upper-bounded &42, for
sufficiently largeT’, provided that

ﬁ c\Tyyce
R< logdet<I+ £(H)TH )
The proof is then complete if we show thait(e” ¢ £1.,) < €/2 for arbitraryy > 0,¢ > 0 and
sufficiently largeT". Recalling the definition of7 ., this condition can be written in the more
convenient form

Pr(le']? > MT(1+7)) < ¢/2 (55)

wheree’ = — [B — FH] x + Fw is the MMSE estimation error signal ard~ Uniform over
Vs, w ~ N(0, 11I) are statistically independent.
For reasons that will become clear later, we consider a *noisier* system by adding the noise
vectorw, to the received signal before processing (we will determine the varianeg latter).
So, we replace’ by the sume’ + Fwy in equation (55). In order to use the Chernoff bound
as in the proof of Theorem 4, we need to replace the self-nolsea white Gaussian vectgr
(with a possibly higher variance). To this end, we follow in the footsteps of [22]. In particular,
following the argument of Lemma 11 in [22], we obtain that

Ix(2) <oy fo(2), (56)

where f,(z) is the pdf ofx, f,(z) is the pdf of a random vector uniformly distributed over the
covering spherd (7., ), of radiusre,, = 7oy (As) and Wherej.,, = reov(As) /7o (As) denotes
the covering efficiency oA,.
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Let7 = , /%TCOV, and leto? denote the second-order moment of the spiéfe. Using

standard geometry formulas we obtain

=2 2

2 _ v —\\1/MT _ r _ T cov 7
0" =GV(BF) OMT +2  2MT (57)

whereG* denotes the normalized second-order moment of a sphére i dimensions.
Letg be a randon2 M/ T-dimensional vector- N/ (0, 0°I), and denote by, (v) its pdf. For
|z| = V2MTo = r., We have

1
2MT

1
log fg(z) = 5 log 2mec? (58)

Also, for |z| = r.,, we have

log fv(z) = - log V(B(rey)) /M7

C2MT 2
J— 11 T(?OV
~ 2 By MT )G
1 MTo?
= —log—n——
2 °(MT + 1)G*
—11221121+1G* (59)
= 3 og 2meo 5 og | 2me T

By putting together (58) and (59), and from the fact tfigtz) is decreasing ifz| while f, (z)
is zero for|z| > r.,, and constant fojz| < r..,, we obtain that, for als € R?M7,

1
fv(z) < exp (MT log (271'6 <1 + W) G*>> fe(z) (60)
Moreover, by using the fact th&t* = % and the Stirling formuldogn! = nlogn —

n + o(n), we obtain

MT

therefore, the “blowing-up” factor in front ofy(z) in (60) is a sub-exponentially increasing
functionexp(o(MT)) of T.
We define the error vector

MT log (27Te (1 + L) G*) = o(MT)

e=(B—-FH)g+ F(w + wy) (61)

where we choosev, ~ AN(0, (62 — 1/2)I). Since the second-order moment of the covering
sphereB(r..) is given byr2 /(2MT + 2) < o?, and it is certainly not smaller than the
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second-order moment 8f,, which by construction is equal ty/2, we have thatr? — 1/2 is
non-negative, hence the additional noiggis well-defined.
From the bounds developed above, it is immediate to conclude that

Pr(le']* > MT(1+ 7)) < exp(o(MT))nZn" Pr ([e* = MT(1 + 7)) (62)

Notice thatg ~ w+wy ~ A (0,0°I). From Lemma 1 we obtain that~ N (0, o*I), therefore,
we can use the same Chernoff bounding approach used in the proof of Theorem 4 and obtain

MT
i< () (o () e

By using (63) in (62) we obtain

Pr(le/? > MT(1+7)) < exp(o(MT))y2M" (”—7) v exp (—MT (1 Ll 1))

202 202

1 1 MT
= exp(—MT( +7—1—10g ;;J—Qlogncov—o( )>)

202 MT
< €/2 (64)

where the last inequality holds for sufficiently largesincen.,, — 1 (recall thatA, is a good
sequence of lattices for covering) and by noticing that
1+7_1_10g1+7
202 202
for some arbitraryy > 0, since the function: — 1 — log x is strictly positive forz > 0, x # 1,

and sincer> — 1/2 asT — oo. The fact that? tends tol /2 can be seen as follows:
2

