

Institut Eurécom

Corporate Communications Department

2229, route des Crêtes

B.P. 193

06904 Sophia Antipolis

FRANCE

Research Report RR-03-094

White Paper:

Alert Correlation: Technical Report1

December 30, 2003

Fabien Pouget

Institut Eurécom

Email: {pouget@eurecom.fr}

1 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044

Alert Correlation:
Technical Report

Fabien Pouget

Email: {pouget}@eurecom.fr
Eurecom

2229, Route des Crêtes ; BP 193
06904 Sophia Antipolis Cedex ; France

Abstract:
In this paper, we report on an experiment run with three alert correlation tools at Eurecom. The
motivation of this work resides in our wish to experiment three tools, representative of the three
categories we previously defined in [PoDa03]. A testbed was developed to compare them, and to
evaluate their capacities. We describe each tool in details, as well as their installation modalities. We
then present our testbed and discuss results obtained and lessons learned thanks to these experiments.

Keywords:
Alert Correlation, AlertSTAT, Simple Event Correlator, ACID.

Corresponding Author:
Fabien Pouget (pouget@eurecom.fr)
Tél: +33 (4) 93 00 29 26
Fax: +33 (4) 93 00 26 27

 2

mailto:pouget@eurecom.fr

TABLE OF CONTENTS

Alert Correlation: Technical Report... 2

1 Introduction ... 5

2 Presented tools... 5

2.1 Simple Event Correlator (SEC).. 5

2.1.1 Tool Presentation... 5

2.1.2 Documentation and Installation... 9

2.1.3 Usages.. 11

2.2 AlertSTAT ... 12

2.2.1 Tool Presentation... 12

2.2.2 Documentation and Installation... 12

2.2.3 Usages.. 13

2.3 Analysis Console for Databases (ACID) ... 13

2.3.1 Tool Presentation... 13

2.3.2 Documentation and Installation... 14

2.3.3 Usages.. 18

3 Experimentation .. 18

3.1 Associated Tools.. 18

3.1.1 Introduction ... 18

3.1.2 NESSUS .. 19

3.1.3 SNORT .. 23

3.2 Input Generation .. 25

3.3 SEC Configuration... 27

3.3.1 Offline log analysis.. 27

3.3.2 Online log analysis .. 31

3.4 AlertSTAT Configuration.. 31

3.5 ACID Configuration .. 34

4 Observations.. 38

 3

4.1 Results.. 38

4.2 Comparison .. 39

5 Conclusion... 42

6 References ... 43

7 Annexes... 44

7.1 Annex A... 44

7.2 Annex B ... 69

7.3 Annex C ... 75

7.4 Annex D... 94

7.5 Annex E ... 102

 4

1 Introduction

Alert correlation tools can be basically classified into three main categories, respectively named “Log

Analysis Tools”, “Management Consoles” and “Experimental Tools”. We report the interested reader

to [PoDa03] for more detailed information on this topic. A review of the state of the art is presented as

well as common tools which aim at correlate alerts produced by diverse security elements.

Following this classification, we present in this report three tools that are representative of each

category. Our choice was mainly guided by simple criteria, such as their costs, the installation

requirements and their functionalities. The first tool is the Simple Event Correlator (SEC), which

belongs to the ‘Log Analysis Tool’ category. The second tool is AlertSTAT, which represents the

‘Experimental tools’ category. Finally, the third tool is an ‘Alert Management Console’ called ACID.

The paper is organized as follows. Section 2 proposes a more detailed presentation of these three tools,

as well as their installation procedures. Section three describes our experimental testbed, and Section

four presents our resulting observations. The tools are compared to test their advantages, as well as

some of their limitations.

2 Presented tools

2.1 Simple Event Correlator (SEC)

2.1.1 Tool Presentation

The Simple Event Correlator (SEC) is a correlation tool written by Risto Vaarandi, a professional

software developer from Estonia. It is available from SourceForge.net at the following URL:

http://simple-evcorr.sourceforge.net. R. Vaarandi has provided a Manual page, a FAQ (Frequently

Asked Questions) section and some Examples that are helpful in developing advanced solutions [Sec].

Basically, SEC is a PERL script which reads an input stream from a file or pipe and applies pattern

matching operations to the input looking for patterns specified by rules, found in configuration files. It

was originally conceived as a system for correlating HP OpenView network events, but it has also

 5

http://simple-evcorr.sourceforge.net/

been used to correlate intrusion alerts generated by Snort. Actually, the system is flexible enough to be

used for correlating almost anything.

This section introduces basic SEC use and operations. First, the expert knowledge is expressed

through SEC rules. There is no limit to the number of rules, but there are nine distinct rule types. Each

rule can be used to trigger one of fifteen different actions. What adds complexity is that a rule action

can be used to generate an event that is used as input to another rule. In this way, rules can be strung

together to perform complex correlation. We propose to briefly describe the different rule types as

well as possible actions. However, let’s beforehand have a look at a very simple rule example

illustrated in figure 1:

type = Single
ptype = RegExp
pattern = foo\s+(\S+)
desc = $0
action = logonly

Figure 1: a Simple SEC rule example

This example means the following:

 Single is the rule type. SEC includes several different types of rules. This one is the simplest (see

below for more information on type differences).

 RegExp is the pattern type. SEC allows two types: RegExp (for “Regular Expression”) matching or

SubStr for simpler string matching (matching words only)

 foo\s+(\S+) is the actual pattern- in this case a Perl regular expression pattern. This pattern matches

the word foo followed by one or more spaces, followed by one or more non-space characters, such as

bar, toto, etc… We invite the interested reader to [Clarks] for more information on regular

expressions.

 desc is a variable definition for the pattern description. In this case, a Perl numbered variable, $0, is

set to the entire matched pattern.

 The action statement describes the action taken when the pattern is recognized. In this case, the

logonly action simply writes the pattern to the logfile if one is indicated on the command line, or to

standard output if not.

 6

In this example, we have created a SEC rule that matches a regular expression. The rule is ‘single’-

type, the simplest one. However, eight other types are currently provided by SEC. We list a short

summary of them below and we report the interested reader to Annex A for rule examples of each

type:

• SingleWithScript: The SingleWithScript rule combines matching a pattern and the execution of

a separate program to determine if the rule is matched. Running a separate program to validate

or confirm whether an event is valid is often necessary. For example, matching an IP address

in a rule and checking whether the IP address is on a list of valid addresses can not be done by

pattern matching in a rule alone. A separate program is required to determine if the matched IP

is on the list.

• SingleWithSuppress: With the SingleWithSuppress rule, it is possible to become alerted to an

event the first time it is seen, then ignore the same event within a time window.

• Pair: The Pair rule handles two different events, matched by two different patterns in its rule

definition. The rule uses time window which is set upon the first occurrence of event A. If

event B occurs within the time window, events A and B are considered correlated, and the

entire rule is considered matched. Otherwise, the correlation operation for the pair terminates.

There are two action statements, each corresponding to its own pattern. Action 1 is executed

when A is matched. Action 2 is executed if event B occurs within the time window.

• PairWithWindow: The PairWithWindow rule appears identical to the Pair rule. Both contain

two patterns, two actions, and a time window. The difference is that, in PairWithWindow the

action 2 is executed if events A and B both occur within the time window. If A occurs, but B

does not occur, then action 1 is executed.

• SingleWithThreshold: The SingleWithThreshold rule is used to ‘count’ the number of matched

events within a time window. If the number exceeds the threshold, the action is executed. If

the number of matched events does not exceed the threshold within the time window, the time

window ‘slides’; that is, start time for the correlation window is moved to the second

occurrence of the matched pattern. This process repeats, until the time window expires with no

matched events.

 7

• SingleWith2Thresholds: The SingleWith2Thresholds rule is very similar to the

SingleWithThreshold rule, except that we can now definitely determine when events stop. This

is done with a second threshold and a second timer window. SingleWith2Thresholds counts

the number of matched events and executes action1 when the number is above thresh events.

Once this low threshold (watermark) is reached, SEC starts window2 and counts additional

matched events. When the number of events falls below thresh2 events within window2, SEC

executes action2. Note that both windows are sliding windows; that is, the beginning time of

the window moves to the time of the next match if the time window of the first match expires.

• Suppress: The Suppress rule is very intuitive. Events matching the rule are suppressed. Since

the rule has no action statement, it does nothing.

• Calendar: The Calendar rule is another easy to understand rule. It executes action statements

at specific times. The time specification is similar to that used by cron, and is detailed in

crontab.

In addition to these different types, rules are associated with specific actions. SEC has over a dozen

different actions it can perform. They include:

• write: The write action writes the specified text to a given file.

• Shellcmd: The Shellcmd action causes SEC to execute a shell command. The shell command

can be any executable program permitted by normal user privileges.

• Spawn: The Spawn action is identical to the Shellcmd action, except that output from the

command is fed back into SEC for pattern matching.

• Assign and Eval: Special variables have global scope across multiple SEC rule files. If an

assignment is made by either the assign or eval actions, SEC maintains that assignment for the

life of the program or until the next assignment to that variable.

• Event: The event action allows the insertion of input to SEC from inside SEC itself. It is a

simple feedback mechanism- one controlled by SEC’s own rules. A time parameter specifies

the number of seconds to wait before inserting the event text into SEC’s input stream.

Finally, SEC presents other features that are worth being mentioned. Between them, we distinguish:

 8

• Multiple Input Stream: thanks to the spawn action, SEC can obtain input from multiple input

streams. The tail program is often used to read multiple files, for instance. An example is (see

Annex A for one example).

• Pipe Output: SEC allows writing to a ‘named’pipe, also called a ‘fifo’. This feature provides a

simple method of inter-process communication (IPC). Most Unix systems already have the

ability to create and use named pipes. With SEC, the only requirement is that the named pipe

must exist before writing to it (typically, this is performed with the mkfifo and mknod

commands).

• Contexts: SEC has the ability to define and use contexts with rules. Contexts are “the

interrelated conditions in which something exists or occurs”. In SEC, a context exists when it

is created by a rule action. Contexts can act as event stores. Events can be added to contexts as

they occur. A collection of events in a context can be input to a script to be saved in a file.

Thus, many actions can be performed using contexts. They are not listed in this paper for size

conciseness.

2.1.2 Documentation and Installation

SEC installation is very easy. It suffices to decompress the file from [Sec] into a given folder. No more

effort is required. In a *nix environment, commands should be similar to:

[]# mkdir Sec_folder

Then, you must copy the sec-2.2.beta2.tar.gz file from [Sec] and decompress it into the newly created

folder:

[]# cd Sec_folder

[] tar –zxf sec-2.2.beta2.tar.gz

The Simple Event Correlator is now installed.

SEC has many parameters that control its operation. These are viewed by simply calling SEC with no

parameters:

% perl sec.pl

Version: 2.2.beta2

 9

Usage:

 sec.pl -input=<inputfile> -conf=<conffile pattern> ...

Optional flags:

 -input_timeout=<input timeout>

 -timeout_script=<timeout script>

 -reopen_timeout=<reopen timeout>

 -poll_timeout=<poll timeout>

 -blocksize=<io block size>

 -log=<logfile>

 -debug=<debuglevel>

 -pid=<pidfile>

 -dump=<dumpfile>

 -cleantime=<clean time>

 -bufsize=<input buffer size>

 -evstoresize=<event store size>

 -quoting, -noquoting

 -tail, -notail

 -fromstart, -nofromstart

 -detach, -nodetach

 -intevents, -nointevents

 -testonly, -notestonly

All options are fully described in the SEC Manual Page. Options of the form -name=value are

required to have a value. As noted above, the ``-conf=<conffile pattern>'' and ``-input=<inputfile>''

 10

options are required when executing perl sec.pl. A brief review of some of the more common options

follows:

Option Description
-log=<logfile> This option specifies the location of a logfile that SEC uses to track its operation,

such as pattern matches, actions, etc. The volume of information is controlled by
the -debug option.

-
debug=<debuglevel>

This option controls how verbose SEC is as it tracks its operation. The values
range between 1 (critical messages) and 6 (debug messages). Each level includes

output from lower levels.
-pid=<pidfile> This option provides for the location of a process ID file. SEC will write it's

process ID to this file upon startup.
-dump=<dumpfile> This option provides for the location of a dump file where SEC can dump its

internal data structures, variables and other information upon receipt of the USR1
signal. The default location is /tmp/sec.dump.

-detach Specifying this option causes SEC to detach itself from the controlling terminal
and run as a daemon process. The default is -nodetach.

-intevents This option causes SEC to perform special processing at startup. This special
processing is described in the SEC man page.

-testonly The ``-testonly'' option can be used to test for syntax errors in configuration files.
It does not start SEC for operation.

The above options are the most common in ordinary usage. See the Manual Page for more information

on these and other options.

