
1

Data Indexing in Peer-to-Peer DHT Networks
L. Garćes-Erice, P.A. Felber, E.W. Biersack, G. Urvoy-Keller K.W. Ross

Institut EURECOM, 06904 Sophia Antipolis, France Polytechnic University, Brooklin, NY 11201 , USA
{garces|felber|erbi|urvoy }@eurecom.fr ross@poly.edu

Abstract— Peer-to-peer distributed hash table (DHT) systems
make it simple to discover specific data when their complete
identifiers—or keys—are known in advance. In practice, however,
users looking up resources stored in peer-to-peer systems often
have only partial information for identifying these resources. In
this paper, we describe techniques for indexing data stored in peer-
to-peer DHT networks, and discovering the resources that match a
given user query. Our system creates multiple indexes, organized
hierarchically, which permit users to locate data even using scarce
information, although at the price of a higher lookup cost. The
data itself is stored on only one (or few) of the nodes. Experimen-
tal evaluation demonstrates the effectiveness of our indexing tech-
niques on a distributed peer-to-peer bibliographic database with
realistic user query workloads.

I. I NTRODUCTION

Peer-to-peer (P2P) systems make it possible to harness the
computing power and resources of large populations of net-
worked computers in a cost-effective manner. In this paper,
we focus on P2P systems where data items are spread across
distributed peer computers (nodes) and the location of each
item is determined in a decentralized manner using a distributed
hash table (DHT), such as Chord [1], CAN [2], Pastry [3], or
Tapestry [4].

A major limitation of P2P DHT systems is that they only
support exact-match lookups: one needs to know the exact key
(identifier) of a data item to locate the node(s) responsible for
storing that item. In practice, however, P2P users often have
only partial information for identifying these items and tend
to submit broad queries (e.g., all the articles written by “John
Smith”).

In this paper, we propose to augment P2P DHT systems with
mechanisms for locating data using incomplete information.
Note that we do not aim at answering complex database-like
queries, but rather at providing practical techniques for search-
ing data in a DHT. Our mechanisms rely on indexes, stored and
distributed across the nodes of the network, that maintain useful
information about user queries. Given a broad query, a user can
obtain additional information about the data items that match
his original query; the DHT can be recursively queried until the
user finds the desired data items. Indexes can be organized hi-
erarchically to reduce space and bandwidth requirements, and
to facilitate interactive searches. They integrate an adaptive dis-
tributed cache to speed up accesses to popular content.

Our indexing techniques can be layered on top of an arbi-
trary P2P DHT infrastructure, and thus benefit from any ad-
vanced features implemented in the DHT (e.g., replication,
load-balancing). We have conducted a comprehensive evalu-
ation that demonstrates their effectiveness in realistic settings.
In particular, we have observed that our techniques are scalable,

adapt well to user search patterns, and have reasonably-small
space requirements. Look-up times depend on the “precision”
of the initial query: broad queries incur higher lookup times
than specific queries.

The organization of this paper is as follows: In Section II,
we discuss related work, and we introduce the system model in
Section III. We describe our distributed indexing techniques in
Section IV and we evaluate them in Section V. Finally, Sec-
tion VI concludes the paper.

II. RELATED WORK

Of the various related project, INS/Twine [5] is most similar
to our work. INS/Twine is an architecture for intentional (i.e.,
based on what we are looking for, not where it is located [6])
resource discovery, which allows to easily locate services and
devices in large scale environments, using intentional descrip-
tions. INS/Twine works on top of a DHT, such as Chord [1], by
setting up a number of resolvers, which collaborate to distribute
resource information and to resolve simple queries. Given a
semi-structured resource description, INS/Twine extracts pre-
fix subsequences of attributes and values, called “strands”.
INS/Twine then computes the hash values for each of these
strands, which constitutes numeric keys used to map resources
to resolvers. The resource and device information are stored
redundantly onall peer resolvers that correspond to the nu-
meric keys. When looking up some resource, INS/Twine sends
the query to the resolver node identified by one of the longest
strands; the query is further processed by the resolver, which
returns the matching resource descriptions.

Unlike Twine, we do not replicate data at multiple loca-
tions; we rather provide a key-to-key service, or more precisely
a query-to-query service. We do not introduce dedicated re-
solvers in our architecture; we only require the underlying dis-
tributed data storage system to allow for the registration of mul-
tiple entries using the same key. As we allow index keys to
be tree-structured or non-prefix sub-keys, data can be looked
up using more expressive and selective queries. For improved
scalability, index entries are further organized hierarchically.

In [7], the authors discuss techniques for performing com-
plex queries in DHT-based P2P networks, using traditional re-
lational database operators (selection, projection, join, group-
ing and aggregation, and sorting) and elaborate text retrieval
techniques (like splitting a query string and using each piece to
create a key matching the query).

In [8], the authors develop a P2P data sharing architecture for
computing approximate answers for complex queries by finding
data ranges that are similar to the user query. Relevant data is
located using “locality sensitive hashing” techniques. In [9], the

2

<article>
<author>

<first>John</first>
<last>Smith</last>

</author>
<title>TCP</title>
<conf>SIGCOMM</conf>
<year>1989</year>
<size>315635</size>

</article>

d1

<article>
<author>

<first>John</first>
<last>Smith</last>

</author>
<title>IPv6</title>
<conf>INFOCOM</conf>
<year>1996</year>
<size>312352</size>

</article>

d2

<article>
<author>

<first>Alan</first>
<last>Doe</last>

</author>
<title>Wavelets</title>
<conf>INFOCOM</conf>
<year>1996</year>
<size>259827</size>

</article>

d3

Fig. 1. Sample file descriptors.

same authors extend the CAN [2] system to support the basic
range operation on data shared in the form of database relations.