COV

2MT
77c20v Teff (AS ) 2
2MT
e [ Ve UM
2MT |V (B(1))
Neow 02(As)/G(As)
2MT V(B(1))/MT
Using the fact that?(A,) = 1/2 by construction, tha€&(A,) — 5= since{A,} is good for
MSE quantization, and the formula

>0

r
0'2:

(65)

7.{.MT

C(MT +1)

of the volume of the unit-radius spheredn/T dimensions, we obtain théin, .., o2 = 1/2.
This concludes the proof. Interestingly, we remark that by replacing the self roisea
Gaussian random vect@y of slightly larger variance and adding noise provides only a
vanishing increase in error probability for large block length

V(B(1)) =
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E Proof of Theorem 6

We consider the Loeliger ensemble of mpthittices defined in [27] (see also [22, 28]). For the
sake of completeness, we recall here its definition.pllst a prime. The ensemble is generated
via Construction A, as the set of all lattices given by

A=k (gZp - pZZMT) (66)

wherep — oo, k — 0 is a scaling coefficient adjusted such that the fundamental volume
Vy = 2MTp?MT=1 — 1,7, denotes the field of moglintegers, ang € Z2"'" is a vector with

i.i.d. components. We use a pair of self similar lattices for nesting. In particular, we take the
shaping lattice to b&\, = (A, where( is chosen such that, = 1/2 in order to satisfy the
input power constraint. The coding lattice is obtained\as= 1/7A,, wherer = |p"/?M| in

order to satisfy the transmission rate constraint f@f) = r log p. This yields the fundamental
volumes

Vi(Ay) =V, = M7 (67)
g 2MT
Vih) 2V, = (;) (68)

Since our proof relies on self similar lattices for constructing nested codes, we need to
establish that the lattices in the ensemble ra@sonablygood for both channel coding and
shaping. Our first step is to expurgate the ensemble in (66) appropriately such that the remaining
lattices in the expurgated ensemble satisfy an upper-bound on the covering efficiency that grows
only logarithmically withp. Letr, = r.x/log(p). Then, using the uniform distribution of the
lattice points and a simple union bounding argument (the same as the one used in [28]), we get

2MT
Pr{(A, + B(r,))is a packing > 1 — <27”p+d> |

Teff

(69)

where2d = kV2MT is the diagonal of the elementary cube with sidelt then follows
that

Pr{npack = [pack 1 ! )} = Pr{(A, + B(r,)) is a packing

Teoff og(p
(log(p))*M" — (2 + d/reg)*™"
(log(p))2MT ’

whered can be made as small as desired by letting oc.

>

(70)
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This motivates us to expurgate the ensemble by removing the latticeswith< @.
Now, we need to upper-bound the covering efficiency of lattices in the expurgated ensemble.
Without loss of generality, we consider a poiaf’‘in the fundamental region at a distancg,
from the origin. Using the convexity of the fundamental region, we then construct arcde
the fundamental region with apex at™and axis passing through the origin by connecting “
to all the points in the projection of the packing sphere over the orthogonal subspace to the cone
axis. Since the volume of this cone is smaller than or equal to the fundamental visjumé,
one can see thaty, < Mmes = O ((10g(p))2MT_1> for all lattices in the expurgated ensemble.

In order to use the Minkowski-HIwaka theorem with the expurgated ensemble, we will need the

following relation

(log(p))*M*
B,y () < (og ()27 — (2% d/reﬁ)QMTEAP (), (71)

whereE,_, (.) is the expectation with respect to the expurgated enserihlg,) is the
expectation with respect to the ensemble in §6@hdy is a non-negative random variable (i.e.,
X = 0).

We use again thambiguity lattice decodenf [27] with decision regiorf; ., given in (50).
This way, we obtain the following upper bound on the average error probability (averaged over
the expurgated code ensemble for fixed channel matrix) as a modified version of (52) where
nowd — 0 asp — oo, V., > V,p~"T, and equation (71) is enforced

2MT _7
PrA) < (140) o e (4 2] 7 det(+ 005
(72)
Next, we consider the first term in the union bound, givePbgje’|> > MT(1 + v)). This
term does not depend on the channel matrix, and as in the proof of Theorem 4 our goal is to
show that
Pr(le/[? > MT(1+7))<p ")

i.e., that this term can be neglected as it is exponentially vanishing with respect to the ambiguity
probability term.