2.1.3 Usages

The Simple Event Correlator (SEC) is a powerful and flexible tool. The SEC web site has an example

SEC rule set for Snort that demonstrates even more of SEC’s capabilities. It shows how to configure

SEC to:

• Create a portscan report

• Detect the start of a priority 1 attack, and send an email notification

• Handle incidents by thresholding

• Report IPs that have been active for a certain amount of time

• Send a daily incident report

• Etc

This sample snort ruleset is presented in Annex B. We invite the interested reader to have a deeper

look at it. Finally, we would like to point out that despite the rule names, their functionality is quite

limited.

 11

2.2 AlertSTAT

2.2.1 Tool Presentation

AlertSTAT is a STAT-based system designed by the University of Santa-Barbara (California). The

State Transition Analysis Technique (STAT) has been described in [PoDa03]. In short, it is a

methodology to describe computer penetrations as attack scenarios. Attack scenarios are represented

as a sequence of transitions that characterize the evolution of the security state of a system. In an

attack scenario, states represent snapshots of a system’s security-relevant properties and resources.

They are characterized by means of assertions, which are predicates. Transitions between states are

annotated with signature actions that represent the key actions that, if omitted from the execution of

an attack scenario, would prevent the attack from completing successfully.

Vigna et Al. have developed a family of tools around this technique. Such a framework is presented in

[Vign03]. AlertSTAT belongs to it. Its task is to fuse, aggregate and correlate alerts from intrusion

detection systems (or sensors), such as USTAT, NetSTAT, WinSTAT, LinSTAT, etc. Therefore,

AlertSTAT uses the alerts produced by other sensors as input and matches them with respect to attack

scenarios that describe complex and multi-step attacks. A simple alertSTAT scenario is presented in

Annex C.

AlertSTAT operates on alerts formatted according to the IETF’s Intrusion Detection Message

Standard (IDMEF) proposed standard [Idmef]. The application is built by composing an IDMEF-

based Language Extension with an Event Provider that reads IDMEF events from files and /or remote

connections and feeds the resulting event stream to the STAT core. A number of attacks scenarios

have been developed, including the detection of complex scans, “many-to-one” and “one-to-many”

attacks, island hopping attacks and privilege escalation attacks.

2.2.2 Documentation and Installation

The installation is quite simple. We propose to install AlertSTAT (release 2.0) on our Red hat 7.3

machine as follows:

First, the tool requires having libxml2 installed. Furthermore, we must link /usr/include/libxml to

/usr/include/libxml2/libxml like:

 12

[]# ln –s /usr/include/libxml2/libxml /usr/include/libxml

A version of libxml2 is provided in alertSTAT’s home page (the libxml2-v. 2.4.26 version).

Then, we decompress the alertSTAT downloaded file from [Ale]:

[]# tar –zxf alertSTAT-2.0.tar.gz

Finally, we follow the install README:

[]# cd STAT-1.0

[STAT-1.0]# ./configure

[STAT-1.0]# make

[STAT-1.0] make install (with root privileges)

The INSTALL file provides more details about installing the alertSTAT package using GNU build

tools or rpm facilities (RedHat Package manager).

2.2.3 Usages

AlertSTAT is executed by typing:

[STAT-1.0] ./alertstat –alertfile [alert_filename].

The /etc/alertstat/ directory contains the configuration files for extensions, scenarios and providers.

A default setup is provided, which does the following tasks:

• The IDMEF is loaded

• The IDMEF provider is loaded and activated. It is configured to process the audit file passed as

command line parameter.

• Seven IDMEF scenarios are provided and ready to be used

• The IDMEF response, which responds by sending higher level alerts, is loaded.

2.3 Analysis Console for Databases (ACID)

2.3.1 Tool Presentation

The Analysis Console for Intrusion Databases (ACID) is a PHP-based analysis engine to search and

process a database of security events generated by various IDSs, firewalls, and network monitoring

tools. It was developed by R. Danyliw at the CERT Coordination Center, initially as a part of the

 13

AIRCERT project. It is currently maintained in the context of this project and in the author’s free time.

ACID is open-source and released under the GPL licensing. It is portable without modification to any

operating system that can support PHP.

ACID features currently include:

• Query-builder and search interface for finding alert matching on alert meta information (such

as signature, detection time), as well as the underlying network evidence (e.g.

source/destination addresses, ports, payload or flags). We report the interested reader to the

database Entity Relationship Diagram (ERD) provided in Annex D for further details on the

Snort/ACID database.

• Packet viewer (decoder) graphically display the layers 3and 4 packet information of logged

alerts

• Charts and statistics generation based on time, sensor, signature, protocol, IP address,

TCP/UDP ports, or classification.

2.3.2 Documentation and Installation

The following is a step-by-step list of installing ACID v. 0.9.6b23.

First of all, ACID has many dependencies that must be installed beforehand. We report the interested

reader to http://www.snort.org/docs/snort_acid_rh9.pdf for more detailed on their installation and

configuration. A very good step-by-step installation procedure is provided to help installing ACID and

all its dependencies with Snort. We list below the ACID requirements for a MySQL environment.

• PHP-4.3.3: any home-grown script that understands the underlying DB format

• LibPcap-0.7.2: a network library required by Snort

• Apache-2.0.47: our web server

• MySQL-4.0.15a: the database in which to store the information from Snort.

• Snort-2.0.2: the IDS that generates alerts and fill the database.

• ADODB-1.2: a PHP database abstraction library

• JP-Graph-1.13: the PHP chart library

• Zlib-1.1.4: a compression library

 14

http://www.snort.org/docs/snort_acid_rh9.pdf

PHPlot can be used instead of JPGraph for older PHP versions [PHPlot]. The installation process must

be done with root privileges. It is quite tedious and our own installation of these dependencies is

presented in Annex C. We provide below the installation and configuration of ACID only: However,

this is only the visible part of the global installation iceberg.

First, the ACID downloaded file must be placed in a specific web server folder, named /www/html.

Then, the commands must be from the downloads directory:

[]# cp acid-0.9.6b23.tar.gz /www/html (The Apache web server is installed in “/www” directory)

[]# cd /www/html

[]# tar –zxf acid-0.9.6b23.tar.gz

Now we can configure Acid. In the /www/html/acid/ directory, the acid_conf.php file should look like:

$DBlib_path = "/www/html/adodb";

/* The type of underlying alert database

*

* MySQL : "mysql"

* PostgresSQL : "postgres"

* MS SQL Server : "mssql"

*/

$DBtype = "mysql";

/* Alert DB connection parameters

* - $alert_dbname : MySQL database name of Snort alert DB

* - $alert_host : host on which the DB is stored

* - $alert_port : port on which to access the DB

* - $alert_user : login to the database with this user

* - $alert_password : password of the DB user

*

* This information can be gleaned from the Snort database

* output plugin configuration.

 15

*/

$alert_dbname = "snort";

$alert_host = "localhost";

$alert_port = "";

$alert_user = "snort";

$alert_password = "new_password";

/* Archive DB connection parameters */

$archive_dbname = "snort";

$archive_host = "localhost";

$archive_port = "";

$archive_user = "snort";

$archive_password = "new_password ";

And a little further down

$ChartLib_path = "/www/html/jpgraph-1.13/src";

/* File format of charts ('png', 'jpeg', 'gif') */

$chart_file_format = "png";

We can now start Apache and go to http://yourhost/acid/acid_main.php. We get a message from the

browser that looks like the one in figure 2:

 16

http://yourhost/acid/acid_main.php

Figure 2: Screenshot of ACID configuration

Then, we click on “Create Acid AG”. Thus, when we go to http://yourhost/acid, we see the ACID

homepage as illustrated on figure 3:

Figure 3: Screenshot ACID homepage

 17

http://yourhost/acid

There are some ways to secure the ACID directory. We report the interested reader to [Acid] for more

details. Some of them are also mentioned at the end of the document available at

http://www.snort.org/docs/snort_acid_rh9.pdf.

2.3.3 Usages

ACID is an alert management console, and its usage is limited to database queries from its GUI.

However, its graphical interface is convenient to obtain simple queries in a fast way. Some screenshots

are presented in section 3.5.

3 Experimentation

3.1 Associated Tools

3.1.1 Introduction

We need alerts to test the three previously mentioned tools. One solution consists in downloading

existing alert files, which are used in many research papers to compare Intrusion Detection System

efficiency and accuracy (such as the Cyber panel Grand Challenge Problem-GCP, etc…). Another

solution consists in generating ourselves our own alerts. We chose this alternative for many reasons.

First, a simple glance at alertSTAT shows that it might be simpler to test home-made alerts on existing

scenarios than the opposite (this will be confirmed in the following section). Secondly, we want alerts

in the IDMEF standard presented by IETF [Idmef]. Freely available alert files are scarce in IDMEF

format, if not non-existant. Most of those we found are in pcap or snort formats.

Furthermore, a Snort plugin has been released recently. It modifies traditional snort alerts to generate

IDMEF alerts. As a consequence, we decided to produce our own alerts thanks to this utility. Attacks

were launched from 192.168.1.1 to 192.168.1.3, thanks to Nessus, a convenient but dangerous

vulnerability scanner. These attacks are expected to trigger alerts from Snort, installed in promiscuous

mode on 192.168.1.2 (see figure 4). A more detailed description of both utilities and their installation

is given in the two following sub-sections.

 18

http://www.snort.org/docs/snort_acid_rh9.pdf

Attaquant

192.168.1.1

Analyseur

192.168.1.2

Attaqué

192.168.1.3

Hub
! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012
100

10

Ether 10/100

attacker IDS sensor target

switch

Attaquant

192.168.1.1

Analyseur

192.168.1.2

Attaqué

192.168.1.3

Hub
! Power

COL 1 2 3 4 5 6 7 8 1 2 3 6 25 50 8012
100

10

Ether 10/100

attacker IDS sensor target

switch

Figure 4: Our testbed architecture

3.1.2 NESSUS

Nessus is a security scanner. It is software which audits remotely a given network and determines

whether a malicious person may break into it, or misuse it in some way. It does not consider that a

given service is running on a fixed port. Actually, it detects it and tests its security.

Each Nessus test is written as an external plugin. This way, many tests can be lead, without having to

modify the code of the nessusd engine. Such tests are written through a particular language called

NASL (Nessus Attack Scripting Language). We report the interested reader to [Nessus] for test

descriptions. The Nessus project offers a large variety of tests which are daily updated and freely

downloadable.

Nessus is built following client-server architecture. To make things clearer, Nessus is made up of two

parts: a server, which performs the attacks, and a client which is the front end (GUI). They can be

deployed in multiple configurations reducing management costs (one server can be used by multiple

clients). Both can run on different Operating Systems.

The Nessus security scanner relies on the following items (dependences):

• GTK (the Gimp Toolkit v1.2). GTK is a set of widgets which are used by many open-sourced

programs. It is used by the POSIX client Nessus. It can be downloaded at

ftp://ftp.gimp.org/pub/gtk/v1.2.

• OpenSSL, optional but heavily recommended. OpenSSL is used for the client-server

communication as well as in the testing of SSL-enabled services. It can be downloaded at:

http://www.openssl.org.

 19

ftp://ftp.gimp.org/pub/gtk/v1.2
http://www.openssl.org/

It is installation is very easy. One way consists in downloading on Nessus web page the following

nessus-installer.sh file. Then, it suffices to execute it after having placed it in a dedicated folder:

[]# mkdir nessus

[] # cd nessus

[nessus] # cp /path/to/nessus-installer.sh .

[nessus] # sh nessus-installer.sh (as root)

Before using Nessus, we must configure the server. The initial step consists in creating a user account.

Indeed, the Nessus server has its own users database, each user having a set of restrictions. This allows

sharing a single nessusd server for a whole network and different administrators who will only test

their part of the network. In our case, this characteristic is not important, and we only create one user

(login: tintin, password: milou). It is done like:

[]# nessus-adduser

Then, we follow instructions to obtain:

 20

nessus-adduser

Addition of a new nessusd user

Login : tintin
Authentication (pass/cert) [pass] : pass
Password : milou

User rules

nessusd has a rules system which allows you to
restrict the hosts
that tintin has the right to test. For instance, you
may want
him to be able to scan his own host only.

Please see the nessus-adduser(8) man page for the
rules syntax

Enter the rules for this user, and hit ctrl-D once
you are done :
(the user can have an empty rules set)

deny 192.168.1.1 (attacker)
accept 10.168.1.3 (target)
default deny

Login : tintin
Password : milou
DN :
Rules :

deny 10.168.1.1
accept 10.168.1.3
default deny

Is that ok (y/n) ? [y] y

user added.

Finally, the Nessus daemon (nessusd) can be configured. In the file

/usr/local/etc/etc/nessus/nessusd.conf, several options can be set. This is typically where we can

specify the resources we want Nessus to use, the speed at which it should read data, etc. In our case,

we do not change this file. Nessus provides a default one.