More recently, the authors of [10] combine the flexibility of
searches in unstructured P2P networks (like Gnutella [11]) with
the efficiency of DHTs. Peers are organized in groups with
common interests. Groups are located with a DHT-like algo-
rithm, and searches are performed within groups using more
flexible algorithms. In [12], the authors question the feasibility
of an Internet wide search engine based on P2P, but their con-
clusion do not apply to our techniques, which are targeted at
smaller scale systems with well-specified content.

III. SYSTEM MODEL AND DEFINITIONS

The distributed indexes are layered on top of a P2P DHT
infrastructure—or substrate—and use various other technolo-
gies to describe content and represent user queries. We now
describe the specific requirements of our indexing techniques.

A. DHT Storage

A DHT system maps keys to nodes in a peer-to-peer infras-
tructure. Any node can use the DHT substrate to determine the
current live node that is responsible for a given key. In this pa-
per, we assume an underlying DHT-based P2P data storage sys-
tem, in which each data item is mapped to one or several peer
nodes. Example of such systems are Chord/DHash/CFS [13]
and Pastry/PAST [14].

Throughout the paper, we will use the example of a bibli-
ographic database system that stores scientific articles. Files
are identified bydescriptors, which are textual, human-readable
descriptions of the file’s content. Leth(descriptor) be a hash
function that maps identifiers to a large set of numeric keys. The
peer node responsible for storing a filef is determined by trans-
forming the file’s descriptord into a numeric keyk = h(d).
This numeric key is used by the DHT substrate to determine
the node responsible forf .

B. Data Descriptors and Queries

We assume that descriptors are semi-structured XML
data [15], as used by many publicly-accessible databases (e.g.,
DBLP [16]). Examples of descriptors for bibliographic data
are given in Figure 1. These descriptors have fields useful for
searching files (author, title), as well as fields useful for an ad-
ministrator of the database (size).

To search for data stored in the peer-to-peer substrate, we
need to specify broad queries that can match multiple file de-
scriptors. For this purpose, we use a subset of the XPath XML

addressing language [17], which offers a good compromise be-
tween expressiveness and simplicity. XPath treats XML docu-
ments as a tree of nodes and offers an expressive way to specify
and select parts of this tree. An XPath expression contains one
or morelocation steps, separated by slashes (/). In its more ba-
sic form, a location step designates an element name followed
by zero or more predicates specified between brackets. Predi-
cates are generally specified as constraints on the presence of
structural elements, or on the values of XML documents us-
ing basic comparison operators. XPath also allows the use of
wildcard (*) and ancestor/descendant (//) operators, which re-
spectively match exactly one and an arbitrarily long sequence
of element names. An XML document (i.e., a file descriptor)
matchesan XPath expression when the evaluation of the ex-
pression on the document yields a non-null object.

q1 = /article[author[first/John][last/Smith]] · · ·
[title/TCP][conf/SIGCOMM][year/1989][size/315635]

q2 = /article[author[first/John][last/Smith]][conf/INFOCOM]
q3 = /article/author[first/John][last/Smith]
q4 = /article/title/TCP
q5 = /article/conf/INFOCOM
q6 = /article/author/last/Smith

Fig. 2. Sample file queries.

For a given descriptord, we can easily construct an XPath ex-
pression (or query)q that tests the presence of all the elements
and values ind.1 We call this expression themost specific query
for d or, by extension, themost specific descriptor. Conversely,
givenq, one can easily constructd, computek = h(d), and find
the file. For instance, queryq1 in Figure 2 is the most specific
query for descriptord1 in Figure 1.

Given two queriesq and q′, we say thatq′ coversq (or q
is covered byq′), denoted byq′ w q, if any descriptord that
matchesq also matchesq′. Abusing the notation, we often use
d instead ofq whenq is the most specific query ford and we
consider them as equivalent (q ≡ d); in particular, we say that
q′ coversd whenq′ w q andq is the most specific query ford.
It should be noted that the covering relation introduces a partial
ordering on the queries.

The partial ordering graph for queries in Figure 2 is shown in
Figure 3, whereqi → qj is readqi w qj (more specific queries
are represented above less specific queries).

1In fact, we can create several equivalent XPath expressions for the same
query. We assume that equivalent expressions are transformed into a unique
normalized format.

3

d2 d3q1 1d

q2q4

q3 q5

q6

Fig. 3. Partial ordering tree for the queries of Figure 2 (self-covering and
transitive relations are omitted).

IV. I NDEXING

When the most specific query for the descriptord of a file f
is known, finding the location off is straightforward using the
key-to-node (and hence key-to-data) underlying DHT lookup
service. The goal of our architecture is to also offer access tof
using less specific queries that coverd.

The principle underlying our technique is to generate multi-
ple keys for a given descriptor, and to store these keys in in-
dexes maintained by the DHT infrastructure. Indexes do not
contain key-to-data mappings; instead, they provide a key-to-
key service, or more precisely a query-to-query service. For a
given queryq, the index service returns a (possibly empty) list
of more specific queries, covered byq. If q is the most specific
query of a file, then the DHT storage system returns the file
(or indicates the node responsible for that file). By iteratively
querying the index service, a user can traverse upward the par-
tial order graph of the queries (see Figure 3) and discover all
the indexed files that match his broad query.

