EURECOM

Institut Eurécom
Corporate Communications Department
2229, route des Crétes
B.P. 193
06904 Sophia Antipolis
FRANCE

Research Report RR-03-094

White Paper:

Alert Correlation: Technical Reporti

December 30, 2003

Fabien Pouget
Institut Eurécom

Email: {pouget@eurecom.fr}

" This research is supported by a research contract with France Telecom R&D, contract N. 425-17044



Alert Correlation:
Technical Report

Fabien Pouget

Email: {pouget}@eurecom.fr
Eurecom
2229, Route des Crétes ; BP 193
06904 Sophia Antipolis Cedex ; France

Abstract:

In this paper, we report on an experiment run with three alert correlation tools at Eurecom. The
motivation of this work resides in our wish to experiment three tools, representative of the three
categories we previously defined in [PoDa03]. A testbed was developed to compare them, and to
evaluate their capacities. We describe each tool in details, as well as their installation modalities. We
then present our testbed and discuss results obtained and lessons learned thanks to these experiments.

Keywords:
Alert Correlation, AlertSTAT, Simple Event Correlator, ACID.

Corresponding Author:

Fabien Pouget (pouget@eurecom.fr)
Tél:  +33(4) 93 0029 26

Fax:  +33(4) 93 0026 27



mailto:pouget@eurecom.fr

TABLE OF CONTENTS

Alert Correlation: Technical REPOTTt.......c.ccciiviiiriiiiiieiiiciecie ettt see s s ve b e ebe e esaeesreeseens 2
T INEPOAUCTION .ttt ettt et b e et et et e e be e s bt e shte et e sbeesaeeeaeeenbeebeans 5
2 PIESENLEA TOOIS. ... iuieiiitieieie ettt ettt sb et he et bttt be e ntes 5
2.1 Simple Event Correlator (SEC).......ooiiiiiiiiiiiecieeee ettt eeae e 5

2. 1.1 TOOL PreSentation.......ccccuiiiiuiieeiiieiie ettt ettt et ee et e e eve e et e e aae e s beeeaaeesabeesasesessseesnseeennns 5
2.1.2  Documentation and INStallation............ccoveerieriiieriieie e 9
213 U SAEES ittt sttt ettt ettt et e ae e s sane e 11

2.2 ALCTESTAT ettt et ettt et s h et e bt sa e et s bt et enaeestetesaeeneenbens 12
2.2.1  TOOIl PreSeNtAtiON . ...cccuiiitietieiiieeiie ettt ettt ettt ettt e bt st e st eat e et et e sbeesaeesaeesaeeenee 12
2.2.2  Documentation and Installation.............ccccueeiiiiiiiiiiiiie e 12

e T U 1 VoSSR 13

2.3 Analysis Console for Databases (ACID) .......cc.eeveeiierienienieeie ettt 13
2.3.1  TOOI PreSentation .....cccuevuiiuieiiiiieieiteete ettt ettt sttt st ebe et e 13
2.3.2  Documentation and Installation...............cocieiiiiiiiiiiiiiee e 14

0 TG T U1 VoSO SRUSRUPSRTS 18

3 EXPOTIMENTATION 1eeuvieiviseiieiieiieitesitesteeteebeebeesteesteestaesssessseassaesseesssesssessseasseesseessaesseesssesseesssensnes 18
3.1 ASSOCIAEA TOOIS....ccciiiiiiieciie ettt ettt e et e e e be e e abeesabeeeraeesareeenees 18

K T8 O B 6 U3 (04 LT o) o PRSP SRRRSRR 18
312 INESSUS ettt ettt ettt e et e e te e st e bt e st e st e ese e st e teent et e eseeneeseeneas 19
313 SINORT ettt st ettt s h et e bt e bt et e bt et e st e be et e teenee e 23

3.2 INPUL GENETALION ....evvieevieiieiie s ete et ere et e steesaesebeeebeesseesseessaessaessaessseesseasseesseesssesssensns 25
33 SEC CONTIGUIATION. ....c.uiitieitieeiieeieeie ettt ettt et eeteeteebeesteesbeesseesseesnseenseenseeseenseens 27
3.3.1  Offline 10g @NAlYSIS....iccvieriiiiiiiiiiiieeie et esteesttesre e e et ebeesseesraestbessaessseesseessaesssesssensnas 27
3.3.2  ONlNE [0 ANALYSIS ..veeiviieeiiieiiiieiiie ettt ereeeteeeveeereestbeeeteeesebaeesbaeesseessseeessseesnsaaans 31

34 ALCTtSTAT CONTIGUIALION ....ccuvieiieiieiieiie e cie e et et e steestaesressaeenbeesseessaesseessaesssessseenseenns 31
3.5 ACID CONTIZUIALION ...oeiivieeiiieciieeeiieesiteeeteeerieeesveeeteeestveeasbeeetaeessseeesseeessseesssesensseessseeensns 34

4 ODSCIVALIONS ....cccuviieiiieitie ettt eeitee et e eetteeeteeesteeeeaeeestseesaseeesseesssaeasasaasseeensssessseeansasesseasseesssesenses 38



4.1 RESUILS ..ottt e e e e e te e e ab e e e be e e tbeesabeeetaeeeareeenens 38
4.2 COIMPATISON ...eeeueieeeree ettt eseteeeteeestteessseessseeessseessseeassaeessseesssseessseessseeansseessseesnsesesssessnseennssees 39
I ©703 1 1od 1313 )« DO OSSOSO U RSOSSN 42
6 RETRIEIICES ...ttt ettt bt et b e et e e bt et e st bt et e bt et e b et ae e 43
T ATINICXES cutteenitieeiieeeitee ettt ettt ettt ettt et e h e e et e bt e s bt e e b et e ea b et e bt e e e ab e e e beeenabeeeabe e e bt e ebteesabeeenbaeas 44
7.1 F N 110 1o P USRS PSRRRPPPPRN 44
7.2 ANNEX B oottt st 69
7.3 YN 110 1o OSSR PSRRRPPPPRN 75
7.4 ANNEX D ittt e 94
7.5 ANNEX E oottt st ettt e bte e sabee e 102



1 Introduction

Alert correlation tools can be basically classified into three main categories, respectively named “Log
Analysis Tools”, “Management Consoles” and “Experimental Tools”. We report the interested reader
to [PoDa03] for more detailed information on this topic. A review of the state of the art is presented as
well as common tools which aim at correlate alerts produced by diverse security elements.

Following this classification, we present in this report three tools that are representative of each
category. Our choice was mainly guided by simple criteria, such as their costs, the installation
requirements and their functionalities. The first tool is the Simple Event Correlator (SEC), which
belongs to the ‘Log Analysis Tool’ category. The second tool is AlertSTAT, which represents the
‘Experimental tools’ category. Finally, the third tool is an ‘Alert Management Console’ called ACID.
The paper is organized as follows. Section 2 proposes a more detailed presentation of these three tools,
as well as their installation procedures. Section three describes our experimental testbed, and Section
four presents our resulting observations. The tools are compared to test their advantages, as well as

some of their limitations.

2 Presented tools

2.1 Simple Event Correlator (SEC)

2.1.1 Tool Presentation

The Simple Event Correlator (SEC) is a correlation tool written by Risto Vaarandi, a professional
software developer from Estonia. It is available from SourceForge.net at the following URL:

http://simple-evcorr.sourceforge.net. R. Vaarandi has provided a Manual page, a FAQ (Frequently

Asked Questions) section and some Examples that are helpful in developing advanced solutions [Sec].
Basically, SEC is a PERL script which reads an input stream from a file or pipe and applies pattern
matching operations to the input looking for patterns specified by rules, found in configuration files. It

was originally conceived as a system for correlating HP OpenView network events, but it has also


http://simple-evcorr.sourceforge.net/

been used to correlate intrusion alerts generated by Snort. Actually, the system is flexible enough to be
used for correlating almost anything.

This section introduces basic SEC use and operations. First, the expert knowledge is expressed
through SEC rules. There is no limit to the number of rules, but there are nine distinct rule types. Each
rule can be used to trigger one of fifteen different actions. What adds complexity is that a rule action
can be used to generate an event that is used as input to another rule. In this way, rules can be strung
together to perform complex correlation. We propose to briefly describe the different rule types as
well as possible actions. However, let’s beforehand have a look at a very simple rule example

illustrated in figure 1:

type = Single @

ptype = RegExp @
pattern = foo\s+(\S+) ©
desc = $0 @

action = logonly ©

Figure 1: a Simple SEC rule example

This example means the following:

O Single is the rule type. SEC includes several different types of rules. This one is the simplest (see
below for more information on type differences).

® RegExp is the pattern type. SEC allows two types: RegExp (for “Regular Expression”) matching or
SubStr for simpler string matching (matching words only)

© foo\s+(1S+) is the actual pattern- in this case a Perl regular expression pattern. This pattern matches
the word foo followed by one or more spaces, followed by one or more non-space characters, such as
bar, toto, etc... We invite the interested reader to [Clarks] for more information on regular
expressions.

O desc is a variable definition for the pattern description. In this case, a Perl numbered variable, $0, is
set to the entire matched pattern.

© The action statement describes the action taken when the pattern is recognized. In this case, the
logonly action simply writes the pattern to the logfile if one is indicated on the command line, or to

standard output if not.



In this example, we have created a SEC rule that matches a regular expression. The rule is ‘single’-

type, the simplest one. However, eight other types are currently provided by SEC. We list a short

summary of them below and we report the interested reader to Annex A for rule examples of each

type:

SingleWithScript: The SingleWithScript rule combines matching a pattern and the execution of
a separate program to determine if the rule is matched. Running a separate program to validate
or confirm whether an event is valid is often necessary. For example, matching an IP address
in a rule and checking whether the IP address is on a list of valid addresses can not be done by
pattern matching in a rule alone. A separate program is required to determine if the matched IP
is on the list.

SingleWithSuppress: With the SingleWithSuppress rule, it is possible to become alerted to an
event the first time it is seen, then ignore the same event within a time window.

Pair: The Pair rule handles two different events, matched by two different patterns in its rule
definition. The rule uses time window which is set upon the first occurrence of event A. If
event B occurs within the time window, events A and B are considered correlated, and the
entire rule is considered matched. Otherwise, the correlation operation for the pair terminates.
There are two action statements, each corresponding to its own pattern. Action 1 is executed
when A is matched. Action 2 is executed if event B occurs within the time window.
PairWithWindow: The PairWithWindow rule appears identical to the Pair rule. Both contain
two patterns, two actions, and a time window. The difference is that, in PairWithWindow the
action 2 is executed if events A and B both occur within the time window. If A occurs, but B
does not occur, then action 1 is executed.

SingleWithThreshold: The SingleWithThreshold rule is used to ‘count’ the number of matched
events within a time window. If the number exceeds the threshold, the action is executed. If
the number of matched events does not exceed the threshold within the time window, the time
window °‘slides’; that is, start time for the correlation window is moved to the second
occurrence of the matched pattern. This process repeats, until the time window expires with no

matched events.



o SingleWith2Thresholds: The SingleWith2Thresholds rtule is very similar to the
SingleWithThreshold rule, except that we can now definitely determine when events stop. This
is done with a second threshold and a second timer window. SingleWith2Thresholds counts
the number of matched events and executes action! when the number is above thresh events.
Once this low threshold (watermark) is reached, SEC starts window2 and counts additional
matched events. When the number of events falls below thresh2 events within window2, SEC
executes action2. Note that both windows are sliding windows; that is, the beginning time of
the window moves to the time of the next match if the time window of the first match expires.

*  Suppress: The Suppress rule is very intuitive. Events matching the rule are suppressed. Since
the rule has no action statement, it does nothing.

*  Calendar: The Calendar rule is another easy to understand rule. It executes action statements
at specific times. The time specification is similar to that used by cron, and is detailed in
crontab.

In addition to these different types, rules are associated with specific actions. SEC has over a dozen
different actions it can perform. They include:

e write: The write action writes the specified text to a given file.

*  Shellemd: The Shellcmd action causes SEC to execute a shell command. The shell command
can be any executable program permitted by normal user privileges.

*  Spawn: The Spawn action is identical to the Shellcmd action, except that output from the
command is fed back into SEC for pattern matching.

*  Assign and Eval: Special variables have global scope across multiple SEC rule files. If an
assignment is made by either the assign or eval actions, SEC maintains that assignment for the
life of the program or until the next assignment to that variable.

e FEvent: The event action allows the insertion of input to SEC from inside SEC itself. It is a
simple feedback mechanism- one controlled by SEC’s own rules. A time parameter specifies
the number of seconds to wait before inserting the event text into SEC’s input stream.

Finally, SEC presents other features that are worth being mentioned. Between them, we distinguish:



*  Multiple Input Stream: thanks to the spawn action, SEC can obtain input from multiple input
streams. The tail program is often used to read multiple files, for instance. An example is (see
Annex A for one example).

e Pipe Output: SEC allows writing to a ‘named’pipe, also called a “fifo’. This feature provides a
simple method of inter-process communication (IPC). Most Unix systems already have the
ability to create and use named pipes. With SEC, the only requirement is that the named pipe
must exist before writing to it (typically, this is performed with the mkfifo and mknod
commands).

e Contexts: SEC has the ability to define and use contexts with rules. Contexts are “the
interrelated conditions in which something exists or occurs”. In SEC, a context exists when it
is created by a rule action. Contexts can act as event stores. Events can be added to contexts as
they occur. A collection of events in a context can be input to a script to be saved in a file.
Thus, many actions can be performed using contexts. They are not listed in this paper for size

conciseness.

2.1.2  Documentation and Installation

SEC installation is very easy. It suffices to decompress the file from [Sec] into a given folder. No more
effort is required. In a *nix environment, commands should be similar to:

[]# mkdir Sec_folder

Then, you must copy the sec-2.2.beta2.tar.gz file from [Sec] and decompress it into the newly created
folder:

[]# cd Sec_folder

[] tar —zxf sec-2.2.beta2.tar.gz

The Simple Event Correlator is now installed.

SEC has many parameters that control its operation. These are viewed by simply calling SEC with no
parameters:

% perl sec.pl

Version: 2.2.beta2



Usage:

sec.pl -input=<inputfile> -conf=<conffile pattern> ..

Optional flags:

-input _tineout=<input tineout>

-timeout _script=<tineout script>

-reopen_ti meout =<r eopen ti neout >

-pol | _tinmeout=<poll tineout>

- bl ocksi ze=<i o bl ock size>

-1 og=<I ogfil e>

- debug=<debugl evel >

- pi d=<pi dfi | e>

- dunmp=<dunpfil e>

-cl eanti ne=<cl ean ti ne>

- buf si ze=<i nput buffer size>

-evstoresi ze=<event store size>

-quoting, -noquoting

-tail, -notai

-fronstart, -nofronmstart

-detach, -nodetach

-intevents, -nointevents

-testonly, -notestonly

All options are fully described in the SEC Manual Page. Options of the form - nane=val ue are
required to have a value. As noted above, the "*-conf=<conffile pattern>" and "'-input=<inputfile>"

10



options are required when executing per! sec.pl. A brief review of some of the more common options

follows:

| Option || Description

-log=<logfile> This option specifies the location of a logfile that SEC uses to track its operation,
such as pattern matches, actions, etc. The volume of information is controlled by
the -debug option.

- This option controls how verbose SEC is as it tracks its operation. The values
debug=<debuglevel>|| range between 1 (critical messages) and 6 (debug messages). Each level includes
output from lower levels.

-pid=<pidfile> This option provides for the location of a process ID file. SEC will write it's
process ID to this file upon startup.