That is it. We start Nessus with the following command:

[]# nessud –D

Now, we must configure the client side. It is simpler as everything can be done through a graphic

interface. By simply typing nessus, the following interface appears like in figure 5:

 21

tintintintin

Figure 5: Nessus Client configuration

We simply connect to it as user tintin. Then, we can choose the tests (attack plugins) to perform on the

remote target. It looks like figure 6:

 22

Figure 6: Nessus client, attack plugins setup

We are not really concerned by Nessus reports, as we only want to generate attacks that can trigger

Snort alerts. We invite the interested reader to [Nessus] for more information of this tool reporting

capabilities.

3.1.3 SNORT

Snort is an open source network intrusion detection system, capable of performing real-time traffic

analysis and packet logging on IP networks. It can perform protocol analysis, content

searching/matching and can be used to detect a variety of attacks and probes, such as buffer overflows,

stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much more.

Snort has three primary uses. It can be used as a straight packet sniffer like tcpdump, a packet logger

(useful for network traffic debugging, etc), or as a full blown network intrusion detection system. We

 23

are interested in this last use. Snort uses a flexible rules language to describe traffic that it should

collect or pass, as well as a detection engine that utilizes modular plugin architecture. Snort has a real-

time alerting capability as well, incorporating alerting mechanisms for syslog, a user specified file, a

UNIX socket, or WinPopup messages to Windows clients using Samba's smbclient. However, we are

more interested in a specific output plugin that was recently released (v. 1.2.2a-2.1.0 released in

November 2003). It has been tested with Snort version 2.1.0.

Therefore, we describe below the installation steps required to have Snort and libidmef running. The

Operating System in use on 192.168.1.2 is Linux Red Hat 7.3.

First, the libidmef library installation is mandatory but very simple. Once downloaded, it suffices to

untar/unzip the given file and to execute the makefile:

[]# tar –zxf libidmef-0.7.2.tar.gz

[]# cd libidmef-0.7.2

[libidmef-0.7.2]# ./configure

[libidmef-0.7.2]# make

[libidmef-0.7.2]# make install.

Secondly, we must decompress snort (v.2.1.0) and snort-idmef plugin like:

[]# tar –zxf snort-2.1.0.tar.gz

[]# tar –zxf snort-idmef-plugin-1.2.2alpha2.1.0.tar.gz

Then, some patches must be applied in Snort. A script is provided with the snort-idmef-plugin

distribution (‘install-idmef.sh’). However, this can be done as follows:

[]# cd snort-idmef-plugin-1.2.2alpha2.1.0

[snort-idmef-plug..]# patch ../snort-2.1.0/configure.in configure.in.diff

[snort-idmef-plug..]# ../snort-2.1.0/src/plugbase.c src_plugbase.c.diff

[snort-idmef-plug..]# ../snort-2.1.0/src/plugin_enum.h src_plugin_enum.h.diff

[snort-idmef-plug..]# ../snort-2.1.0/src/output-plugins/Makefile.am src_output-plugins_Make

[snort-idmef-plug..]# cp spo_idmef.c spo_idmef.h ../snort-2.1.0/src/output-plugins/

Now, we have to run autoconf at snort’s root directory:

[snort-idmef-plug..]# cd ../snort-2.1.0

 24

[snort-2.1.0]# autoconf

Finally, we can install Snort, following the traditional lines:

[snort-2.1.0]# ./configure –enable-idmef –with-libxml2-includes=/usr/include/libxml2 –with-mysql

[snort-2.1.0]# .make

[snort-2.1.0]# .make install

In addition, existing rules can be installed:

[]# .mkdir /etc/snort

[]# . cp snortrules-stable.tar.gz /etc/snort

[/etc/snort]# .tar –zxf snortrules-stable.tar.gz

[etc/snort]# .mv * ..

[/etc/snort]# rmdir rules

The configuration file /etc/snort/snort.conf must be modified accordingly:

• the $RULE_PATH variable can be deleted. (“include XXXX.rules”)

• We must specify the IDMEF output such as:

idmef: log alerts to idmef format

output idmef: $HOME_NET logto=/var/log/snort/idmef_alerts.log analyzerid=109

dtd=/usr/local/etc/idmef-message.dtd output=log indent=true facility_default=file|idmef-messages.log

alert_id=/var/log/alert_id_num

We should not forget to create the log directory:

[]# mkdir /var/log/snort

Snort is now operational. It can be executed with simple the command line:

[]# snort –c /etc/snort/snort.conf

3.2 Input Generation

Once Snort and Nessus are installed, we can generate IDMEF alerts by launching attacks from

192.168.1.1. In the following, attacks are simple stealth scans. The idea consists in sending a TCP

packet on well-chosen ports with all flags turned off. This is equivalent to the ‘–sN’ scan mode of

 25

nmap or the ‘–c 2’ option of hping [Nmap, Hping]. This approach was first described as a port

scanning technique in [Fyo00]. The idea is that closed ports are required to reply to the probe packet

with a RST, while open ports must ignore the packets in question (see RFC 793 pp. 64).

Unfortunately, Microsoft IP/TCP layers do not behave as expected as they are often configured to send

RST packets, independently of the port state (opened or closed). Thus, this scan type does not work

against systems running Windows. As a result, this attack is currently used in active fingerprinting to

determine Microsoft stations (see [Nmap] for further details).

Snort detects such an attack in stateful mode. Indeed, its preprocessor called stream4 provides a TCP

stream reassembly and stateful analysis capabilities. Each three way handshake is recorded. Thus,

when an incoming TCP packet is received, the preprocessor checks if it really closes an existing

connection. Otherwise, an alert is generated, similar to the one illustrated below:

<IDMEF-Message/>
<?xml version="1.0"?>
<!DOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD RFC XXXX IDMEF v1.0//EN" "/usr/local/etc/idmef-message.dtd">
<IDMEF-Message version="1.0">
 <Alert ident="289">
 <Analyzer analyzerid="109" model="snort" version="2.0.5">
 <Node>
 <name>chaplin</name>
 </Node>
 </Analyzer>
 <CreateTime ntpstamp="0xc36cc187.0xd3aa9b49">2003-11-24T17:42:31Z</CreateTime>
 <Source>
 <Node>
 <Address category="ipv4-addr">
 <address>192.168.1.1</address>
 </Address>
 </Node>
 <Service>
 <port>22</port>
 <protocol>tcp</protocol>
 </Service>
 </Source>
 <Target>
 <Node>
 <Address category="ipv4-addr">
 <address>192.168.1.3</address>
 </Address>
 </Node>
 <Service>
 <port>22</port>
 <protocol>tcp</protocol>
 </Service>
 </Target>
 <Classification origin="vendor-specific">
 <name>msg=(spp_stream4) STEALTH ACTIVITY (NULL scan) detection</name>
 <url>none</url>
 </Classification>
 </Alert>
</IDMEF-Message>

The alert is uniquely identified by the ‘Alert ident’ attribute. The service section describes network

services on targets. In our case, it contains two attributes, namely protocol (tcp) and port (22). The

target node address is specified by the target element and the alert message is given by the

 26

Classification name attribute. This alert simply reports a stealth scan on port 22 from 192.168.1.1 to

192.168.1.3.

3.3 SEC Configuration

We decide to write a rule similar to the one presented in Annex A (SingleWithThreshold type) and

apply it to existing alert logs. For each alert, we check two information patterns:

• the target address

• the alert message

Indeed, we find that stealth scan alerts are quite common. Thus, SEC can be used to correlate such

alerts, and to issue a specific alert when the number of these alerts in a time window exceeds a certain

threshold. We experiment two SEC features: its capability to read input streams online and offline.

They are described in the following subsections.

3.3.1 Offline log analysis

We first try to apply SEC to offline log files, which were obtained previously, thanks to NESSUS.

However, we realize that it is not so obvious to get target addresses with SEC. Indeed, rules are called

for each incoming event. Each event is a line in the log file. So how can we only get the source

address? A regular expression like:

“pattern=<address>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</address>”

is clearly not sufficient, as it would match both source and destination addresses. For instance:

type=Single
ptype=RegExp
continue=takenext
pattern =<address>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</address>
desc = Observed address $1
action= event

type=Single
ptype=RegExp
pattern= STEALTH ACTIVITY
desc = Stealth activity $1
action= logonly

These two rules lead to the following result:

 27

SEC output file
Wed Dec 17 17:15:35 2003: Simple Event Correlator version 2.2.beta2
Wed Dec 17 17:15:35 2003: Reading configuration from sec.conf
Wed Dec 17 17:15:35 2003: 2 rules loaded from sec.conf
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.1'
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.3'
Wed Dec 17 17:15:35 2003: Stealth activity 1
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.1'
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.3'
Wed Dec 17 17:15:35 2003: Stealth activity 1
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.1'
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.3'
Wed Dec 17 17:15:35 2003: Stealth activity 1
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.1'
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.3'
Wed Dec 17 17:15:35 2003: Stealth activity 1
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.1'
Wed Dec 17 17:15:35 2003: Creating event ‘Observed address 192.168.1.3'
Wed Dec 17 17:15:35 2003: Stealth activity 1

It illustrates our previous remark. The rule configuration file is checked for each log line. An

additional work would be possible: it consists in analyzing SEC output (with SEC?) and group

information per attack as (ip_src, ip_dst, Stealth activity 1).Furthermore, it seems difficult to correlate

alerts within some time constraints. Indeed, the timestamp pattern needs to be extracted so that an

additional script records and analyzes it. Consequently, writing SEC rules with time correlation

constraints is not practical.

We would have wanted SEC to see each IDMEF alert as one event. However, this is not possible at

this stage. Consequently, we decided to write the whole IDMEF alert on one line, thanks to a simple

PERL concatenation file. The IDMEF alerts are then similar to figure 6:

 28

Figure 6: IDMEF alert (on one line)

It does not really simplify the whole system, as shown in figure 7. However, this is simpler to write

SEC rules. One event corresponds to one alert.

Solution 1Solution 1

Snort IDMEF
alerts SEC rules SEC output SEC rules Final output

Snort IDMEF
alerts

Solution 2Solution 2

Perl
Processing

IDMEF alerts
modified file SEC rules Final output

Solution 1Solution 1

Snort IDMEF
alerts SEC rules SEC output SEC rules Final output

Snort IDMEF
alerts

Solution 2Solution 2

Perl
Processing

IDMEF alerts
modified file SEC rules Final output

Figure 7: SEC options we tested

 29

A simple configuration file would be:

rules, to be placed in sec.conf file
##
first rule to get the target IP of our machine
type=SingleWithThreshold
ptype=RegExp
pattern = <Source><Node><Address category="ipv4-addr">

<address>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</address>
</Address></Node><Service><port>22</port>
<protocol>tcp</protocol></Service></Source><Target>
<Node><Address category="ipv4-addr">
<address>(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})</address>
</Address></Node><Service><port>22</port>
<protocol>tcp</protocol></Service></Target>
<Classification origin="vendor-specific">
<name>msg=(spp_stream4)
STEALTH ACTIVITY (NULL scan) detection</name>

desc= STEATH Port scan from $1to $2
action=logonly
window=300
thresh=3

It is working this way. SEC generates two lines in the terminal window (default output) as the alert file

contains more than six alerts containing this pattern.

SEC output file
Wed Dec 17 17:25:55 2003: Simple Event Correlator version 2.2.beta2
Wed Dec 17 17:25:55 2003: Reading configuration from sec.conf
Wed Dec 17 17:25:55 2003: 2 rules loaded from sec.conf
Wed Dec 17 17:25:55 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 17:25:55 2003: Stealth activity 1 from 192.168.1 to 192.168.3

The time window is useless in this case as everything is done offline. We are limited by the pattern

field. One solution consists in breaking the rule into three smaller rules: two dedicated to the source

and target addresses, and one for the alert message. The takeNext parameter allows such a rule

cascade.

A similar rule was developed for snort portscan alerts (see Annex B). However, the previously

presented one is richer as we manage to get the source address. This rule can be used to aggregate

stealth portscan alerts, when they exceed a certain number (or threshold).

In our example, we generated alert scans at different frequencies to test the threshold. It is reinitialized

each time its value is equal to the given parameter.