In order to manage indexes, the underlying DHT storage sys-
tem must be slightly extended. Each node should maintain an
index, which essentially consists of query-to-query mappings.
The “insert(q, qi)” function, with q w qi, adds a mapping
(q; qi) to the index of the node responsible for keyq. The
“ lookup(q)” function, with q not being the most specific query
of a file, returns a list of all the queriesqi such that there is a
mapping(q; qi) in the index of the node responsible for keyq.

Roughly speaking, we store files and construct indexes as
follows: Given a filef and its descriptord, with a correspond-
ing most specific queryq, we first storef at the node respon-
sible for the keyk = h(q). We generate a set of queries
Q = {q1, q2, . . . , ql} likely to be asked by users (to be dis-
cussed shortly), and such that eachqi w q. We then compute
the numeric keyki = h(qi) for each of the queries, and we
store a mapping(qi; q) in the index of the node responsible for
ki in the DHT. Optionally, we iterate the process shown forq
with everyqi and recursively until all the desired index entries
have been created.

A. Example

To best illustrate the principle of our indexing techniques,
consider a P2P bibliographic database that stores the three files
associated to the descriptors of Figure 1. We want to be able to
lookup publications using various combinations of the author’s
name, the title, the conference, and the publication year. A pos-
sible hierarchical indexing scheme is shown in Figure 4. Each
box corresponds to a distributed index, and indexing keys are

MSD

author/first

author/last title conference year

+ author/last
+ title

+ author/last
author/first conference

+ year

Last name

Author

Article

Title Conference

Proceedings

Year

Publication

Fig. 4. Sample indexing scheme for a bibliographic database.

indicated inside the boxes. The index at the origin of an arrow
stores mapping between its indexing key and the indexing key
of the target. For instance, theLast nameindex stores the full
names of all authors that have a given last name; theAuthor
index maintains information about all articles published by a
given author; theArticle index stores the descriptors (MSDs) of
all publications with a matching title and author name.

After applying this indexing scheme to the three files of the
bibliographic database, we obtain the distributed indexes shown
in Figure 5. The top-levelPublication index corresponds to
the raw entries stored in the underlying DHT-based storage sys-
tem: complete key provide direct access to the associated files.
The other indexes hold query-to-query mappings that enable
the user to iteratively search the database and locate the desired
files. Each entry of an index is potentially stored on a different
node in the DHT substrate, as illustrated for theProceedingsin-
dex. One can observe that some index entries associate a query
to multiple queries (e.g., in theAuthor index).

Figure 6 details the individual query mappings stored in the
indexes of Figure 5. Each arrow corresponds to a query-to-
query mapping, e.g.,(q6; q3). The files corresponding to de-
scriptorsd1, d2, andd3 can be located by following any valid
path in the partial order tree. For instance, givenq6, a user will
first obtainq3; the user will query the system again usingq3

and obtain two new queries that link tod1 andd2; the user can
finally retrieve the two files matching its query usingd1 andd2.

B. Lookups

We can now describe the lookup process more formally.
When looking up a filef using a queryq, a user first con-
tacts the noden responsible forh(q). That node may return
f if q is the most specific query forf , or a list of queries
{q1, q2, . . . , qn} such that the mappings(q; qi), with q w qi,
are stored atn. The user can then choose one or several of the
qi and repeat this process recursively until the desired files have
been found. The user effectively follows an “index path” that
leads fromq to f .

Lookups may require several iterations when the most spe-
cific query for a given file is not known. Higher index hierar-
chy usually necessitate more iterations to locate a file, but are
also generally more space-efficient, as each index factorizes in
a compact manner the queries of its child indexes. In particular,
the size of the lists (result sets) returned by the index service

4

Alan/Doe Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

John/Smith

Alan/Doe/Wavelets
John/Smith/IPV6
John/Smith/TCP

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/IPV6/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

x.pdf
y.pdf
z.pdf

INFOCOM/1996

SIGCOMM/1989

John/Smith/IPV6/INFOCOM/1996/...
Alan/Doe/Wavelets/INFOCOM/1996/...
John/Smith/TCP/SIGCOMM/1989/...

INFOCOM/1996
SIGCOMM/19891989

1996INFOCOM
SIGCOMM

INFOCOM/1996
SIGCOMM/1989

Alan/Doe/Wavelets

John/Smith/IPV6
John/Smith/TCP

Wavelets
TCP
IPV6Alan/Doe

John/SmithSmith
Doe

Author Proceedings

Article

Publication

Last name Title Conference Year

Fig. 5. Sample distributed indexes for the three documents of Figure 1 and the indexing scheme of Figure 4 (query syntax has been simplified).

q

Doe

4

q
5

d
3

d
2

q
1

d
1

q
3

q
6

John/Smith/IPV6/INFOCOM/1996/...Alan/Doe/Wavelets/INFOCOM/1996/...

Alan/Doe/Wavelets

INFOCOM 1996

Smith

TCPJohn/Smith

John/Smith/TCP/SIGCOMM/1989/...

SIGCOMM/1989

1989SIGCOMM

John/Smith/TCPJohn/Smith/IPV6

IPV6

INFOCOM/1996

WaveletsAlan/Doe

Fig. 6. Query mappings for the indexes of Figure 5 (identifiers correspond to Figures 1 and 2; query syntax has been simplified).

may be prohibitively long when using a flat indexing scheme
(consider, for example, the list of all articles written by the per-
sons whose last name is “Smith”). There is therefore a trade-
off between space requirements, size of result sets, and lookup
time, as we shall see in the experimental evaluation.