Sincee’ is not Gaussian, we have to resort to a bounding technigue analogous to what done
in the proof of Theorem 5. Again, we introduce &/ 7T-dimensional Gaussian random vector
g ~ N(0,0.5I) and define the modified error vector

e=(B—-FH)g+ Fw. (73)

8]t is straightforward to see that the same relation holds if the two ensembles are scaled with the same, but
arbitrary, factor.

30



By proceeding exactly in the same way as in Section D, we conclude that
Pr(Je']* > MT(1 + 7)) < exp(o(MT)) Pr([6]* = MT(1+7)) . (74)

From Lemma 1 we obtain that~ N (0, 0.51), therefore, we can use the usual Chernoff bound-
ing technique and obtain

Pr(le/? > MT(1+7)) < exp(o(MT))mahd (14 7)™ exp (=M T+)
= exp (—MT (7 —log(1 + ) — 210g Nmax — %))
(75)
By letting~y = log p, we obtain
Pr(je/f? > MT(147)) £ o7 (76)

ForT > M + N — 1, the exponent oPr (|e/|> > MT(1 + +)) with respect tdog p is clearly
larger thani*(r) (whose maximum i3/ N). Hence, we conclude that the first term in the union
bound is exponentially vanishing and can be neglected.

Having analyzed the average error probability (over the ensemble of nested LAST codes) of
the ambiguity decoder, we are now ready to conclude the proof of Theorem 6. We upper-bound
the average probability of error (averaged over the expurgated ensemble and over the channel)
as

Po(p) 2 EA[P.(p)] < Pr(Rumoa(HS, p) < R(p)) + En, [Pr(crror, Rmoa(H®, p) > R(p)|A,)]
(77)
whereR,,.q(H¢, p) = logde(I + £ (H¢)"H¢). Since the evenfR,,.a(H*, p) < R(p)} coin-
cides with the information outage probability with Gaussian i.i.d. inputs, the same analysis of
[10] applies here, yielding

Pr(Rumoa(H*, p) < R(p)) = p~ ") (78)
We define again the normalized log-eigenvalugss — log \;/ log p, where0 < \; < --- <

Ay are the eigenvalues ¢H¢)HH¢. Following [10], we have

min{M,N}

det(I + %(HC)HHC> = exp (log(p) > o[- ozf)

=1
Correspondingly, the outage event can be written in ternas a$
B= {a € RTH{M’N} : Z[l —o)t <, g > > amin{M,N}}
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We let B’ denote the complement &f, and P.(R(p)|a, A.) denote the probability of error of
the MMSE-GDFE lattice decoder applied to the nested LAST code formed. by, of rate
R(p) = rlog p, for given channel with normalized log-eigenvaluesAs for the second term
in (77), because of what said above, we have

Eyp, [Pr(error, Rmoa(HS, p) > R(p)|Ac)] = //p(a)EAC [P.(R(p)|a, Ae)]dex

< / () Pr(Ala)da

min{M,N} min{M,N}
= /lexp (log(p) ( Z (20 —1+|M —N|)ay, +T ( Z [1041‘]+7“))> do

i=1 =1
(79)
= p 0 (80)

where we have used the explicit expression (72) for the average (over the lattice ensemble)
ambiguity probability conditioned over the channel, i.e., with respeot tdhe final result (80)
follows from noticing that (79) is identical to equation (20) in [10], that is, it is equivalent (in
the sense of) to the probability of error of random Gaussian codebooks under ML decoding.

O

F Proof of Theorem 7

We reconsider LAST coding with spherical shaping region, as in the proof of Theorem 4, but
we shall replace standard lattice decoder by the MMSE-GDFE lattice decoding. Consider the
lattice codeC(A, uy, R) whereR = B(v/MT) is the 2M T-dimensional sphere with radius
Vv/MT, such that the input power constraint is satisfied for all codewords. For each chdice of
we use a translation vectag; such that (8) is satisfied (we know that sughexists, possibly
not uniquely).

At the receiver, we consider the MMSE-GDFE lattice decoding defined by

L .  max 2
Z = arg ze%gvl" |Fy — Bu; — BGz| (81)
whereF, B are the MMSE-GDFE matrices defined in Section A, &hd the generator matrix
of A. If Gz + ujjis notinR, an error is declared.