 30

3.3.2 Online log analysis

The experiment is similar to the previous one. SEC is applied to Snort output file, while Snort is still

logging alerts. We try the last rule on it, but we obviously face the same problem. Each new alert

comes in the log file as multiple lines. Consequently, the rule is inefficient and never matches the

expected pattern. One solution consists in applying SEC dynamically to an intermediate file: a Perl

script is in charge of modifying snort output file, so that each IDMEF alert appears in one line (one

SEC event). However, this is not convenient at all, and the traditional snort alert format seems more

adapted to SEC parsing. We tried this solution. Results are very similar to the offline mode. The only

change is the time information in the SEC output file:

SEC output file
Wed Dec 17 18:38:50 2003: Simple Event Correlator version 2.2.beta2
Wed Dec 17 18:38:50 2003: Reading configuration from sec.conf
Wed Dec 17 18:38:50 2003: 2 rules loaded from sec.conf
Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:41:15 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:44:25 2003: Stealth activity 1 from 192.168.1 to 192.168.3
Wed Dec 17 18:44:25 2003: Stealth activity 1 from 192.168.1 to 192.168.3

10 snort stealth scans were detected at 18:41:15. However, only three SEC alerts were written

corresponding to the first 9 events (threshold=3). Then, 5 stealth scans were sent by snort at 18:44:25.

The window size was set to 300 ms (not expired since 18:41:15), so SEC took into account the last

tenth event, and wrote two lines.

3.4 AlertSTAT Configuration

We need a scenario plugin (or module, depending on the STAT documents): A scenario plugin is a

shared library that describes an attack scenario. The scenario plugin is usually generated from a

STATL description, but could be theoretically developed manually. Our first idea was to design our

own scenario. Seven scenarios are provided with AlertSTAT distribution and we tried to build

something similar (One scenario, named ‘Portscan’ is presented in Annex C’).

Our first remark is that none of them is documented. There is no state-transition graph or any other

comment that would illustrate the scenarios. The documentation systematically refers to a non existing

pdf file. Our second remark concerns the scenario complexity. On one hand, the theoretical scenario

 31

creation is quite easy. It suffices to write a file, following the STATL syntax. This file has a

‘.stat’extension. Then, it is compiled into modules. Finally, a link to this module must be added to the

alertSTAT configuration file, in order to have the new scenario operational. Surprisingly enough, there

is no ‘.stat’file provided in the AlertSTAT distribution (nor in the STAT web site, except a test.stat file

given in Annex E). More strangely, compiled modules are written in C++, while STAT core is written

in Java. For instance, the idmef_portscan module file is presented in Annex C. From the C++

declarations, we can hardly draw back the scenario graph, which should be similar to:

“initial”
state

“recording”
state

“scan” state

“no scan”
state

“first probe”
Transition

“scan over”
Transition

“no scan”
Transition

“probe”
Transition

Disappointed by the scenario writing complexity (or more precisely its obscurity), we decide to test

this already built scenario. It is already included in the AlertSTAT scenario file (file which specifies

activated scenarios), so the operation does not require lots of efforts. The scenario module needs three

parameters that are specified in the same scenario file like:

 32

<IDMEF-Message>
<x-stat from="" to="">

<x-stat-scenario-load id="8" name="idmef_portscan" version="1.0"
library="idmef_portscan.so">

</x-stat-scenario-load>
<x-stat-scenario-activate id="10" scenario_name="idmef_portscan"

prototype_name="prototype_idmef_portscan">
<parameter name="threshold">3</parameter>
<parameter name="timeout">20</parameter>
<parameter name="flood_threshold">500</parameter>
</x-stat-scenario-activate>

To obtain a definition of these variables, one needs to plunge into the C++ code copied in Annex C.

The timeout defines the attack time upper bound limit (in seconds) from the first received event. The

threshold defines the lower-bound value of events number before considering there is a scan attempt.

The flood_threshold variable sets the upper-bound value of events number before considering a

flooding attack.

To test alertSTAT on our log files, we type the simple command:

[]# alertstat –alertfile <path_to_alert_file>

Finally, AlertSTAT results are obtained by default in the /usr/local/start/responses file. This can be

changed in the etc/alertstat.cfg file. They are written as IDMEF-messages:

<IDMEF-Message>
<x-stat from="" to="">
<x-stat-response-load id="1" name="response_IDMEF" version="1.0" library="libresponse.so"/>
<x-stat-response-activate id="7" response_name="response_IDMEF"

response_func="response_send" prototype_name="prototype_idmef_portscan" scenario_state="scan"/>
(…)
</x-stat>
</IDMEF-Message>

The most interesting part is the scenario_state value, which indicates the current state of the system

from the given scenario (prototype_idmef_portscan). SEC can be used online to detect such final

states and beep or email the administrator.

 33

3.5 ACID Configuration

There is nothing to be done with ACID. Snort information is logged into the mysql database (output

defined snort.conf file). Moreover, ACID is connected to this database to send queries. This is a

background activity we are not really aware of, as we only interact with the ACID GUI. It looks like:

Figure 8: ACID home page

Figure 8 shows the ACID home page. Here is summarized general information on the corresponding

database, such as the traffic profile by protocol (limited by snort to tcp, udp and icmp transport

protocols). In our example, the database is still empty, as illustrated by null values. In general cases, it

provides the following information:

- The number of distinct source/destination IP addresses

- The number of distinct source/destination ports for each protocol (UDP or TCP)

- The list of most frequent alerts

- Some snapshots of the database.

 34

In figure 9 is presented the same home page, but with a non-empty database. These logs correspond to

the Nessus traffic observed from 192.168.1.2. In the Nessus client configuration, we ticked by the

option “all attacks”. As a consequent, we can determine that 79% of the Nessus total traffic is TCP,

20% is UDP and 1% is ICMP.

There are obviously two source and destination addresses observed (192.168.1.1 and 192.168.1.3), and

35 unique alerts (coming from 8 snort rule sets categories).

Figure 9: another ACID home page

With no real surprise, we obtain figure 10, while clicking on ‘source IP addresses’. All IP sources are

listed, with their corresponding number of events and alerts.

 35

Figure 10: ACID source IP addresses

We worked in the previous experiments on a given Nessus attack: the stealth scan on port 22. Snort

detects such attacks thanks to its spp_stream4 preprocessor module. They are represented in ACID as

follows:

Figure 11: ACID, Stealth Scan on port 22

 36

If we click on the ‘snort’ word (in blue at each alert lines), we get the rule-description page currently

available at Snort web site. Additionally, a click on the event ID (left column) gives more complete

information on the selected event, such as the different protocol headers and payloads. One example is

presented in figure 12, with one event listed in figure 11.

Figure 11: ACID event details

As a more general remark, it is quite surprising to see the ACK flag set in the TCP header of the

presented packet. This packet triggers the NULL Scan alert of Snort. However, a NULL Scan is

defined as: “all flags are turned off” [Nmap]. Thus, does it mean that NULL Scan definition of Snort

differs from the previous one, or does it simply reveal another bug in the spp_stream4 preprocessor?

 37

4 Observations

4.1 Results

The three tools were configured to accomplish a given task, and they all did it. However, we can make

several observations for each of the tools:

• About SEC: we would like to point that SEC is not really adapted to complex log analysis. It

is a convenient Swiss Army knife to help finding information, but it is definitely not designed

to perform deep analysis. As we showed in Section 3.2, SEC is not really suited to IDMEF

standard. It would even become more interesting when it is used with traditional snort alerting

format. Furthermore, SEC is more adapted to online log analysis. In offline modes, its time

windowing capabilities are useless (except for a real time replay). As a consequence, we

would advocate SEC usage in very specific cases: this tool can be incorporated in another

richer tool that would use its rules flexibility, or to answer a specific question that cannot be

found with traditional consoles like ACID. Even in this case, we are not convinced that it can

replace a simpler Perl script.

• About AlertSTAT: AlertSTAT was initially classified in [PoDa03a] in the ‘Experimental tool’

category. We are more and more convinced of our classification after our experiments. Indeed,

AlertSTAT is theoretically interesting, but its usage is currently restricted, for two main

reasons:

- The AlertSTAT package is incomplete. The installation files refer to documents that

do not exist. Many files are missing (with the furnished examples), which make the

tool even less comprehensive.

- Writing and using a scenario is potentially possible. However, we think that a larger

scenario database should be distributed with this tool. The provided examples are not

really interested, as they can often be replaced by simpler analysis tools. A larger

scenarii database would permit to use AlertSTAT as a ‘meta-alert’ generator.

• About ACID: ACID is the most famous alert correlation console. Designed along with Snort,

it is widely used by many network administrators to prevent them from being overwhelmed

 38

with Snort alerts. ACID can be easily used to find simple ‘snapshots’ of the IDS output

database. Generally speaking, it is convenient in a multi-sensors network to analyze

centralized alerts. However, its simplicity is also its limitation. It prevents the administrator

from tediously querying the database. But it does not support real complex queries. In this

case, the solution consists in directly logging to the database and write down queries.

Moreover, Snort database is not really adapted to complex queries, and a new database

scheme must be considered.

4.2 Comparison

SEC is ideally suited for performing real-time monitoring. While it can take offline log file as input

(see Section 3.2), it has really been designed to process active log files. SEC excels at event

aggregation. It is easily configured to detect multiple similar events and report them as a single

composite event, thereby reducing the amount of data the analyst has to review.

SEC has a facility for real-time notification. It can feed reports to any program or script that is capable

of processing file streams. It can send email, write to a file, or send pager notifications.

Despite its many good points, SEC does have its drawbacks- namely its complexity and limited

installation base. The learning curve for SEC is steep, and while it is fairly well documented, writing

relevant rules may require some time. Furthermore, since SEC was originally intended for use with

Network management systems such as HP OpenView, the amount of Snort-specific information

available is more limited. Finally, we are convinced that IDMEF format is too complex and SEC

would perform as well with traditional format. Using IDMEF standard implies extra-processing of the

output file. Furthermore, pattern matching on long lines is not convenient, and we are often compelled

to break each rule into sub-rules in order to clarify rules and to avoid mistakes.

On the other side, AlertSTAT would be more interesting for complex scenarios which can hardly be

described by the mean of SEC rules or database requests. However, there is no complex scenario

offered with the tool package. AlertSTAT is provided with seven simple and not documented ones.

Furthermore, it seems difficult to write a multitude of them. Even if Vigna et Al. praise the STAT

framework in [Vign03], we find their tools currently not practical. The concept itself is interesting

 39

However, the solutions they freely distribute in their site are hardly usable. Moreover, they promise

scenario documentation in their tool distribution which is non-existent. A large scenario library would

make this tool more applicable. As far as we know, such a library does not exist yet. This is tedious

work for one network administrator.

To conclude, we would say that the three alert correlation tools we analyzed do not provide redundant

information. On the contrary, they are more or less complementary and do not fulfill the same tasks.

As we show for illustration in Section 3.4, we can use SEC to analyze alertSTAT output.

Table 4 summarizes their usages. We find that four main criteria may help choosing between the three

tools:

- The input format

- The tool usage

- The easiness changing tool configuration.

- Correlation based on some time properties

A cross means that the tool is more adapted to this criteria category.

Criteria Criteria

categories

SEC ACID AlertSTAT

snort alert format X X
Input format

IDMEF format X

Simple queries on

alerts files or

databases

X X

Usage
Complex queries

– meta-alert

information

 X

Tools:
Frequent

modifications
 X

 40

Configuration

modifications

Rare

modifications
X X

Permits time

constraints
X X

Correlation with

time constraints
Does not permit

time constraints
 X

Some basic correlation operations are presented in [PoDa03]. We report the interested reader to this

document for more information on their definition. We suggest specifying for each tool which

operations they are adapted to:

Basic correlation

operations

SEC AlertSTAT ACID

Compression X X

Filtering X

Selective Suppression

Thresholding X X

Modification X

Generalization X X

Specialization

Enrichment X

We observe that the three tools cover distinct operation groups. For instance, SEC can handle many

basic operations, thanks to its flexibility. However, it might be quite hard to write its corresponding

rules. On the other hand, ACID is very limited. It is restricted to simple filtering and compression

operations. Finally, we note that ‘Selective Suppression’ and ‘Specialization’ operations are not

covered.

 41

5 Conclusion

Alerts often come from multiple sensors, spanning multiple complex subsystems. This complexity

implies that such systems require constant monitoring and maintenance. Human capacities are not

sufficient, and some tools try to address their issues.

In this paper, we have presented and evaluated three of them, respectively SEC, AlertSTAT and

ACID. They all have characteristics that make them original and useful. SEC, for instance, is not

particularly adapted to IDMEF standard, but can be used within a more specified tool. AlertSTAT tool

lacks of maintenance, but is very promising. It can generate some meta-alerts that would be impossible

to obtain with traditional tools. Finally, ACID is a very basic console. We are not convinced that it

really helps correlating alerts. It gives a better overview of centralized alerts, but performs limited

requests on the database. In other words, this is a ‘convenient but simple tool for database mining’.

Moreover, it is built on Snort database which is not really optimized for complex sql queries. As a

consequence, we think it is the least promising tool of those we tested.

With regards to these experiments, we conclude that so-called alert-correlation tools have not reached

a satisfactory mature level. Many solutions exist with interesting features. Thus, the next step consists

in grouping them into a more coherent correlation architecture. However, we are not sure this trend is

prevalent today.