-dump=<dumpfile> This option provides for the location of a dump file where SEC can dump its
internal data structures, variables and other information upon receipt of the USR1
signal. The default location is /tmp/sec.dump.

-detach Specifying this option causes SEC to detach itself from the controlling terminal
and run as a daemon process. The default is -nodetach.

-intevents This option causes SEC to perform special processing at startup. This special
processing is described in the SEC man page.

-testonly The *-testonly" option can be used to test for syntax errors in configuration files.
It does not start SEC for operation.

The above options are the most common in ordinary usage. See the Manual Page for more information

on these and other options.

2.1.3 Usages

The Simple Event Correlator (SEC) is a powerful and flexible tool. The SEC web site has an example
SEC rule set for Snort that demonstrates even more of SEC’s capabilities. It shows how to configure
SEC to:

e Create a portscan report

* Detect the start of a priority 1 attack, and send an email notification

* Handle incidents by thresholding

e  Report IPs that have been active for a certain amount of time

¢ Send a daily incident report

* Etc
This sample snort ruleset is presented in Annex B. We invite the interested reader to have a deeper
look at it. Finally, we would like to point out that despite the rule names, their functionality is quite

limited.

11



2.2 AlertSTAT

2.2.1 Tool Presentation

AlertSTAT is a STAT-based system designed by the University of Santa-Barbara (California). The
State Transition Analysis Technique (STAT) has been described in [PoDa03]. In short, it is a
methodology to describe computer penetrations as attack scenarios. Attack scenarios are represented
as a sequence of transitions that characterize the evolution of the security state of a system. In an
attack scenario, states represent snapshots of a system’s security-relevant properties and resources.
They are characterized by means of assertions, which are predicates. Transitions between states are
annotated with signature actions that represent the key actions that, if omitted from the execution of
an attack scenario, would prevent the attack from completing successfully.

Vigna et Al. have developed a family of tools around this technique. Such a framework is presented in
[Vign03]. AlertSTAT belongs to it. Its task is to fuse, aggregate and correlate alerts from intrusion
detection systems (or sensors), such as USTAT, NetSTAT, WinSTAT, LinSTAT, etc. Therefore,
AlertSTAT uses the alerts produced by other sensors as input and matches them with respect to attack
scenarios that describe complex and multi-step attacks. A simple alertSTAT scenario is presented in
Annex C.

AlertSTAT operates on alerts formatted according to the IETF’s Intrusion Detection Message
Standard (IDMEF) proposed standard [Idmef]. The application is built by composing an IDMEF-
based Language Extension with an Event Provider that reads IDMEF events from files and /or remote
connections and feeds the resulting event stream to the STAT core. A number of attacks scenarios
have been developed, including the detection of complex scans, “many-to-one” and “one-to-many”

attacks, island hopping attacks and privilege escalation attacks.

2.2.2  Documentation and Installation

The installation is quite simple. We propose to install AlertSTAT (release 2.0) on our Red hat 7.3
machine as follows:
First, the tool requires having libxml2 installed. Furthermore, we must link /usr/include/libxml to

Jusr/include/libxmi2/libxml like:



[1# In —s /usr/include/libxml2/libxml /usr/include/libxml

A version of libxml2 is provided in alertSTAT’s home page (the libxml2-v. 2.4.26 version).

Then, we decompress the alertSTAT downloaded file from [Ale]:

[]# tar —zxf alertSTAT-2.0.tar.gz

Finally, we follow the install README:

[1# cd STAT-1.0

[STAT-1.0]# ./configure

[STAT-1.0]# make

[STAT-1.0] make install (with root privileges)

The INSTALL file provides more details about installing the alertSTAT package using GNU build

tools or rpm facilities (RedHat Package manager).

2.2.3 Usages
AlertSTAT is executed by typing:
[STAT-1.0] ./alertstat —alertfile [alert filename].
The /etc/alertstat/ directory contains the configuration files for extensions, scenarios and providers.
A default setup is provided, which does the following tasks:
e The IDMEF is loaded
e The IDMEF provider is loaded and activated. It is configured to process the audit file passed as
command line parameter.
* Seven IDMEF scenarios are provided and ready to be used

e The IDMEF response, which responds by sending higher level alerts, is loaded.

2.3 Analysis Console for Databases (ACID)

2.3.1 Tool Presentation

The Analysis Console for Intrusion Databases (ACID) is a PHP-based analysis engine to search and
process a database of security events generated by various IDSs, firewalls, and network monitoring

tools. It was developed by R. Danyliw at the CERT Coordination Center, initially as a part of the



AIRCERT project. It is currently maintained in the context of this project and in the author’s free time.

ACID is open-source and released under the GPL licensing. It is portable without modification to any

operating system that can support PHP.

ACID features currently include:

Query-builder and search interface for finding alert matching on alert meta information (such
as signature, detection time), as well as the underlying network evidence (e.g.
source/destination addresses, ports, payload or flags). We report the interested reader to the
database Entity Relationship Diagram (ERD) provided in Annex D for further details on the
Snort/ACID database.

Packet viewer (decoder) graphically display the layers 3and 4 packet information of logged
alerts

Charts and statistics generation based on time, sensor, signature, protocol, IP address,

TCP/UDP ports, or classification.

2.3.2  Documentation and Installation

The following is a step-by-step list of installing ACID v. 0.9.6b23.

First of all, ACID has many dependencies that must be installed beforehand. We report the interested

reader to http://www.snort.org/docs/snort_acid rh9.pdf for more detailed on their installation and

configuration. A very good step-by-step installation procedure is provided to help installing ACID and

all its dependencies with Snort. We list below the ACID requirements for a MySQL environment.

PHP-4.3.3: any home-grown script that understands the underlying DB format
LibPcap-0.7.2: a network library required by Snort

Apache-2.0.47: our web server

MySQL-4.0.15a: the database in which to store the information from Snort.
Snort-2.0.2: the IDS that generates alerts and fill the database.

ADODB-1.2: a PHP database abstraction library

JP-Graph-1.13: the PHP chart library

Zl1ib-1.1.4: a compression library


http://www.snort.org/docs/snort_acid_rh9.pdf

PHPIot can be used instead of JPGraph for older PHP versions [PHPlot]. The installation process must
be done with root privileges. It is quite tedious and our own installation of these dependencies is
presented in Annex C. We provide below the installation and configuration of ACID only: However,
this is only the visible part of the global installation iceberg.

First, the ACID downloaded file must be placed in a specific web server folder, named /www/html.
Then, the commands must be from the downloads directory:

[1# cp acid-0.9.6b23.tar.gz /www/html (The Apache web server is installed in “/www” directory)

[1# cd /www/html

[]# tar —zxf acid-0.9.6b23.tar.gz

Now we can configure Acid. In the /www/html/acid/ directory, the acid conf.php file should look like:

$DBIib_path = "/www/html/adodb";

/* The type of underlying alert database

*

* MySQL : "mysql"

* PostgresSQL : "postgres"

* MS SQL Server : "mssql"

*/

$DBtype = "mysql";

/* Alert DB connection parameters

* - $alert_dbname : MySQL database name of Snort alert DB
* - $alert_host : host on which the DB is stored

* - $alert_port : port on which to access the DB

* - $alert_user : login to the database with this user

* - $alert_password : password of the DB user

*

* This information can be gleaned from the Snort database

* output plugin configuration.



*/

$alert dbname = "snort";
$alert_host = "localhost";
$alert port="";
$alert_user = "snort";

$alert password = "new_password";

/* Archive DB connection parameters */
$archive dbname = "snort";

$archive host = "localhost";

$archive port="";

$archive user = "snort";

—n

$archive password = "new password ";

And a little further down

$ChartLib_path = "/www/html/jpgraph-1.13/src";
/* File format of charts ('png', jpeg’, 'gif') */

$chart file format = "png";

We can now start Apache and go to http://yourhost/acid/acid_main.php. We get a message from the

browser that looks like the one in figure 2:


http://yourhost/acid/acid_main.php

Analysis Console for Intrusion

Databases

The underlying database snorta@localhost appears o be incompleteinvalid.

The dzizhase warzion = walid, but the ACID DS stioctwe dables 2cid_ag)is not present. Uze the Setup
page fo configure and opbimize the 0B

o the * age” hyporlink to creato the L i uses, then you will see '
following.

DB Setup gt

Search AG Malntenance

Qperation DQescription
ACID ables  sgds panles to extend the Snem DB 12 suppon the ACID functionality [ Ceeate AllD AG ]
Seaich (Opticral) Adds indexes 1o the Snon DS o optimize the spesd oithe  DOME
Indexes uaties
[Loaded in 0 seconds)

Figure 2: Screenshot of ACID configuration

Then, we click on “Create Acid AG”. Thus, when we go to http://yourhost/acid, we see the ACID

homepage as illustrated on figure 3:

Analysis Console for Intrusion Databases

Akt 1 alwitits) 10 the &lail cuche

Owailed om  Mon Octobar D6, 3000 15:4% 95
Databas) sooni@iacalhosr  [wchen wersbone 105]
Time w00 252ms a=raciend

Ry 0 Toallc Poallls by Posioool
Unique Alermz 0 (0 colegoiies | TCP @y
Todal Musmibas of Absaa: 0

= Soups P adesses P

® Dast P addsssgas 0

& Unlgue 1P vk @ CME

& Souscs Pode @

o TCP{®) UDP (8 Pon=can Tiaflc 8%

= Deal Pors &
o TGHE (@] LD (%)

w Tddich
» Graph Alsrt data

Figure 3: Screenshot ACID homepage

17


http://yourhost/acid

There are some ways to secure the ACID directory. We report the interested reader to [Acid] for more
details. Some of them are also mentioned at the end of the document available at

http://www.snort.org/docs/snort_acid_rh9.pdf.

2.3.3 Usages

ACID is an alert management console, and its usage is limited to database queries from its GUIL
However, its graphical interface is convenient to obtain simple queries in a fast way. Some screenshots

are presented in section 3.5.

3 Experimentation

3.1 Associated Tools

3.1.1 Introduction

We need alerts to test the three previously mentioned tools. One solution consists in downloading
existing alert files, which are used in many research papers to compare Intrusion Detection System
efficiency and accuracy (such as the Cyber panel Grand Challenge Problem-GCP, etc...). Another
solution consists in generating ourselves our own alerts. We chose this alternative for many reasons.
First, a simple glance at alertSTAT shows that it might be simpler to test home-made alerts on existing
scenarios than the opposite (this will be confirmed in the following section). Secondly, we want alerts
in the IDMEF standard presented by IETF [Idmef]. Freely available alert files are scarce in IDMEF
format, if not non-existant. Most of those we found are in pcap or snort formats.

Furthermore, a Snort plugin has been released recently. It modifies traditional snort alerts to generate
IDMEEF alerts. As a consequence, we decided to produce our own alerts thanks to this utility. Attacks
were launched from 192.168.1.1 to 192.168.1.3, thanks to Nessus, a convenient but dangerous
vulnerability scanner. These attacks are expected to trigger alerts from Snort, installed in promiscuous
mode on 192.168.1.2 (see figure 4). A more detailed description of both utilities and their installation

is given in the two following sub-sections.


http://www.snort.org/docs/snort_acid_rh9.pdf

switch

192.168.1.1 192.168.1.2 192.168.1.3

—

o

attacker

IDS sensor targetﬁ

Figure 4: Our testbed architecture

3.1.2 NESSUS

Nessus is a security scanner. It is software which audits remotely a given network and determines
whether a malicious person may break into it, or misuse it in some way. It does not consider that a
given service is running on a fixed port. Actually, it detects it and tests its security.
Each Nessus test is written as an external plugin. This way, many tests can be lead, without having to
modify the code of the nessusd engine. Such tests are written through a particular language called
NASL (Nessus Attack Scripting Language). We report the interested reader to [Nessus] for test
descriptions. The Nessus project offers a large variety of tests which are daily updated and freely
downloadable.
Nessus is built following client-server architecture. To make things clearer, Nessus is made up of two
parts: a server, which performs the attacks, and a client which is the front end (GUI). They can be
deployed in multiple configurations reducing management costs (one server can be used by multiple
clients). Both can run on different Operating Systems.
The Nessus security scanner relies on the following items (dependences):

¢ GTK (the Gimp Toolkit v1.2). GTK is a set of widgets which are used by many open-sourced

programs. It is used by the POSIX client Nessus. It can be downloaded at

ftp://ftp.gimp.org/pub/gtk/v1.2.

*  OpenSSL, optional but heavily recommended. OpenSSL is used for the client-server
communication as well as in the testing of SSL-enabled services. It can be downloaded at:

http://www.openssl.org.

19


ftp://ftp.gimp.org/pub/gtk/v1.2
http://www.openssl.org/

It is installation is very easy. One way consists in downloading on Nessus web page the following
nessus-installer.sh file. Then, it suffices to execute it after having placed it in a dedicated folder:

[]# mkdir nessus

[1# cd nessus

[nessus] # cp /path/to/nessus-installer.sh .

[nessus] # sh nessus-installer.sh (as root)

Before using Nessus, we must configure the server. The initial step consists in creating a user account.
Indeed, the Nessus server has its own users database, each user having a set of restrictions. This allows
sharing a single nessusd server for a whole network and different administrators who will only test
their part of the network. In our case, this characteristic is not important, and we only create one user
(login: tintin, password: milou). It is done like:

[]# nessus-adduser

Then, we follow instructions to obtain:

20



# nessus-adduser

Addi ti on of a new nessusd user

Login : tintin
Aut henti cati on (pass/cert) [pass] : pass
Password : milou

User rules

nessusd has a rules systemwhich allows you to
restrict the hosts

that tintin has the right to test. For instance, you
may want

himto be able to scan his own host only.

Pl ease see the nessus-adduser(8) nman page for the
rul es syntax

Enter the rules for this user, and hit ctrl-D once
you are done :
(the user can have an enpty rul es set)

deny 192.168.1.1 (attacker)
accept 10.168.1.3 (target)
default deny

Login : tintin
Passwor d > mlou
DN .

Rul es

deny 10.168.1.1

accept 10.168.1.3
default deny

Is that ok (y/n) ? [y] vy

user added.

Finally, @ the Nessus daemon  (nessusd) can be  configured. In the file
/usr/local/etc/etc/nessus/nessusd.conf, several options can be set. This is typically where we can
specify the resources we want Nessus to use, the speed at which it should read data, etc. In our case,
we do not change this file. Nessus provides a default one.

That is it. We start Nessus with the following command:

[]# nessud -D

Now, we must configure the client side. It is simpler as everything can be done through a graphic

interface. By simply typing nessus, the following interface appears like in figure 5:

21



Messusd hostl Flugins | Prefs. | Scan options | Target selection | Userl KB | Credits
~Mew session setup

= MNessusd Host : IIDcthost

Part : |1241
] Login:| tintin
Passward : ||
Log in
Start the scan | Load report | Git

Figure 5: Nessus Client configuration

We simply connect to it as user tintin. Then, we can choose the tests (attack plugins) to perform on the

remote target. It looks like figure 6:

22



LT E— = ay
Messusd host Fluging | FPrefs. | Scan options | Target selection | Userl KB | Credits

Flugin selection

CGl abuses [l Y
FTF -
Gain a shell remotely [
Denial of Service -
Backdoors -
Windows : User management -
Remote file access r
ShMP [
Default Unix Accounts -
RFC | il i

Enable all] Enable all but dangerous plugins| Digable all| Upload plugin...|

_1 Enable dependencies at runtime Filter... |

Unchecked Buffer in ¥P Redirector (G&10577)

DiCE Services Enumeration

Unchecked Buffer in PPTP Implementation Could Enable DOS Attacks
The messenger service is running

ricrosoft's SQL TCPAP listener is running

SMB Registry : is the remote host a PDC/EDC

SMB Registry © value of SFCDisable

Unchecked Buffer in Decompression Functions{Z323048)
Wh_TIMER Message Handler Privilege Elewvation (2528310)

Telnet Client MNTLM &uthentication WVulnerability

L]

Cipening Group Policy Files 12318089 £
l-n._l —_
Start the scan Load repaort it

Figure 6: Nessus client, attack plugins setup

We are not really concerned by Nessus reports, as we only want to generate attacks that can trigger
Snort alerts. We invite the interested reader to [Nessus] for more information of this tool reporting

capabilities.

