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Abstract

After almost a decade since the introduction of the earliest reliable CORBA implementation, and despite the recent adoption of

the Fault Tolerant CORBA (FT-CORBA) standard by the Object Management Group, CORBA is still not widely adopted as the

preferred platform for building reliable distributed applications. Among the obstacles to FT-CORBA’s widespread deployment are

the complexity of the new standard, the lack of understanding in implementing and/or deploying reliable CORBA applications,

and the fact that current FT-CORBA implementations are not readily applicable to real-world complex applications. In this paper,

we candidly share our independent experiences as developers of two separate reliable CORBA infrastructures (OGS and Eternal),

and as contributors to the FT-CORBA standardization process. Our intention is to reveal the intricacies, challenges and strategies

in developing fault-tolerant CORBA systems, including our own. We provide an overview of the new FT-CORBA standard, and

discuss its limitations and techniques for best exploiting it. We reflect on the difficulties that we encountered in building dependable

CORBA systems, the solutions that we developed to address these challenges, and the lessons that we learned as a result. Finally,

we highlight some of the open issues, such as non-determinism and partitioning, along with some solutions for resolving these

issues.
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I. I NTRODUCTION

The integration of distributed computing with object-oriented programming leads to distributed object com-

puting, where objects are distributed across machines, with client objects invoking operations on, and re-

ceiving responses from, remote server objects. Both the client’s invocations, and the server’s responses, are

conveyed in the form of messages sent across the network. The Common Object Request Broker Architec-

ture (CORBA) [31], was established by the Object Management Group, as a standard for distributed object

computing.

CORBA uses a purely declarative language, the OMG Interface Definition Language (IDL), to define in-

terfaces to objects. The IDL interfaces are subsequently mapped, through an IDL compiler provided by the

CORBA implementor, onto specific programming languages. These IDL compilers conform to the OMG-

standardized IDL-to-language mappings for C, C++, Java, Smalltalk,etc. CORBA’s language transparency

implies that client objects need to be aware of only the IDL interface, and not the language-specific imple-

mentation, of a server object. CORBA’s interoperability implies that a client object can interact with a server

object, despite heterogeneity in their respective platforms and operating systems. CORBA’s location trans-

parency implies that client objects can invoke server objects, without worrying about the physical locations

of the server objects. The key component of the CORBA model, the Object Request Broker (ORB), acts

as an intermediary between the client and the server objects, and shields them from differences in platform,

programming language and location.

Until recently, CORBA implementations had no standardized support for fault tolerance. Several research

efforts were expended on remedying this deficiency. These early fault-tolerant implementations of CORBA

adopted diverse approaches for reliability. Fundamentally, though, all of these approaches exploited some

form of replication to protect the objects of the target CORBA application against faults.1

The various fault-tolerant CORBA implementations that resulted from either research or industrial efforts

over the past decade can be broadly classified into:

• The integration approach, where the support for replication is integrated into the ORB (e.g., systems such

as Electra [18], Orbix+Isis [17], and Maestro [37]),

• Theinterception approach, where the support for replication is provided transparently underneath the ORB

(e.g., Eternal [24]), and

• The service approach, where the support for replication is provided primarily through a collection of
1Replication is a common strategy for roll-forward reliability; other strategies, such as transactions, can be used for roll-back reliability.
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CORBA objects above the ORB (e.g., systems such as OGS [7], AQuA [5], DOORS [27], Newtop [20],

FRIENDS [6], FTS [13] and IRL [19]).

Each of these systems has contributed significantly to our collective understanding of the problems of

providing fault tolerance for CORBA applications. At the same time, each of these systems suffers from some

inherent drawbacks (e.g., regular clients cannot interact with replicated servers in a fault-tolerant manner)

and exposes different, non-standard APIs to the application, making development of portable fault-tolerant

CORBA applications almost impossible.

More recently, the Object Management Group adopted a specification [29] for Fault-Tolerant CORBA (FT-

CORBA)2 that allows CORBA applications to be made more reliable through standardized APIs. While the

specification is rather detailed, it does not fully address some of the complex issues faced by developers of

real-world CORBA applications.

In this paper, we discuss the challenges that are commonly faced in developing fault-tolerant CORBA

implementations, the strategies that can be used to address these challenges, and the insights that are gleaned

as a result. Our wealth of experience – both as independent implementors of separate fault-tolerant CORBA

implementations (Eternal and OGS, respectively), and as contributors to the FT-CORBA standard – allows

us to reflect candidly and critically on the state-of-the-art and the state-of-practice in fault-tolerant CORBA,

and on the significant challenges that remain to be resolved.

A. Replication

CORBA applications can be made fault-tolerant by replicating their constituent objects, and distributing these

replicas across different processors in the network. The idea behind object replication is that the failure of

a replica (or of a processor hosting a replica) of a CORBA object can be masked from a client because the

other replicas can continue to provide the services that the client requires.

Replica consistency. Replication fails in its purpose unless the replicas are true copies of each other, both

in state and in behavior. Strong replica consistency implies that the replicas of an object are consistent or

identical in state, under fault-free, faulty and recovery conditions. Because middleware applications involve

clients modifying a server’s state through invocations, and servers modifying their clients’ states through

responses, the transmission of these invocations and responses becomes critical in maintaining consistent

replication. One strategy for achieving this is to transmit all of the client’s (server’s) invocations (responses)
2In the remainder of the text,fault-tolerant CORBArefers to any system that provides reliability to CORBA applications, andFT-CORBArefers

to the new OMG standard for reliable CORBA.
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so that all of the server (client) replicas receive and, therefore, process the same set of messages in the

same order. Another issue is that replication results in multiple, identical client (server) replicas issuing the

same invocation (response), and these duplicate messages should not be delivered to the target server (client)

as they might corrupt its state. Consistent replication requires mechanisms to detect, and to suppress, these

duplicate invocations (responses) so that the target server (client) receives only one, non-duplicate, invocation

(response).

All three approaches to fault-tolerant CORBA require the application to be deterministic,i.e., any two

replicas of an object, when starting from the same initial state and after processing the same set of messages

in the same order, will reach the same final state. Mechanisms for strong replica consistency (ordered message

delivery, duplicate suppression,etc.) along with the deterministic behavior of applications, enables effective

fault tolerance so that a failed replica can be readily replaced by an operational one without losing any data

or any computation.

Replication Styles. There are essentially two kinds of replication styles – active replication and passive repli-

cation [23]. Withactive replication, each server replica processes every client invocation, and returns the

response to the client (of course, care must be taken to ensure that only one of these duplicate responses is

actually delivered to the client). The failure of a single active replica is masked by the presence of the other

active replicas that also perform the operation and generate the desired result. Withpassivereplication, only

one of the server replicas, designated theprimary, processes the client’s invocations, and returns responses to

the client. Withwarm passivereplication, the remaining passive replicas, known asbackups, are preloaded

into memory and are synchronized periodically with the primary replica, so that one of them can take over

should the primary replica fail. Withcold passivereplication, however, the backup replicas are “cold”,i.e.,

not even running, as long as the primary replica is operational. To allow for recovery, the state of the primary

replica is periodically checkpointed and stored in a log. If the existing primary replica fails, a backup replica

is launched, with its state initialized from the log, to take over as the new primary. Both passive and active

replication styles require mechanisms to support state transfer; for passive replication, the transfer of state

occurs periodically from the primary to the backups, from the primary to a log, or from the log to a new

primary; for active replication, the transfer of state occurs when a new active replica is launched and needs

its state synchronized with the operational active replicas.

Object Groups. The integration, service and interception approaches are also alike in their use of theobject

group abstraction, where an object group represents a replicated CORBA object, and the group members
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represent the individual replicas of the CORBA object. Object group communication is a powerful paradigm

because it often simplifies the tasks of communicating with a replicated object, and of maintaining consistent

replication. Groups were first introduced in the V-Kernel [3] as a convenient addressing mechanism, and

were later extended to handle the replication of processes (rather than objects) in the Isis system [1]. The

central idea behind group communication is to consider a set of processes or objects as a logical group, and

to provide primitives for sending messages simultaneously to the group as a whole, usually with various

ordering guarantees on the delivered messages. A group constitutes a logical addressing facility because

messages can be issued to groups without requiring any knowledge of the number, the identities, or even the

locations of the individual members of the group.

With an object group being equivalent to a replicated CORBA object, group communication can be used

to maintain the consistency of the states of the object’s replicas. Reliable ordered multicast protocols often

serve as concrete implementations of, and are therefore synonymous with, group communication systems.

For this reason, one or more of the various fault-tolerant CORBA systems described in this section employ

totally-ordered reliable multicast group communication toolkits to facilitate consistent replication.