The lookup process can be interactive, i.e., the user directs
the search and restricts its query at each step, or automated, i.e.,
the system recursively explores the indexes and return all the
file descriptors that match the original query.

When a user wants to look up a filef using a queryq, it may
happen thatq is not present in any index, althoughf does exist
in the peer-to-peer system andq is a valid query forf . In that
case, it is still possible to locatef by (automatically) looking
for a queryqi such thatqi w q andqi is on some index path that
leads tof .

For instance, given the distributed indexes of Figures 5 and 6,
it appears that queryq2 in Figure 2 is not present in any index
(q2 =/article[author[first/John][last/Smith]][conf/INFOCOM]).
We can however findq3, such thatq3 w q2 and there exists an
index path fromq3 tod1. Therefore, the file associated tod1 can
be located using this generalization/specialization approach, al-
though at the price of a higher lookup cost. We believe that it is
natural for lookups performed with less information to require
more effort.

C. Building and Maintaining Indexes

When a file is inserted in the system for the first time, it has
to be indexed. The choice of the queries under which a file is
indexed is arbitrary, as long as the covering relation holds. As

files are discovered using the index entries, a file is more likely
to be located rapidly if it is indexed “enough” times, under
“likely” names. The quantity and likelihood of index queries
are hard to quantify and are often application-dependent. For
instance, in a bibliographic database, indexing a file by its size
is useless for users, as they are unlikely to know the size before-
hand. However, indexing the files under the author, title, and/or
conference are appropriate choices.

Note that the length of the index paths that lead to a given file
is arbitrary, although it directly affects the lookup time. Less
popular content may be indexed using a deeper index hierar-
chy, to reduce space and bandwidth requirements, and to facil-
itate interactive searches. In contrast, a very popular file can
be linked to deep in the hierarchy to short-circuit some indexes
and speed up lookups. For instance, given the distributed in-
dexes of Figures 5 and 6, one can add the(q6; d1) index entry
to speed up searches for the popular file described byd1 (e.g.,
the author’s most popular publication).

Note also that more generic queries can be obtained from
more specific queries by removing only portions of element
names (i.e., using substring matching). For instance, one can
create an index with all the files of an author that start with the
letter “A”, the letter “B”, etc. One can also envision to use tech-
niques similar to those discussed in [7] for substring matching.
In general, determining good decompositions for indexing each
given descriptor type (e.g., articles, music files, movies, books,
etc.) requires human input.

In a system model where files are injected in the system, but
are never deleted (write-once semantics), index entries never
need to be updated. In a read/write system, when a file is

5

deleted we have to find all the indexes that refer to the descrip-
tor of that file and delete the associated mappings. Locating the
index entries can be achieved straightforwardly by using the
same process used to generate them in the first place when the
file was injected in the system. When deleting the last mapping
for a given key, we can recursively delete the references to that
key to clean up the indexes.

Index entries can also be created dynamically to adapt to the
users query patterns. For instance, a user who tries to locate
a file f using a non-indexed query, and eventually finds it us-
ing the query generalization/specialization approach discussed
above, can add an index entry to facilitate subsequent lookups
from other users.

More interestingly, one can easily build an adaptive cache
in the DHT to speed up accesses to popular files. Assume
that each node allocates a limited number of index entries for
caching purposes. After a successful lookup, a peer can cre-
ate “shortcuts” entries (i.e., direct mappings between generic
queries and the descriptor of the target file) in the caches of the
indexes traversed during the lookup process. Another user look-
ing for the same file via the same path will be able to “jump” di-
rectly to the file by following the shortcuts stored in the caches.
With a least-recently used (LRU) cache replacement policy, we
can guarantee that the most popular files are well represented in
the caches and are accessible in few hops. The caching mech-
anism therefore adapts automatically to the query patterns and
file popularities.

D. Discussion

We outline below some interesting properties of our index-
ing techniques, which we will further study in the experimental
evaluation:

• Space efficient:First, as indexes contain key-to-key map-
pings, the data items do not have to be stored on multi-
ple nodes. Second, although data items may be reached
through multiple index paths, the space requirements re-
main reasonably small because coarse-level indexes are
shared by many data items (e.g., given the mappings of
Figure 6,(q6; q3) is on index paths to bothd1 andd2). Fi-
nally, the hierarchical index organization significantly re-
duces the size of results sets, and consequently the band-
width requirements.

• Scalability: As data items may be accessed through dis-
tinct paths and are referred to in distinct indexes, the load
is expected to be spread across multiple indexes, and thus
multiple nodes (in contrast to a centralized index). In addi-
tion, since indexes are stored as regular data item, they can
benefit from the mechanisms implemented by the DHT
substrate for increasing availability and scalability, such
as data replication or caching.

• Loose coupling between data and indexes:When the data
items change, only the nodes responsible for the complete
key of the data need to be updated. Indexes do not need
to be updated. This is a consequence of the key-to-key
mapping technique.

• Versatility: It is possible not to index some data, and en-
force access using the complete key. Conversely, some

popular data may be aggressively indexed to speed up ac-
cesses.

• Adaptability: The system can create index entries on-
demand to match user querying habits or for caching pur-
poses.

• Decentralized architecture:Indexes are uniformly dis-
tributed across all nodes. The lookup load is therefore bal-
anced among all the nodes.

• Resilient to arbitrary linking:When inserting a file in the
system, it can only be indexed at locations that correspond
to keys covering the file’s key. Arbitrary links (or aliases)
to a file cannot be inserted in the system. This makes it
harder for a user to inject a file with malicious or offensive
content and masquerade it as another existing file.