3.1.3 SNORT

Snort is an open source network intrusion detection system, capable of performing real-time traffic
analysis and packet logging on IP networks. It can perform protocol analysis, content
searching/matching and can be used to detect a variety of attacks and probes, such as buffer overflows,
stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much more.
Snort has three primary uses. It can be used as a straight packet sniffer like tcpdump, a packet logger

(useful for network traffic debugging, etc), or as a full blown network intrusion detection system. We

23



are interested in this last use. Snort uses a flexible rules language to describe traffic that it should
collect or pass, as well as a detection engine that utilizes modular plugin architecture. Snort has a real-
time alerting capability as well, incorporating alerting mechanisms for syslog, a user specified file, a
UNIX socket, or WinPopup messages to Windows clients using Samba's smbclient. However, we are
more interested in a specific output plugin that was recently released (v. 1.2.2a-2.1.0 released in
November 2003). It has been tested with Snort version 2.1.0.

Therefore, we describe below the installation steps required to have Snort and libidmef running. The
Operating System in use on 192.168.1.2 is Linux Red Hat 7.3.

First, the libidmef library installation is mandatory but very simple. Once downloaded, it suffices to
untar/unzip the given file and to execute the makefile:

[1# tar —zxf libidmef-0.7.2.tar.gz

[1# cd libidmef-0.7.2

[libidmef-0.7.2]# ./configure

[libidmef-0.7.2]# make

[libidmef-0.7.2]# make install.

Secondly, we must decompress snort (v.2.1.0) and snort-idmef plugin like:

[]# tar —zxf snort-2.1.0.tar.gz

[1# tar —zxf snort-idmef-plugin-1.2.2alpha2.1.0.tar.gz

Then, some patches must be applied in Snort. A script is provided with the snort-idmef-plugin
distribution (‘install-idmef.sh”). However, this can be done as follows:

[1# cd snort-idmef-plugin-1.2.2alpha2.1.0

[snort-idmef-plug..]# patch ../snort-2.1.0/configure.in configure.in.diff

[snort-idmef-plug..]# ../snort-2.1.0/src/plugbase.c src_plugbase.c.diff

[snort-idmef-plug..]# ../snort-2.1.0/sr¢/plugin_enum.h src_plugin_enum.h.diff

[snort-idmef-plug..]# ../snort-2.1.0/src/output-plugins/Makefile.am src_output-plugins Make
[snort-idmef-plug..]# cp spo_idmef.c spo_idmef.h ../snort-2.1.0/src/output-plugins/

Now, we have to run autoconf at snort’s root directory:

[snort-idmef-plug..]# cd ../snort-2.1.0

24



[snort-2.1.0]# autoconf
Finally, we can install Snort, following the traditional lines:
[snort-2.1.0]# ./configure —enable-idmef —with-libxml2-includes=/usr/include/libxml2 —with-mysql
[snort-2.1.0]# .make
[snort-2.1.0]# .make install
In addition, existing rules can be installed:
[1# .mkdir /etc/snort
[1# . cp snortrules-stable.tar.gz /etc/snort
[/etc/snort]# .tar —zxf snortrules-stable.tar.gz
[etc/snort]# .mv * ..
[/etc/snort]# rmdir rules
The configuration file /etc/snort/snort.conf must be modified accordingly:
e the SRULE PATH variable can be deleted. (“include XXXX.rules”)
*  We must specify the IDMEF output such as:
# idmef: log alerts to idmef format
#
output idmef: SHOME NET logto=/var/log/snort/idmef alerts.log analyzerid=109
dtd=/usr/local/etc/idmef-message.dtd output=Ilog indent=true facility default=file|idmef-messages.log
alert _id=/var/log/alert id num
We should not forget to create the log directory:
[]# mkdir /var/log/snort
Snort is now operational. It can be executed with simple the command line:

[]# snort —c /etc/snort/snort.conf

3.2 Input Generation

Once Snort and Nessus are installed, we can generate IDMEF alerts by launching attacks from
192.168.1.1. In the following, attacks are simple stealth scans. The idea consists in sending a TCP

3

packet on well-chosen ports with all flags turned off. This is equivalent to the ‘—sN’ scan mode of

25



3

nmap or the ‘—c 2’ option of hping [Nmap, Hping]. This approach was first described as a port

scanning technique in [Fyo0O]. The idea is that closed ports are required to reply to the probe packet
with a RST, while open ports must ignore the packets in question (see RFC 793 pp. 64).
Unfortunately, Microsoft IP/TCP layers do not behave as expected as they are often configured to send
RST packets, independently of the port state (opened or closed). Thus, this scan type does not work
against systems running Windows. As a result, this attack is currently used in active fingerprinting to
determine Microsoft stations (see [Nmap] for further details).

Snort detects such an attack in stateful mode. Indeed, its preprocessor called stream4 provides a TCP
stream reassembly and stateful analysis capabilities. Each three way handshake is recorded. Thus,
when an incoming TCP packet is received, the preprocessor checks if it really closes an existing

connection. Otherwise, an alert is generated, similar to the one illustrated below:

<| DME~ Message/ >
<?xnmh versi on="1.0"?>
<! DOCTYPE | DME~ Message PUBLIC "-//1 ETH / DID RFC XXXX | DMEF v1. 0//BEN' "/usr/1 ocal / et ¢/ i dnef - nessage. dt d">
<| DME~ Message version="1.0">
<Alert ident="289">
<Anal yzer anal yzerid="109" nodel ="snort" version="2.0.5">
<Node>
<nane>chapl i n</ nane>
</ Node>
</ Anal yzer >
<Q eat eTi ne nt pst anp="0xc36cc187. 0xd3aa9b49" >2003- 11- 24T17: 42: 31Z</ Or eat €Ti ne>
<Sour ce>
<Node>
<Address cat egory="i pv4-addr">
<addr ess>192. 168. 1. 1</ addr ess>
</ Addr ess>
</ Node>
<Servi ce>
<por t >22</ port >
<pr ot ocol >t cp</ pr ot ocol >
</ Servi ce>
</ Sour ce>
<Tar get >
<Node>
<Address cat egory="i pv4-addr">
<addr ess>192. 168. 1. 3</ addr ess>
</ Addr ess>
</ Node>
<Servi ce>
<port >22</ port>
<pr ot ocol >t cp</ pr ot ocol >
</ Servi ce>
</ Tar get >
<Q assi fication origi n="vendor-speci fic">
<nane>nsg=(spp_streandt) STEALTH ACTIM TY (NLLL scan) detecti on</ nane>
<url >none</ ur| >
</Qassification>
<JAert>
</ | DME~ Message>

The alert is uniquely identified by the ‘Alert ident’ attribute. The service section describes network
services on targets. In our case, it contains two attributes, namely protocol (tcp) and port (22). The

target node address is specified by the target element and the alert message is given by the

26



Classification name attribute. This alert simply reports a stealth scan on port 22 from 192.168.1.1 to

192.168.1.3.

3.3 SEC Configuration

We decide to write a rule similar to the one presented in Annex A (SingleWithThreshold type) and
apply it to existing alert logs. For each alert, we check two information patterns:

* the target address

* the alert message
Indeed, we find that stealth scan alerts are quite common. Thus, SEC can be used to correlate such
alerts, and to issue a specific alert when the number of these alerts in a time window exceeds a certain
threshold. We experiment two SEC features: its capability to read input streams online and offline.

They are described in the following subsections.

3.3.1 Offline log analysis

We first try to apply SEC to offline log files, which were obtained previously, thanks to NESSUS.
However, we realize that it is not so obvious to get target addresses with SEC. Indeed, rules are called
for each incoming event. Each event is a line in the log file. So how can we only get the source
address? A regular expression like:

“pattern=<address>(\d{1,3}\.\d{1,3}\\d{1,3}\\d{1,3})</address>"

is clearly not sufficient, as it would match both source and destination addresses. For instance:

type=Single

ptype=RegExp

continue=takenext

pattern =<address>(\d{1,3}\.\d{1,3)\.\d{1,3}\.\d{1,3})</address>
desc = Observed address $1

action= event

type=Single

ptype=RegExp

pattern= STEALTH ACTIVITY
desc = Stealth activity $1
action= logonly

These two rules lead to the following result:

27



# SEC output file

Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:
Wed Dec 17 17:15:35 2003:

Simple Event Correlator version 2.2.beta2
Reading configuration from sec.conf

2 rules loaded from sec.conf

Creating event ‘Observed address 192.168.1.1"
Creating event ‘Observed address 192.168.1.3'
Stealth activity 1

Creating event ‘Observed address 192.168.1.1"
Creating event ‘Observed address 192.168.1.3'
Stealth activity 1

Creating event ‘Observed address 192.168.1.1'
Creating event ‘Observed address 192.168.1.3'
Stealth activity 1

Creating event ‘Observed address 192.168.1.1"
Creating event ‘Observed address 192.168.1.3'
Stealth activity 1

Creating event ‘Observed address 192.168.1.1"
Creating event ‘Observed address 192.168.1.3'
Stealth activity 1

It illustrates our previous remark. The rule configuration file is checked for each log line. An
additional work would be possible: it consists in analyzing SEC output (with SEC?) and group
information per attack as (ip_src, ip_dst, Stealth activity 1).Furthermore, it seems difficult to correlate
alerts within some time constraints. Indeed, the timestamp pattern needs to be extracted so that an

additional script records and analyzes it. Consequently, writing SEC rules with time correlation

constraints is not practical.

We would have wanted SEC to see each IDMEF alert as one event. However, this is not possible at

this stage. Consequently, we decided to write the whole IDMEF alert on one line, thanks to a simple

PERL concatenation file. The IDMEEF alerts are then similar to figure 6:

28




Figure 6: IDMEF alert (on one line)

<IMEFMEssace/><manl versicr="1.0" 2

<IDOCTYRE, TWEF-MEssage FUBLLC -/ /TEDE//TID FRC 22400 TTWER 1.0/ /B VS sr
/loal /ety idrefressage. dtd =< IVEF Messace wersia "1 .. 0Me<Flert ident="255"
>PAredyasr aralyzericdE=" 105" mode]l ="snort” wersiors"2. 0. 5 =hiodes=tameschapl i
N remEs</ Mode>/ Fralyzer>CreateTine  nifpstams"(kc36001 87 I iBasthdas =2 00311
24717 1421 31 5/ CreaeTines<Sources<Mode=-Podress  category="1mvd-adidr™>
<sddress-152.168. 1. 1</ atdresss</Addresss</ Tode-<Servi ee<port-22</ port>
<ol Stoe oot - Servi aelg Soroe-Target-<Tode-<2adress
category="1rA-e0dr =attiress-1 52 . 1681 L 3</ addresss=</ Pddress-</ T

we=rtas Tatala-rlane aetrsdie nartisde veasl s vavatie an yu s alksisS gt luxs

</ Target-<Classi ficatton arlgrs wendor-specd 5 O <hamesne

o=(Sop streand) STEALMH ACTTVITY NULL Scan) detedtion</nare=arls>

It does not really simplify the whole system, as shown in figure 7. However, this is simpler to write

SEC rules. One event corresponds to one alert.

Solution 1

ZZ?{;IDMEF ’-> SEC rules ’_> SEC output ’-> SEC rules ’_’ Final output

Solution 2

Snort IDMEF Perl IDMEF alerts SEC rules Final outout
alerts Processing modified file P

Figure 7: SEC options we tested

29



A simple configuration file would be:

## rules, to be placed in sec.conf file

#

## first rule to get the target IP of our machine

type=SingleWithThreshold

ptype=RegExp

pattern = <Source><Node><Address category="ipv4-addr">
<address>(\d{1,3}\.\d{1,3)\.\d{1,3}\.\d{1,3})</address>
</Address></Node><Service><port>22</port>
<protocol>tcp</protocol></Service></Source><Target>
<Node><Address category="ipv4-addr">
<address>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</address>
</Address></Node><Service><port>22</port>
<protocol>tcp</protocol></Service></Target>
<Classification origin="vendor-specific">
<name>msg=(spp_stream4)
STEALTH ACTIVITY (NULL scan) detection</name>

desc= STEATH Port scan from $1to $2

action=logonly

window=300

thresh=3

It is working this way. SEC generates two lines in the terminal window (default output) as the alert file

contains more than six alerts containing this pattern.

# SEC output file

Wed Dec 17 17:25:55 2003: Simple Event Correlator version 2.2.beta2
Wed Dec 17 17:25:55 2003: Reading configuration from sec.conf

Wed Dec 17 17:25:55 2003: 2 rules loaded from sec.conf

Wed Dec 17 17:25:55 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 17:25:55 2003: Stealth activity 1 from 192.168.1 to 192.168.3

The time window is useless in this case as everything is done offline. We are limited by the pattern
field. One solution consists in breaking the rule into three smaller rules: two dedicated to the source
and target addresses, and one for the alert message. The fakeNext parameter allows such a rule
cascade.

A similar rule was developed for snort portscan alerts (see Annex B). However, the previously
presented one is richer as we manage to get the source address. This rule can be used to aggregate
stealth portscan alerts, when they exceed a certain number (or threshold).

In our example, we generated alert scans at different frequencies to test the threshold. It is reinitialized

each time its value is equal to the given parameter.

30



3.3.2  Online log analysis

The experiment is similar to the previous one. SEC is applied to Snort output file, while Snort is still
logging alerts. We try the last rule on it, but we obviously face the same problem. Each new alert
comes in the log file as multiple lines. Consequently, the rule is inefficient and never matches the
expected pattern. One solution consists in applying SEC dynamically to an intermediate file: a Perl
script is in charge of modifying snort output file, so that each IDMEF alert appears in one line (one
SEC event). However, this is not convenient at all, and the traditional snort alert format seems more
adapted to SEC parsing. We tried this solution. Results are very similar to the offline mode. The only

change is the time information in the SEC output file:

# SEC output file

Wed Dec 17 18:38:50 2003: Simple Event Correlator version 2.2.beta2
Wed Dec 17 18:38:50 2003: Reading configuration from sec.conf

Wed Dec 17 18:38:50 2003: 2 rules loaded from sec.conf

Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:44:25 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:44:25 2003: Stealth activity 1 from 192.168.1 to 192.168.3

10 snort stealth scans were detected at 18:41:15. However, only three SEC alerts were written
corresponding to the first 9 events (threshold=3). Then, 5 stealth scans were sent by snort at 18:44:25.
The window size was set to 300 ms (not expired since 18:41:15), so SEC took into account the last

tenth event, and wrote two lines.

3.4 AlertSTAT Configuration

We need a scenario plugin (or module, depending on the STAT documents): A scenario plugin is a
shared library that describes an attack scenario. The scenario plugin is usually generated from a
STATL description, but could be theoretically developed manually. Our first idea was to design our
own scenario. Seven scenarios are provided with AlertSTAT distribution and we tried to build
something similar (One scenario, named ‘Portscan’ is presented in Annex C).