Relevant Non-CORBA Systems. This discussion of replication would not be complete without a brief overview

of reliable systems that preceded, and paved the way for, fault-tolerant CORBA. The Delta-4 system [33]

provided fault tolerance in a distributed Unix environment through the use of an atomic multicast protocol to

tolerate crash faults at the process level. Delta-4 supported active replication and passive replication, as well

as hybrid semi-active replication. The Arjuna system [32] used object replication together with an atomic

transaction strategy to provide fault tolerance. Arjuna supported active replication, coordinator-cohort pas-

sive replication and single-copy passive replication. These systems, and the insights that they provided, have

contributed greatly to our understanding of fault tolerance. It is no surprise that almost every fault-tolerant

CORBA system embodies principles that are derived from one or the other of these systems.

II. EXISTING FAULT-TOLERANT CORBA SYSTEMS

Initial efforts to enhance CORBA with fault tolerance leaned towards the integration approach, with the fault

tolerance mechanisms embeddedwithin the ORB itself. With the advent of Common Object Services in

the CORBA standard, other research efforts adopted the service approach, with the fault tolerance support

provided by service objectsabovethe ORB. Yet another strategy, the interception approach, allowed the

transparent insertion of fault tolerance mechanismsunderneaththe ORB. The three approaches are similar in
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their use of object replication to provide fault tolerance.

The underlying system model for all three approaches is an asynchronous distributed system, in which

processors communicate via messages over a local area network that is completely connected. Communica-

tion channels are not assumed to be FIFO or authenticated, but the network is assumed not to partition. A

processor receives all of its own messages. The system is asynchronous in that no bound can be placed on

the time required for a computation or for the communication of a message. Processors have access to local

clocks, but these clocks are not necessarily synchronized.

As concerns the fault model, the system is subject to communication, processor, and object faults. Com-

munication between processors is unreliable and, thus, messages may need to be retransmitted. Processors,

processes and objects are subject to crash faults, and thus, might require recovery and re-instatement to correct

operation.

A. The Integration Approach

The integration approach to providing new functionality to CORBA applications involves modifying the

ORB to provide the necessary fault tolerance support. The CORBA standard requires every compliant ORB

to support the TCP/IP-based Internet Inter-ORB Protocol (IIOP), but the addition of group communication

support directly into the ORB is likely to involve replacing IIOP by a proprietary group communication

protocol and thus violate this requirement. The resulting modified, but fault-tolerant, ORB may therefore be

non-compliant with the CORBA standard.

However, because the fault tolerance mechanisms form an intrinsic part of the ORB, they can be imple-

mented so that the application’s interface to the ORB (and the behavior that the application expects of the

ORB) remains unchanged. Thus, an integration approach to providing fault tolerance for CORBA implies

that the replication of server objects can be made transparent to the client objects because the fault tolerance

mechanisms are part of the ORB. Furthermore, the details of the replica consistency mechanisms are buried

within the ORB, and can be hidden from the application programmer.

Electra. Developed at the University of Zurich, Electra [18] is the earliest implementation of a fault-tolerant

CORBA system, and consists of a modified ORB that exploits the reliable totally ordered group communica-

tion mechanisms of the Horus toolkit [36] to maintain replica consistency. As shown in Figure 1(a), adaptor

objects that are linked into the ORB (and, therefore, implicitly into the CORBA application) convert the ap-

plication’s/ORB’s messages into multicast messages of the underlying Horus toolkit. In Electra, the Basic



7

Application
Object

Object
Group
Service

Platform

CORBA ORB

(a) (b) (c)

Service Approach

DII / DSI

Application
Object

Reliable Multicast

Platform

Interception Approach

CORBA ORB

IIOP Interception
and Replication

Application
Object

Platform

Reliable Multicast

Adaptor Objects

Integration Approach

Modified CORBA ORB

Fig. 1. Different approaches to fault-tolerant CORBA.

Object Adapter (an ORB component that has been rendered obsolete by the Portable Object Adapter of the

CORBA 2.x standard) of the CORBA 1.x standard is enhanced with mechanisms for creating and removing

replicas of a server object, and for transferring the state to a new server replica.

With Electra’s use of the integration approach, a CORBA client hosted by Electra can invoke a replicated

server object just as it would invoke a single server object, without having to worry about the location, the

number, or even the existence, of the server replicas.

Orbix+Isis. Developed by Iona Technologies, Orbix+Isis [17] was the first commercial offering in the way of

fault tolerance support for CORBA applications. Like Electra, Orbix+Isis involves significant modification

to the internals of the ORB to accommodate the use of the Isis toolkit [1] from Isis Distributed Systems for

the reliable ordered multicast of messages.

With Orbix+Isis, the implementation of a CORBA server object must explicitly inherit from a base class.

Two types of base classes are provided – anActive Replicabase class that provides support for active repli-

cation and hot passive replication, and anEvent Streambase class that provides support for publish-subscribe

applications.

The replication of server objects can be made transparent to the client objects. Orbix-specific smart proxies

can be used on the client side to collect the responses from the replicated server object, and to use some

policy (delivering the first received response, voting on all received responses,etc.) in order to deliver a

single response to the client object.
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Maestro Replicated Updates ORB. Developed at Cornell University, Maestro [37] is a CORBA-like imple-

mentation of a distributed object layer that supports IIOP communication and that exploits the Ensemble

group communication system [35]. The ORB is replaced by an IIOP Dispatcher and multiple request man-

agers that are configured with different message dispatching policies. One of these request managers, called

the Replicated Updates request manager, supports the active replication of server objects. “Smart” clients

have access to compound Interoperable Object References3 (IORs) consisting of the enumeration of the IIOP

profiles (i.e., the addresses) of all of the replicas of a server object. A “smart” client connects to a single

server replica and, in the event that this replica fails, can re-connect to one of the other server replicas using

the addressing information in the compound IOR.

In the typical operation of Maestro, a client object running over a commercial ORB uses IIOP to access a

single Maestro-hosted server replica, which then propagates the client’s request to the other server replicas

through the messages of the underlying Ensemble system. However, the server code must be modified to use

the facilities that the request managers of Maestro provide. Maestro’s emphasis is on the use of IIOP and on

providing support for interworking with non-CORBA legacy applications, rather than on strict adherence to

the CORBA standard. Thus, Maestro’s replicated updates execution style can be used to add reliability and

high availability to client/server CORBA applications in settings where it is not feasible to make modifications

at the client side.

B. The Service Approach

The service approach to extending CORBA with new functionality involves providing the enhancements

through a new service, along the lines of the existing Common Object Services [28] that form a part of the

CORBA standard. Because the new functionality is provided through a collection of CORBA objects entirely

above the ORB, the ORB does not need to be modified and the approach is CORBA-compliant. However, to

take advantage of the new service, the CORBA application objects need to be explicitly aware of the service

objects. Thus, it is likely that application code requires modification to exploit the functionality of the new

CORBA service.

Using this approach, fault tolerance can be provided as a part of the suite of CORBA Services. Of course,

because the objects that provide reliability reside above the ORB, every interaction with these objects must
3An Interoperable Object Referencey (IOR) is a stringified form of a reference to a CORBA object, and can contains one or more profiles. Each

profile contains sufficient information to contact the object using some protocol, usually TCP/IP; this information often includes the host name,

port number, and object key associated with the CORBA object.
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necessarily pass through the ORB, and will thus incur the associated performance overheads.

Distributed Object-Oriented Reliable Service (DOORS). The Distributed Object-Oriented Reliable Service

(DOORS) [27] developed at Lucent Technologies adds support for fault tolerance to CORBA by providing

replica management, fault detection, and fault recovery as service objects above the ORB. DOORS focuses

on passive replication and is not based on group communication and virtual synchrony. It also allows the

application designer to select the replication style (cold passive and warm passive replication), degree of

reliability, detection mechanisms and recovery strategy.

DOORS consists of a WatchDog, a SuperWatchDog and a ReplicaManager. The WatchDog runs on every

host in the system and detects crashed and hung objects on that host, and also performs local recovery actions.

The centralized SuperWatchDog detects crashed and hung hosts by receiving heartbeats from the WatchDogs.

The centralized ReplicaManager manages the initial placement and activation of the replicas and controls the

migration of replicas during object failures. The ReplicaManager maintains a repository that contains, for

each object in the system, the number of replicas, the hosts on which they are running, the status of each

replica and the number of faults seen by the replica on a given host. This repository, which forms part of

the state of the ReplicaManager, is periodically checkpointed. DOORS employs libraries for the transparent

checkpointing [39] of applications.

Object Group Service (OGS). Developed at the Swiss Federal Institute of Technology, Lausanne, the Object

Group Service (OGS) [10], [7] consists of service objects implemented above the ORB that interact with

the objects of a CORBA application to provide fault tolerance to the application. OGS is comprised of

a number of sub-services, with interfaces specified using OMG IDL, implemented on top of off-the-shelf

CORBA ORBs. The multicast sub-service provides for the reliable unordered multicast of messages destined

for the replicas of a target server object; the messaging sub-service provides the low-level mechanisms for

mapping these messages onto the transport layer; the consensus sub-service imposes a total order on the

multicast messages; the membership sub-service keeps track of the composition of obect groups; finally,

the monitoring sub-service detects crashed objects. Each of these sub-services is independent and is itself

implemented as a collection of CORBA objects.