V. EVALUATION OF DATA INDEXING ON P2P NETWORKS

The indexing mechanism lies in the protocol stack on top of
a P2P lookup and storage layer. Thus, one aspect of indexing
performance deals with the optimization of resources offered
by those lower layers. As our indexing techniques do not de-
pend on a specific lookup and storage layer, we do not explicitly
study the performance of the P2P substrate.

The index protocol layer also interacts with the end user, who
expects to find data of interest using partial information. From
the user point of view, it is clearly desirable to find the desired
data in a minimal number of interactions with the system, and
the information returned by the system should be as concise and
relevant as possible. From the system point of view, the search
process should be simple, the amount of network traffic should
be minimized, and the storage space dedicated to the indexing
metadata should remain within reasonable limits. These various
criteria are studied in the rest of this section.

A. Distributed Bibliographic Database

To study the behavior of a P2P indexed network, we model a
bibliographic database distributed among interconnected hosts.
The bibliographic database contains articles published in jour-
nals and conference proceedings. The underlying P2P lookup
and storage system, and the physical characteristics of the net-
work, are not important: we simply assume that the underlying
DHT is able to find a noden responsible for a given keyk,
wheren stores (or knows the location of) the data associated
with keyk.

In order to build the bibliographic database, we used the
publicly-available DBLP [16] archive, which consists of an
XML-formatted list of publications. The DBLP archive, as of
January21st, 2003, contains more than346, 000 entries: ar-
ticles, theses, proceedings, etc. For our experiments we used
the 115, 879 article entries in the archive to build the descrip-
tors (MSDs) of the corresponding articles. The archive being
in XML format, entries are pretty similar to those in Figure 1
(actual field names differ).

B. Building Indexes

From the MSD, which actually links to the real data, we build
chains of queries, i.e., sequences of queries where each query

6

covers (w) the next one. The last member of each chain is obvi-
ously the MSD, which is covered by all the previous ones. Each
chain corresponds to a path from a leaf to a root in Figure 3.

To create indexes that correspond to queries that users are
likely to ask, we have observed the query logs of two other
bibliographic database sites: BibFinder [18] and NetBib [19]
(the DBLP service does not store and share query logs). Net-
Bib offers an interface where a user can search for papers using
fields like: words in title or abstract, exact title, author, publica-
tion date (year intervals), and citation key. BibFinder displays a
similar interface: a user can issue queries with the author name,
title, conference or journal, and year of publication (exact, or
published before/after a given year).

Most used query types (>1%) BibFinder (9,108 total)

% of queries
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70%

/author

/title

/author/title

/author/year

/title/year

/author/title/year

others

Fig. 7. Distribution of the types of queries extracted from BibFinder’s log.

The log from BibFinder’s site contains9, 108 queries. As
shown in Figure 7, most of them use only the “author” field
(57%), followed by those using only the “title” field (20%), and
those with a given publication date.

The NetBib trace represents5, 924 different queries. Sim-
ilarly to the BibFinder traces, there are three main kinds of
queries (summing up to more than95% of the total): queries
for a given author, topic (title), and date of publication.

Based on this information, we have simulated and compared
the following three indexing schemes, shown in Figure 8.

• Simple:A query for an author or a title returns a set of au-
thor and title pairs. Each of them points to a MSD. A query
for a conference or a year returns a set of conference-year
pairs, pointing to a MSD.

• Flat: All possible queries in thesimplescheme point di-
rectly to the MSD, so that the index query length is always
2.

• Complex:Some queries in thesimplescheme are split into
more specific queries, in order to avoid long result lists.
For instance, a query specifying an author and a confer-
ence returns a list of queries that further indicate all the
publication years for the given author and conference. Al-
though we do not expect index hierarchies to be very deep
in practice, this scheme allows us to observe the effect of
hierarchy depth.

The simple indexing scheme is the most space-efficient of
the three, requiring 152 MB of extra storage in the system for

the full DBLP article collection. Thecomplexscheme requires
25% more space, and theflat scheme a37% increase, being the
most space-consuming.

By comparison, we have evaluated the cost of storing the ac-
tual article files in the P2P infrastructure. Based on an average
file size of250 KB (estimated from the size of the articles in
our own private digital library, counting more than7, 000 files
in Postscript and Adobe PDF format),29.1 GB are required to
store all the articles in the DBLP archive. In the worst case,
the indexes require an additional storage capacity of0.5%. For
a P2P network already storing the full article collection, index
storage requirements are clearly negligible.

C. User Model

The mean number of interactions needed to reach an article
gives a measure of the efficiency of a given indexing scheme.
This can be computed as the average length of all possible query
chains a user can follow to find an article. This is, however,
only valid in an scenario where all kinds of queries are used
with equal probability, and all articles are equally requested;
such assumptions are not realistic.

To model realistic user behavior, we built a query generator
that reflects which information is used to build queries (query
structure), and which data is requested (data popularity).

a) Realistic query structure model:To generate realis-
tic queries, we have used the information gathered from the
query logs of the BibFinder and NetBib sites. For both of these
archives, results from queries are always a list of matching arti-
cles. Any refinement made by a user (possibly overwhelmed by
a huge list of results) is independent from the previous query.
We may then consider all queries as independent from each
other. Both logs agree on the fact that queries are mainly made
using author names, with conference and publication date as
second and third criteria. We have therefore mapped our exper-
imental query model directly to the structure and frequency of
the queries in the BibFinder log, as shown in Figure 7.

b) Realistic popularity model: After modelinghow ar-
ticles are queried, we need to modelwhich of them are most
often requested. We have first observed author popularities, by
counting the number of queries to each author in the BibFinder
and NetBib log traces: the popularity of an author is defined as
the probability of having a query with the “author” field being
for that author. Similarly, we have computed the popularity of
requested article titles in the BibFinder log. Finally, we have
observed the probability that each of the top-10, 000 articles in
the CiteSeer database [20] gets cited; although this is a measure
of how frequently a given article is cited, it can be considered
as a clear indication of the article’s popularity.