 42

6 References

 [ADO] Abodb home page: http://php.weblogs.com/adodb/

[Ale] AlertSTAT home page: http://www.cs.ucsb.edu/~rg/STAT/software/alertstat.html

[Bro03] J. Brown. “Working with SEC- the Simple Event Correlator”, 2003. Available at:

http://sixhooter.v6.thrupoint.net/SEC-examples/article.html

[Cla03] N. Clarks. “Perl regular expressions tutorial”, in perlretut, 2003. Available at:

http://search.cpan.org/ñwclark/perl-5.8.2/pod/perlretut.pod

[Gd] Gd home page: http://www.boutell.com/gd/

[Idmef] Intrusion Detection Message Exchange format. Draft 10 available at

http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt

[Idwg] Intrusion Detection Working Group (IDWG) home page:

http://www.ietf.org/html.charters/idwg-charter.html

[Nessus] Nessus home page: http://www.nessus.org

[Nmap] Nmap security scanner home page: http://www.insecure.org/nmap/

[PHPlot] PHPlot home page : http://www.phplot.com

[PoDa03] F. Pouget, M. Dacier. “White Paper: Alert Correlation: Review of the state of the art”.

Insitute Eurecom, Sophia-Antipolis, France. Nov. 2003.

[RHupd] RedHat Modules updates available at: ftp://updates.redhat.com/7.3/

[SEC] SEC home pages: http://simple-evcorr.sourceforge.net or

http://www.estpak.ee/~risto/sec/

[Snorta] Snort rules available at: http://snort.org/dl/signatures/

[Snortb] Snort home page: http://www.snort.org

[Vign03] G. Vigna, F. Valeur, R.A. Kemmerer. “Designing and Implementing a Family of

Intrusion Detection Systems”. In Proceedings of ESEC/FSE’03, Finland. Sept. 2003.

 43

http://php.weblogs.com/adodb/
http://www.cs.ucsb.edu/~rg/STAT/software/alertstat.html
http://sixhooter.v6.thrupoint.net/SEC-examples/article.html
http://search.cpan.org/�wclark/perl-5.8.2/pod/perlretut.pod
http://www.boutell.com/gd/
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt
http://www.ietf.org/html.charters/idwg-charter.html
http://www.nessus.org/
http://www.insecure.org/nmap/
http://www.phplot.com/
ftp://updates.redhat.com/7.3/
http://simple-evcorr.sourceforge.net/
http://www.estpak.ee/~risto/sec/
http://snort.org/dl/signatures/
http://www.snort.org/

7 Annexes

7.1 Annex A

SEC contains several rule types for event correlation. They are illustrated below with

examples:

SingleWithScript

Copy the following to example.conf:

Example conf

Single with script. Pass matched IP address

to script for validation. If valid, execute

action 1; if not valid execute action2.

Note: change script path (and possibly perl path)

to match your system.

type=SingleWithScript

ptype=RegExp

pattern=(\d+)\.(\d+)\.(\d+)\.(\d+)

script=/usr/bin/perl /home/SEC-examples/example.pl $0

desc=$0

action=write - IP address $0 matches.

action2=write - IP address $0 does NOT match.

 44

Note that while this RegExp pattern used will match an IP address, it will also match

expressions that are not real IP addresses, such as ``9999.8888.7777.6666''.

Also note that this rule takes two action statements. SEC checks the return value of the called

program. If the program returns a zero value, the action is executed, if non-zero action2 is

executed.

Next, copy the following to script example.pl

#!/usr/bin/perl

Script example.pl - check if IP argument

matches a short list of IP addresses.

Return zero on success, 1 on failure.

@match_list = ('1.2.3.4',

 '2.3.4.5',

 '3.4.5.6'

);

$ip_addr = $ARGV[0] or die "No IP address passed on command line";

foreach $ip (@match_list)

{

 exit (0) if $ip_addr eq $ip;

}

exit 1;

 45

Script example.pl accepts a single IP address on the command line passed from the matched

rule. If the address matches one of the IPs on its small list of IP addresses, it returns zero, else

it returns 1. If there is no IP address at all, the script dies and returns a non-zero value.

Run with:

% perl sec.pl -conf=example.conf -input=-

Output looks like this:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.pl -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.pl

Can't open configuration file example.pl (No such file or

directory)

^C

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

1.2.3.4

Child 16396 created for command '/usr/bin/perl /home/SEC-

examples/example.pl 1.2.3.4'

Child 16396 terminated with exitcode 0

Writing event 'IP address 1.2.3.4 matches.' to file -

IP address 1.2.3.4 matches.

 46

5.6.7.8

Child example.pl 5.6.7.8'

Child 16398 terminated with non-zero exitcode 1

Writing event 'IP address 5.6.7.8 does NOT match.' to file -

IP address 5.6.7.8 does NOT match.

^C

More robust IP address matching is possible with the Net::IP_Addr perl module.

SingleWithSuppress

Copy the following to example.conf:

Example example.conf

Example of SingleWithSuppress

type=SingleWithSuppress

ptype=RegExp

pattern=foo

desc=$0

action=write - $0 suppressed for 5 seconds at %t

window=5

Run with:

% perl sec.pl -conf=example.conf -input=-

 47

and continuously enter ``foo'' as rapidly as possible.

Output:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

foo

Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:38

2003' to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04:38 2003

foo

foo

foo

foo

foo

foo

Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:44

2003' to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04:44 2003

foo

foo

foo

foo

 48

foo

foo

Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:50

2003' to file -

foo suppressed for 5 seconds at Sat Nov 15 17:04:50 2003

foo

^C

Pair

Copy the following to example.conf:

Example example.conf

Example Pair rule.

Match event A and B within window.

type=Pair

ptype=RegExp

pattern=foo

desc=$0

action=write - foo matched at %t. Start window of 5 seconds for

bar ...

ptype2=RegExp

pattern2=bar

desc2=$0

 49

action2=write - bar matched at %t. bar is within window!

window=5

Run with:

% perl sec.pl -conf=example.conf -input=-

When running this rule, first enter ``foo'' and ``bar'' close together (i.e. within 5 seconds).

Then enter ``foo'' and wait to enter ``bar'' until the window is past (i.e. more than 5 seconds.)

The first time the Pair rule will correlate them together, while the second time they are not

correlated.

Output will look similar to:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

foo

Writing event 'foo matched at Sat Nov 15 18:17:07 2003. Start

window of 5 seconds for bar ...' to file -

foo matched at Sat Nov 15 18:17:07 2003. Start window of 5 seconds

for bar ...

bar

Writing event 'bar matched at Sat Nov 15 18:17:09 2003. bar is

within window!' to file -

 50

bar matched at Sat Nov 15 18:17:09 2003. bar is within window!

foo

Writing event 'foo matched at Sat Nov 15 18:17:14 2003. Start

window of 5 seconds for bar ...' to file -

foo matched at Sat Nov 15 18:17:14 2003. Start window of 5 seconds

for bar ...

bar

^C

PairWithWindow

Copy the following to example.conf:

Example example.conf

Example PairWithWindow rule.

Match both events A and B within window executes action2.

If event B does not occur within window, execute action.

type=PairWithWindow

ptype=RegExp

pattern=foo

desc=$0

action=write - foo matched, bar NOT matched within window.

ptype2=RegExp

pattern2=bar

 51

desc2=$0

action2=write - foo and bar both matched within 5 second window!

window=5

Run with:

% perl sec.pl -conf=example.conf -input=-

When running this rule, first enter ``foo'' and ``bar'' close together (i.e. within 5 seconds).

Then enter ``foo'' and wait to enter ``bar'' until the window is past (i.e. more than 5 seconds.)

The first time the PairWithWindow rule will correlate them together, while the second time

they are not correlated.

Output looks like:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

foo

bar

Writing event 'foo and bar both matched within 5 second window!'

to file -

foo and bar both matched within 5 second window!

foo

 52

Writing event 'foo matched, bar NOT matched within window.' to

file -

foo matched, bar NOT matched within window.

^C

SingleWithThreshold

Copy the following to example.conf:

Example example.conf

Example SingleWithThreshold rule.

Match event A thresh number of times in window

and execute action. Slide window if needed

until window expires.

type=SingleWithThreshold

ptype=RegExp

pattern=foo

desc=$0

action=write - foo matched three times in 10 seconds!

window=10

thresh=3

Run with:

 53

% perl sec.pl -conf=example.conf -input=-

When running this rule, first enter ``foo'' three times close together (i.e. within 10 seconds).

The action will execute.

Then enter ``foo'' slowly, waiting five to eight seconds between each entry. Since there are

never three entries (thresh=3) entered within the sliding window, the rule is not matched and

the action is not executed.

The first time the SingleWithThreshold rule will correlate them together, while the second

time they are not correlated.

Output looks similar to:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

foo

foo

foo

Writing event 'foo matched three times in 10 seconds!' to file -

foo matched three times in 10 seconds!

foo

foo

foo

foo

 54

foo

foo

^C

SingleWith2Threshds

Copy the following to example.conf:

Example example.conf

Example SingleWith2Threshholds rule.

Match thresh A events (go above low watermark) and execute

action.

Then switch to thresh2 and window2 to count more A events.

If less than thresh2 A events occur in window2 (stay under high

watermark), execute action2.

type=SingleWith2Thresholds

ptype=RegExp

pattern=foo

desc=$0

action=write - foo hit low watermark (3) at time %t

window=5

thresh=3

 55

desc2=$0

action2=write - foo stayed under high watermark (5) at time %t

window2=10

thresh2=5

Run with:

% perl sec.pl -conf=example.conf -input=-

In this example, it will be necessary to time your entries fairly closely. The first example

shows three matched events followed by action, then less than thresh2 (5 events) within

window2 (10 seconds).

The second example shows multiple events after the low watermark then a marked slowing of

entries that result in action2.

Output from this example:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

foo

foo

foo

Writing event 'foo hit low watermark (3) at time Mon Nov 17

09:42:05 2003' to file -

 56

foo hit low watermark (3) at time Mon Nov 17 09:42:05 2003

foo

foo

Writing event 'foo stayed under high watermark (5) at time Mon Nov

17 09:42:16 2003' to file -

foo stayed under high watermark (5) at time Mon Nov 17 09:42:16

2003

foo

foo

foo

Writing event 'foo hit low watermark (3) at time Mon Nov 17

09:42:22 2003' to file -

foo hit low watermark (3) at time Mon Nov 17 09:42:22 2003

foo

foo

foo

foo

foo

foo

foo

foo

foo

foo

 57

foo

foo

foo

foo

foo slowing way down...

foo

foo

Writing event 'foo stayed under high watermark (5) at time Mon Nov

17 09:42:49 2003' to file -

foo stayed under high watermark (5) at time Mon Nov 17 09:42:49

2003

^C

Suppress

Copy the following to example.conf:

Example example.conf

Example of Suppress.

First rule suppresses 'foo'.

Second rule matches any pattern and

executes write action.

type=Suppress

ptype=RegExp

 58

pattern=foo

desc=$0

type=Single

ptype=RegExp

pattern=(.*)

desc=$0

action=write - entry was: $0

Run with:

% perl sec.pl -conf=example.conf -input=-

In this example, the first rule suppresses ``foo'' while the second rule matches any pattern and

writes it to standard output. Since ``foo'' is already suppressed by the first rule, it will never

be written by the second rule.

Output looks similar to:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

2 rules loaded from example.conf

bar

Writing event 'entry was: bar' to file -

 59

entry was: bar

baz

Writing event 'entry was: baz' to file -

entry was: baz

foo

foo

foo

bar

Writing event 'entry was: bar' to file -

entry was: bar

baz

Writing event 'entry was: baz' to file -

entry was: baz

^C

Calendar

Copy the following to example.conf:

Example example.conf

Example calendar rule.

Write a message every minute.

type=Calendar

 60

time=* * * * *

desc=$0

action=write - The time is now: %t

This example takes no user input. However, the ``-input'' parameter must still be present on

the command line. Run with:

% perl sec.pl -conf=example.conf -input=-

Output is similar to:

toto@toto:~/SEC-examples$perl sec.pl -conf=example.conf -input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

1 rules loaded from example.conf

Writing event 'The time is now: Mon Nov 17 10:40:42 2003' to file

-

The time is now: Mon Nov 17 10:40:42 2003

Writing event 'The time is now: Mon Nov 17 10:41:00 2003' to file

-

The time is now: Mon Nov 17 10:41:00 2003

Writing event 'The time is now: Mon Nov 17 10:42:00 2003' to file

-

The time is now: Mon Nov 17 10:42:00 2003

^C

 61

Using the ``-debug=4'' parameter removes the informational debug statements and results in

just:

The time is now: Mon Nov 17 10:46:35 2003

The time is now: Mon Nov 17 10:47:00 2003

The time is now: Mon Nov 17 10:48:00 2003

The time is now: Mon Nov 17 10:49:00 2003

The time is now: Mon Nov 17 10:50:00 2003

Note also that SEC invokes the action of all calendar rules at startup, but only at the top of

each minute thereafter. Actions that must not occur too closely together must take this into

account.