To exploit the facilities of the OGS objects, the replicas of a server object must inherit from a common IDL

interface that permits them to join or leave the group of server replicas. Thus, in order to be replicated, the

server objects must be modified. This interface also provides methods that allow the OGS objects to transfer

the state of the replicated server objects, as needed, to ensure replica consistency.
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OGS provides a client object with a local proxy for each replicated server with which the client communi-

cates. The server’s proxy on the client side and the OGS objects on the server side are together responsible for

the mapping of client requests and server responses onto multicast messages that convey the client’s request

to the server replicas. The client establishes communication with the replicas of a server object by binding

to an identifier that designates the object group representing all of the server replicas. The client can then

direct its requests to the replicated server object using this object group identifier. Once a client is bound to

a server’s object group, it can invoke the replicated server object as if it were invoking a single unreplicated

server object. However, because the client is aware of the existence of the server replicas, and can even obtain

information about the server object group, the replication of the server is not necessarily transparent to the

client. Also, with this approach, a CORBA client needs to be modified to bind, and to dispatch its requests,

to a replicated CORBA server.

Newtop Object Group Service. Developed at the University of Newcastle, the Newtop [20] service provides

fault tolerance to CORBA using the service approach. While the fundamental ideas are similar to OGS

(described in Section II-B), Newtop has some key differences.

Newtop allows objects to belong to multiple object groups. Of particular interest is the way the Newtop

service handles failures due to partitioning – support is provided for a group of replicas to be partitioned

into multiple sub-groups, with each sub-group being connected within itself. Total ordering continues to be

preserved within each sub-group. No mechanisms are provided, however, to ensure consistent remerging of

the sub-groups once communication is reestablished between them.

IRL and FTS. The Interoperable Replication Logic (IRL) [19] also provides fault tolerance for CORBA ap-

plications through a service approach. One of the aims of IRL is to uphold CORBA’s interoperability by

supporting a fault-tolerant CORBA application that is composed of objects running over implementations of

ORBs from different vendors. IRL aims to provide the client-side replication support required by the new

FT-CORBA standard.

Like IRL, FTS [13] aims to provide the client-side replication support required by the new FT-CORBA

standard. In addition, FTS aims to provide some support for network partitioning by imposing a primary

partition model on the application in the event that the system is partitioned into disconnected components.

Both IRL and FTS were developed after the adoption of the FT-CORBA standard.
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The AQuA Framework. Developed jointly by the University of Illinois at Urbana-Champaign and BBN Tech-

nologies, AQuA [5] is a framework for building fault-tolerant CORBA applications. AQuA employs the

Ensemble/Maestro [35], [37] toolkits, and comprises the Quality Objects (QuO) runtime, and the Proteus

dependability property manager [34]. Based on the user’s QoS requirements communicated by the QuO run-

time, Proteus determines the type of faults to tolerate, the replication policy, the degree of replication, the

type of voting to use and the location of the replicas, and dynamically modifies the configuration to meet

those requirements. The AQuA gateway translates a client’s (server’s) invocations (responses) into messages

that are transmitted via Ensemble; the gateway also detects and filters duplicate invocations (responses).

The gateway handlers contain monitors, which detect timing faults, and voters, which either accept the first

invocation/response or perform majority voting on the invocations/responses from the object replicas.

AQuA provides mechanisms for majority voting at the application object level, to detect an incorrect value

of an invocation (response) from a replicated client (server). However, in order for majority voting to be

effective for applications that must tolerate arbitrary faults, more stringent guarantees are required from the

underlying multicast protocols than are provided by the underlying group communication system, which

tolerates only crash faults.

FRIENDS. The FRIENDS [6] system aims to provide mechanisms for building fault-tolerant applications in

a flexible way through the use of libraries of meta-objects. Separate meta-objects can be provided for fault

tolerance, security and group communication. FRIENDS is composed of a number of subsystems, including

a fault tolerance subsystem that provides support for object replication and detection of faults. A number of

interfaces are provided for capturing the state of an object to stable storage, and for transmitting the state of

the primary replica to the backup replicas in the case of passive replication.

C. The Interception Approach

The interception approach to extending CORBA with new functionality involves providing fault tolerance

transparently through the use of an interceptor, which is a software component that can attach itself to ex-

isting pre-compiled and pre-linked software. The interceptor can then contain additional code to modify the

behavior of the application, without the application or the ORB being ever aware of the interceptor’s exis-

tence or operation. The transparency implies that fault tolerance can be provided for binary or executable

code because neither the ORB nor the application needs to be modified, re-compiled or re-linked.

The disadvantage is that if the interception mechanisms are specific to the operating system, as is often the
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case, then, the interceptor needs to be ported to every operating system that is intended to run the CORBA

application. The Portable Interceptors [30] that CORBA currently offers are the result of standardizing such

useful interception “hooks” in order to avoid the effort of porting them to various operating systems or ORBs.

Eternal. Developed at the University of California, Santa Barbara, the Eternal system [24], [21] exploits the

interception approach to provide fault tolerance for applications running over commercial off-the-shelf imple-

mentations of CORBA. The mechanisms implemented in different parts of the Eternal system work together

efficiently to provide strong replica consistency without requiring the modification of either the application or

the ORB. The current implementation of Eternal works with both C++ and Java ORBs, including VisiBroker,

Orbix, Orbacus, ILU, TAO, e*ORB, omniORB2 and CORBAplus.

Different replication styles – active, cold passive, warm passive and hot passive replication – of both client

and server objects are supported. To facilitate replica consistency, the Eternal system conveys the IIOP mes-

sages of the CORBA application using the reliable totally ordered multicast messages of the underlying Totem

system [22]. The Eternal Replication Manager replicates each application object, according to user-specified

fault tolerance properties (such as the replication style, the checkpointing interval, the fault monitoring in-

terval, the initial number of replicas, the minimum number of replicas,etc.), and distributes the replicas

across the system. The Eternal Interceptor captures the IIOP messages (containing the client’s requests and

the server’s replies), which are intended for TCP/IP, and diverts them instead to the Eternal Replication

Mechanisms for multicasting via Totem. The Eternal Replication Mechanisms, together with the Eternal

Logging-Recovery Mechanisms, maintain strong consistency of the replicas, detect and recover from faults,

and sustain operation in all components of a partitioned system, should a partition occur. Gateways [26]
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allow unreplicated clients that are outside the system to connect to, and exploit the services of, replicated

server objects. Eternal also provides for controlled thread scheduling to eliminate the non-determinism that

multithreaded CORBA applications exhibit.

Eternal tolerates communication faults, including message loss and network partitioning, and processor,

process, and object faults. Eternal can also tolerate arbitrary faults by exploiting protocols such as secure

reliable multicast protocols, with more stringent guarantees than are provided by Totem. To tolerate value

faults in the application, Eternal uses active replication with majority voting [25] applied on both invocations

and responses for every application object.

D. The FT-CORBA Standard

A standard specification of Fault-Tolerant CORBA (FT-CORBA) [29] has been recently formally adopted by

the Object Management Group (OMG). This specification describes minimal fault-tolerant mechanisms to be

included in any CORBA implementation, as well as interfaces for the more advanced facilities provided by a

fault-tolerant CORBA implementation. The specification also includes support for configuring fault tolerance

(through several fault tolerance properties). FT-CORBA implementors are free to use proprietary mechanisms

(such as reliable multicast protocols) for their actual implementation, as long as the resulting system complies

with the interfaces defined in the specification, and the behavior expected of those interfaces.

Several groups involved in developing previous fault-tolerant CORBA implementations (namely [27], [21],

[10]) have contributed to, and heavily influenced, the FT-CORBA specification, and therefore this specifica-

tion builds on experiences from some of the fault-tolerant CORBA systems described earlier in Section II.

Due to the fundamental differences between these systems and diverging goals of the industrial and academic

participants involved in the standardization process, the resulting specification evolved into a very general,

but also complex, replication framework. As an example, the service specification makes it possible to imple-

ment fault tolerance through such different mechanisms as group communication and replicated databases.

The client-side mechanisms to be included in all CORBA implementations — regardless of whether they im-

plement FT-CORBA or not — have however been kept minimal. They basically specify object references that

can contain multiple profiles, each of which designates a replica (multi-profile IORs), and simple rules for it-

erating through the profiles in case of failure. These mechanisms ensure that unreplicated clients can interact

with replicated FT-CORBA-supported servers in a fault-tolerant manner. We know of two implementations of

FT-CORBA, the latest versions of Eternal [21] and DOORS [27], as well as a few CORBA implementations,
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such as IRL [19] and FTS [13], that already include support for FT-CORBA’s basic client-side mechanisms.