The observed probability distribution are shown in Figure 9
(logarithmic scales, with articles ordered by decreasing rank
of popularity). It appears clearly that all probabilities follow
roughly a power-law [21]. That is, the popularity of an article
with ranki is pi = k

xi , and
∑

pi = 1. A few articles appear in
many queries, while most authors are seldom requested.

To model article popularities for our simulations, we have
computed (using the minimum square method) from the plot
of BibFinder’s author probabilities the line that best fits the

7

Author+Title

Title

Author

Year

Conference

+ Year
Conference

MSD

+ Year
Conference

Year

Conference

Author+Title

Title

Author

MSD

Conference

Year

Author

Title

Author+Title

MSD

Conference
+ Year

Author
+ Conference

+ Author

Conference
+ Year

Fig. 8. Indexing schemes: Simple (left), Flat (center) and Complex (right).

10-5

10-4

10-3

10-2

10-1

1 10 100 1000 10000

P
ro

ba
bi

lit
y

Ranking

BibFinder authors
NetBib authors

BibFinder articles
CiteSeer articles

Fig. 9. Popularity distribution for authors and titles present in NetBib,
BibFinder, and CiteSeer.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Article

C
C

D
F

Fig. 10. Complementary cumulative distribution function of the articles rank-
ing.

distribution; switching to a linear scale, we obtain the power-
law distribution describing the popularity of each article and
the associated cumulative distribution function. In order to
simplify the simulations, we have considered a limited collec-
tion of 10, 000 articles. After adapting the parameters of the
power-law distribution to match the finite population of articles,
we obtain a complementary cumulative distribution function of
F̄ (i) = 1 − F (i) = 1 − 0.063 · i0.3, wherei is the ranking of
the article. Numerical values are given for illustration purposes
only: the behavior is defined by thefamily of the probability
distribution function, i.e., power-law functions. The distribu-
tion function is plotted in Figure 10.

From the figure we can appreciate that, because of the
skewed distribution, using only10, 000 articles does not change
significantly the behavior of the model. The remaining arti-
cles from the original DBLP archive would be requested so
seldom that we can effectively neglect their existence. When
constructing the query workload for the simulation, we first
choose an article according to the popularity distribution. Then,
we select the structure of the query and assign the correspond-
ing fields, according to the following probabilities: author only
(with probability0.6); title only (0.2); year only (0.1); both au-
thor and title (0.05); both author and year (0.05). The resulting
query is subsequently used as input to locate the article selected
initially.

D. Caching

As previously discussed, some articles are much more pop-
ular than others, and hence will be requested more frequently.
By creating cache entries (shortcuts) for these articles, we can
probabilistically improve lookup times and reduce the load on
the system. We have observed the effectiveness of the adaptive
caching mechanism described in Section IV, in which peers cre-
ate cache entries along the lookup paths of successful queries.
In the simulation, we study three different caching policies:

• Multi-cache:Shortcuts are created on each node along the
lookup path. The size of the cache is unbounded.

• Single-cache:Shortcuts are created only on the first node
that was contacted. The size of the cache is unbounded.

• LRU: Similar to the single-cache policy, but only a limited
number of shortcuts can be stored on each node. When
the cache is full, a least-recently used (LRU) replacement
algorithm is used.

E. Simulation

Simulating P2P networks of different sizes is of no use for
our experiments. The number of nodes can affect the DHT
lookup latency, and the number of keys stored per node, but
does not impact the effectiveness of our indexing techniques.
Any optimization of the underlying P2P network to reduce
lookup latency will improve the response time when search-
ing through the indexes, but these are completely independent
issues (layered protocols). Our experiments simulate a P2P
network of 500 nodes, on top of which a distributed biblio-
graphic database storing10, 000 articles is implemented. For
each of the indexing schemes and caching policies previously

8

described, we measure different important metrics during sim-
ulation. Each simulation consists of sequentially feeding the in-
dexing network with50, 000 queries from our query generator.
The studied parameters are: number of user-system interactions
required to find data, traffic generated, efficiency of shortcuts,
and storage dedicated to caching. In all the figures of this sec-
tion, S, F , andC stand forsimple, flat, andcomplexindexing,
respectively. The LRU replacement caching policy is tested for
an allowed maximum of10, 20, and30 cached keys per node.

c) User-system interactions:A user sends a query and
obtains as result a list of more specific queries (covered by the
original query). The user then selects one query from the results
that matches the target article. This process iterates until the ar-
ticle is found. Isolated from other concerns, a user would like to
experience a minimal number of iterations to locate the desired
data. One should note, however, that the number of iterations
is expected to increase when the user initiates the search with a
generic query; there is clearly a trade-off between the amount
of information initially known about the searched data, and the
number of steps necessary to locate that data.

Interactions per Query

Shortcut/Cache policy

No Cache Single
Cache

LRU
10 Keys

LRU
20 Keys

LRU
30 Keys

0

0.5

1

1.5

2

2.5

3

3.5

4

Simple

Flat

Complex

Fig. 11. Average number of interactions required to find data.