Our first remark is that none of them is documented. There is no state-transition graph or any other
comment that would illustrate the scenarios. The documentation systematically refers to a non existing

pdf file. Our second remark concerns the scenario complexity. On one hand, the theoretical scenario

31



creation is quite easy. It suffices to write a file, following the STATL syntax. This file has a
‘.stat’extension. Then, it is compiled into modules. Finally, a link to this module must be added to the
alertSTAT configuration file, in order to have the new scenario operational. Surprisingly enough, there
is no ‘.stat’file provided in the AlertSTAT distribution (nor in the STAT web site, except a test.stat file
given in Annex E). More strangely, compiled modules are written in C++, while STAT core is written
in Java. For instance, the idmef portscan module file is presented in Annex C. From the C++

declarations, we can hardly draw back the scenario graph, which should be similar to:

“scan” state

“scan over”
Transition

“first probe”

O— Q\

PR “recording” “no scan”
|n|t|a| Transition
state
state ” .
NO SCan
state
“probe”
Transition

Disappointed by the scenario writing complexity (or more precisely its obscurity), we decide to test
this already built scenario. It is already included in the AlertSTAT scenario file (file which specifies
activated scenarios), so the operation does not require lots of efforts. The scenario module needs three

parameters that are specified in the same scenario file like:

32



<IDMEF-Message>
<x-stat from="" to="">

<x-stat-scenario-load id="8" name="idmef portscan" version="1.0"
library="idmef_portscan.so">

</x-stat-scenario-load>

<x-stat-scenario-activate id="10" scenario_name="idmef portscan"
prototype _name="prototype idmef portscan">

<parameter name="threshold">3</parameter>
<parameter name="timeout">20</parameter>
<parameter name="flood_threshold">500</parameter>
</x-stat-scenario-activate>

To obtain a definition of these variables, one needs to plunge into the C++ code copied in Annex C.
The timeout defines the attack time upper bound limit (in seconds) from the first received event. The
threshold defines the lower-bound value of events number before considering there is a scan attempt.
The flood threshold variable sets the upper-bound value of events number before considering a
flooding attack.

To test alertSTAT on our log files, we type the simple command:

[]# alertstat —alertfile <path_to_alert file>

Finally, AlertSTAT results are obtained by default in the /usr/local/start/responses file. This can be

changed in the etc/alertstat.cfg file. They are written as IDMEF-messages:

<IDMEF-Message>
<x-stat-response-load id="1" name="response_IDMEF" version="1.0" library="libresponse.so"/>
<x-stat-response-activate id="7" response_name="response_|IDMEF"

response_func="response_send" prototype_name="prototype_idmef_portscan" scenario_state="scan"/>
(-..)
</x-stat>
</IDMEF-Message>

The most interesting part is the scenario state value, which indicates the current state of the system
from the given scenario (prototype idmef portscan). SEC can be used online to detect such final

states and beep or email the administrator.

33



3.5 ACID Configuration

There is nothing to be done with ACID. Snort information is logged into the mysql database (output
defined snort.conf file). Moreover, ACID is connected to this database to send queries. This is a

background activity we are not really aware of, as we only interact with the ACID GUI. It looks like:

= ralysis Consols fr iieion Datsbases (ACID) - Motlia puld  zoozoaversy EEE
' File Edit Miew Search Go Bookmarks Tasks Help

ﬁ - &k - a A hitp:/A192.168.1.2/acidviewer/acid_main.ph - Search @ -

i Back Faorward Reload  Stop I<& P = Al J 2. Print
v 4} Hame | ‘W Bookmarks ¢ Red Hat Network £ Support 0 Shop 4 Products 5 Training

-

Analysis Console for Intrusion Databases

Added O alert(s) to the Alert cache

Queried on : Mon January 05, 2004 14256:35
Database: snort@localhost (schema version: 105)
Time window: 1o aiarns detecied

Sensors: 0 Traffic Profile by Protocol
Unigue Alerts: 0 [ 0 categories ) TGP (0%)
Total Number of Alerts: 0

® Source |IP addresses: 0 UDP (0%)

e Dest. P addresses: 0

e Unigue IP links 0 ICHP (0%)

® Source Ports 0
o TCP(0) UOP(0)
e Dest. Ports: 0 Partscan Traffic (0%)
o TCP (0) UDP [0}

+ Search
+ Graph Alert data (EXPERIMENTAL)

+ Snapshot

+ Most recent Alerts: any protocol, TCP, « Most frequent 5 Alerts

UDP, ICMP

+ Today's: alerts unique, listing; P sre/ dst + Ivlost Frequent Source Ports: any , TCP , UDP

+ Last 24 Hours: alerts unique, listing; IP src + Iost Frequent Destination Ports: any , TCP , UDP

/ dst

+ Last 72 Hours: alerts unique, listing; IP src + tviost frequent 15 addresses: source, destination

{ dst

+ Most recent 15 Unigque Alerts |
g £l 2 EEl o | Document: Done (2.705 secs) |_@_|ﬁa"

Figure 8: ACID home page

Figure 8 shows the ACID home page. Here is summarized general information on the corresponding
database, such as the traffic profile by protocol (limited by snort to tcp, udp and icmp transport
protocols). In our example, the database is still empty, as illustrated by null values. In general cases, it
provides the following information:

- The number of distinct source/destination IP addresses

- The number of distinct source/destination ports for each protocol (UDP or TCP)

- The list of most frequent alerts

- Some snapshots of the database.

34



In figure 9 is presented the same home page, but with a non-empty database. These logs correspond to
the Nessus traffic observed from 192.168.1.2. In the Nessus client configuration, we ticked by the
option “all attacks”. As a consequent, we can determine that 79% of the Nessus total traffic is TCP,
20% is UDP and 1% is ICMP.

There are obviously two source and destination addresses observed (192.168.1.1 and 192.168.1.3), and

35 unique alerts (coming from 8 snort rule sets categories).

File Edit ‘iew Go Communicator

&4 ¢ 3 @ . @ < &£ B &

Back  Forward  Reload Home  Search  Netscape Print  Security  Shop Stop

'| i ™ Bookmarks J Location: [ltep: //127.0. 0. 1/acid/acid_main. php /

v| ‘ Red Hat Nebwark @' Support @ Shop @ Froducts @Training

‘Warning: Cannot send session cookie - headers already sent by (output started at ivarfwwwhtol/acid/acid_conf php:276) in fvarfssrw/html/acid/acid_state_common.inc on line §2

Wa g: Cannot send session cache lniter - headers already sent {output started at svar'wwwihonl/scid/acid_conf.php 278) in fvariwwwihimlf acid’acid_state common.nc on line $2

Analysis Console for Intrusion Databases

Added 4499 alail(s) 1o the Alar cacha

Queried on : Mon Januane 05, 2004 16:50:48
Databasea: acdlesi@bcalhosl  (schema varsion: 106)
Time window: [2004.01.05 16:04:24] - [2004.0105 16.05:33]

Sansors: 1 Traffic Profila by Protocel

Unique Alerts: 25 [ £ catagories | TGP f7a%)

LTI D ]
* Souica IP addiasses: 2 UDF (20%)
® Des=l. IP addis==az: 2
® Uniqua IP links 5 ICMP f13)

= Sawca Pails: 1830
o TGP (1778) UDP {157} _
® Desl. Poits: 1817 Poilscan Tiallic [09)

@ TGP (1765) UDP (53)

= Saarch
= Graph Alart data .
= Snapshot
= Most iecant Aleits: any protocol, TCR, UDP, ICMP = Mos fraquent 5 Alaris
* Todays: alei= uniqua, listing; IP sre £ dst
® Lasl 24 Hous: alails uniqua, I!st!nq, IP sre it dst ® Maost Fraquan Sawica Pad=: any , TGP, UOP
= Lasl 72 Hous: alads uniqua, listing; IP src / dst ® Mosl Fraquani Deslinalion Fois: any , TCF, UDP

® hlosl tecant 15 Uniqua Alarts
= host liaquant 15 addiessas: source, destination

® Last Souica Poris: any , TGP, UOP
® Last Dssfinafion Parts: any , TGP, UDP

® Giaph alad dataction tima

= Alar Group [AG) maintenanca
= Application cache and status

[Loaded in 2 seconds]

Roman Danyliw AIrCERT

Figure 9: another ACID home page

With no real surprise, we obtain figure 10, while clicking on ‘source IP addresses’. All IP sources are

listed, with their corresponding number of events and alerts.

35



ique Source Address(es): 15 Most Frequent IP addresses
File Edit View Go Communicator

<« ¢ 3 & 2 W @ & #

Back  Forward  Reload Home — Search MNetscape Print  Securty  Shop Stop

w‘" Eookmarks 4 Location Iﬂlttp £/127.0.0. 1 /acidfacid_stat_uaddr. phprealler=most_frequentfaddr_type=1&sort_order=occur_d £

| t Red Hat Nebwark D" Support [‘_." Shop [‘_." Products D"Training

Warning: Cannot send session cookie - headers already sent by (output started at Avarfwww/html/acid/acid_conf.php:276) in fvarfwanw/html/ acid/acid_state_common.inc on line 82

Warning: Cannot send session cache livdter - headers already sent { output started at frarwwiwhtralfacidlacid_conf php276) in Avaxfwarshtnlf acidfacid_state commondnc on line §2

Home

o Unique Source Address(es): 15 Most Frequent |P addresses i

Addad 0 aleri(s) 4o 1he Al cacha

Guatiad OB &n : Man Januawy 05, 2004 16:52:22

Mata Critaria any
P Critaria any
ayer Critaria JEEEE]

Payload Critaria JETN
Displaying 15 host Fraquant P addiassas

Unique
Src IP address
Alers
192.168.1.1 LUnabls to issole address 1 2793 31
192.168.1.2 Unabls to issolvs addtess 1 1708 5

[Loaded in 0 seconds]

AIrCERT

Figure 10: ACID source IP addresses

We worked in the previous experiments on a given Nessus attack: the stealth scan on port 22. Snort

detects such attacks thanks to its spp_stream4 preprocessor module. They are represented in ACID as

follows:

 Netscape: ACID: Query Results

File  Edit W Goo Communicator
<« w A 4 a & &£ B #
Back  Forward  Reload Home  Search  Metscape Print  Security  Shop Stap
H M" Eookmarks 4 Location: Ifhttp-//lZT 0.0.1/acidfacid_qry main. phprnew=1&sig%5E0%50=%3D5%519%061%5D=32851g_type=1&subnit=Query+DE&num_result rows=-1 7!

-‘ 7 Red Hat Netwark (4§ Suppart (1 Shop (4§ Products [ Training

Wanning: Cannot send session cookie - headers already sent by (ourpur starred ar Avarfwswswhonl/acid/acid_conf php:278) in Avarssaw/html/acid’acid_state_commondnc on line §2

Warning: Cannot send session cache limiter - headers alveady sent (output started at svarfwrwrwhirnl/acid/acid conf.php:278) in fvanforsradhtmlfacid/acid_state commondne on line §2

Homa

Query Results T

#ddad 0 alailis) o 1he Alad cache

Guaried DB on : Man Januay 05, 2004 16:63.52
Signaluia *[snor] (spp_sheam4) STEALTH ACTIVITY (NULL scan) dateclion® ...claar..

= Sansors
® Uniqua Alarts | classifications )
* Uniqua addiassas: source | destination

. Uniqua IP links
Ll * Sourca Por: TGP | UDP
Payload Critaria [T = Dastination Por: TGP | LDP

Mata Crita

® Tima prefile of alsis

Displaying als itz 1-10 of 10 fotal

" : 23
D Signalure Timestamp Ad?l:":; Address
=] #0-[1-3597) [5n16t1] (=pp_slimam4) STEALTH ASTIWITY (NULL scan) detactian 20040105 16:05:21 162.168.1.1:137 182.168.1.3:137
O #1-[1-3600) [snor] (spp_sleam4) STEALTH ASTIITY (NULL scan) detaction 20040105 16:05:21 192.168.1.1:137 192.168.1.3:137
O #2-(1-5602) [snor] (spp_stieam«) STEALTH ACSTIVITY (NULL scan) detaction 20040105 16:06:21 182.168.1.1:137 182.168.1.3:137
o #3-(1-3608) [sn6t1] (spp_stiaam4) STEALTH ASTIVITY (NULL scan) detactian 20040105 16:05:21 192.168.1.1:137 192.168.1.3:137
O #0[1-2606) [snort] (spp_slieam4) STEALTH ASTIVITY (NULL scan) detaction 20040105 16:05:21 192.168.1.1:137 192.168.1.3:137
O #5-11-3608) [snor] (spp_stieam«) STEALTH ACSTIITY (NULL scan) detaction 20040105 16:06:21 182.168.1.1:137 182.168.1.3:137
o #6-(1-3610) [sn16t1] (=pp_stimam4) STEALTH ASTIVITY (NULL scan) detactian 20040105 16:05:21 192.168.1.1:137 192.168.1.3:137
o #7-[1-3612) [snor] (spp_slaam4) STEALTH ASTIWITY (NULL scan) detaction 20040105 16:05:21 182.168.1.1:137 182.168.1.3:137
O #2[1-3614) [snort] (spp_slieam4) STEALTH ASTIVITY (NULL scan) detaction 20040105 16:05:21 192.168.1.1:137 192.168.1.3:137
O #a-[1-3616) [snor] (spp_stieam«) STEALTH ACSTIVITY tNULLscanjﬁciian 20040105 16:06:21 182.168.1.1:137 182.168.1.3:137
Aclion

| action } = |I | Selectad| | ALL an Screen| | Entire Quary

Figure 11: ACID, Stealth Scan on port 22

36



If we click on the ‘snort” word (in blue at each alert lines), we get the rule-description page currently
available at Snort web site. Additionally, a click on the event ID (left column) gives more complete
information on the selected event, such as the different protocol headers and payloads. One example is

presented in figure 12, with one event listed in figure 11.

T Bookmarks Location: (http: #1227 0.0, 1/acid/acid_gry_alert. php?submit=%231-%281-906%29&s0rt_order=siq a
nttp _ php - g_

4 Red Hat Metwork - Support 0 Shop [ Products £ Training

Mata Critaria 2y
e ay

Layar4 Critaria LIt}
Payload Critaria je!

Addad 0 alediz) 1o 1ha Aled cacha

11-908 | 20040105 16:04:46 | (11 nknown Sig Name :
Meta

. e 4 & 4]

19216813

Alart #2

o Next #2-1-3)|

<< Prewious #0-(1-1)

Unabla to msola addiess Unabils fo resole addess

Payload

Figure 11: ACID event details

As a more general remark, it is quite surprising to see the ACK flag set in the TCP header of the
presented packet. This packet triggers the NULL Scan alert of Snort. However, a NULL Scan is
defined as: “all flags are turned off” [Nmap]. Thus, does it mean that NULL Scan definition of Snort

differs from the previous one, or does it simply reveal another bug in the spp_stream4 preprocessor?

37



4 Observations

4.1

Results

The three tools were configured to accomplish a given task, and they all did it. However, we can make

several observations for each of the tools:

About SEC: we would like to point that SEC is not really adapted to complex log analysis. It
is a convenient Swiss Army knife to help finding information, but it is definitely not designed
to perform deep analysis. As we showed in Section 3.2, SEC is not really suited to IDMEF
standard. It would even become more interesting when it is used with traditional snort alerting
format. Furthermore, SEC is more adapted to online log analysis. In offline modes, its time
windowing capabilities are useless (except for a real time replay). As a consequence, we
would advocate SEC usage in very specific cases: this tool can be incorporated in another
richer tool that would use its rules flexibility, or to answer a specific question that cannot be
found with traditional consoles like ACID. Even in this case, we are not convinced that it can
replace a simpler Perl script.