Figure 2 shows the architecture of the FT-CORBA specification. The Replication Manager handles the

creation, deletion and replication of both the application objects and the infrastructure objects. The Repli-

cation Manager replicates objects, and distributes the replicas across the system. Although each replica of

an object has an individual object reference, the Replication Manager fabricates an object group reference

for the replicated object that clients use to contact the replicated object. Note that all the replicas of a given

object are expected to be deployed on the same FT-CORBA infrastructure, i.e., heterogeneity is not sup-

ported within groups. The Replication Manager’s functionality is achieved through the Property Manager,

the Generic Factory and the Object Group Manager.

The Property Manager allows the user to assign values to an object’s fault tolerance properties, including

Replication Style(stateless, actively replicated, cold passively replicated or warm passively replicated),Membership

Style(addition, or removal, of an object’s replicas is application-controlled or infrastructure-controlled),Con-

sistency Style(replica consistency, including recovery, checkpointing, logging,etc., is application-controlled

or infrastructure-controlled),Factories(objects that create and delete the replicas of the object),Initial Num-

ber of Replicas(the number of replicas of an object to be created initially),Minimum Number of Replicas

(the number of replicas of the object that must exist for the object to be sufficiently protected against faults),

Checkpoint Interval(the frequency at which the state of an object is to be retrieved and logged for the pur-

poses of recovery),Fault Monitoring Style(the object is monitored by periodic “pinging” of the object, or,

alternatively, by periodic “i-am-alive” messages sent by the object, i.e., push or push monitoring),Fault Mon-

itoring Granularity (the replicated object is monitored on the basis of an individual replica, a location or

a location-and-type), andFault Monitoring Interval(the frequency at which an object is to be “pinged” to

detect if it is alive or has failed).

The Generic Factory allows users to create replicated objects in the same way that they would create

unreplicated objects. The Object Group Manager allows users to control directly the creation, deletion and

location of individual replicas of an application object, and is useful for expert users who wish to exercise

direct control over the replication of application objects.

The Fault Detector is capable of detecting host, process and object faults. Each application object inherits

a Monitorable interface to allow the Fault Detector to determine the object’s status. The Fault Detector

communicates the occurrence of faults to the Fault Notifier. The Fault Detectors can be structured hierar-

chically, with the global replicated Fault Detector triggering the operation of local fault detectors on each
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Approach Advantages Disadvantages Systems

Integration – Transparent to the application – Proprietary, modified ORB
– Porting required for every new ORB

Electra, Orbix+Isis

Service – CORBA-compliant
– Can exploit CORBA’s interoperability to
work with any ORB

– Not always transparent to the applicationOGS, DOORS, FRIENDS,
Newtop, AQuA, FTS, IRL

Interception – Transparent to the application
– Can exploit CORBA’s interoperability to
work with any ORB

– Interceptor needs to be ported to every
new operating system

Eternal

FT-CORBA
Standard

– Standardized, configurable support – Describes interfaces and properties, leav-
ing implementation details open
– Requires extensions to the standard ORB
core

Eternal, DOORS

TABLE I
COMPARISON OF DIFFERENT APPROACHES TO FAULT-TOLERANT CORBA.

processor. Any faults detected by the local fault detectors are reported to the global replicated Fault Notifier.

On receiving reports of faults from the Fault Detector, the Fault Notifier filters them to eliminate any

duplicate reports. The Fault Notifier then distributes fault event notifications to all of the objects that have

subscribed to receive such notifications. The Replication Manager, being a subscriber of the Fault Notifier,

receives reports of faults that occur in the system, and can initiate appropriate actions to enable the system to

recover from faults.

III. C RITICAL LOOK AT FAULT-TOLERANT CORBA SYSTEMS

There are specific issues which bring out the differences amongst the three approaches and the FT-CORBA

standard. In this section, we take a critical look at the integration, service and interception approaches, side

by side with the FT-CORBA standard, in order to identify their respective challenges and limitations.

A. Server-Side and Client-Side Transparency

We illustrate the issues in server-side and client-side transparency when implementing fault-tolerant CORBA

applications using the following example of a simplified banking application. A bank is a CORBA object

that is used to maintain a large number of accounts. Each account is identified by a unique account number,

and contains the name of the account holder as well as the current balance. An account offers two operations

for deposits and withdrawals. For simplicity, we do not handle exceptions (e.g., overdraft). The code of this

application is found in appendix.

CORBA promotes transparency by allowing the CORBA programmer to write the bank application with-

out worrying about issues such as differences in the client’s and server’s location in the system (location

transparency), differences in the client’s and server’s operating systems (interoperability), and differences in

the client’s and server’s programming languages (language transparency). A client first obtains a reference to
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an account from a naming service or by any other mean; then it can perform deposits and withdrawals on the

associated account, as if the account were a local object.

Because the bank object is a critical resource, it should be replicated and distributed across different pro-

cessors in the distributed system. Replication transparency hides the use of replication and of fault toler-

ance from the application programmer, by providing him/her the illusion that the invocations (responses)

are issued to, and originate from, single objects. Transparency is clearly desirable because it relieves the

application programmer of the burden of dealing explicitly with difficult issues such as fault tolerance, and

also allows him/her to continue programming applications as before. Informally, we can distinguish between

transparency from two different perspectives:

• Client-side transparency: Here, the client is unaware of the server’s replication. Thus, the client code

does not need to be modified to communicate with the now-replicated server. The main difficulty in achiev-

ing client-side transparency is to make the replicated server’s group reference (i.e., references containing

addresses of all of the server replicas) appear the same as the usual unreplicated server’s reference to the

client application. Fault-tolerant CORBA systems deal with this in different ways. The integration approach

(Electra and Orbix+Isis) uses custom object reference types, and requires clients to execute on top of the

proprietary reliable ORBs. The interception approach (Eternal) transparently maps CORBA’s normal in-

teroperable object references (IORs) to implementation-specific group references that are hidden from the

client application. The service approach (OGS and IRL) let the application code explicitly deal with group

references, or transparently invoke replicated servers through a generic gateway that maps normal object ref-

erences to group references. With the FT-CORBA standard, group-specific information can be embedded into

object references using the IIOP profile mechanism; however, this information is not intended to be exposed

to the client application. The FT-CORBA group references are intended to be consumed solely by client-side

ORBs that have been enhanced with fault tolerance mechanisms. Although the original client code (which

is not replication-aware) can generally be used with no modification to invoke a replicated server, it might

need to be compiled/linked with different libraries in order to obtain the respective support provided by the

interception approach, the service approach, or the FT-CORBA standard.

• Server-side transparency:Here, the server objects are unaware of their own, and of each other’s, repli-

cation. Thus, the server code does not need to be modified to support its own replication, or the replication

of other servers. Server-side transparency is far more difficult to achieve than client-side replication. If the

server is replicated (using either active or passive replication), then, there needs to exist some way of retriev-
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ing and transferring the state of a replica, for recovery and for consistent replication. Because an object’s state

consists of the values of its application-level data structures, there must be some provision for extracting these

values from the application. FT-CORBA provides for this through the additional standardized interfaces that

every CORBA object must inherit if the object is to be replicated. The code of the bank account server must

thus be modified in order to be replicated: theAccount object class now inherits from theUpdateable

and (indirectly) theCheckpointable interfaces that define operations for the retrieval and the assignment

of the partial or the complete state, respectively, of the object. The complete state refers to the entire state

of an account object (account number, account holder, current balance) while the partial state (also known

as an update or a state increment) refers to only that part (most likely, the balance) of the object’s state that

has been modified since the last state snapshot was taken. Although FT-CORBA specifies the names and

method signatures of these interfaces, the integration, service and interception approaches use some variant

of these interfaces becauseevery fault-tolerant CORBA system that supports stateful servers with consistent

replication requires each server to support some kind of interface for state retrieval and assignment.

Thus, true server-side transparency (i.e., absolutely no modifications to the server code) is impossible to

achieve as long as the server interface must support these additional interfaces for state retrieval and assign-

ment. However, server-side transparency can generally be achieved when CORBA objects are stateless, or

if there exist other ways of retrieving and assigning an object’s state without using an IDL interface. For

instance, it is possible to take snapshots of the operating systems’ layout of an entire process’ state, and

to transfer and to assign these snapshots to replicas of the process; in such cases, there is no need for the

retrieval, assignment or transfer of application-level state. However, this kind of pickling mechanism [4]

poses problems in terms of transferring local pointers, handling the heterogeneity of operating systems,etc.

Thus, for all practical purposes, no fault-tolerant CORBA infrastructure (regardless of whether it uses the

interception, integration or service approaches, or the FT-CORBA standard) ever fully achieves server-side

transparency. The problem discussed in Section III-G is a further impediment to server transparency.