Simulation results are shown in Figure 11. Theflat indexing
scheme, which creates the shortest query chains (see Figure 8),
also requires the fewest interactions to locate data. Caching fur-
ther reduce the number of lookup steps, which becomes smaller
as the cache capacity increases. The multi-cache policy is not
shown here because it presents the same characteristics as the
single-cache policy. Due to the rather simple representation of
data, index chains are in general short. More complex data rep-
resentations would need longer index chains, where the effect
of shortcuts is more important.

d) Generated traffic: Like in any other network, it is de-
sirable to generate as little traffic as possible to avoid network
congestion and save system resources. Another more subtle in-
terpretation of the traffic generated is the number of responses
that a user receives for a query, i.e., the size of the result sets
(traffic is mainly driven by responses, which usually outnumber
a single query). The more traffic, the more responses a user gets
for a query. Large results sets increase the burden of the user
because responses are less relevant and more post-processing
is required. Note that, since our search process is completely
deterministic, more results do not imply that more information
is available (as could be the case of an Internet search engine

such as Google [22]), but aless precise answer. The query and
response traffic measured during the simulations is shown in
Figure 12.

Traffic (bytes)

Shortcut/Cache Policy / Index Scheme

No Cache Multi
Cache

Single
Cache

LRU
10 Keys

LRU
20 Keys

LRU
30 Keys

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S S S S S SF F F F F FC C C C C C

cache traffic

normal traffic

Fig. 12. Average network traffic (bytes) generated per query.

Cache traffic, resulting from the creation of cache entries af-
ter successful lookups, is shown in dark gray. It appears clearly
that theflat indexing scheme generates much more traffic than
any other. In fact, it does not allow for any indirection, and each
query receives directly the descriptors ofall articles that match
the query, instead of a relevant set of more specific queries that
allows refinement of the search process. We observe that the
utilization of the cache saves network bandwidth. Unsurpris-
ingly, larger cache sizes yield more cache traffic and less over-
all traffic transmitted over the network. The multi-cache policy
leads to more cache traffic than single-cache, because the latter
creates only one cache entry upon successful lookup.

e) Cache efficiency:We have observed the effectiveness
of the adaptive distributed cache by measuring its hit ratio, that
is, the fraction of requests that do not need to go through a full
search process because the relevant data is already available in
the cache.

Hit Ratio (%)

Shortcut/Cache policy

Multi
Cache

Single
Cache

LRU
10 Keys

LRU
20 Keys

LRU
30 Keys

0%

10%

20%

30%

40%

50%

60%

70%

80%

Simple

Flat

Complex

Fig. 13. Cache efficiency: distributed hit ratio.

Figure 13 shows the results for the different policies tested.
It is interesting to note that the multi-cache policy is only
marginally more efficient than the single-cache policy. Al-
though the multi-cache policy stores a cached key on every
node in the index chain followed to find the data, most cache
hits occur in the first node of the chain (86% for the simple
scheme,99.9% for flat, and84% for complex). Indeed, in our

9

user model queries are usually very simple and broad, thus di-
recting the user to the beginning of an index chain. It is also
worth noting that, when limiting the number of cache entries
per node to just10, cache efficiency is still more than half that
of policies with unbounded cache size.

f) Cache storage: The storage dedicated to cached keys
should remain relatively small, while allowing for an effi-
cient distributed cache. The number of regular keys stored on
each node depends on the indexing scheme. After feeding the
50, 000 queries, we observed an average of155 keys per node
for simple, 195 for flat, and180 for complex. Cache storage
sizes are shown in Figure 14.

Shortcuts (Cached keys) per node

Shortcut/Cache policy

Multi
Cache

Single
Cache

LRU
10 Keys

LRU
20 Keys

LRU
30 Keys

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Simple

Flat

Complex

Fig. 14. Average number of cached keys per node.

As expected, the single-cache policy is approximately twice
as space-efficient as the multi-cache policy, which creates more
cache entries. Theflat indexing scheme is unaffected because
its index chains are so short that they only allow for a key to be
cached in the first node.

We also observed the maximum number of cache entries
stored across all nodes. For the multi-cache policy, we find up
to 345 cached keys in a node with thesimple indexing. For
the flat and complexindexing, the maxima are253 and 413
keys, respectively. The single-cache policy uses a maximum
of 253 cached keys, regardless of the indexing scheme used.
For the limited cache size policies, the maxima are obviously
the cache capacities (10, 20, and30). 72% of the caches were
full after feeding the50, 000 queries with the LRU10 policy,
51.2% with LRU20, and37.6% with LRU30, regardless of the
indexing scheme. Overall,4.4% of the caches were completely
empty, with not a single entry.

As the cache management directly depends on the query
workload, cache utilization is not uniform. The distributed
cache improves lookup performance, but does not solve load-
balancing issues in the overlay network.

g) Hot-spots: As just discussed, the user query patterns
leads to an unbalanced utilization of the distributed cache. We
have studied the distribution of the processing of queries among
nodes. In Figure 15, we show the percentage of the50, 000
queries issued during the simulation that accessed each node
(for clarity, we only show the results for thesimple indexing
scheme). Note that they sum to more than100% because each
original query may generate other queries during the iterative
lookup process. We observe that the busiest node is affected by

0.001

0.01

0.1

1

10

1 10 100 1000

Q
ue

rie
s

pr
oc

es
se

d
(%

)

Node ranking

No Cache
Cache LRU30
Single Cache

Fig. 15. Percentage of queries processed by each node in the network.

almost1 out of every10 queries. Caching slightly improves the
situation for the most severely stressed nodes. We expect the
load to be better balanced with larger content and query work-
loads. Note also that any optimization of the underlying P2P
DHT substrate for hot-spot avoidance (e.g., using replication)
will apply to index accesses as well.

h) Locating non-indexed data:As previously mentioned,
it may happen that a user issues a query using a combination
of fields (author, year, etc.) that has not been indexed. In that
situation, the system can first generalize the original query to
find a matching index entry, and then specialize it by follow-
ing indexes until the target data is located. In our experiments,
this event happened approximately2, 500 times for all indexing
schemes when no cache is used. When an error is encountered,
one extra interaction is generally necessary to find a suitable
index (two interactions in a few rare cases).