About AlertSTAT: AlertSTAT was initially classified in [PoDa03a] in the ‘Experimental tool’
category. We are more and more convinced of our classification after our experiments. Indeed,
AlertSTAT is theoretically interesting, but its usage is currently restricted, for two main
reasons:

- The AlertSTAT package is incomplete. The installation files refer to documents that
do not exist. Many files are missing (with the furnished examples), which make the
tool even less comprehensive.

- Writing and using a scenario is potentially possible. However, we think that a larger
scenario database should be distributed with this tool. The provided examples are not
really interested, as they can often be replaced by simpler analysis tools. A larger
scenarii database would permit to use AlertSTAT as a ‘meta-alert’ generator.

About ACID: ACID is the most famous alert correlation console. Designed along with Snort,

it is widely used by many network administrators to prevent them from being overwhelmed

38



with Snort alerts. ACID can be easily used to find simple ‘snapshots’ of the IDS output
database. Generally speaking, it is convenient in a multi-sensors network to analyze
centralized alerts. However, its simplicity is also its limitation. It prevents the administrator
from tediously querying the database. But it does not support real complex queries. In this
case, the solution consists in directly logging to the database and write down queries.
Moreover, Snort database is not really adapted to complex queries, and a new database

scheme must be considered.

4.2  Comparison

SEC is ideally suited for performing real-time monitoring. While it can take offline log file as input
(see Section 3.2), it has really been designed to process active log files. SEC excels at event
aggregation. It is easily configured to detect multiple similar events and report them as a single
composite event, thereby reducing the amount of data the analyst has to review.

SEC has a facility for real-time notification. It can feed reports to any program or script that is capable
of processing file streams. It can send email, write to a file, or send pager notifications.

Despite its many good points, SEC does have its drawbacks- namely its complexity and limited
installation base. The learning curve for SEC is steep, and while it is fairly well documented, writing
relevant rules may require some time. Furthermore, since SEC was originally intended for use with
Network management systems such as HP OpenView, the amount of Snort-specific information
available is more limited. Finally, we are convinced that IDMEF format is too complex and SEC
would perform as well with traditional format. Using IDMEF standard implies extra-processing of the
output file. Furthermore, pattern matching on long lines is not convenient, and we are often compelled
to break each rule into sub-rules in order to clarify rules and to avoid mistakes.

On the other side, AlertSTAT would be more interesting for complex scenarios which can hardly be
described by the mean of SEC rules or database requests. However, there is no complex scenario
offered with the tool package. AlertSTAT is provided with seven simple and not documented ones.
Furthermore, it seems difficult to write a multitude of them. Even if Vigna et Al. praise the STAT

framework in [Vign03], we find their tools currently not practical. The concept itself is interesting

39



However, the solutions they freely distribute in their site are hardly usable. Moreover, they promise
scenario documentation in their tool distribution which is non-existent. A large scenario library would
make this tool more applicable. As far as we know, such a library does not exist yet. This is tedious
work for one network administrator.

To conclude, we would say that the three alert correlation tools we analyzed do not provide redundant
information. On the contrary, they are more or less complementary and do not fulfill the same tasks.
As we show for illustration in Section 3.4, we can use SEC to analyze alertSTAT output.

Table 4 summarizes their usages. We find that four main criteria may help choosing between the three
tools:

- The input format

- The tool usage

- The easiness changing tool configuration.

- Correlation based on some time properties

A cross means that the tool is more adapted to this criteria category.

Criteria Criteria SEC ACID AlertSTAT
categories
snort alert format X X

Input format

IDMEF format X

Simple queries on

alerts files or X X
databases
Usage
Complex queries
— meta-alert X
information
Frequent
Tools: X
modifications

40




Configuration | Rare
X X
modifications modifications
Permits time
X X
constraints

Correlation with

time constraints

Does not permit

time constraints

Some basic correlation operations are presented in [PoDa03]. We report the interested reader to this

document for more information on their definition. We suggest specifying for each tool which

operations they are adapted to:

Basic correlation SEC AlertSTAT ACID
operations
Compression X X
Filtering X
Selective Suppression
Thresholding X X
Modification X
Generalization X X
Specialization
Enrichment X

We observe that the three tools cover distinct operation groups. For instance, SEC can handle many

basic operations, thanks to its flexibility. However, it might be quite hard to write its corresponding

rules. On the other hand, ACID is very limited. It is restricted to simple filtering and compression

operations. Finally, we note that ‘Selective Suppression’ and ‘Specialization’ operations are not

covered.

41




5 Conclusion

Alerts often come from multiple sensors, spanning multiple complex subsystems. This complexity
implies that such systems require constant monitoring and maintenance. Human capacities are not
sufficient, and some tools try to address their issues.

In this paper, we have presented and evaluated three of them, respectively SEC, AlertSTAT and
ACID. They all have characteristics that make them original and useful. SEC, for instance, is not
particularly adapted to IDMEF standard, but can be used within a more specified tool. AlertSTAT tool
lacks of maintenance, but is very promising. It can generate some meta-alerts that would be impossible
to obtain with traditional tools. Finally, ACID is a very basic console. We are not convinced that it
really helps correlating alerts. It gives a better overview of centralized alerts, but performs limited
requests on the database. In other words, this is a ‘convenient but simple tool for database mining’.
Moreover, it is built on Snort database which is not really optimized for complex sql queries. As a
consequence, we think it is the least promising tool of those we tested.

With regards to these experiments, we conclude that so-called alert-correlation tools have not reached
a satisfactory mature level. Many solutions exist with interesting features. Thus, the next step consists
in grouping them into a more coherent correlation architecture. However, we are not sure this trend is

prevalent today.

4



6 References

[ADO]
[Ale]

[Bro03]

[Cla03]

[Gd]

[Idmef]

[Idwg]

[Nessus]
[Nmap]
[PHPIot]

[PoDa03]

[RHupd]

[SEC]

[Snorta]
[Snortb]

[Vign03]

Abodb home page: http://php.weblogs.com/adodb/

AlertSTAT home page: http://www.cs.ucsb.edu/~rg/STAT/software/alertstat.html

J. Brown. “Working with SEC- the Simple Event Correlator”, 2003. Available at:

http://sixhooter.v6.thrupoint.net/SEC-examples/article.html

N. Clarks. “Perl regular expressions tutorial”, in perlretut, 2003. Available at:

http://search.cpan.org/fiwclark/perl-5.8.2/pod/perlretut.pod

Gd home page: http://www.boutell.com/gd/

Intrusion Detection Message Exchange format. Draft 10 available at

http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt

Intrusion Detection Working Group (IDWG) home page:

http://www.ietf.org/html.charters/idwg-charter.html

Nessus home page: http://www.nessus.org

Nmap security scanner home page: http://www.insecure.org/nmap/

PHPIot home page : http:/www.phplot.com

F. Pouget, M. Dacier. “White Paper: Alert Correlation: Review of the state of the art”.
Insitute Eurecom, Sophia-Antipolis, France. Nov. 2003.

RedHat Modules updates available at: ftp://updates.redhat.com/7.3/

SEC home pages: http://simple-evcorr.sourceforge.net or

http://www.estpak.ee/~risto/sec/

Snort rules available at: http://snort.org/dl/signatures/

Snort home page: http://www.snort.org

G. Vigna, F. Valeur, R.A. Kemmerer. “Designing and Implementing a Family of

Intrusion Detection Systems”. In Proceedings of ESEC/FSE’03, Finland. Sept. 2003.

43


http://php.weblogs.com/adodb/
http://www.cs.ucsb.edu/~rg/STAT/software/alertstat.html
http://sixhooter.v6.thrupoint.net/SEC-examples/article.html
http://search.cpan.org/�wclark/perl-5.8.2/pod/perlretut.pod
http://www.boutell.com/gd/
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt
http://www.ietf.org/html.charters/idwg-charter.html
http://www.nessus.org/
http://www.insecure.org/nmap/
http://www.phplot.com/
ftp://updates.redhat.com/7.3/
http://simple-evcorr.sourceforge.net/
http://www.estpak.ee/~risto/sec/
http://snort.org/dl/signatures/
http://www.snort.org/

7 Annexes

7.1 Annex A

SEC contains several rule types for event correlation. They are illustrated below with

examples:

SingleWithScript

Copy the following to example.conf:

# Exanpl e conf

H*

Single with script. Pass matched |P address

# to script for validation. If valid, execute

# action 1; if not valid execute action2.

# Note: change script path (and possibly perl path)

# to match your system

type=Si ngl eWt hScri pt

pt ype=RegExp

pattern=(\d+)\. (\d¥)\. (\d+)\.(\d+)

scri pt=/usr/bin/perl /honme/ SEC exanpl es/ exanpl e. pl $0

desc=%$0
action=write - |P address $0 matches.
action2=write - | P address $0 does NOT natch.

44



Note that while this RegExp pattern used will match an IP address, it will also match

expressions that are not real IP addresses, such as *'9999. 8888. 7777. 6666".

Also note that this rule takes two action statements. SEC checks the return value of the called
program. If the program returns a zero value, the action is executed, if non-zero action?2 is

executed.
Next, copy the following to script exanpl e. pl

#! [ usr/ bi n/ perl

# Script exanple.pl - check if |IP argunent
# matches a short list of |IP addresses.
# Return zero on success, 1 on failure.
@match_list = ( '1.2.3.4",

'2.3.4.5",

'3.4.5.6'

)

$i p_addr = $ARGV[ 0] or die "No | P address passed on command |ine";

foreach $ip (@uatch_list)

exit (0) if $ip_addr eq $ip;

exit 1;

45



Script exanpl e. pl accepts a single IP address on the command line passed from the matched
rule. If the address matches one of the IPs on its small list of IP addresses, it returns zero, else

it returns 1. If there is no IP address at all, the script dies and returns a non-zero value.

Run with:

% perl sec.pl -conf=exanple.conf -input=-

Output looks like this:

t ot o@ ot 0: ~/ SEC- exanpl es$per| sec.pl -conf=exanple.pl -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. pl

Can't open configuration file exanmple.pl (No such file or

directory)

~C

t ot o@ ot o: ~/ SEC- exanpl es$per| sec.pl -conf=exanple.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

1.2.3.4

Child 16396 created for command '/usr/bin/perl / hone/ SEC-

exanpl es/ exanpl e. pl 1.2.3.4'

Child 16396 term nated with exitcode 0O

Witing event 'IP address 1.2.3.4 matches.' to file -

| P address 1.2.3.4 nmatches.

46



5.6.7.8

Child exanple.pl 5.6.7.8

Child 16398 term nated with non-zero exitcode 1

Witing event 'IP address 5.6.7.8 does NOT match.' to file -

| P address 5.6.7.8 does NOT match

~C

More robust IP address matching is possible with the Net::IP_Addr perl module.

SingleWithSuppress

Copy the following to example.conf:
# Exanpl e exanpl e. conf

# Exanpl e of Singl eWthSuppress

t ype=Si ngl eWt hSuppr ess

pt ype=RegExp

patt er n=f oo

desc=%0

action=write - $0 suppressed for 5 seconds at %

wi ndow=5

Run with:
% perl sec.pl -conf=exanple.conf -input=-

47



and continuously enter *f 00" as rapidly as possible.

Output:

t ot o@ ot o: ~/ SEC- exanpl es$per| sec.pl -conf=exanple.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

f oo

Witing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04: 38

2003" to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04:38 2003

f oo

f oo

f oo

f oo

f oo

f oo

Witing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04: 44

2003" to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04: 44 2003

f oo

f oo

f oo

f oo

48



f oo

f oo

Witing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:50

2003 to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04:50 2003

f oo

"C

Pair

Copy the following to exanpl e. conf :

# Exanpl e exanpl e. conf

# Exanple Pair rule.

# Match event A and B within w ndow.

type=Pair

pt ype=RegExp

pattern=foo

desc=%0

action=wite - foo matched at % . Start w ndow of 5 seconds for

bar

pt ype2=RegExp

patt er n2=bar

desc2=%0

49



action2=wite - bar matched at %. bar is within w ndow

w ndow=5

Run with:

% perl sec.pl -conf=exanple.conf -input=-

When running this rule, first enter *'f 00" and “‘bar" close together (i.e. within 5 seconds).
Then enter "'f 00" and wait to enter “"bar " until the window is past (i.e. more than 5 seconds.)
The first time the Pair rule will correlate them together, while the second time they are not

correlated.

Output will look similar to:

t ot 0@ ot 0: ~/ SEC- exanpl es$per| sec. pl -conf=exanpl e.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

f oo

Witing event 'foo matched at Sat Nov 15 18:17:07 2003. Start

wi ndow of 5 seconds for bar to file -

foo matched at Sat Nov 15 18:17:07 2003. Start w ndow of 5 seconds

for bar

bar

Witing event 'bar matched at Sat Nov 15 18:17:09 2003. bar is

within window' to file -

50



bar matched at Sat Nov 15 18:17:09 2003. bar is within w ndow

f oo

Witing event 'foo matched at Sat Nov 15 18:17:14 2003. Start

wi ndow of 5 seconds for bar ..."' to file -

foo matched at Sat Nov 15 18:17:14 2003. Start wi ndow of 5 seconds

for bar

bar

rC

PairWithWindow

Copy the following to exanpl e. conf :

# Exanpl e exanpl e. conf

# Exanpl e Pai rWthW ndow rul e.

# Match both events A and B within wi ndow executes acti on2.

# |f event B does not occur within wi ndow, execute action.

type=Pai r Wt hW ndow

pt ype=RegExp

pattern=foo

desc=$0

action=wite - foo matched, bar NOT matched w thin w ndow.

pt ype2=RegExp

patt er n2=bar

51



desc2=%$0

action2=wite - foo and bar both matched within 5 second w ndow

wi ndow=5

Run with:

% perl sec.pl -conf=exanple.conf -input=-

When running this rule, first enter *'f 00" and “bar " close together (i.e. within 5 seconds).
Then enter *'f 00" and wait to enter ““bar " until the window is past (i.e. more than 5 seconds.)
The first time the PairWithWindow rule will correlate them together, while the second time

they are not correlated.

Output looks like:

t ot o@ ot o: ~/ SEC- exanpl es$per| sec.pl -conf=exanple.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

f oo

bar

Witing event 'foo and bar both matched within 5 second w ndow '

to file -

foo and bar both matched within 5 second w ndow

f oo

52



Witing event 'foo matched, bar NOTI' matched within w ndow' to

file -

foo mat ched, bar NOT natched wi thin w ndow.

rC

SingleWithThreshold

Copy the following to exanpl e. conf :
# Exanpl e exanpl e. conf
# Exanpl e SingleWthThreshold rule.
# Match event A thresh nunber of tines in w ndow
# and execute action. Slide windowif needed

# until w ndow expires.

type=Si ngl eWt hThr eshol d

pt ype=RegExp

pattern=foo

desc=$0

action=write - foo matched three tines in 10 seconds!
wi ndow=10

t hresh=3

Run with:

53



% perl sec.pl -conf=exanple.conf -input=-

When running this rule, first enter **f oo" three times close together (i.e. within 10 seconds).

The action will execute.

Then enter "'f 00" slowly, waiting five to eight seconds between each entry. Since there are
never three entries (thresh=3) entered within the sliding window, the rule is not matched and

the action is not executed.

The first time the SingleWithThreshold rule will correlate them together, while the second

time they are not correlated.