Note that objects that play the role of both client and server (i.e., they act as a server to one set of objects,

and as a client to possibly a different set of objects) might require support for both client-side and server-side

transparency. Such dual-role objects need support for client replication, in addition to the server replication

that most fault-tolerant systems traditionally consider. This means that when such an object is recovered,

both its client-side and its server-side state needs to be re-instated consistently. Unfortunately, both CORBA

and FT-CORBA are server-centric, and support only the notions of handling server state through server-side
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Fig. 3. Processors hosting replicas ofAccount objects (Ai is theith distinct replicatedAccount object) in different configura-

tions: (a) fully overlapping groups and (b) partially overlapping groups.

interfaces. In order to replicate dual-role objects, theCheckpointable or theUpdateable interfaces

need to be extended, to extract, and to assign, the client-side state. Other issues with dual-role objects are

discussed further in Section III-D.

Finally, it has been argued that even when transparency is technically achievable, it requires generic pro-

tocols that behave in a conservative way and that cannot perform optimizations, thereby resulting in poor

performance [38]. A promising approach to cope with this problem, discussed in [11], consists in using

semantic knowledge of the application to determine the optimal protocols necessary to guarantee replica con-

sistency. Semantic information (e.g., knowledge that operations are read-only, deterministic, or commutative)

is not an intrinsic part of the application code, but can be specified when the application is deployed. This

additional information can then be conveyed to the underlying fault-tolerant CORBA infrastructure in order

to facilitate various tasks like transparent load balancing, caching, or low-level protocol optimizations.

B. Object vs. Processes

Group communication toolkits have traditionally dealt with process groups; if a process fails, then it is re-

moved from all the groups to which it belongs. With FT-CORBA, the fundamental unit of replication is the

object, and as such, groups deal with objects rather than processes. Since a CORBA application typically

manages a large number of objects, this may lead to the creation and management of a large number of object

groups. This is known as the group proliferation problem [15].

For instance, in our CORBA bank application example (see Section III-A), there can exist multiple, dif-

ferentAccount objects in the system. When replicated, each distinctAccount object becomes associated

with a unique object group, with all of the resulting object groups distributed across the same set of proces-

sors (see Figure 3(a)). In particular, if any one of the processors fails, all of theAccount replicas hosted by
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that processor can be considered to have failed. The fault-tolerant CORBA infrastructure must then update

all of the associated object groups as part of a membership-change protocol; this might require notifying

each individualAccount replica of the new membership of its associated object group. Thus, the failure of

a single processor can lead to multiple object group membership-change messages propagating through the

system.

This problem can sometimes be avoided by having the underlying fault-tolerant infrastructure detect object

groups that span the same set of processors, and treat them as logical groups that all map onto a single

physical group. This approach is, however, not readily applicable when groups partially overlap, as shown

in Figure 3(b). This is often the case when replicas are created and hosted across a subset of a pool of

processors. This problem can be addressed by using a group communication protocol that supports sub-

group membership.

The conflict between objects and processes results from the mismatch between object-oriented computing,

which promotes a small granularity for application components, and fault-tolerant distributed computation,

which benefits from coarse components. The developer can generally architect his/her application to avoid

this problem. For instance, the bank application could be modified so that accounts are not represented by

CORBA objects, and so that the bank is the only entity that is represented by an object group.

Another aspect of the mismatch between objects and processes is the fact that CORBA applications are

often not pure object-oriented programs,i.e., the state of an object might depend on some other entity (e.g.,

global variables) that is outside the object, but nevertheless within the process containing the object. In fact, a

CORBA object’s “real” state can be considered to be distributed in three different places: (i) application-level

state, consisting of the values of data structures within the CORBA object, (ii) ORB/POA-level state, consist-

ing of “pieces” of state within the ORB and the Portable Object Adapter (POA) that affect, and are affected

by, the CORBA object’s behavior,e.g., the last-seen outgoing IIOP request identifier, and (iii) infrastructure-

level state, consisting of “pieces” of state within the fault-tolerant CORBA infrastructure that affect, and are

affected by, the CORBA object’s behavior,e.g., the list of connections/clients for the object, the last-seen

incoming/outgoing message identifier for duplicate detection.

Because a CORBA object’s state is not contained entirely within the object, other parts of the object’s

process might need to be considered during the retrieval, assignment and transfer of the object’s state. When

a new replica of the CORBA object is launched, all three pieces of state – the application-level, the ORB/POA-

level and the infrastructure-level state – needs to be extracted from an operational replica and transferred to
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the recovering/new replica.

Application-level state is possibly the easiest to obtain because it can be extracted through theCheck-

pointable or Updateable interfaces. ORB/POA-level state is far more difficult to obtain because

CORBA standardizes on interfaces and not on ORB implementations, which means that ORBs can differ

widely in their internals. Furthermore, ORB vendors tend to regard (and also want their users to regard)

their ORBs as stateless black-boxes and are reluctant to reveal the details of their proprietary mechanisms.

Some of our biggest challenges in building strongly consistent fault-tolerant CORBA systems lie in deducing

the ORB/POA-level state (with or without the assistance of the ORB vendor), and in retrieving, transferring

and assigning this state correctly. Infrastructure-level state, although entailing additional mechanisms within

the fault-tolerant infrastructure, is relatively easy for the fault-tolerant CORBA developer to deduce and to

maintain.

Unfortunately, the “leakage” of the object’s state into its containing process, through the ORB/POA-level

and the infrastructure-level state, cannot be fully avoided, given the current state-of-the-art in ORB imple-

mentations. Because the ORB and the POA handle all connection and transport information on behalf of

a CORBA object that they support, the ORB and the POA necessarily maintain some information for the

object. This implies that there really are no stateless objects – a CORBA object with no application-level

state will nevertheless have associated ORB/POA-level state. This implementation-dependent nature of the

ORB/POA-level state means that different replicas of the same object cannot be hosted on ORBs from differ-

ent vendors (i.e., it is not possible to have a two-way replicated object with one replica hosted on ORBX, and

the other replica hosted over ORBY from a different vendor) because no assurances can be provided on the

equivalence of the ORB/POA-level states of the respective ORBs. For all practical purposes, a strongly con-

sistent replicated object must have all of its replicas running on an ORB from the same ORB vendor. Another

consequence of the vendor-dependence of ORB/POA-level state is that a fault-tolerant CORBA developer

must be fully aware of the internal, hidden differences across diverse ORBs, and must be able to deduce and

handle this state for each new target ORB.

C. Interaction with Unreplicated Objects

Traditional group communication systems often assume a homogeneous environment, where all of the ap-

plication’s components are executing on top of the same fault-tolerant infrastructure. Ideally, a CORBA

application that needs fault tolerance should have all of its components made fault-tolerant over the same
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reliable CORBA infrastructure. In practice, however, distributed systems often need to obtain services from

external or legacy components that do not necessarily have any support for replication or fault tolerance. In

some cases, the fault-tolerant CORBA developer might not even have access to these external entities,e.g.,

databases, web-based clients running behind firewalls. Thus, real-world fault-tolerant (replicated) applica-

tions will need to interoperate seamlessly with non-fault-tolerant (unreplicated) entities. These unreplicated

objects must be able to invoke, as well as respond to, replicated objects.

Because of this interoperability requirement, the complexity of the fault-tolerant infrastructure increases.

For instance, when receiving an IIOP request from an unreplicated client, the fault-tolerant CORBA infras-

tructure for an actively replicated server now needs to relay the request to all of the server replicas, and to

ensure that only one reply is returned to the client. Similarly, when an actively replicated client issues a

request to an unreplicated server, only one invocation must be seen by the unreplicated server, while the

response must be received by all of the active client replicas.

Fault-tolerant CORBA infrastructures typically use gateways to alleviate the complexity of interfacing

replicated CORBA objects with unreplicated objects or with ORBs from other vendors, as described in [26].