As argued in previous proofs, the error probability of the above decoder is upper-bounded
by the error probability of the ambiguity decoder for the lattice translateuf with decision
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regionér ., defined in (50) applied to the modified channel outglt= B~'y’, where we define
y'=Bc—[B—-FH|c+Fw =Bc+¢€ (82)

wherec € C(A, uf, R).

Assuming thatA belongs to an ensemble satisfying Theorem 1 we can upper-bound the
average probability of error, where now average is both with respect to the lattice ensemble and
with respect to the codewords of the lattice code, for fixed channel matrix, as

[I>

— 1
P.(Er4) Ex i Z Pr (error|A, c, ETW)]

ceC

< Pr(leP > MT(1+7))+ (1+6)(1+ 7)MTdet<I N %(HC)HHC> T o
(83)

wheree’ is distributed as-|B — FH]c + Fw with ¢ ~Uniform over the codeboog. Itis clear
from the proof of Theorems 4 and 6 that Theorem 7 holds if we can show that the first term in
(83) satisfie®r(|e/|> > MT(1+7)) < p~ ),

We define the modified error signal

e = ¢ —[B-—FHju+Fw,
= —[B-FH]x+F(w + w») (84)

whereu is uniformly distributed on the packing sphdsér,..x), wherer,,. denotes the pack-
ing radius of A, andw, is white Gaussian with a variance that will be specified later. By
constructionx is uniformly distributed over the region

R = | J{c+ Blrpaa)} (85)
ceC
of volumeV (R’) = |C|V (B(rpack)). This region is certainly contained in the sph8(e/M T +
Tpack). HENCE, We have that

(B(WVMT + rpack))

§
F&) < e (B )

fo(z), V zerRMT

where f«(z) denotes the pdf ok and f,(z) denotes the pdf of a random vectoy uniformly
distributed over the sphet®(v/ MT + r,.4). Notice also that, fofC| = exp(TR) = p'T, we
have

VBWIT + 1)) _ (| VIT\"
CIV (B(rpack)) ’

T'pack
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We can replicate the proof technique used in Sections D) and E), that consists of reglacing
with v and successively replacingby g ~ A/ (0, o*T), where

1 T'pack 2 1
2_ = pac > -
o 2 (1 + \/M_) 5 (86)

We also choose the per-component variancepiso? — 1/2, that is non-negative.
By Lemma 1 in Section A we have that

(B — FH)g + F(w + wy) ~ N(0,0°I)

By applying the Chernoff bound on the Gaussian tail probabfltity)(B — FH)g + F(w +
wy)|? > MT(1 + v)) we obtain the upper-bound

2MT
\/MT> —

T'pack

1 1
exp (—MT ( 2—;27 —1—log + 7)) (87)

202

Pr(le']> > MT(1+7)) < exp(o(MT)) (1 +

Now, for each SNRy we selectA in the Loeliger ensembl€,, »5,+ with fundamental volume
V¢(p) and arbitrarily largep. It turns out that since the shaping regin= B(v/MT) does

not depend om, in order to achieve coding rafe(p) = r log p the fundamental volumg;(p)
must vanish ag~"7, i.e.,V;(p) = p~"*. Moreover, since these lattices satisfy the Minkowski-
Hlawka theorem (Theorem 1), it follows from Theorem 3 of [27] and Theorem 1 of [28] that
for almost all lattices in the ensemble, the packing efficiency

Tlpack = (V(B<Tpack>>>1/2MT — Tpack
Vi (p)

is lower-bounded by
-1
77pack2§ (88)

for sufficiently largep. From a union bound argument similar to what was used in [28] to prove
the simultaneous goodnesElattices, we can see that there exist lattidesn the ensembles,

for increasingp, such that their ambiguity probability is upper-bounded by the second term in
(83) and their packing efficiency is lower bounded by (88). For such lattices we have

1/2MT
r k}l Vi / ip—r/QM
T2 AV(B(1)

We conclude that? — 1/2 and

(1 + = MT) p T =0(1)

Tpack
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M=N=T=2, R=4 bits/s/Hz, ML Decoding of Random Lattice and LD Codes With the Same Generator Matrix
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Figure 1: Random LAST code versus random LD code.
asp — o0.
Using these asymptotics in (87) and letting= log p we obtain that
Pr (|e’|2 > MT(1+ 7)) < pMT L pmd()

where the last inequality holds sinée> M + N — 1. This concludes the proof. OJ
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