Running applications from SEC is similar. This example runs a script that checks MD5

checksums on a list of files every five minutes. The script takes a single parameter-

``MD5_CHECK'':

Run the SystemCheck.sh script every five minutes.

type=Calendar

time=0,5,10,15,20,25,30,35,40,45,50,55 * * * *

desc=MD5_CHECK

action=shellcmd /home/jpb/SEC-examples/SystemCheck.sh %s

 62

Multiple Input Streams

To set up SEC to read multiple files, the tail program is often used as in the following

example.

Copy the following to example.conf:

Example example.conf

Multiple input files with spawn.

type=Single

ptype=RegExp

pattern=foo

continue=TakeNext

desc=$0

action=spawn /usr/bin/tail -f ./aaa.in ;\

 spawn /usr/bin/tail -f ./bbb.in ;\

 spawn /usr/bin/tail -f ./ccc.in ;

Match lines beginning with aaa:

type=Single

ptype=RegExp

 63

pattern=^aaa:(.*)

desc=$0

action=write aaa.out %s

Match lines beginning with bbb:

type=Single

ptype=RegExp

pattern=^bbb:(.*)

desc=$0

action=write bbb.out %s

Match lines beginning with ccc:

type=Single

ptype=RegExp

pattern=^ccc:(.*)

desc=$0

action=write ccc.out %s

Match all other lines

type=Single

ptype=RegExp

 64

pattern=(.*)

desc=$0

action=write other.out %s

In this example, the spawn action is part of a rule that matches input ``foo''. This means that

the spawn actions will not occur until ``foo'' is recognized in the input stream.

After the tail commands will forward input from their respective files into SEC. SEC will treat

all input streams the same, and parse input from all streams according to all rules.

Note that the input files aaa.in, bbb.in, and ccc.in must exist before running the

example. Use the touch command to create these empty files as follows:

% touch aaa.in bbb.in ccc.in

Note also that the last rule is a catch-all rule: if the input does not get recognized by any other

rule, it will be written to other.out

Run with:

% perl sec.pl -conf=example.conf -input=-

The session starts as follows:

toto@toto:~/SEC-examples/tmp$perl ../sec.pl -conf=example.conf -

input=-

Simple Event Correlator version 2.1.11

Reading configuration from example.conf

5 rules loaded from example.conf

foo

 65

Spawning shell command '/usr/bin/tail -f ./aaa.in'

Child 15940 created for command '/usr/bin/tail -f ./aaa.in'

Spawning shell command '/usr/bin/tail -f ./bbb.in'

Child 15941 created for command '/usr/bin/tail -f ./bbb.in'

Spawning shell command '/usr/bin/tail -f ./ccc.in'

Child 15942 created for command '/usr/bin/tail -f ./ccc.in'

Writing event 'foo' to file other.out

aaa:input from terminal

Writing event 'aaa:input from terminal' to file aaa.out

bbb:input from terminal

Writing event 'bbb:input from terminal' to file bbb.out

ccc:input from terminal

Writing event 'ccc:input from terminal' to file ccc.out

ddd:input from terminal

Writing event 'ddd:input from terminal' to file other.out

So far all input has been from the terminal. In another window or session in the same

directory, perform the following commands:

% echo "aaa:from other session copied into ccc.in" >> ccc.in

% echo "bbb:from other session copied into aaa.in" >> aaa.in

% echo "ddd:from other session copied into bbb.in" >> bbb.in

 66

SEC processes these inputs as well:

Creating event 'aaa:from other session copied into ccc.in'

(received from child 15956)

Writing event 'aaa:from other session copied into ccc.in' to file

aaa.out

Creating event 'bbb:from other session copied into aaa.in'

(received from child 15954)

Writing event 'bbb:from other session copied into aaa.in' to file

bbb.out

Creating event 'ddd:from other session copied into bbb.in'

(received from child 15955)

Writing event 'ddd:from other session copied into bbb.in' to file

other.out

^C

Examine each output file to determine its contents:

toto@toto:~/SEC-examples/tmp$cat aaa.out

aaa:input from terminal

aaa:from other session copied into ccc.in

toto@toto:~/SEC-examples/tmp$cat bbb.out

bbb:input from terminal

bbb:from other session copied into aaa.in

 67

toto@toto:~/SEC-examples/tmp$cat ccc.out

ccc:input from terminal

toto@toto:~/SEC-examples/tmp$cat other.out

foo

ddd:input from terminal

ddd:from other session copied into bbb.in

As shown above, SEC parsed the input, regardless of where it came from, and performed the

actions indicated on each matched rule.

 68

7.2 Annex B

Sample SEC ruleset for Snort IDS

--

Handle portscans

--

For every completed portscan, add an entry to the PORTSCAN_REPORT;

also generate a meta-event ACTIVITY_FROM for the IP

type=Single

ptype=RegExp

pattern=End of portscan from (([\d\.]+).*)

desc=Portscan from $1

action=add PORTSCAN_REPORT %t: %s; event ACTIVITY_FROM_$2: %s

--

Recognize snort alert message and generate corresponding SEC event

--

recognize snort alert message; also generate

a meta-event ACTIVITY_FROM for the IP

type=Single

ptype=RegExp

 69

pattern=snort(?:\[\d+\])?: \[[0-9:]+\] (.+) \[(.+)\] \[.*Priority: (\d+)\]:

\

\S+ ([\d\.]+):?\d* -> ([\d\.]+):?\d*

desc=PRIORITY $3 INCIDENT FROM $4 TO $5: $1 [$2]

action=event %s; event ACTIVITY_FROM_$4: $1

--

Handle priority 1 incidents

--

Detect the beginning of priority 1 attack from a certain source IP,

and send a warning e-mail message that a new attack has begun;

also create a context for storing a detailed information about the attack

type=Single

ptype=RegExp

pattern=PRIORITY 1 INCIDENT FROM (\S+) TO \S+: .+

context=!ATTACK_FROM_$1

continue=TakeNext

desc=Priority 1 attack started from $1

action=create ATTACK_FROM_$1; add ALERT_REPORT %t: %s; pipe '%t: %s' \

 mail -s 'SNORT: priority 1 attack from $1 (alert)' root@localhost

For every priority 1 incident, add an entry to the context by its IP;

if the IP has been quiet for 5 minutes, report the whole attack

type=Single

ptype=RegExp

pattern=PRIORITY 1 INCIDENT FROM (\S+) TO (\S+): (.+)

 70

context=ATTACK_FROM_$1

continue=TakeNext

desc=Priority 1 incident from $1 to $2: $3

action=add ATTACK_FROM_$1 %t: %s; \

 set ATTACK_FROM_$1 300 (report ATTACK_FROM_$1 \

 mail -s 'SNORT: priority 1 attack from $1 (report)' root@localhost)

--

Handle incidents by thresholding

--

Count how many _certain type_ of incidents are coming from one source

if the threshold has been crossed, reset the counting operation started

by the next rule, in order to avoid duplicate alerts for the same IP

type=SingleWithThreshold

ptype=RegExp

pattern=PRIORITY (\d+) INCIDENT FROM (\S+) TO \S+: (.+)

continue=TakeNext

desc=Snort has seen >= 30 priority $1 incidents from $2: $3

action=add ALERT_REPORT %t: %s; \

 reset +1 Snort has seen >= 150 incidents from $2; \

 create TURNOFF_$2 3600

thresh=30

window=3600

Count how many incidents come from one source

type=SingleWithThreshold

 71

ptype=RegExp

pattern=PRIORITY \d+ INCIDENT FROM (\S+) TO \S+: .+

context=!TURNOFF_$1

desc=Snort has seen >= 150 incidents from $1

action=add ALERT_REPORT %t: %s

thresh=150

window=7200

--

Report IPs that have been active for some time

--

Set up activity contexts for the IP; if the IP has been active for 2

hours,

and there have been no gaps longer than 30 minutes, report its activities

type=Single

ptype=RegExp

pattern=ACTIVITY_FROM_(\S+):

context=!ACTIVITY_LIST_FOR_$1

continue=TakeNext

desc=Create activity contexts for $1

action=create ACTIVITY_LIST_FOR_$1_LIFETIME; \

 create ACTIVITY_LIST_FOR_$1 7200 (report ACTIVITY_LIST_FOR_$1 \

 mail -s 'SNORT: $1 has been active for 2 hours' root@localhost; \

 delete ACTIVITY_LIST_FOR_$1_LIFETIME)

Add the activity event to the context of a given IP, and extend

the lifetime of activity contexts for 30 minutes for the IP

 72

type=Single

ptype=RegExp

pattern=ACTIVITY_FROM_(\S+): (.*)

context=ACTIVITY_LIST_FOR_$1

desc=Activity from $1: $2

action=add ACTIVITY_LIST_FOR_$1 %t: %s; \

 set ACTIVITY_LIST_FOR_$1_LIFETIME 1800 (delete ACTIVITY_LIST_FOR_$1

)

--

Send reports every day at 9:00 am

--

send daily report about regular alerts

type=Calendar

time=0 9 * * *

desc=Sending alert report...

action=report ALERT_REPORT \

 mail -s 'SNORT: daily alert report' root@localhost; \

 delete ALERT_REPORT

send daily report about portscans

type=Calendar

time=0 9 * * *

desc=Sending portscan report...

action=report PORTSCAN_REPORT \

 73

 mail -s 'SNORT: daily portscan report' root@localhost; \

 delete PORTSCAN_REPORT

 74

7.3 Annex C

/* portscan.cpp */

/* plugin generated by STATL v1.0a15 */

#include "STAT/stat_scenario.h"

#include "idmef1lib.h"

extern "C" {

namespace {

 /***/

 /*** GLOBAL/PROTOTYPE ENVIRONMENT ***/

 /***/

 /* Structure that contains the global environment */

struct prototype_env {

 int timeout;

 int threshold;

 int flood_threshold;

 HashTable attackers;

 IDMEFMerger *merger;

};

u_char *prototype_env_new(struct stat_core* stat,

 struct scenario_prototype* prototype)

{

 prototype_env *g_env = new prototype_env();

 75

 if (prototype->argc < 3) {

 stat_error(stat,"wrong number of arguments (%d) for scenario %s",

 prototype->argc, prototype->name);

 return NULL;

 }

 int i,j;

 for(i=0,j=0; j<prototype->argc; i+=2,j++) {

 if (!strcmp(prototype->argv[i],"timeout"))

 g_env->timeout = atoi(prototype->argv[i+1]);

 if (!strcmp(prototype->argv[i],"threshold"))

 g_env->threshold = atoi(prototype->argv[i+1]);

 if (!strcmp(prototype->argv[i],"flood_threshold"))

 g_env->flood_threshold = atoi(prototype->argv[i+1]);

 }

 g_env->merger = (IDMEFHelperFactory::getMerger("ScanMerger"));

 return (u_char*)g_env;

}

void prototype_env_del(struct stat_core* stat, u_char* p_env) {

 if(p_env == NULL) return;

 prototype_env *g_env = (prototype_env*)p_env;

 delete g_env;

 return;

}

void prototype_env_dump(struct stat_core *stat,

 76

 char *sample,

 int size,

 u_char *p_env,

 int level)

{

 prototype_env *g_env;

 char *indent = get_indent_string(level);

 g_env = (prototype_env*)p_env;

 if (sample != NULL) {

 sprintf(sample, "\

%s timeout: %d\n\

%s threshold: %d\n\

%s flood_threshold: %d\n\

%s attackers: %s\n\

%s merger: %s\n\

",

 indent, g_env->timeout,

 indent, g_env->threshold,

 indent, g_env->flood_threshold,

 indent, g_env->attackers.toString(),

 indent, g_env->merger->toString());

 } else {

 fprintf(stat->dump, "\

%s timeout: %d\n\

%s threshold: %d\n\

%s flood_threshold: %d\n\

%s attackers: %s\n\

%s merger: %s\n\

",

 indent, g_env->timeout,

 77

 indent, g_env->threshold,

 indent, g_env->flood_threshold,

 indent, g_env->attackers.toString(),

 indent, g_env->merger->toString());

 }

 del_indent_string(indent);

}

u_char *prototype_env_restore(struct stat_core* stat,char* dump, int

dumpsize) {

 prototype_env *g_env = new prototype_env();

 return (u_char*)g_env;

}

 /***/

 /*** LOCAL/INSTANCE ENVIRONMENT ***/

 /***/

 /* Structure that contains the local environment */

struct instance_env {

 IDMEF_Message *IDMEF_ALERT;

 u_long attacker_address;

 string analyzer_id;