Output looks similar to:

t ot 0@ ot 0: ~/ SEC- exanpl es$per| sec. pl -conf=exanpl e.conf -input=-

Sinpl e Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

f oo

f oo

f oo

Witing event 'foo matched three times in 10 seconds!' to file -

foo matched three tines in 10 seconds!

f oo

f oo

f oo

f oo

54



f oo

f oo

~C

SingleWith2Threshds

Copy the following to exanpl e. conf :
# Exanpl e exanpl e. conf
# Exanpl e SingleWth2Threshhol ds rul e.

# Match thresh A events (go above low waternmark) and execute

action.
# Then switch to thresh2 and wi ndow2 to count nore A events.
# If less than thresh2 A events occur in w ndow2 (stay under high

# wat ermar k), execute action2.

type=Si ngl eWt h2Thr eshol ds

pt ype=RegExp

pattern=foo

desc=%0

action=wite - foo hit lowwatermark (3) at tine %
wi ndow=5

t hresh=3

55



desc2=%$0

action2=wite - foo stayed under high watermark (5) at time %

w ndow2=10

t hresh2=5

Run with:

% perl sec.pl -conf=exanple.conf -input=-

In this example, it will be necessary to time your entries fairly closely. The first example
shows three matched events followed by action, then less than thresh2 (5 events) within

window?2 (10 seconds).

The second example shows multiple events after the low watermark then a marked slowing of

entries that result in action?.

Output from this example:

t ot 0@ ot 0: ~/ SEC- exanpl es$per| sec. pl -conf=exanpl e.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

f oo

f oo

f oo

Witing event 'foo hit low watermark (3) at time Mn Nov 17

09:42: 05 2003 to file -

56



foo hit low watermark (3) at tinme Mon Nov 17 09:42:05 2003

f oo

f oo

Witing event 'foo stayed under high watermark (5) at tine Mon Nov

17 09:42:16 2003 to file -

foo stayed under high watermark (5) at tine Mon Nov 17 09:42:16

2003

f oo

f oo

f oo

Witing event 'foo hit low watermark (3) at tinme Mn Nov 17

09:42: 22 2003" to file -

foo hit lowwatermark (3) at tinme Mon Nov 17 09:42:22 2003

f oo

f oo

f oo

f oo

f oo

f oo

f oo

f oo

f oo

f oo

57



f oo

f oo

f oo

f oo

foo slow ng way down...

f oo

f oo

Witing event 'foo stayed under high watermark (5) at tine Mon Nov

17 09:42:49 2003 to file -

foo stayed under high watermark (5) at tine Mn Nov 17 09:42:49

2003

~C

Suppress

Copy the following to exanpl e. conf :
# Exanpl e exanpl e. conf

# Exanpl e of Suppress.

# First rule suppresses 'foo'.
# Second rul e matches any pattern and

# executes wite action.

type=Suppress

pt ype=RegExp

58



pattern=f oo

desc=%$0

type=Singl e

pt ype=RegExp

pattern=(.*)

desc=%0

action=write - entry was: $0

Run with:

% perl sec.pl -conf=exanple.conf -input=-

In this example, the first rule suppresses " 'f 00" while the second rule matches any pattern and
writes it to standard output. Since "'f 00" is already suppressed by the first rule, it will never

be written by the second rule.

Output looks similar to:

t ot 0@ ot 0: ~/ SEC- exanpl es$per| sec. pl -conf=exanpl e.conf -input=-

Sinple Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

2 rul es | oaded from exanpl e. conf

bar

Witing event 'entry was: bar' to file -

59



entry was: bar

baz

Witing event 'entry was: baz' to file -

entry was: baz

f oo

f oo

f oo

bar

Witing event "entry was: bar' to file -

entry was: bar

baz

Witing event 'entry was: baz' to file -

entry was: baz

~C

Calendar

Copy the following to exanpl e. conf :

# Exanpl e exanpl e. conf

# Exanpl e cal endar rule.

# Wite a nessage every mnute.

t ype=Cal endar

60



time=* * * * *

desc=%$0

action=wite - The tinme is now %

This example takes no user input. However, the “*- i nput " parameter must still be present on

the command line. Run with:

% perl sec.pl -conf=exanple.conf -input=-

Output is similar to:

t ot 0@ ot 0: ~/ SEC- exanpl es$per| sec. pl -conf=exanpl e.conf -input=-

Sinpl e Event Correlator version 2.1.11

Readi ng configuration from exanpl e. conf

1 rules | oaded from exanpl e. conf

Witing event 'The tinme is now. Mn Nov 17 10:40:42 2003" to file

The tine is now. Mn Nov 17 10:40: 42 2003

Witing event 'The tinme is now. Mn Nov 17 10:41:00 2003" to file

The tine is now. Mon Nov 17 10:41:00 2003

Witing event 'The tinme is now. Mn Nov 17 10:42:00 2003 to file

The tine is now. Mon Nov 17 10:42:00 2003

~C

61



Using the - debug=4" parameter removes the informational debug statements and results in

just:

The tine is now. Mn Nov 17 10:46: 35 2003

The tine is now. Mn Nov 17 10:47:00 2003

The tine is now. Mn Nov 17 10:48: 00 2003

The tine is now. Mn Nov 17 10:49: 00 2003

The tine is now. Mn Nov 17 10:50: 00 2003

Note also that SEC invokes the action of all calendar rules at startup, but only at the top of
each minute thereafter. Actions that must not occur too closely together must take this into

account.

Running applications from SEC is similar. This example runs a script that checks MD5
checksums on a list of files every five minutes. The script takes a single parameter-

“MD5_ CHECK":

# Run t he SystentCheck.sh script every five m nutes.

t ype=Cal endar

tine=0, 5, 10, 15, 20, 25, 30, 35, 40, 45,50,55 * * * *

desc=MD5_CHECK

action=shel |l cnd / hone/ | pb/ SEC- exanpl es/ Syst enCheck. sh %

62



Multiple Input Streams

To set up SEC to read multiple files, the tail program is often used as in the following

example.

Copy the following to exanpl e. conf:

# Exanpl e exanpl e. conf

# Multiple input files with spawn.

type=Si ngl e

pt ype=RegExp

pattern=f oo

cont i nue=TakeNext

desc=%0

action=spawn /usr/bin/tail -f ./aaa.in ;\
spawn /usr/bin/tail -f ./bbb.in ;\

spawn /usr/bin/tail -f ./ccc.in

# Match |ines beginning with aaa:
type=Si ngl e

pt ype=RegExp

63



pattern="aaa: (.*)

desc=%$0

action=wite aaa.out %

# Match |lines beginning with bbb

type=Singl e

pt ype=RegExp

pattern="bbb: (. *)

desc=%$0

action=wite bbb.out %

# Match lines beginning with ccc:

type=Singl e

pt ype=RegExp

pattern=~ccc: (.*)

desc=%$0

action=wite ccc.out %

# Match all other |ines

type=Singl e

pt ype=RegExp

64



pattern=(.*)
desc=$%0

action=wite other.out %

In this example, the spawn action is part of a rule that matches input **f 00". This means that

the spawn actions will not occur until **f 00" is recognized in the input stream.

After the tail commands will forward input from their respective files into SEC. SEC will treat

all input streams the same, and parse input from all streams according to all rules.

Note that the input files aaa.in, bbb.in, and ccc.in must exist before running the

example. Use the touch command to create these empty files as follows:

% touch aaa.in bbb.in ccc.in

Note also that the last rule is a catch-all rule: if the input does not get recognized by any other

rule, it will be written to ot her . out

Run with:

% perl sec.pl -conf=exanple.conf -input=-

The session starts as follows:

t ot o@ ot 0: ~/ SEC- exanpl es/ t mp$per| ../sec.pl -conf=exanple.conf -

i nput =-

Sinmpl e Event Correlator version 2.1.11
Readi ng configuration from exanpl e. conf
5 rul es | oaded from exanpl e. conf

foo

65



Spawni ng shell command '/usr/bin/tail -f ./aaa.in'

Child 15940 created for command '/usr/bin/tail -f ./aaa.in

Spawni ng shell command '/usr/bin/tail -f ./bbb.in

Child 15941 created for command '/usr/bin/tail -f ./bbb.in

Spawni ng shell command '/usr/bin/tail -f ./ccc.in

Child 15942 created for command '/usr/bin/tail -f ./ccc.in

Witing event 'foo' to file other. out

aaa:input fromterm na

Witing event "aaa:input fromtermnal' to file aaa.out
bbb: i nput fromternina

Witing event 'bbb:input fromtermnal' to file bbb. out
ccc:input fromtermna

Witing event 'ccc:input fromtermnal' to file ccc. out

ddd: i nput fromterm na

Witing event 'ddd:input fromtermnal' to file other.out

So far all input has been from the terminal. In another window or session in the same

directory, perform the following commands:

% echo "aaa: from other session copied into ccc.in" >> ccc.in

% echo "bbb: from ot her session copied into aaa.in" >> aaa.in

% echo "ddd: from ot her session copied into bbb.in" >> bbb.in

66



SEC processes these inputs as well:

Creating event 'aaa:from other session copied

(received fromchild 15956)

Witing event 'aaa:from other session copied into ccc.in'

aaa. out

Creating event 'bbb:from other session copied

(received fromchild 15954)

Witing event 'bbb:from other session copied into aaa.in'

bbb. out

Creating event 'ddd:from other session copied

(received fromchild 15955)

Witing event 'ddd:from other session copied into bbb.in'

ot her . out

~C

Examine each output file to determine its contents:

t ot 0@ ot 0: ~/ SEC- exanpl es/ t np$cat aaa. out

aaa:input fromtermna

aaa: from ot her session copied into ccc.in

t ot o@ ot 0: ~/ SEC- exanpl es/ t np$Scat bbb. out

bbb: i nput fromternina

bbb: from ot her session copied into aaa.in

67

cce.in'

to file

aaa.in'

to file

bbb.in'

to file



t ot 0@ ot 0: ~/ SEC- exanpl es/ t np$cat ccc. out

ccc:input fromterm nal

tot o@ ot 0: ~/ SEC- exanpl es/ t np$cat ot her. out

f oo

ddd: i nput fromterm nal

ddd: from ot her session copied into bbb.in

As shown above, SEC parsed the input, regardless of where it came from, and performed the

actions indicated on each matched rule.

68



7.2 Annex B

HHHHH B R R HHH R H TR H R R R R R R R R R R R R R R R R R R
# Sanpl e SEC rul eset for Snort |DS

BHAHBHBHBHBHH R BB R R R R R R

# For every conpl eted portscan, add an entry to the PORTSCAN REPORT

# al so generate a neta-event ACTIVITY_FROM for the IP

type=Singl e

pt ype=RegExp

pattern=End of portscan from (([\d\.]+).%*)
desc=Portscan from $1

acti on=add PORTSCAN REPORT % : %; event ACTIVITY_FROM $2: %

# recogni ze snort alert nessage; al so generate

# a nmeta-event ACTIVITY FROMfor the IP

type=Singl e

pt ype=RegExp

69



pattern=snort (?2:\[\d+\])?: \[[0-9:1+\] (.+) \[(.-+H)\] \[.*Priority: (\d+)\]:
\

\S+ ([V\d\.]+H):2Ad* -> ([\d\.]+):?2\d*

desc=PRI ORI TY $3 | NCI DENT FROM $4 TO $5: $1 [$2]

action=event %; event ACTIVITY_FROM $4: $1

# Detect the beginning of priority 1 attack froma certain source IP
# and send a warning e-mai|l nessage that a new attack has begun

# also create a context for storing a detailed information about the attack

type=Si ngl e

pt ype=RegExp

pattern=PRIORI TY 1 | NCI DENT FROM (\S+) TO \ S+ .+

cont ext =! ATTACK_FROM $1

cont i nue=TakeNext

desc=Priority 1 attack started from $1

action=create ATTACK FROM $1; add ALERT_REPORT % : %; pipe '%: %' \

mail -s '"SNORT: priority 1 attack from$1l (alert)' root@ ocal host

# For every priority 1 incident, add an entry to the context by its IP

# if the IP has been quiet for 5 minutes, report the whole attack

type=Si ngl e
pt ype=RegExp

pattern=PRI ORI TY 1 | NCI DENT FROM (\S+) TO (\S#): (.+)

70



cont ext =ATTACK_FROM $1
cont i nue=TakeNext
desc=Priority 1 incident from$1l to $2: $3
action=add ATTACK FROM $1 % : %s; \
set ATTACK _FROM $1 300 ( report ATTACK FROM $1 \

mail -s "SNORT: priority 1 attack from$1 (report)' root@ocal host )

# Count how many certain type_of incidents are comng fromone source
# if the threshold has been crossed, reset the counting operation started

# by the next rule, in order to avoid duplicate alerts for the sane IP

type=Si ngl eWt hThreshol d
pt ype=RegExp
pattern=PRI ORI TY (\d+) | NCIDENT FROM (\S+) TO\S+: (.+)
cont i nue=TakeNext
desc=Snort has seen >= 30 priority $1 incidents from$2: $3
action=add ALERT REPORT % : 9%; \
reset +1 Snort has seen >= 150 incidents from $2; \
create TURNOFF_$2 3600
t hr esh=30

w ndow=3600

# Count how many incidents cone from one source

type=Si ngl eWt hThr eshol d

71



pt ype=RegExp

pattern=PRI ORI TY \d+ | NCl DENT FROM (\S+) TO \S+: .+
cont ext =! TURNOFF_$1

desc=Snort has seen >= 150 incidents from $1
action=add ALERT REPORT % : %

t hr esh=150

wi ndow=7200

# Report |Ps that have been active for sonme tinme

# Set up activity contexts for the IP, if the IP has been active for 2
hour s,

# and there have been no gaps longer than 30 nminutes, report its activities

type=Singl e

pt ype=RegExp

patter n=ACTI VI TY_FROM (\ S+):

cont ext =! ACTI VI TY_LI ST_FOR $1

cont i nue=TakeNext

desc=Create activity contexts for $1

action=create ACTIVITY_LIST FOR $1 LI FETI ME; \
create ACTIVITY_LI ST _FOR $1 7200 ( report ACTIVITY_LIST_FOR $1 \
mail -s ' SNORT: $1 has been active for 2 hours' root@ocal host; \

del ete ACTIVITY_LIST_FOR $1_LI FETI ME )

# Add the activity event to the context of a given IP, and extend

# the lifetime of activity contexts for 30 minutes for the IP

72



type=Singl e

pt ype=RegExp

pattern=ACTIVITY_FROM (\S+): (.*)

cont ext =ACTI VI TY_LI ST_FOR_$1
desc=Activity from$1: $2

action=add ACTIMITY _LIST FOR $1 %: %; \

set ACTIVITY_LI ST_FOR $1_LI FETIME 1800 ( del ete ACTIVITY_LIST_FOR $1

# send daily report about regular alerts

t ype=Cal endar
time=0 9 * * *
desc=Sending alert report...
action=report ALERT_REPORT \
mail -s 'SNORT: daily alert report' root@ocal host; \

del et e ALERT_REPORT

# send daily report about portscans

t ype=Cal endar
tine=0 9 * * *
desc=Sendi ng portscan report...

action=report PORTSCAN_REPORT \

73



mail -s ' SNORT: daily portscan report' root@ocal host; \

del et e PORTSCAN_REPORT

74



7.3  Annex C

[ * portscan.cpp */

/* plugin generated by STATL v1.0al5 */

#i ncl ude " STAT/stat _scenario. h"

#i ncl ude "idnefllib. h"

extern "C' {

nanespace {

/***********************************************************/

| xx* GLOBAL/ PROTOTYPE ENVI RONVENT *rx ]

/***********************************************************/

[* Structure that contains the global environnent */
struct prototype_env {

int tineout;

int threshol d;

int flood threshol d;