The part of the application or the system that the fault-tolerant CORBA infrastructure is responsible for

supporting and rendering fault-tolerant, is referred to as afault-tolerant domain. The role of a gateway is to

bridge non-fault-tolerant clients/servers into a fault-tolerant domain. The gateway translates an unreplicated

client’s regular IIOP requests into the reliable multicast requests expected within the fault-tolerant domain,

and vice-versa. Gateways can also be used to manage loosely-replicated, or weakly consistent, CORBA

servers without the need for reliable protocols [8]. Another use for gateways is to bridge two fault-tolerant

CORBA infrastructures, where each uses different mechanisms or different underlying reliable multicast

protocols

Support for heterogeneity in FT-CORBA has a price, as end-to-end reliability cannot be guaranteed when

unreplicated or non-fault-tolerant entities are involved. Consider, for instance, the case of a replicatedPay-

roll object invoking the unreplicated version of the CORBAAccount object in our bank example (see

Section III-A). Note that the unreplicatedAccount object is outside the fault-tolerant domain, which

means that we have no way of keeping track of which invocations/responses theAccount object has re-

ceived/processed, or whether a message is a duplicate of a previously received one. Suppose that the primary

Payroll replica issues an IIOP request to theAccount object (say, to deposit a pay-check) and, then,

the primary replica fails. The new primary replica that takes over has no way of knowing (without manual



22

First Tier
(Pure Client)

First Tier
(Pure Client)

Third Tier
(Pure Server)

Duplicate
Invocations

1

2

2

2

3

4

4

4

Duplicate
Responses

Third Tier
(Pure Server)

Middle Tier
(Both Client
and Server)

Middle Tier
(Both Client
and Server)

Fig. 4. Duplicate invocations and duplicate responses with an actively replicated middle tier.

intervention, through the payroll department calling up a bank officer) whether the unreplicatedAccount

object ever received the invocation and whether it ever returned a response; undecided, thePayroll object

might re-issue the request, resulting in possibly two pay-check deposits! Because the unreplicatedAccount

object lacks the fault-tolerant infrastructural support for duplicate detection and suppression, there is no way

for theAccount object to report the erroneous duplicate deposits (it is doubtful whether the account holder

would report this, either). A similar problem arises if an unreplicatedPayroll object receives a reply from

a replicatedAccount object.

Despite these issues, gateways are useful in many scenarios where fault-tolerant CORBA applications must

necessarily deal with clients outside of their reach. However, in the interests of strong replica consistency, it

is recommended to deploy all of the clients and servers of a CORBA application over the same fault-tolerant

infrastructure, for reasons of both reliability and efficiency.

D. Multi-Tiered Applications

In a distributed object system, a component is often not restricted to either a pure client or a pure server role,

but could act as a client for one operation and a server for another (in this sense, the terms “client” and “server”

do not refer to the entities themselves, but rather to the roles that these entities play in an operation). This

typically happens in a multi-tiered application, where middle-tier objects (also known as application servers

or business logic) mediate interactions between front-end pure clients and back-end pure server systems.

When, as a part of processing an incoming invocation, a server object acts as a client and, in turn, invokes

another server object, the second invocation is referred to as anested/chained operation. In the special case

where the second server object is identical to the first server object,i.e., the server object invokes itself, the

nested invocation is also called acallback operation.
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From the viewpoint of fault tolerance, providing support for nested invocations between distributed objects

poses additional complications. Informally, the reason is that an invocation issued by a replicated client object

to a remote server must be processed exactly once despite the failure of a client replica. Consider a three-tier

application where, for the sake of simplicity, only the second tier is actively replicated (the problem is similar

when all tiers are replicated). As shown in Figure 4, each of the second-tier replicas processes an incoming

invocation from the first-tier client (1) and, in turn, invokes the third-tier server (2). There will be three

identical invocations, one from each second-tier replica, issued to the third-tier; unless two of these three

duplicate invocations are suppressed and not delivered, the state of the third-tier server might be corrupted

by the processing of the same operation thrice (if this operation represented the withdrawal of funds from

the Account object in our bank example, then, the account balance would be debited thrice, when it was

intended to be debited only once). The third-tier object will send a reply to the second-tier replicated object

(3); in turn, each second-tier replica will send an identical response to the first-tier client (4). Again, the

duplicate responses from the second-tier replicas to the first-tier should be suppressed so that the state of the

first-tier client is not corrupted by the processing of redundant responses. Such duplicate invocations and

responses must be filtered out to guarantee consistent execution. In an asynchronous distributed system, it

is difficult to guarantee the detection of duplicates at their source. Duplicate suppression should, therefore,

occur at the destination as well in order to filter duplicates that escape detection at the source.

The occurrence of duplicate invocations and responses seems fairly obvious in the case of active replication.

However, this problem can also manifest itself for passively replicated objects under recovery. Consider the

case where the second-tier of the above example is passively replicated; assume that the primary second-tier

replica fails after sending an invocation to the third-tier object, and that a new second-tier primary replica is

elected. Because it might not be possible for the newly-elected primary to ascertain if the previous invocation

was received, or had completed, the new primary is likely to re-issue the same invocation to the third-tier

object. In this case, it is possible for the third-tier object to receive two identical invocations from the second-

tier object, one before the old primary died, and another after the new primary was installed. Thus, even in

the case of passive replication, mechanisms for duplicate detection and suppression are essential. It is likely,

though, that duplicates are best suppressed at the destination in the case of passive replication.

Duplicate suppression rests on the existence of mechanisms to detect duplicates reliably. In FT-CORBA,

this is achieved by embedding unique information about a specific request in the “service-context” field that

forms a part of the standard “on-the-wire” IIOP message. Fault-tolerant ORBs are expected to generate this



24

context, and to pass it along as a part of any nested invocations. For this scheme to work well, the ORB

hosting the request’s originator (the first-tier object) must create this context in the first place, and the ORBs

of all objects (the second-tier and the third-tier objects) that subsequently participate in the nested invocation

must implicitly propagate this context. This requires all of the objects in the invocation chain to run on

top of an FT-CORBA-aware ORB, which is yet another argument in favor of using the same FT-CORBA

infrastructure within a fault-tolerant domain.

Fault-tolerant CORBA systems that do not have access to an FT-CORBA-aware ORB must resort to some

other mechanism to support duplicate detection and suppression for unreplicated clients. This might take the

form of a thin library underlying the unmodified, non-FT-CORBA client-side ORB; the library is equipped

with mechanisms to generate, and to insert, the service-context information, just as an FT-CORBA-aware

ORB would. A client-side smart proxy or a client-side portable interceptor could also achieve the same

purpose. Of course, the performance overhead of accomplishing the service-context addition outside of the

ORB is always greater than when an FT-CORBA-aware ORB is used.

E. Non-Determinism

A frequent assumption in building reliable CORBA systems is that each CORBA object is deterministic in be-

havior. This means that distinct distributed replicas of the object, when starting from the same initial state, and

after receiving and processing the same set of messages in the same order, will all reach the same final state.

It is this reproducible behavior of the application that lends itself so well to reliability. Unfortunately, pure

deterministic behavior is rather difficult to achieve, except for very simple applications. Common sources of

non-determinism include the use of local timers, operating system-specific calls, processor-specific functions,

shared memory primitives,etc.

Non-deterministic behavior is an inevitable and challenging problem in the development of fault-tolerant

systems. For active replication, determinism is crucial to maintaining the consistency of the states of the

replicas of the object. Passive replication is often perceived to be the solution for non-deterministic applica-

tions. There is some truth in this perception because, with passive replication, invocations are processed only

by the primary, and the primary’s state is captured and then used to assign the states of the backup replicas.

If the primary fails while processing an invocation, any partial execution is discarded, and the invocation is

processed afresh by the new primary. Because the state updates happen only at one of the replicas, namely,

at the primary replica, the results of any non-deterministic behavior of the replicated object are completely
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contained, and do not wreak havoc with the replica consistency of the object.

However, there do exist situations where passive replication is not sufficient to deal with non-determinism.

This is particularly true of scenarios where the non-deterministic behavior of a passively replicated object is

not contained because the behavior has “leaked” to other replicated objects in the system. Consider the case

where the primary replica invokes another server object based on some non-deterministic decision (e.g., for

load balancing, the primary replica randomly chooses one ofn servers to process a credit-card transaction).

If the primary replica fails after issuing the invocation, there is no guarantee that the new primary will select

the same credit-card server as the old primary; thus, the system will now be in an inconsistent state because

the old and the new primary replicas have communicated with different credit-card servers, both of whose

states might be updated.

For passive replication to resolve non-deterministic behavior, there should be no persistent effect (i.e., no

lingering “leakage” of non-determinism) resulting from the partial execution of an invocation by a failed

replica. This is possible if the passively replicated object does not access external components based on non-

deterministic decisions/inputs, or if all accesses are performed in the context of a transaction aborted upon

failure [12]. In general, though, passive replication is no cure for non-determinism.

F. Identity and Addressing

CORBA is known for its weak identity4 and strong addressing model. Unfortunately, reliable infrastructures

need a strong identity model in order to manage replicas and to maintain their consistency. Because CORBA

objects can have several distinct references whose equivalence cannot be established with absolute certainty,

FT-CORBA implementations need to use additional schemes for the unique identification of the replicas in

each fault-tolerant domain. CORBA’s location transparency also poses a problem because reliable infras-

tructures must often take advantage of the replicas’ physical placement in several cases,e.g., to elect a new

primary upon the failure of an existing primary replica, to optimize distributed protocols, to manage the group

membership of collocated components efficiently.