 STATVector sub_alerts;

 int count;

#define TIMER_t1 1

 int t1;

};

 78

u_char *instance_env_new(struct stat_core* stat,

 u_char* p_env)

{

 instance_env *l_env = new instance_env();

 prototype_env *g_env = (prototype_env*)p_env;

 l_env->IDMEF_ALERT = NULL;

 l_env->count = 0;

 l_env->t1 = TIMER_t1;

 return (u_char*)l_env;

}

u_char *instance_env_clone(struct stat_core* stat, u_char* i_env){

 instance_env *new_env;

 if (i_env == NULL) return NULL;

 new_env = new instance_env();

 instance_env *old_env = (instance_env*)i_env;

 new_env->IDMEF_ALERT = old_env->IDMEF_ALERT;

 new_env->attacker_address = old_env->attacker_address;

 new_env->analyzer_id = string(old_env->analyzer_id);

 new_env->sub_alerts = old_env->sub_alerts;

 new_env->count = old_env->count;

 new_env->t1 = old_env->t1;

 return (u_char*)new_env;

}

void instance_env_del(struct stat_core* stat, u_char* i_env) {

 if(i_env == NULL) return;

 79

 instance_env *l_env = (instance_env*)i_env;

 delete l_env;

 return;

}

void instance_env_dump(struct stat_core *stat,

 char *sample,

 int size,

 u_char *i_env,

 int level)

{

 instance_env *l_env;

 char *indent = get_indent_string(level);

 l_env = (instance_env*)i_env;

 if (sample != NULL) {

 sprintf(sample, "\

%s IDMEF_ALERT: %s\n\

%s attacker_address: %ul\n\

%s analyzer_id: %s\n\

%s sub_alerts: %s\n\

%s count: %d\n\

%s t1: %d\n\

",

 indent, l_env->IDMEF_ALERT->toString(),

 indent, l_env->attacker_address,

 indent, (l_env->analyzer_id).c_str(),

 indent, l_env->sub_alerts.toString(),

 indent, l_env->count,

 80

 indent, l_env->t1);

 } else {

 fprintf(stat->dump, "\

%s IDMEF_ALERT: %s\n\

%s attacker_address: %ul\n\

%s analyzer_id: %s\n\

%s sub_alerts: %s\n\

%s count: %d\n\

%s t1: %d\n\

",

 indent, l_env->IDMEF_ALERT->toString(),

 indent, l_env->attacker_address,

 indent, (l_env->analyzer_id).c_str(),

 indent, l_env->sub_alerts.toString(),

 indent, l_env->count,

 indent, l_env->t1);

 }

 del_indent_string(indent);

}

u_char *instance_env_restore(struct stat_core* stat,char* dump, int

dumpsize) {

 instance_env *l_env = new instance_env();

 return (u_char*)l_env;

}

 /***/

 /*** RESPONSE INITIALIZATION ***/

 /***/

 81

void instance_resp_getparam(struct stat_core* stat,

 struct scenario_instance* instance,

 int* r_argc,

 char*** r_argv)

{

 char **args;

 instance_env *l_env=(instance_env*)(instance->environment);

 prototype_env *g_env=(prototype_env*)(instance->prototype->environment);

 char tmp[16];

 *r_argc = 22;

 args = (char**)new_chunk((*r_argc+1) * sizeof(char*));

 args[0] = stat_strdup("timeout");

 snprintf(tmp,16,"%i",g_env->timeout);

 args[1] = stat_strdup(tmp);

 args[2] = stat_strdup("threshold");

 snprintf(tmp,16,"%i",g_env->threshold);

 args[3] = stat_strdup(tmp);

 args[4] = stat_strdup("flood_threshold");

 snprintf(tmp,16,"%i",g_env->flood_threshold);

 args[5] = stat_strdup(tmp);

 args[6] = stat_strdup("attackers");

 args[7] = stat_strdup((char*)g_env->attackers.toString());

 args[8] = stat_strdup("merger");

 args[9] = stat_strdup((char*)g_env->merger->toString());

 args[10] = stat_strdup("IDMEF_ALERT");

 args[11] = stat_strdup((char*)l_env->IDMEF_ALERT->toString());

 args[12] = stat_strdup("attacker_address");

 snprintf(tmp,16,"%i",l_env->attacker_address);

 args[13] = stat_strdup(tmp);

 82

 args[14] = stat_strdup("analyzer_id");

 args[15] = stat_strdup((char*)(l_env->analyzer_id).c_str());

 args[16] = stat_strdup("sub_alerts");

 args[17] = stat_strdup((char*)l_env->sub_alerts.toString());

 args[18] = stat_strdup("count");

 snprintf(tmp,16,"%i",l_env->count);

 args[19] = stat_strdup(tmp);

 args[20] = stat_strdup("t1");

 snprintf(tmp,16,"%i",l_env->t1);

 args[21] = stat_strdup(tmp);

 args[22] = NULL;

 *r_argv = args;

 return;

}

void instance_resp_delparam(struct stat_core* stat,

 struct scenario_instance* instance,

 int r_argc,

 char** r_argv)

{

 for (int i=0; i<r_argc; i++) {

 free_chunk((u_char*)r_argv[i]);

 }

 free_chunk((u_char*)(r_argv));

 return;

}

 /***/

 /*** STATE CALLBACK FUNCTION DEFINITIONS ***/

 /***/

 83

 /* state s0 */

 /* state recording */

static void state_recording_code(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_state* state)

{

 prototype_env *g_env;

 instance_env *l_env;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 {

 timer_start(stat, instance, TIMER_LOCAL, l_env->t1, g_env->timeout, 0);

 }

}

 /* state scan */

 /* state noscan */

 /***/

 /*** TRANSITION CALLBACK FUNCTION DEFINITIONS ***/

 /***/

 /* transition firstprobe */

static int trans_firstprobe_assertion(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 84

 prototype_env *g_env;

 instance_env *l_env;

 int result;

 IDMEF_Message* e = (IDMEF_Message*)event->data;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 result = ((((e->alert->source) && (e->alert->source->node)) && (e->alert-

>source->node->address)) && (!g_env->attackers.contains(HashKey(e->alert-

>analyzer->analyzerid, e->alert->source->node->address->get_address()))));

 return result;

}

static void trans_firstprobe_code(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 IDMEF_Message* e = (IDMEF_Message*)event->data;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 {

 l_env->attacker_address = e->alert->source->node->address-

>get_address();

 l_env->analyzer_id = e->alert->analyzer->analyzerid;

 l_env->count = 1;

 g_env->attackers.put(HashKey(l_env->analyzer_id.c_str(), l_env-

>attacker_address), NULL);

 85

 IDMEF_Message *e2 = e->clone();

 l_env->sub_alerts.add(e2);

 }

}

 /* transition probe */

static int trans_probe_assertion(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 int result;

 IDMEF_Message* e = (IDMEF_Message*)event->data;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 result = (((((e->alert->source) && (e->alert->source->node)) && (e-

>alert->source->node->address)) && (e->alert->source->node->address-

>get_address() == l_env->attacker_address)) && (!strcmp(l_env-

>analyzer_id.c_str(), e->alert->analyzer->analyzerid)));

 return result;

}

static void trans_probe_code(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 86

 instance_env *l_env;

 IDMEF_Message* e = (IDMEF_Message*)event->data;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 {

 l_env->count += 1;

 IDMEF_Message *e2 = e->clone();

 l_env->sub_alerts.add(e2);

 }

}

 /* transition scan_over */

static int trans_scan_over_assertion(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 int result;

 struct stat_event* t1 = event;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 result = ((l_env->count >= g_env->threshold));

 return result;

}

static void trans_scan_over_code(struct stat_core* stat,

 struct scenario_instance* instance,

 87

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 struct stat_event* t1 = event;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 {

 int i;

 g_env->attackers.remove(HashKey(l_env->attacker_address));

 IDMEF_Message *aggregate = NULL;

 if (l_env->sub_alerts.size() > g_env->flood_threshold)

 {

 aggregate = get_default_idmef(stat, "flood attack");

 }

 else

 {

 aggregate = get_default_idmef(stat, "portscan");

 }

 for (i = 0;i < l_env->sub_alerts.size();++i)

 {

 IDMEF_Message *m = (IDMEF_Message*)l_env->sub_alerts.elementAt(i);

 g_env->merger->merge(aggregate, m);

 delete(m);

 }

 l_env->sub_alerts.removeAllElements();

 aggregate->clevel = 2;

 struct stat_event *stat_evt_aggregate =

 88

 stat_event_new(stat, aggregate->getType(), 0, stat->time,

(u_char*)aggregate);

 stat_event_prepend_to_q(stat,stat_evt_aggregate);

 l_env->IDMEF_ALERT = aggregate;

 }

}

 /* transition no_scan */

static int trans_no_scan_assertion(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 int result;

 struct stat_event* t1 = event;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 result = ((l_env->count < g_env->threshold));

 return result;

}

static void trans_no_scan_code(struct stat_core* stat,

 struct scenario_instance* instance,

 struct stat_transition* transition,

 struct stat_event* event)

{

 prototype_env *g_env;

 instance_env *l_env;

 89

 struct stat_event* t1 = event;

 g_env = (prototype_env *)instance->prototype->environment;

 l_env = (instance_env *)instance->environment;

 {

 g_env->attackers.remove(HashKey(l_env->attacker_address));

 int i;

 for (i = 0;i < l_env->sub_alerts.size();++i)

 {

 IDMEF_Message *m = (IDMEF_Message*)l_env->sub_alerts.elementAt(i);

 m->clevel = 2;

 struct stat_event *stat_evt_m =

 stat_event_new(stat, m->getType(), 0, stat->time, (u_char*)m);

 stat_event_prepend_to_q(stat,stat_evt_m);

 }

 }

}

 /***/

 /*** FUNCTION TO LOAD THE SCENARIO DEFINITION ***/

 /***/

void prototype_init(struct stat_core *stat,

 struct scenario_prototype *prototype)

{

 struct stat_state *state_s0, *state_recording, *state_scan,

*state_noscan;

 struct stat_transition *trans_firstprobe, *trans_probe, *trans_scan_over,

*trans_no_scan;

 struct stat_event_spec *es_firstprobe_e;

 struct stat_event_spec *es_firstprobe;

 struct stat_event_spec *es_probe_e;

 90

 struct stat_event_spec *es_probe;

 state_s0 = state_new(stat,

 "s0",

 STATE_INITIAL,

 NULL,

 NULL,

 NULL);

 prototype_add_state(stat, prototype, state_s0);

 state_recording = state_new(stat,

 "recording",

 0,

 NULL,

 state_recording_code,

 NULL);

 prototype_add_state(stat, prototype, state_recording);

 state_scan = state_new(stat,

 "scan",

 0,

 NULL,

 NULL,

 NULL);

 prototype_add_state(stat, prototype, state_scan);

 state_noscan = state_new(stat,

 "noscan",

 0,

 NULL,

 NULL,

 91

 NULL);

 prototype_add_state(stat, prototype, state_noscan);

 es_firstprobe_e = event_spec_new(stat,IDMEF_Message_ID);

 es_firstprobe = es_firstprobe_e;

 trans_firstprobe = transition_new(stat,

 TRANSITION_NON_CONSUMING,

 "firstprobe",

 es_firstprobe,

 0,

 0,

 trans_firstprobe_assertion,

 trans_firstprobe_code,

 state_s0,

 state_recording,

 NULL);

 es_probe_e = event_spec_new(stat,IDMEF_Message_ID);

 es_probe = es_probe_e;

 trans_probe = transition_new(stat,

 TRANSITION_CONSUMING,

 "probe",

 es_probe,

 0,

 0,

 trans_probe_assertion,

 trans_probe_code,

 state_recording,

 state_recording,

 NULL);

 92

 trans_scan_over = transition_new(stat,

 TRANSITION_CONSUMING,

 "scan_over",

 NULL,

 TIMER_LOCAL,

 TIMER_t1,

 trans_scan_over_assertion,

 trans_scan_over_code,

 state_recording,

 state_scan,

 NULL);

 trans_no_scan = transition_new(stat,

 TRANSITION_CONSUMING,

 "no_scan",

 NULL,

 TIMER_LOCAL,

 TIMER_t1,

 trans_no_scan_assertion,

 trans_no_scan_code,

 state_recording,

 state_noscan,

 NULL);

}

} /* end namespace */

} /* end extern "C" */

 93

7.4 Annex D

ACID: Database (v100-103) ER Diagram

Snort (and other devices) log to database with the following schema:

 94

ACID 0.9.6b10 Database ER diagram

 95

Table Component Description

schema Snort Self-documented information about the database

sensor Snort Sensor name

http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

event Snort Meta-data about the detected alert

signature Snort
Normalized listing of alert/signature names, priorities, and

revision IDs

sig_reference Snort Reference information for a signature

reference Snort Reference IDs for a signature

reference_system Snort (lookup table) Reference system list

sig_class Snort Normalized listing of alert/signature classifications

data Snort Contents of packet payload

iphdr Snort IP protocol fields

tcphdr Snort TCP protocol fields

udphdr Snort UDP protocol fields

icmphdr Snort ICMP protocol fields

opt Snort IP and TCP options

detail Snort
(lookup table) Level of detail with which a sensor is

logging

encoding Snort
(lookup table) Type of encoding used for the packet

payload

protocols
SnortDB

extra
(lookup table) Layer-4 (IP encoded) protocol list

services
SnortDB

extra
(lookup table) TCP and UDP service list

flags
SnortDB

extra
(lookup table) TCP flag list

acid_ag ACID Meta-data for alert groups

 96

http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

acid_ag_alert ACID Alerts in each alert group

acid_ip_cache ACID Cached DNS and whois information

schema

+-------+------------------+------+-----+---------------------+-------------------------+
| Field | Type | Null | Key | Default | Description |
+-------+------------------+------+-----+---------------------+-------------------------+
| vseq | int(10) unsigned | | PRI | 0 | Database schema ID |
| ctime | datetime | | | 0000-00-00 00:00:00 | Timestamp |
+-------+------------------+------+-----+---------------------+-------------------------+

sensor

+-----------+------------------+------+-----+---------+---------------------------------+
| Field | Type | Null | Key | Default | Description |
+-----------+------------------+------+-----+---------+---------------------------------+
sid	int(10) unsigned		PRI	NULL	Sensor ID
hostname	text	YES		NULL	Hostname of the sensor
interface	text	YES		NULL	Network interface (e.g. eth0)
filter	text	YES		NULL	BPF filter
detail	tinyint(4)	YES		NULL	Detail level of the logging
encoding	tinyint(4)	YES		NULL	Encoding format of the payload
+-----------+------------------+------+-----+---------+---------------------------------+

event

+-----------+------------------+------+-----+---------------------+---------------------+
| Field | Type | Null | Key | Default | Description |
+-----------+------------------+------+-----+---------------------+---------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
signature	int(10) unsigned		MUL	0	Signature ID
timestamp	datetime		MUL	0000-00-00 00:00:00	Timestamp
+-----------+------------------+------+-----+---------------------+---------------------+

signature

+--------------+------------------+------+-----+---------+-----------------------+
| Field | Type | Null | Key | Default | Description |

 97

http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html
http://www.andrew.cmu.edu/~rdanyliw/snort/acid_db_er_v102.html

+--------------+------------------+------+-----+---------+-----------------------+
sig_id	int(10) unsigned		PRI	NULL	Signature ID
sig_name	varchar(255)		MUL		Signature Name
sig_class_id	int(10) unsigned	YES	MUL	NULL	Classification ID
sig_priority	int(10) unsigned	YES		NULL	Priority
sig_rev	int(10) unsigned	YES		NULL	Revision number
sig_sid	int(10) unsigned	YES		NULL	Internal signature ID
+--------------+------------------+------+-----+---------+-----------------------+

sig_reference

7.4.1

+---------+------------------+------+-----+---------+-----------------------------------+
| Field | Type | Null | Key | Default | Description |
+---------+------------------+------+-----+---------+-----------------------------------+
sig_id	int(10) unsigned		PRI	0	Signature ID
ref_seq	int(10) unsigned		PRI	0	Reference sequence number
ref_id	int(10) unsigned			0	Reference ID
+---------+------------------+------+-----+---------+-----------------------------------+

reference

+---------------+------------------+------+-----+---------+-----------------------------+
| Field | Type | Null | Key | Default | Description |
+---------------+------------------+------+-----+---------+-----------------------------+
ref_id	int(10) unsigned		PRI	NULL	Reference ID
ref_system_id	int(10) unsigned			0	Reference system ID
ref_tag	varchar(20)				Reference tag CVE-CAN)
+---------------+------------------+------+-----+---------+-----------------------------+

reference_system

+-----------------+------------------+------+-----+---------+---------------------------+
| Field | Type | Null | Key | Default | Description |
+-----------------+------------------+------+-----+---------+---------------------------+
| ref_system_id | int(10) unsigned | | PRI | NULL | Reference system ID |
| ref_system_name | varchar(20) | YES | | NULL | Reference system name |
+-----------------+------------------+------+-----+---------+---------------------------+

sig_class

+----------------+------------------+------+-----+---------+----------------------------+
| Field | Type | Null | Key | Default | Description |
+----------------+------------------+------+-----+---------+----------------------------+
| sig_class_id | int(10) unsigned | | PRI | NULL | Signature classification ID|
| sig_class_name | varchar(60) | | MUL | | Classification name |

 98

+----------------+------------------+------+-----+---------+----------------------------+

data

+--------------+------------------+------+-----+---------+------------------------------+
| Field | Type | Null | Key | Default | Description |
+--------------+------------------+------+-----+---------+------------------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
data_payload	text	YES		NULL	Packet payload encoded
+--------------+------------------+------+-----+---------+------------------------------+

iphdr

+----------+----------------------+------+-----+---------+----------- ------------------+
| Field | Type | Null | Key | Default | Description |
+----------+----------------------+------+-----+---------+------------------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
ip_src	int(10) unsigned		MUL	0	Source IP address
ip_dst	int(10) unsigned		MUL	0	Destination IP address
ip_ver	tinyint(3) unsigned	YES		NULL	IP version
ip_hlen	tinyint(3) unsigned	YES		NULL	IP Header length
ip_tos	tinyint(3) unsigned	YES		NULL	IP type-of-service
ip_len	smallint(5) unsigned	YES		NULL	IP datagram length
ip_id	smallint(5) unsigned	YES		NULL	IP ID
ip_flags	tinyint(3) unsigned	YES		NULL	IP flags
ip_off	smallint(5) unsigned	YES		NULL	IP fragment offset
ip_ttl	tinyint(3) unsigned	YES		NULL	IP time-to-live
ip_proto	tinyint(3) unsigned			0	IP protocol
ip_csum	smallint(5) unsigned	YES		NULL	IP checksum
+----------+----------------------+------+-----+---------+------------------------------+

tcphdr

+-----------+----------------------+------+-----+---------+----------------------+
| Field | Type | Null | Key | Default | Description |
+-----------+----------------------+------+-----+---------+----------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
tcp_sport	smallint(5) unsigned		MUL	0	TCP source port
tcp_dport	smallint(5) unsigned		MUL	0	TCP destination port
tcp_seq	int(10) unsigned	YES		NULL	TCP sequence number
tcp_ack	int(10) unsigned	YES		NULL	TCP ACK number
tcp_off	tinyint(3) unsigned	YES		NULL	TCP offset
tcp_res	tinyint(3) unsigned	YES		NULL	TCP reserved
tcp_flags	tinyint(3) unsigned		MUL	0	TCP flags
tcp_win	smallint(5) unsigned	YES		NULL	TCP window
tcp_csum	smallint(5) unsigned	YES		NULL	TCP checksum
tcp_urp	smallint(5) unsigned	YES		NULL	TCP urgent pointer
+-----------+----------------------+------+-----+---------+----------------------+

 99

udphdr

+-----------+----------------------+------+-----+---------+----------------------+
| Field | Type | Null | Key | Default | Description |
+-----------+----------------------+------+-----+---------+----------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
udp_sport	smallint(5) unsigned		MUL	0	UDP soure port
udp_dport	smallint(5) unsigned		MUL	0	UDP destination port
udp_len	smallint(5) unsigned	YES		NULL	UDP length
udp_csum	smallint(5) unsigned	YES		NULL	UDP checksum
+-----------+----------------------+------+-----+---------+----------------------+

icmphdr

+-----------+----------------------+------+-----+---------+----------------------+
| Field | Type | Null | Key | Default | Description |
+-----------+----------------------+------+-----+---------+----------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
icmp_type	tinyint(3) unsigned		MUL	0	ICMP type
icmp_code	tinyint(3) unsigned			0	ICMP code
icmp_csum	smallint(5) unsigned	YES		NULL	ICMP checksum
icmp_id	smallint(5) unsigned	YES		NULL	ICMP ID
icmp_seq	smallint(5) unsigned	YES		NULL	ICMP sequence number
+-----------+----------------------+------+-----+---------+----------------------+

opt

+-----------+---------------------+------+-----+---------+----------------- ------------+
| Field | Type | Null | Key | Default | Description |
+-----------+---------------------+------+-----+---------+------------------------------+
sid	int(10) unsigned		PRI	0	Sensor ID
cid	int(10) unsigned		PRI	0	Event ID
optid	int(10) unsigned		PRI	0	Option ID
opt_proto	tinyint(3) unsigned			0	Option protocol (IP, TCP)
opt_code	tinyint(3) unsigned			0	Option code
opt_len	smallint(6)	YES		NULL	Option length
opt_data	text	YES		NULL	Option data
+-----------+---------------------+------+-----+---------+------------------------------+

acid_ag

 100

+----------+------------------+------+-----+---------+----------------------------------+
| Field | Type | Null | Key | Default | Description |
+----------+------------------+------+-----+---------+----------------------------------+
ag_id	int(10) unsigned		PRI	NULL	Alert Group (AG) ID
ag_name	varchar(40)	YES		NULL	AG name
ag_desc	text	YES		NULL	AG description
ag_ctime	datetime	YES		NULL	Timestamp of AG creation time
ag_ltime	datetime	YES		NULL	Timestamp of last AG modification
+----------+------------------+------+-----+---------+----------------------------------+

acid_ag_alert

+--------+------------------+------+-----+---------+---------------------+
| Field | Type | Null | Key | Default | Description |
+--------+------------------+------+-----+---------+---------------------+
ag_id	int(10) unsigned		PRI	0	Alert Group (AG) ID
ag_sid	int(10) unsigned		PRI	0	Sensor ID
ag_cid	int(10) unsigned		PRI	0	Event ID
+--------+------------------+------+-----+---------+---------------------+

acid_ip_cache

+---------------------+------------------+------+-----+---------+-----------------------+
| Field | Type | Null | Key | Default | Description |
+---------------------+------------------+------+-----+---------+-----------------------+
ipc_ip	int(10) unsigned		PRI	0	IP address (32-bit)
ipc_fqdn	varchar(50)	YES	MUL	NULL	FQDN
ipc_dns_timestamp	datetime	YES		NULL	DNS lookup timestamp
ipc_whois	text	YES		NULL	whois information
ipc_whois_timestamp	datetime	YES		NULL	whois lookup time
+---------------------+------------------+------+-----+---------+-----------------------+

 101

 102

7.5 Annex E

use teststat;

scenario xtest2 ()
{
 global string CLASSIFICATION_NAME = "teststat_scenario2";
 global string CLASSIFICATION_URL = "http://www.cs.ucsb.edu/~rsg";

 string SOURCE_USERNAME;
 string TARGET_USERNAME;
 string TARGET_PROC_PATH;
 string ADDITIONAL_DATA;

 transition trans1 (s0->s1) nonconsuming
 {
 [MESSAGE m1]
 {
 SOURCE_USERNAME = m1.from.username;
 TARGET_USERNAME = m1.to.username;
 ADDITIONAL_DATA = m1.body;
 }
 }

 transition trans2 (s1->slast) nonconsuming
 {
 [ACTION a1] : (a1.subject.username == TARGET_USERNAME)
 {
 TARGET_PROC_PATH = a1.object.oname;
 }

 }

 initial
 state s0 { }

 state s1 { }

 state slast
 {
 {
 log("Last state reached (teststat_scenario2)");
 }
 }
}

	Introduction
	Presented tools
	Simple Event Correlator (SEC)
	Tool Presentation
	Documentation and Installation
	Usages

	AlertSTAT
	Tool Presentation
	Documentation and Installation
	Usages

	Analysis Console for Databases (ACID)
	Tool Presentation
	Documentation and Installation
	Usages

	Experimentation
	Associated Tools
	Introduction
	NESSUS
	SNORT

	Input Generation
	SEC Configuration
	Offline log analysis
	Online log analysis

	AlertSTAT Configuration
	ACID Configuration

	Observations
	Results
	Comparison

	Conclusion
	References
	Annexes
	Annex A
	Annex B
	Annex C
	Annex D
	�
	schema
	�
	�
	sensor
	�
	�
	event
	�
	�
	signature
	�
	�
	sig_reference
	�
	�
	reference
	�
	�
	reference_system
	�
	�
	sig_class
	�
	�
	data
	�
	�
	iphdr
	�
	�
	tcphdr
	�
	�
	udphdr
	�
	�
	icmphdr
	�
	�
	opt
	�
	�
	acid_ag
	�
	�
	acid_ag_alert
	�
	�
	acid_ip_cache
	�

	Annex E