HashTabl e attackers;

| DVEFMer ger *ner ger;

H

u_char *prototype_env_new(struct stat_core* stat,

struct scenari o_prototype* prototype)

prototype_env *g_env = new prototype_env();

75



if (prototype->argc < 3) {
stat _error(stat,"wong nunber of argunments (%) for scenario %",
pr ot ot ype->argc, prototype->nane);
return NULL;
}
int i,j;
for(i=0,j=0; j<prototype->argc; i+=2,j++) {
if (!'strcnp(prototype->argv[i],"timeout"))
g_env->tineout = atoi(prototype->argv[i+1]);
if (!strcnp(prototype->argv[i],"threshold"))
g_env->threshold = atoi (prototype->argv[i+1]);
if (!strcnp(prototype->argv[i],"flood threshold"))
g_env->fl ood_threshold = atoi (prototype->argv[i+1]);

}
g_env->nerger = (| DVEFHel per Fact ory: : get Merger (" ScanMerger"));

return (u_char*)g_env;

voi d prototype_env_del (struct stat_core* stat, u_char* p_env) {

i f(p_env == NULL) return;

prototype_env *g_env = (prototype_env*)p_env;

del ete g_env;

return;

voi d prototype_env_dunp(struct stat_core *stat,

76



char *sanpl e,
i nt si ze,
u_char *p_env,

i nt I evel)

prototype_env *g_env,
char *indent = get_indent_string(level);

g_env = (prototype_env*)p_env;

if (sanmple !'= NULL) {
sprintf(sample, "\
% tinmeout: %\ n\
% threshol d: 9%\ n\
% flood_threshold: %\ n\
% attackers: 9%s\n\

% nerger: %\n\

i ndent, g_env->tineout,
i ndent, g_env->threshol d,
i ndent, g_env->fl ood_threshol d,
i ndent, g_env->attackers.toString(),
i ndent, g_env->nerger->toString());
} else {
fprintf(stat->dunp, "\
% tinmeout: %\ n\
% threshold: %\ n\
% flood_ threshold: %\ n\
% attackers: %s\n\

% merger: 9%\n\

i ndent, g_env->tinmeout,

77



i ndent, g_env->threshol d,
i ndent, g_env->fl ood_threshol d,
i ndent, g _env->attackers.toString(),

i ndent, g_env->nerger->toString());

}
del _i ndent _string(indent);
}
u_char *prototype_env_restore(struct stat_core* stat,char* dunp, i nt
dunpsi ze) {
prototype_env *g _env = new prototype_env();
return (u_char*)g_env;
}

/***********************************************************/

[ xx* LOCAL/ | NSTANCE ENVI RONVENT *rx |

/***********************************************************/

/* Structure that contains the |ocal environnent */
struct instance_env {

| DVMEF_Message *| DVEF_ALERT,

u_l ong attacker_address;

string anal yzer id;

STATVector sub_al erts;

int count;
#define TIMER t1 1

int t1;

}s

78



u_char *instance_env_new(struct stat_core* stat,

u_char* p_env)

{
i nstance_env *| _env = new i nstance_env();
prototype env *g env = (prototype_env*)p_env;
| _env->] DVEF_ALERT = NULL;
| _env->count = O;
| _env->t1 = TIMER t 1,
return (u_char*)l _env;

}

u_char *instance_env_clone(struct stat_core* stat, u_char* i_env){

i nstance_env *new _env;

if (i_env == NULL) return NULL;

new _env = new i nstance_env();

i nstance_env *old_env = (instance_env*)i_env;

new _env->| DMEF_ALERT = ol d_env->| DVEF_ALERT;

new _env->attacker _address = ol d _env->attacker_ address;
new _env->anal yzer _id = string(old_env->anal yzer _id);
new env->sub_alerts = old_env->sub_alerts;
new_env->count = ol d_env->count;

new env->t1l = old_env->t1;

return (u_char*)new env;

voi d instance_env_del (struct stat_core* stat, u_char* i_env) {

i f(i_env == NULL) return;

79



instance_env *| _env = (instance_env*)i_env;

delete | _env;

return;

voi d instance_env_dunp(struct stat_core *stat,
char *sanpl e,
i nt si ze,
u_char *i _env,

i nt | evel)

i nstance_env *| _env;
char *indent = get _indent_string(level);

| _env = (instance_env*)i_env;

if (sanmple !'= NULL) {
sprintf(sample, "\
% | DVEF_ALERT: %\ n\
% attacker_address: %ul\n\
% analyzer_id: %\n\
% sub_alerts: %\n\
% count: %\ n\

% t1: %d\n\

i ndent, | _env->I DMEF_ALERT->toString(),
i ndent, | _env->attacker_address,

i ndent, (l_env->analyzer_id).c_str(),

i ndent, | _env->sub_alerts.toString(),

i ndent, | _env->count,

80



i ndent, | _env->t1);
} else {
fprintf(stat->dunp, "\
% | DVEF_ALERT: 9%\ n\
% attacker_address: %ul\n\
% analyzer_id: %\n\
% sub_alerts: %\n\
% count: %\ n\

% t1: %\ n\

i ndent, | _env->I DVMEF_ALERT->toString(),
i ndent, | _env->attacker_address,

i ndent, (Il _env->analyzer _id).c_str(),

i ndent, | _env->sub_alerts.toString(),
i ndent, | _env->count,
i ndent, | _env->t1);

}

del _indent _string(indent);

u_char *jnstance_env_restore(struct stat _core*

dunpsi ze) {

instance_env *| _env = new instance_env();

return (u_char*)l _env;

stat, char*

/***********************************************************/

[ *x* RESPONSE | NI TI ALI ZATI ON

***/

/***********************************************************/

81

dunp,

i nt



voi d i nstance_resp_getparan(struct stat_core* stat,
struct scenario_i nstance* instance,
int* r_argc

char*** r _argv)

char **args
i nstance_env *| _env=(instance_env*) (i nstance->environnment);
prototype_env *g env=(prototype_env*) (instance->prototype->environment);

char tnp[ 16];

*r_argc = 22;

args = (char**)new chunk((*r_argc+1l) * sizeof(char*));
args[0] = stat_strdup("tineout");
snprintf(tnp,16,"% ", g_env->ti neout);

args[1] = stat_strdup(tnp);

ar gs| 2] stat _strdup("threshol d");

snprintf(tnp,16,"% ", g_env->t hreshol d);

ar gs[ 3] stat _strdup(tnp);

args[4] = stat_strdup("flood threshol d");
snprintf(tnp,16,"% ", g_env->fl ood_t hreshol d);

args[5] = stat_strdup(tnp);

args[ 6] = stat_strdup("attackers");

args[7] = stat_strdup((char*)g_env->attackers.toString());

args[8] = stat_strdup("merger");

args[9] = stat_strdup((char*)g_env->merger->toString());

args[10] = stat_strdup("| DVEF_ALERT");

args[11] = stat_strdup((char*)| _env->I DVEF_ALERT->toString());
args[12] = stat_strdup("attacker_address");
snprintf(tnp,16,"% ", _env->attacker_address);

args[13] = stat_strdup(tnp);

82



ar gs[ 14]

stat _strdup("anal yzer_id");

args[15] = stat_strdup((char*)(l_env->analyzer id).c_str());
args[16] = stat_strdup("sub_alerts");

args[17] = stat_strdup((char*)l _env->sub_alerts.toString());
args[ 18] = stat_strdup("count");

snprintf(tnp,16,"%",| _env->count);

args[19] = stat_strdup(tnp);

args[20] = stat_strdup("t1l");

snprintf(tnp,16,"%",| _env->t1);

ar gs[ 21]

ar gs| 22]

stat _strdup(tnp);

NULL;

*r_argv = args;

return;

voi d i nstance_resp_del paran(struct stat_core* stat,

for (int

struct scenario_instance* instance,
int r_argc,

char** r_argv)

i=0; i<r_argc; i++) {

free _chunk((u_char*)r_argv[i]);

}

free_chunk((u_char*)(r_argv));

return;

/***********************************************************/

/***

STATE CALLBACK FUNCTI ON DEFI NI TI ONS *rx ]

/***********************************************************/

83



/* state sO */

/* state recording */

static void state_recordi ng_code(struct stat core* stat,

struct scenario_i nstance* instance,

struct stat_state* state)

pr ot ot ype_env *g_env,

i nstance_env *| _env;

g_env = (prototype_env *)instance->prototype->environnent;

| _env (i nstance_env *)instance->environnent;

timer_start(stat, instance, TIMER LOCAL, | _env->t1, g_env->tineout,

/* state scan */

/* state noscan */

/***********************************************************/

[ xx* TRANSI TI ON CALLBACK FUNCTI ON DEFI NI TI ONS *rx |

/***********************************************************/

[* transition firstprobe */

static int trans_firstprobe_assertion(struct stat _core* stat,

struct scenario_instance* instance,
struct stat_transition* transition

struct stat_event* event)

84

0);



prototype_env *g_env,
i nstance_env *| _env;
int result;

| DVEF_Message* e = (| DMEF_Message*) event - >dat a;

g_env = (prototype_env *)instance->prototype->environnent;
| _env = (instance_env *)instance->environnent;
result = ((((e->alert->source) && (e->alert->source->node)) && (e->alert-

>sour ce- >node- >address)) && (!g_env->attackers. contai ns(HashKey(e->alert-
>anal yzer - >anal yzeri d, e->al ert->source->node->address->get _address()))));

return result;

static void trans_firstprobe_code(struct stat_core* stat,
struct scenario_i nstance* instance,
struct stat transition* transition

struct stat_event* event)

prototype_env *g_env;
instance_env *| _env;
| DVEF_Message* e = (| DMEF_Message*) event - >dat a;

(prototype_env *)instance->prototype->environnent;

g_env

| _env = (instance_env *)instance->environnent;

| _env->attacker address = e->al ert - >sour ce- >node- >addr ess-
>get _address();

| _env->analyzer _id = e->al ert->anal yzer->anal yzeri d;

| _env->count = 1;

g_env->attackers. put (HashKey(| _env->anal yzer _id.c_str(), | _env-

>att acker _address), NULL);

85



| DVEF_Message *e2 = e->clone();

| _env->sub_al erts.add(e2);

/* transition probe */
static int trans_probe _assertion(struct stat core* stat,
struct scenario_i nstance* instance,
struct stat_transition* transition,

struct stat_event* event)

{

prototype_env *g_env;

instance_env *| _env;

int result;

| DVEF_Message* e = (| DMEF_Message*) event - >dat a;

g_env = (prototype_env *)instance->prototype->environnent;

| _env = (instance_env *)instance->environnent;

result = (((((e->alert->source) && (e->alert->source->node)) && (e-
>al ert - >sour ce- >node- >addr ess)) && (e->al ert ->sour ce->node- >addr ess-
>get _address() == | _env->attacker_address)) && (!'strecmp(l _env-

>anal yzer _id.c_str(), e->alert->analyzer->analyzerid)));

return result;

static void trans_probe_code(struct stat_core* stat,
struct scenario_i nstance* instance,
struct stat _transition* transition

struct stat_event* event)

prot ot ype_env *g_env;

86



i nstance_env *| _env;
| DVEF_Message* e = (| DMEF_Message*) event - >dat a;
g_env = (prototype_env *)instance->prototype->environnent;

| __env = (instance_env *)instance->environment;

{
| _env->count += 1;
| DVEF_Message *e2 = e->clone();
| _env->sub_al erts.add(e2);

}

/* transition scan_over */
static int trans_scan_over_assertion(struct stat_core* stat,
struct scenario_i nstance* instance,
struct stat transition* transition

struct stat_event* event)

{
prototype_env *g_env;
instance_env *| _env;
int result;
struct stat_event* tl1l = event;
g_env = (prototype_env *)instance->prototype->environnment;
| _env = (instance_env *)instance->environment;
result = ((I_env->count >= g_env->threshold));
return result;
}

static void trans_scan_over_code(struct stat core* stat,

struct scenario_i nstance* instance,

87



struct stat transition* transition

struct stat_event* event)

prototype_env *g_env;
instance_env *| _env;

struct stat_event* tl1l = event;

g_env (prototype_env *)instance->prototype->environnent;

| _env = (instance_env *)instance->environnent;

int i;

g_env->attackers. renove(HashKey(l env->attacker address));
| DMEF_Message *aggregate = NULL;

if (I _env->sub alerts.size() > g _env->fl ood_t hreshol d)

{

aggregate = get_default _idmef(stat, "flood attack");

el se

aggregate = get _default _idnef(stat, "portscan");
}
for (i =0;i <1 _env->sub_alerts.size();++i)
{
| DVEF_Message *m = (| DMEF_Message*) | _env->sub_alerts. el ement At (i);
g_env->ner ger - >nmer ge(aggregate, m;
delete(m;
}
| _env->sub_al erts. renoveAl | El ement s();
aggr egat e- >cl evel = 2;

struct stat_event *stat_evt_aggregate =

88



stat _event _new(stat, aggr egat e- >get Type(), 0, stat->tineg,

(u_char*)aggregate);
stat _event prepend to q(stat,stat_evt aggregate);

| _env->| DVEF_ALERT = aggregat e;

/[* transition no_scan */
static int trans_no_scan_assertion(struct stat_core* stat,
struct scenario_instance* instance,
struct stat transition* transition

struct stat_event* event)

{
prototype_env *g_env;
instance_env *| _env;
int result;
struct stat_event* tl1l = event;
g_env = (prototype_env *)instance->prototype->environnent;
| __env = (instance_env *)instance->environment;
result = ((l_env->count < g_env->threshol d));
return result;
}

static void trans_no_scan_code(struct stat_core* stat,
struct scenario_i nstance* instance,
struct stat _transition* transition

struct stat_event* event)

prototype_env *g_env,

i nstance_env *| _env;

89



struct stat_event* tl = event;

g_env = (prototype_env *)instance->prototype->environnent;
| _env = (instance_env *)instance->environnent;
{
g_env->attackers. renove(HashKey(l _env->attacker_address));
int i;
for (i = 0;i <1 _env->sub alerts.size();++i)
{
| DVEF_Message *m = (| DVEF_Message*)| _env->sub_alerts.elenentAt(i);
m >cl evel = 2;

struct stat_event *stat_evt_m=
stat _event _new(stat, m>getType(), 0, stat->tine, (u_char*)m

stat _event _prepend_to q(stat,stat_evt _nj;

/***********************************************************/

| xx* FUNCTI ON TO LOAD THE SCENARI O DEFI NI TI ON *rx ]

/***********************************************************/

void prototype_ init(struct stat_core *stat,

struct scenario_prototype *prototype)

struct stat_state *state_sO, *state_recording, *state_scan
*stat e_noscan;

struct stat _transition *trans firstprobe, *trans_probe, *trans_scan_over
*trans_no_scan;

struct stat_event _spec *es_firstprobe_e;

struct stat_event_spec *es_firstprobe;

struct stat_event_spec *es_probe_e;

90



struct stat_event_spec *es_probe;

state_sO = state_newstat,
"s0",
STATE_I NI TI AL,
NULL,
NULL,
NULL) ;

prototype add state(stat, prototype, state_s0);

state_recording = state_new stat,
"recordi ng",
0,
NULL,
state_recordi ng_code,
NULL) ;

prototype add state(stat, prototype, state_recording);

state_scan = state_new stat,
"scan",
0,
NULL,
NULL,
NULL) ;

prototype_add_state(stat, prototype, state_scan);

state_noscan = state_new(stat,
"noscan",
0,
NULL,

NULL,

91



NULL) ;

prototype add state(stat, prototype, state_noscan);

es firstprobe e = event _spec_new stat,| DVMEF_Message | D);
es firstprobe = es firstprobe_g;
trans_firstprobe = transition_new(stat,
TRANSI TI ON_NON_CONSUM NG,
"firstprobe",
es_firstprobe,
0,
0,
trans_firstprobe_assertion
trans_firstprobe_code,
st at e_s0,
state_recording,