Reliable infrastructures rely on an indirect addressing scheme because the composition of the group can

change over time. This requires the FT-CORBA infrastructure to maintain a custom addressing mechanism in

order to map a group IOR, at run-time, onto the references of the replicas currently in the group. Information
4Every CORBA object can be associated with multiple distinct object reference. However, it is not possible to ascertain if any two given

references “point” to the same CORBA object, simply by comparing the references. Thus, an object reference does not provide a CORBA object

with a strong identity.
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about the group’s identity, along with the individual addresses of its constituent replicas, are encapsulated

into the group IOR of the replicated object. However, an object’s group IOR enumerates only the replicas

that exist at the time of group IOR generation; thus, the information in the group IOR is liable to become

obsolete as replicas fail and are recovered. A major challenge for any FT-CORBA infrastructure is to keep

track of the current group memberships of the replicated objects that it hosts, and to update the group IORs

that clients hold.

When a client invokes a method using a replicated server’s group IOR, the FT-CORBA infrastructure trans-

lates this to invoke the same method on the individual server replicas whose addresses are present in the group

IOR. However, if the group IOR that the client holds is stale (i.e., the membership of the group has changed

so that none of the object references contained in the group IOR held by the client represents a currently oper-

ational replica), then, the client will not be able to reach the replicated server even if, in fact, there exist other

operational replicas that are not represented in the stale group IOR. This problem can be solved in practice

by embedding into a group IOR the addresses of one or more objects with permanent or persistent addresses

(i.e., addresses that are guaranteed not to change over the object’s lifetime); these persistent objects can act

as forwarding agents that can refresh outdated client references. Typically, the FT-CORBA infrastructure’s

Replication Manager (shown in Figure2) acts as this forwarding persistent object. Thus, if a client tries to

invoke a replica using an outdated group reference, the replica’s FT-CORBA infrastructure is responsible for

transparently updating the reference held by the client through standard CORBA re-direction mechanisms

(such as LOCATIONFORWARD, where a recipient ORB can re-direct an incoming invocation to another

address, much in the way that a post office provides forwarding services for mail).

G. Object Factories

One of the limitations of early fault-tolerant CORBA implementations was that they did not adequately sup-

port objects with methods that return object references. A classic example of this problem is illustrated by

“object factories,” whose sole purpose is to create and destroy objects, in response to client requests. Clients

can obtain references to newly-created objects from the factory, and can subsequently invoke operations on

these objects. Object factories are a very common paradigm in distributed programming,e.g., in the form of

the Factory design pattern [14], and many CORBA systems make extensive use of this notion. In fact, FT-

CORBA makes explicit provision for a Generic Factory specifically for the purpose of instantiating replicas,

as described in Section II-D. Typically, when asked to create an object, the factory instantiates the object
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within its local process address space, registers the instance with its local ORB, and then returns a reference

to the newly-created instance to the client that requested the object’s creation. The client can subsequently

use the returned reference to contact the object directly.

Thus, the FT-CORBA factory is used to instantiate replicas on specific processors. However, in the inter-

ests of fault tolerance, the object factory must itself not constitute a single point of failure. Therefore, we must

consider the possibility of replicating the object factory. At the same time, we expect the replicated factory

to instantiatereplicatedapplication objects,i.e., the replicas of the object factory, independent of their own

replication style, must somehow magically create a set of the same application objects, register these objects

with their respective ORBs as part of a new group, and return the group IOR to the client, rather than a ref-

erence to any individual replica. Thus, although each individual factory was designed to create an individual

application object, the factory replicas must be coordinated, across different processors in an asynchronous

distributed system, in order to create a replicated application object.

One way of achieving this is to have the object factory code explicitly deal with group management.

However, object factories are written by the application programmer, and adding group management to the

object factory merely increases the complexity of the application. Furthermore, the number and identity

of the new replicas must be known to the replicated factory in order for it to be able to instantiate a new

group. Exposing the details of replication management to the application programmer breaks replication

transparency; also, the replicas of the object factory now have two different “pieces” of state – a common

state that is identical across all of the factory replicas, and an individual state that is specific to each factory

replica. If the object factory is actively replicated, then, its replicas must coordinate amongst themselves

to achieve the end-result of creating a replicated object and generating a group IOR. If the object factory

is passively replicated, then, the backups must be equally involved in creating replicas on their respective

processors; the replica creation process should not form a part of the periodic state transfer (of the common

state) from the primary replica, but must occur synchronously across both the primary and the backup replicas.

Thus, the backup replicas are passive w.r.t. normal operations, but are active w.r.t. the coordinated creation

of a replicated object.

Another way of achieving this is to decouple the replicas of the factory from each other, and to perform the

coordination of the factory replicas using a higher-level entity, such as the FT-CORBA Replication Manager

(shown in Figure 2). In this case, the requests for the creation of a replicated application object are issued

by clients directly to the Replication Manager, which then delegates the creation of individual application
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replicas to factories on specific processors. Each factory replica creates an application replica, and returns

its application replica’s reference to the Replication Manager. In turn, the Replication Manager “stitches”

together a group IOR using the individual application replica references that it has received from the various

factories, and returns this group IOR to the client that requested the creation of the replicated object.

Regardless of whether the factories or the Replication Manager generate the group IOR, FT-CORBA pro-

vides some interfaces and mechanisms to deal with replica creation. Using the FT-CORBA Property Manager

interface described in Section II-D, the application programmer must register custom factories for the various

object types in the application with the fault-tolerant infrastructure. While FT-CORBA’s Generic Factory in-

terface makes the creation of replicated objects relatively straightforward, it involves significant modifications

to, and requires the re-design of, existing CORBA applications.

H. Trade-Offs in Configuring Fault Tolerance

The FT-CORBA specification permits considerable latitude in terms of configuring fault tolerance to suit an

application’s requirements. This is possible through the various fault tolerance properties that can be assigned

values by the user at the time of deploying an FT-CORBA application. With this flexibility also comes the

potential for abuse – selecting the wrong replication style for a specific object might adversely impact its

performance, selecting the wrong fault detection timeout for an object might lead to its being suspected as

having failed far too often,etc.

Investing the effort to consider the various trade-offs (e.g., active replicationvs. passive replication) in a

resource-aware manner will allow FT-CORBA infrastructures to work efficiently, to make the best possible

use of the available resources, and to provide fault tolerance with superior performance. One of the most im-

portant sets of trade-offs occurs in choosing between the active and passive replication styles for a replicated

object:

• Checkpointing. With cold passive replication, under normal operation, the primary replica’s state is check-

pointed into a log. If the state of the object is large, this checkpointing could become quite expensive. With

warm passive replication, if the state of the object is large, transferring the primary’s state to the backup

replicas, even if it is done periodically, could become quite expensive. This state transfer cost is incurred for

active replication only when a new active replica is launched, and never during normal operation.

• Computation. Cold passive replication requires only one replica to be operational and, thus, consumes

CPU cycles only on one processor. While warm passive replication requires more replicas to be operational,
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these backups do not perform any operations (other than receiving the primary replica’s state periodically),

and also conserve CPU cycles on their respective processors. With active replication, every replica performs

every operation, and therefore consumes the same number of CPU cycles of its respective processor. Thus,

passive replication consumes cycles on fewer processors during normal operation,i.e., it does not require

normal fault-free operations to be performed by each of the replicas on its respective processor. For operations

that are compute-bound,i.e., require many CPU cycles, the cost of passive replication can be lower (in the

fault-free case) than that of active replication.

• Bandwidth usage. For active replication, a multicast message is required to issue the operation to each

replica. This can lead to increased usage of network bandwidth because each operation may itself generate

further nested operations. For passive replication, because only one replica, the primary client (server) replica,

invokes (responds to) every operation, less bandwidth may be consumed. However, if the state of the primary

replica is large, the periodic state transfer may also require significant network bandwidth.

• Speed of recovery. With active replication, recovery time is faster in the event that a replica fails. In

fact, because all of the replicas of an actively replicated object perform every operation, even if one of the

replicas fails, the other operational replicas can continue processing and perform the operation. With passive

replication, if the primary replica fails, recovery time may be significant. Recovery in passive replication

typically requires the re-election of a new primary, the transfer of the last checkpoint, and the application

of all of the invocations that the old primary received since its last checkpoint. If the state of the object is

large, retrieving the checkpoint from the log may be time-consuming. Warm passive replication yields faster

recovery than cold passive replication.

The cost of using activevs. passive replication is also dictated by other issues, such as the number of

replicas and the depth of nesting of operations. For a CORBA object, active replication is favored if the cost

of network bandwidth usage and the cost of CPU cycles is less than the cost incurred in passive replication

due to the periodic checkpointing of the object’s state.

Hybrid active-passive replication schemes [16] have been considered, with the aim of addressing the reduc-

tion of multicast overhead in active replication styles, as well as of achieving the best of the active and passive

replication styles. An approach for marrying both replication techniques has also been proposed in [9]. At the

protocol level, this system uses a variant of a distributed consensus protocol that acts as a common denom-

inator between both replication styles. An important property of this system is that both active and passive

replication techniques can be used at the same time in a distributed application, and a unique feature is that
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the replication technique can be dynamically specified on a per-operation basis.