Simple Flat Complex
No cache 2,502 2,507 2,506
LRU30 810 874 838

Single-cache 563 600 581

TABLE I
NUMBER OF QUERIES TO NON-INDEXED DATA .

Table I shows the number of accesses to non-indexed data,
i.e., recoverable errors, as a function of the cache policy de-
ployed in the system. We can observe that the cache reduces
the number of errors, because an index entry is created auto-
matically after the first lookup; subsequent queries from other
users can locate the data using the cache entry, and hence do not
experience an error. Our indexing techniques, together with the
adaptive distributed cache, are thus very flexible: although the
indexing scheme is generally chosen at deployment time, the
system can still adapt to the user querying habits by creating
shortcuts dynamically.

VI. F INAL NOTES

A major limitation of DHT peer-to-peer system is that they
only support exact-match lookups: one needs to know the exact
key of a data item to locate the node responsible for storing
that item. Since peer-to-peer users tend to submit broad queries

10

to look up data items, DHT peer-to-peer systems need to be
augmented with mechanisms for locating data using incomplete
information.

In this paper, we have proposed techniques for indexing the
data stored in the peer-to-peer network. Indexes are distributed
across the nodes of the network and contain key-to-key (or
query-to-query) mappings. Given a broad query, a user can look
up the more specific queries that match its original query; the
DHT can be recursively queried until the user finds the desired
data items. As they can be layered on top of an arbitrary P2P
DHT substrate, our indexing techniques directly benefit from
any mechanisms implemented in the DHT to deal with failures
or hot-spot avoidance. We have performed a comprehensive
evaluation to demonstrate the effectiveness of data indexing on
a distributed P2P bibliographic database, using different strate-
gies and realistic user query workloads. Finally, we have pro-
posed an adaptive caching mechanism that has proved to im-
prove performance of accesses to popular content.

Although our data indexing techniques permit to look up data
based on incomplete information, they still depend on the ex-
act matching facilities of the underlying DHT. “Fuzzy” match-
ing techniques offer interesting research perspectives for deal-
ing with misspelled data descriptors or queries. Misspellings
can also often be taken care of by validating descriptors and
queries against databases that store known file descriptors, such
as CDDB [23] for music files.

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proceeding of SIGCOMM, 2001.

[2] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” inProceeding of SIGCOMM, 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” inProceedings of
Middleware, Nov 2001.

[4] B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” Tech. Rep. UCB/CSD-
01-1141, University of California, Berkeley, Apr 2001.

[5] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A scalable
peer-to-peer architecture for intentional resource discovery,” inProceed-
ings of the International Conference on Pervasive Computing, August
2002.

[6] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The de-
sign and implementation of an intentional naming system,” inProceed-
ings of SOSP, 1999.

[7] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica,
“Complex queries in dht-based peer-to-peer networks,” inProceedings of
IPTPS, Cambridge, USA, March 2002.

[8] A. Gupta, D. Agrawal, and A. Abbadi, “Approximate range selection
queries in peer-to-peer systems,” Tech. Rep. UCSB/CSD-2002-23, Uni-
versity of California at Santa Barbara, 2002.

[9] O.D. Sahin, A. Gupta, D. Agrawal, and A. Abbadi, “Query processing
over peer-to-peer data sharing systems,” Tech. Rep. UCSB/CSD-2002-
28, University of California at Santa Barbara, 2002.

[10] E. Cohen, A. Fiat, and H. Kaplan, “Associative search in peer to peer
networks: Harnessing latent semantics,” inProceedings of Infocom, San
Francisco, CA, April 2003.

[11] “Gnutella,” http://gnutella.wego.com .
[12] J. Li, B.T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris, “On

the feasibility of peer-to-peer web indexing and search,” inProceedings
of IPTPS, Berkeley, CA, February 2003.

[13] F. Dabek, M. F. Kaashoek, David Karger, Robert Morris, and Ion Stoica,
“Wide-area cooperative storage with cfs,” inProceedings of SOSP, Oct.
2001.

[14] A. Rowstron and P. Druschel, “Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility,” inProceedings of
SOSP, Oct. 2001.

[15] W3C, “Extensible Markup Language (XML) 1.0,”http://www.w3.
org/TR/REC-xml , Oct. 2000.

[16] “DBLP,” http://dblp.uni-trier.de .
[17] W3C, “XML Path Language (XPath) 1.0,”http://www.w3.org/

TR/xpath , Nov. 1999.
[18] “Bibfinder,” http://kilimanjaro.eas.asu.edu .
[19] “Netbib,” http://edas.info/S.cgi?search=1 .
[20] “Citeseer,”http://citeseer.nj.nec.com/cs .
[21] G.K. Zipf, Human Behavior and the principle of least effort, Addison-

Wesley Press, Cambridge (MA), 1949.
[22] “Google,” http://www.google.com .
[23] “CDDB,” http://www.cddb.org .