NULL) ;

es_probe e = event _spec_new stat, | DVEF_Message | D);
es_probe = es_probe_e;
trans_probe = transition_newstat,
TRANSI T1 ON_CONSUM NG
" pr obe",
es_pr obe,
0,
0,
trans_probe_assertion
trans_probe_code,
state_recording,
state_recording,

NULL) ;

92



trans_scan_over = transition_new(stat,
TRANSI TI ON_CONSUM NG,
"scan_over",
NULL,
TI MER_LCOCAL,
TI MER t 1,
trans_scan_over _assertion,
trans_scan_over _code,
state_recording,
state_scan,

NULL) ;

trans_no_scan = transition_new(stat,
TRANSI TI ON_CONSUM NG,
"no_scan",
NULL,
TI MER_LCOCAL,
TI MER_t 1,
trans_no_scan_assertion,
trans_no_scan_code,
state_recording,
st at e_noscan,

NULL) ;

} /* end nanespace */

} /* end extern "C' */

93



7.4 Annex D

ACID: Database (v100-103) ER Diagram

Snort (and other devices) log to database with the following schema:

94



diagram

0.9.6b10 Database ER

ACID

whed
=
)
=
0
2
£
o
o

shejy S331/Uas
= .
T %lm
et Jpudo Ipudpn Jpuduio| ejep
|
g ¢ o, .0 0
IIIIIIIIIIII | I 11
m T
11
||||||||||| I 1o 1o buipoaua epep
| o [ : d
............ — ) Vo = _ __=
CapETIADEEHOF = ) L ; _
r % TF & & F *
sioaoyod-—-HHO- H- Jpydp HHCH JUBAD ) ——————- H- J0SUDS
T |
e .
|
IIIIIIIIII _.ll_l.l .|1 .l_-
il suop " ppe: pO-
ssepp is  f——4+ aimeubis “
_ +
ﬂ _
fie” poe e
=y |1 RS at: a s CIOOT 1A E L
gininlal m_m W0 Anl[AUEREILELO
m_m o) 24 BQMOUS
|
A LG E DA !
B2 LA pous
asualajal =4|= wa)sAs aosualajal aray
puabian

Description

Table

Self-documented information about the database

Sensor name

Snort

Snort

schema

s€nsor

95


http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

event Snort Meta-data about the detected alert
Normalized listing of alert/signature names, priorities, and
signature Snort
revision IDs
sig_reference Snort Reference information for a signature
reference Snort Reference IDs for a signature
reference system Snort (lookup table) Reference system list
sig_class Snort Normalized listing of alert/signature classifications
data Snort Contents of packet payload
iphdr Snort IP protocol fields
tcphdr Snort TCP protocol fields
udphdr Snort UDP protocol fields
icmphdr Snort ICMP protocol fields
opt Snort IP and TCP options
(lookup table) Level of detail with which a sensor is
det ai | Snort
logging
(lookup table) Type of encoding used for the packet
encodi ng Snort
payload
SnortDB
pr ot ocol s (lookup table) Layer-4 (IP encoded) protocol list
extra
SnortDB
services (lookup table) TCP and UDP service list
extra
SnortDB
fl ags (lookup table) TCP flag list
extra
acid_ag ACID Meta-data for alert groups

96



http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

acid_ag_alert ACID Alerts in each alert group

acid_ip_cache ACID Cached DNS and whois information
schema
Feemnnnn e oenann Feennn Fremmeieemeaieeaaaa Frem e eeiiieeaeaeaas +
| Field | Type | Null | Key | Default | Description |
ommmm- oo ommam- ommm - R L +
| vseq | int(10) unsigned | | PRI | O | Database schema |ID |
| ctine | datetine | | | 0000-00-00 00:00:00 | Tinestanp |
Feemnnnn e oenann Feennn Frememeemeaieeaaaa oo m e eeeiiieeeeeeaas +
sensor
Foememeaas e oenann Feennn R e +
| Field | Type | Null | Key | Default | Description |
ommmmea R LT ommam- ommm - LI R +
| sid | int(10) unsigned | | PRI | NULL | Sensor |ID |
| hostnane | text | YES | | NULL | Hostnane of the sensor |
| interface | text | YES | | NULL | Network interface (e.g. ethO) |
| filter | text | YES | | NULL | BPF filter |
| detail | tinyint(4) | YES | | NULL | Detail level of the |ogging |
| encoding | tinyint(4) | YES | | NULL | Encoding format of the payload |
drmmmma L oo - - Fommm - LT R E T T I +
event
drmmmma T LT oo - - Fommm - e e LT +
| Field | Type | Null | Key | Default | Description |
. L oo [ U U +
| sid | int(10) unsigned | | PRl | O | Sensor 1D |
| cid | int(10) unsigned | | PRI | O | Event ID |
| signature | int(10) unsigned | | ML | O | Signature ID |
| tinmestanp | datetinme | | MJL | 0000-00-00 00:00:00 | Timestanp |
Focmemeaas e - Feemnn Frememieemeaieaaaa Frememiemeaieeaaaa +
signature
Fremmmieeaaaa e oenann Feennn - Frememeeemeeiienaaaaas +
| Field | Type | Null | Key | Default | Description

97


http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

-------------- L S S S C e
sig_id | int(10) unsigned | | PRI | NULL | Signature ID |
si g_nane | varchar (255) | | MU | | Signature Nane |
sig_class_id | int(10) unsigned | YES | MJL | NULL | Cassification ID |
sig_priority | int(10) unsigned | YES | | NULL | Priority |
sig_rev | int(10) unsigned | YES | | NULL | Revision nunber |
sig_sid | int(10) unsigned | YES | | NULL | Internal signature ID
-------------- L ST S e e C T &
sig_reference
7.4.1
--------- T e ST S e L LTRSS
Field | Type | Null | Key | Default | Description |
--------- e T e S e T LTk
sig_id | int(10) unsigned | | PRI | O | Signature ID
ref_seq | int(10) unsigned | | PRl | O | Reference sequence nunber |
ref_id | int(10) unsigned | | | O | Reference ID |
--------- LT e S L e e
reference
--------------- L ST S e T IS
Field | Type | Null | Key | Default | Description |
--------------- e T T e ST
ref_id | int(10) unsigned | | PRI | NULL | Reference ID |
ref_system.id | int(10) unsigned | | | O | Reference system|D |
ref_tag | varchar (20) | | | | Reference tag CVE-CAN ) |
--------------- e T T N T
reference_system
----------------- T e
Field | Type | Null | Key | Default | Description |
----------------- e S e S e L
ref_system.id | int(10) unsigned | | PRI | NULL | Reference system|D
ref _system nane | varchar (20) | YES | | NULL | Reference system nane |
----------------- T L ST S S L LR
sig_class
---------------- T T e e
Field | Type | Null | Key | Default | Description |
---------------- R e L S e T T
sig_class_id | int(10) unsigned | | PRI | NULL | Signature classification |ID
sig_class_nanme | varchar (60) | | MU | | Cassification nane



---------------- T T T TS
data
-------------- T T
Field | Type | Null | Key | Default | Description |
-------------- T e e
sid | int(10) unsigned | | PRI | O | Sensor 1D |
cid | int(10) unsigned | | PRI | O | Event ID |
data_payl oad | text | YES | | NULL | Packet payl oad encoded
-------------- T e e
iphdr
---------- T .
Field | Type | Null | Key | Default | Description |
---------- L I S e L S L L
sid | int(10) unsigned | | PRI | O | Sensor ID |
cid | int(10) unsigned | | PRI | O | Event ID |
ip_src | int(10) unsigned | | MIL| O | Source |P address

i p_dst | int(10) unsigned | | ML | O | Destination |P address

i p_ver | tinyint(3) unsigned | YES | | NULL | 1P version

ip_hlen | tinyint(3) unsigned | YES | | NULL | I'P Header length

ip_tos | tinyint(3) unsigned | YES | | NULL | I P type-of-service

ip_len | smallint(5) unsigned | YES | | NULL | 1P datagram |l ength

ip_id | smallint(5) unsigned | YES | | NULL | IPID

ip_flags | tinyint(3) unsigned | YES | | NULL | IP flags

i p_off | smallint(5) unsigned | YES | | NULL | I'P fragment offset

ip_ttl | tinyint(3) unsigned | YES | | NULL | IPtine-to-live

ip_proto | tinyint(3) unsigned | | | O | 1P protocol

ip_csum | snmallint(5) unsigned | YES | | NULL | I'P checksum
---------- e T T T T NN
tephdr
----------- T Tk o e e TP

Field | Type | Null | Key | Default | Description
----------- T

sid | int(10) unsigned | | PRI | O | Sensor |ID

cid | int(10) unsigned | | PRI | O | Event ID

tcp_sport | smallint(5) unsigned | | MIL| O | TCP source port

tcp_dport | smallint(5) unsigned | | MIL| O | TCP destination port

tcp_seq | int(10) unsigned | YES | | NULL | TCP sequence nunber

tcp_ack | int(10) unsigned | YES | | NULL | TCP ACK nunber

tcp_of f | tinyint(3) unsigned | YES | | NULL | TCP of fset

tcp_res | tinyint(3) unsigned | YES | | NULL | TCP reserved

tcp_flags | tinyint(3) unsigned | | MIL| O | TCP flags

tcp_w n | smallint(5) unsigned | YES | | NULL | TCP wi ndow

tcp_csum | smallint(5) unsigned | YES | | NULL | TCP checksum |
tcp_urp | smallint(5) unsigned | YES | | NULL | TCP urgent pointer
----------- T Sy



udphdr

R L e LR dommm- ommm - R L L +

| Field | Type | Null | Key | Default | Description |

Focmemaaas . oennnn Feemnn Focmanans Freme e eeeeecaaaaaa +

| sid | int(10) unsigned | | PRI | O | Sensor 1D |

| cid | int(10) unsigned | | PRI | O | Event ID |

| udp_sport | smallint(5) unsigned | | MIL| O | UDP soure port |

| udp_dport | snmallint(5) unsigned | | ML | O | UDP destination port |

| udp_len | smallint(5) unsigned | YES | | NULL | UDP length |

| udp_csum | snallint(5) unsigned | YES | | NULL | UDP checksum |

R R T ommam- ommm - LI R LTI +
icmphdr

drmmmma LT Fomeo - - Fommm - I drmm e +

| Field | Type | Null | Key | Default | Description |

. U oo [ Foeemmm- oo U +

| sid | int(10) unsigned | | PRl | O | Sensor 1D |

| cid | int(10) unsigned | | PRI | O | Event ID |

| icnp_type | tinyint(3) unsigned | | MIL| O | 1CWP type |

| icnp_code | tinyint(3) unsigned | | | O | 1CVWP code |

| icnp_csum | smallint(5) unsigned | YES | | NULL | 1CVWP checksum |

| icnp_id | smallint(5) unsigned | YES | | NULL | 1CW ID |

| icnp_seq | smallint(5) unsigned | YES | | NULL | 1 CVMP sequence nunber |

. U oo [ Foeemmm- oo U +
opt

R L e L ommam- ommm - R L R

| Field | Type | Null | Key | Default | Description

Focmemaaas Fremmeiiemeaieaaaa oenann Feemnn Focmennns TS

| sid | int(10) unsigned | | PRI | O | Sensor 1D

| cid | int(10) unsigned | | PRI | O | Event ID

| optid | int(10) unsigned | | PRI | O | Option ID

| opt_proto | tinyint(3) unsigned | | | O | Option protocol (1P, TCP)

| opt_code | tinyint(3) unsigned | | | O | Option code

| opt_len | smallint(6) | YES | | NULL | Option length

| opt_data | text | YES | | NULL | Option data

Focmemiaas Fremmeeemeaieaaaa oenann Feemnn Focmennns TS
acid_ag

100



---------- T T E
Field | Type | Null | Key | Default | Description |
---------- T T e TSSSerree
ag_id | int(10) unsigned | | PRI | NULL | Alert Goup (AG ID |
ag_nanme | varchar (40) | YES | | NULL | AG nane |
ag_desc | text | YES | | NULL | AG description |
ag_ctime | datetine | YES | | NULL | Timestanp of AG creation tinme |
ag_ltime | datetine | YES | | NULL | Tinestanp of |ast AG nodification|
---------- T T e L LIS
acid_ag_alert

-------- T S S S e LT I

Field | Type | Null | Key | Default | Description |

-------- e T S

ag_id | int(10) unsigned | | PRI | O | Alert Goup (AG 1D |

ag_sid | int(10) unsigned | | PRI | O | Sensor 1D

ag_cid | int(10) unsigned | | PRI | O | Event ID |

-------- e T S

acid_ip_cache

--------------------- T T e T e
Field | Type | Null | Key | Default | Description |
--------------------- T e T
ipc_ip | int(10) unsigned | | PRI | O | 1P address (32-bit) |
i pc_fqgdn | varchar (50) | YES | MJL | NULL | FQDN |
i pc_dns_ti nestanp | datetinme | YES | | NULL | DNS | ookup tinmestanp |
i pc_whoi s | text | YES | | NULL | whois information |
i pc_whois_tinestanp | datetine | YES | | NULL | whois | ookup tine |
--------------------- T T e T e

101



7.5 AnnexE

use teststat;

scenario xtest2 ()

{
gl obal string CLASSI FI CATI ON_NAME
gl obal string CLASSI FI CATI ON_URL

"teststat_scenario2";
"http://ww.cs.ucsh. edu/ ~rsg";

string SOURCE USERNAME;
string TARGET_USERNAME;
string TARGET_PROC_PATH,
string ADDI TI ONAL_DATA;

transition transl (s0->sl1l) nonconsuni ng

{
[ MESSACGE ]
{
SOURCE_USERNAME = mil. from user nane;
TARGET_USERNAME = mnil. t 0. user nane;
ADDI TI ONAL_DATA = mil. body;
}
}

transition trans2 (sl1->slast) nonconsumni ng

[ACTION al] : (al.subject.username == TARGET_ USERNAME)
{ TARGET_PROC PATH = al. obj ect. onane;
}

}

initial

state sO { }
state s1 { }

state sl ast

{

| og("Last state reached (teststat_scenario2)");

102



	Introduction
	Presented tools
	Simple Event Correlator (SEC)
	Tool Presentation
	Documentation and Installation
	Usages

	AlertSTAT
	Tool Presentation
	Documentation and Installation
	Usages

	Analysis Console for Databases (ACID)
	Tool Presentation
	Documentation and Installation
	Usages


	Experimentation
	Associated Tools
	Introduction
	NESSUS
	SNORT

	Input Generation
	SEC Configuration
	Offline log analysis
	Online log analysis

	AlertSTAT Configuration
	ACID Configuration

	Observations
	Results
	Comparison

	Conclusion
	References
	Annexes
	Annex A
	Annex B
	Annex C
	Annex D
	�
	schema
	�
	�
	sensor
	�
	�
	event
	�
	�
	signature
	�
	�
	sig_reference
	�
	�
	reference
	�
	�
	reference_system
	�
	�
	sig_class
	�
	�
	data
	�
	�
	iphdr
	�
	�
	tcphdr
	�
	�
	udphdr
	�
	�
	icmphdr
	�
	�
	opt
	�
	�
	acid_ag
	�
	�
	acid_ag_alert
	�
	�
	acid_ip_cache
	�

	Annex E