I. Common Limitations

Regardless of the specific approach (interception, integration, service, or FT-CORBA) used, the following

holds true of current fault-tolerant CORBA systems:

• Whenever a reliable ordered group communication toolkit is employed to convey the messages of the

CORBA application, the resulting fault-tolerant CORBA system will require the group communication toolkit

to be ported to new operating systems, as required.

• A CORBA object is associated with application-level state, ORB/POA -level state and infrastructure-level

state; for effective fault tolerance and strong replica consistency, all three kinds of state must be maintained

identical across all replicas of the same object. Even if a CORBA object is stateless w.r.t. application-level

state, the other two kinds of state nevertheless exist.

• As long as a CORBA object has application-level state, true server-side transparency (i.e., no modifications

to the server code) cannot be fully achieved in a portable manner.

• Although a CORBA object is widely regarded as the unit of replication, the process containing the CORBA

object is, for all practical purposes, the correct unit of replication due to the presence of unavoidable in-

process state.

• Replicas of a CORBA object cannot currently be supported across different ORB implementations while

preserving strong replica consistency,e.g., it is not possible for a CORBA object to have one replica using

VisiBroker and the other using Orbix.

• Replicas of a CORBA object cannot currently be supported across different FT-CORBA implementations,

even if the same ORB is used by all of the replicas,e.g., it is not possible for a CORBA object to have one

replica supported by Eternal and the other supported by OGS.

• The CORBA application must be deterministic in behavior so that, when replicas are created and distributed

across different processors, the states of the replicas will be consistent, as the replicas process invocations and

responses, and even if faults occur in the system.

• If an unreplicated client (server) that is not supported by a fault-tolerant CORBA infrastructure communi-

cates with a replicated server (client), replica consistency might be violated if a fault occurs, even if gateways

are used.

• There is no support for the consistent remerging of the replicas of CORBA objects following a network
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partition (most of the approaches assume a primary partition model, which allows only one component,

called the primary, to continue operating, while the other disconnected components cease to operate).

• Design faults,i.e., intrinsic problems in the application that cause all of the replicas of an object to crash in

the same way, are not tolerated. Current fault-tolerant CORBA systems do not use software fault-tolerance

mechanisms such as design diversity orN -version programming [2] in order to remedy this deficiency.

• Faults are assumed to be independent,i.e., processors, processes and objects fail independently of each

other (also known as theindependent-failures assumption). Thus, correlated, or common-mode, failures are

not handled.

IV. CONCLUSION

The emergence of object-oriented middleware such as CORBA has greatly simplified the development of

distributed applications, by allowing programmers to build systems from components that interact seamlessly

across multiple processors, transcending differences in programming languages, physical locations, operating

systems, byte orders, hardware architectures,etc. As applications become more distributed and complex, the

likelihood of faults undoubtedly increases because individual processors and communication links can fail

independently. For almost a decade since its inception, CORBA had no standard support for fault-tolerance.

Various research efforts were expended to remedy this deficiency, each of the resulting systems using repli-

cation to protect applications from the failure of individual objects. The recently adopted specification for

Fault-Tolerant CORBA (FT-CORBA) represents the marriage of several of these efforts and their insights,

and comprises the specifications necessary to replicate CORBA objects.

The lessons that we have learned as implementors of reliable CORBA systems and as contributors to

the FT-CORBA standard have been captured in this paper in the form of recommendations and cautions to

CORBA application programmers, ORB vendors, FT-CORBA developers, and potential users of the new

FT-CORBA standard or of existing fault-tolerant CORBA infrastructures. While some of the insights that we

describe might seem rather intuitive in hindsight, our experience has shown us that these practices are often

sadly neglected in the development of reliable distributed applications, and that these lessons are learned the

hard, and often costly, way.

We strongly believe thatreliability should not be an after-thought. Fault tolerance can be added transpar-

ently only to very simple applications. Real-world applications can use many proprietary mechanisms, can

communicate with legacy systems, can work with commercial databases, and can exhibit non-deterministic



32

behavior. In such cases, it should not be assumed that the use of an FT-CORBA infrastructure “out-of-

the-box” will provide a ready solution for complicated applications. FT-CORBA cannot magically resolve

non-determinism in CORBA applications; for example, if multithreading is used by the application, then, the

application programmer must take care to ensure that threads do not update shared in-process state concur-

rently.

For real-world complex applications, there might be significant re-architecturing of the application if reli-

ability is an after-thought. Investing the thought and the effort to plan ahead for reliability during the design

of a new application can save the cost of re-design and re-writing of the application when fault tolerance

does become an issue. Planning ahead might involve examining (i) the important system/application state,

i.e., the data that will need to be protected despite faults in the system, (ii) the appropriate granularity of the

application’s objects (because replicating many small objects might impact performance or resources), (iii)

the critical elements of processing,i.e., the processing or operations that will need to continue uninterrupted,

despite faults in the system, and (iv) the data flows within the system (because objects that communicate

frequently might need to be collocated within the same process).

Unfortunately, the FT-CORBA specification, while being rather detailed, does have some practical limita-

tions, and does not fully address some of the issues faced by developers of real-world CORBA applications.

The problems of providing fault tolerance for the complex and critical CORBA applications of the future are

far from over. FT-CORBA cannot fix problems that already exist in applications and, therefore, does not pro-

vide solutions for cases where applications may crash due to design errors (with FT-CORBA, if one replica

dies due to a divide-by-zero exception, all of the replicas will die identically). Furthermore, if the system

partitions so that some of the replicas are disconnected from other replicas of the same object, FT-CORBA

infrastructures cannot automatically reconcile any differences in the states of the replicas when communica-

tion is once more re-established. Other open issues, such as dealing with new sources of non-determinism,

supporting the CORBA component model, combining fault tolerance and real-time, combining fault tolerance

and security, and combining replication and transactions, are all practical challenges that will undoubtedly be

faced by users, and will need to be addressed by the developers of reliable systems.

In this paper, we have shared our experiences and insights as users of multiple CORBA implementations,

developers of reliable CORBA infrastructures and fault-tolerant CORBA applications, and as contributors to

the FT-CORBA standardization process. We have discussed the challenges that are commonly faced in devel-

oping fault-tolerant CORBA implementations, the pitfalls encountered when building reliable applications,
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and how best to take advantage of the FT-CORBA standard. It is our sincere hope that FT-CORBA users and

developers alike will benefit from our knowledge, experiences and contributions, and that our insights will

help to shape the future of fault-tolerant infrastructures for middleware and distributed object applications.
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APPENDIX

I. CODE L ISTINGS

1 interface Account{
2 readonly attribute long number;
3 readonly attribute string owner;
4 readonly attribute float balance ;
5

6 void deposit (in float amount);
7 void withdraw(in float amount);
8 };

Listing 1: IDL interface of the bankAccount
object.

1 int main(int argc , char ∗argv [])
2 {
3 // Initialize the ORB
4 CORBA::ORBvar orb = CORBA::ORBinit(argc, argv);
5

6 // Obtain the address of the Account object from the command−line
7 Object var ior = orb−>string to object (argv [1]);
8 Accountvar acc = Account::narrow( ior );
9

10 // Invoke server
11 acc−>deposit(100);
12 cout<< ”New balanceis ” << acc−>balance()<< endl;
13 }

Listing 2: C++ implementation of the bank
client.

1 class Account impl : POA Account
2 {
3 CORBA::Long number;
4 string owner ;
5 CORBA::Float balance;
6

7 public :
8 Account impl(CORBA::Long n,string o) :
9 number(n ), owner(o ), balance(0.0){}

10

11 // Account IDL operations
12 CORBA::Long number()
13 { return number; }
14 char∗ owner()
15 { return CORBA::stringdup(owner.c str ());}
16 CORBA::Float balance()
17 { return balance ; }
18 CORBA::Float deposit(CORBA::Float amount)
19 { balance += amount;}
20 CORBA::Float withdraw(CORBA::Float amount)
21 { if (amount> balance) balance −= amount;}
22 };

Listing 3: C++ implementation of the bankAc-
count object.

1 // IDL
2 interface Account : FT::Updateable{
3 // Same as before ...
4 };
5

6 // C++
7 class Account impl : POA Account
8 {
9 // Some as before ...

10 public :
11 // Checkpointable ( base class of Updatable) operations : state transfer
12 FT:: State∗ get state (); // Code omitted
13 set state (const FT:: State& s ); // Code omitted
14

15 // Updatable operations : state update
16 FT:: State∗ get update (); // Code omitted
17 set state (const FT:: State& s ); // Code omitted
18 };

Listing 4: IDL interface and C++ implementation
of the replicated bankAccount object.


