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Abstract

We study the performance of finite length regular and irregular repeat accumulate (RA) codes, whose Tanner graphs
are constructed semi-randomly and satisfy one of the following criteria: (a) the graph is free of cycles up to 2S5,
(b) cycles of length up to 2d 4 g have at least n external edges (S,dacr and n are design parameters). We derive
an upper bound on the bit error probability of random RA codes under maximum likelihood decoding. For short
block lengths, it is found that the performance under belief propagation decoding of the semi-random regular RA
ensemble is superior to the performance of the random ensemble under maximum likelihood decoding, and that
it is comparable to the best known low density parity check codes, with comparable girth conditioning and block
length. As for large block lengths, the performance of the semi-random irregular RA ensemble is superior to the
performance of the random ensemble, but remains inferior to that of low density parity check codes with comparable

graph conditioning and block length.

1 Introduction

In this paper, we are concerned with the performance
of finite length regular and irregular Repeat Accu-
mulate (RA) codes when used on the binary input
additive white Gaussian channel (BIAWGNC). These
codes are an appealing choice because they have a low
encoding/decoding complexity and their performance,
in terms of iterative decoding thresholds (ideal infinite
length), is competitive with that of turbo codes [1]
and low density parity check (LDPC) codes [2]. One
possible application of RA codes is joint source-channel
coding since they can be seen as an instance of the so-
called low-density generator matrix (LGDM) codes [3],
[4].

The performance of the random-like ensemble of
systematic Irregular Repeat Accumulate (IRA) codes,
in the limit of large block length, optimized in [5]
for binary-input symmetric-output channels, is found
to be very close to the Shannon limit. The bipartite
graphs associated to these codes are free of cycles
of any finite length, in the limit of infinite block
length. However, finite length bipartite graphs may
contain short cycles, and the belief propagation (BP)
message-passing decoder is no longer optimal, since the
local message independence assumption is no longer
valid. It is commonly believed (based on heuristic
arguments) that the removal of short cycles improves
the performance of short length bipartite graph codes
under BP. It is also found that maximizing the length
of the shortest cycle yields a large minimum distance
[6], [7], thus improving the code performance in the
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high signal to noise ratio (SNR) region. We therefore
use the progressive edge-growth algorithm (PEG) [7]
to construct regular Repeat Accumulate (regular RA)
and IRA codes, whose associated bipartite graph has a
shortest cycle length (girth) at least equal to 2S + 2,
where S is a design parameter.

Under BP decoding of random LDPC codes, it
is found that small stopping sets [8] result in high
error floors on the binary erasure channel (BEC). So,
alternatively to girth conditioning, we use the method
proposed in [9], to construct IRA codes whose Tanner
graphs are free of small stopping sets.

It is instructive to determine the average random IRA
performance on the BIAWGNC, under maximum likeli-
hood (ML) decoding. This allows to determine whether
a poor performance of the random IRA ensemble is due
to the BP decoder or to the code ensemble itself. More-
over, it is interesting to compare the performance of the
semi-random ensemble performance under BP against
that of the random ensemble under ML decoding.

The rest of the paper is organized as follows. Section
2 presents the systematic IRA encoder. In section 3
we show how to construct the semi-random IRA code
ensemble using the two methods of [7] and [9]. Section
4 shows an upper bound on the girth of the Tanner
graph of IRA codes, and compares the theoretical and
experimental results for regular RA codes. Section 5
shows how to compute the input-output weight enumer-
ators (IOWE) of regular RA and IRA codes in order to
determine an upper bound on the random IRA ensemble
performance under ML decoding. Section 6 presents
the average random and semi-random ensemble perfor-
mances of regular RA codes for short block lengths
and IRA codes for large block lengths. Also shown



are the performances of two explicit random and semi-
random (regular) code constructions selected to have
large minimum distances. Finally, we draw conclusions
in Section 7.

2 Definitions and Background

Fig. 1 shows the block diagram of a systematic IRA en-
coder. A block of information bits b = (by,...,b) €
IF% is encoded by a repetition code of rate k/N. Each
information bit is repeated r; times, where (r1,...,7x)
is a sequence of integers such that 2 < r; < d

k
and er = N (d is the maximum repetition de-
1

gree)J. If 1 = r» = ... = ry, then the code is
a regular RA code. Otherwise, it is an IRA code.
The block of repeated symbols is interleaved, with a
one-to-one permutation, and the resulting block x; =
(Z1,1,---,%1,N) € ]Fév is fed into an accumulator,
defined by the recursion

a—1
T2,j41 = T2,j5 + Zwl,aj—i-i, J = ()7 R 1 (1)
=0
with initial condition z,p = 0, where x, =
(z2,1,---,T2,,) € Fy is the accumulator output block

corresponding to the input x;, @ > 1 is a given
integer (referred to as grouping factor), and we assume
that n = N/a is an integer. Finally, the codeword
corresponding to the information block b is given by
x = (b,x2) of length m = k + n. The code rate is
therefore given by

k a @
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Fig. 1. IRA encoder

The Tanner graph [10] of an IRA code is shown in
Fig. 2. In general, the Tanner graph of a linear code
is a bipartite graph whose node set is partitioned into
two subsets: the bitnodes, corresponding to the coded
symbols, and the checknodes, corresponding to the
parity-check equations that codewords must satisfy. The
graph has an edge between bitnode « and checknode
S if the symbol corresponding to « participates in the
parity-check equation corresponding to S.

Since the IRA encoder is systematic (cf. Fig. 1), it
is useful to further distinguish the bitnodes into two
subclasses: the information bitnodes {v;,j = 1,...,k},

corresponding to information bits, and the parity bitn-
odes {p;,j =1,...,n}, corresponding to the symbols
output by the accumulator. Those information bits that
are repeated r; times are represented by bitnodes with
degree r;, as they participate in r; parity-check equa-
tions. Each checknode ¢;, 7 = 1,...,n is connected to
a information bitnodes and to two parity bitnodes and
represents one of the equations (1) for a particular j.
The connections between checknodes and information
bitnodes are determined by the interleaver. The con-
nections between checknodes and parity bitnodes are
arranged in a regular zig-zag pattern since, according
to (1), every pair of consecutive parity bits are involved
in one parity-check equation.

Let there be ng., different repetition degrees r;.
Then, the repetition code can alternatively be defined
in terms of a degree distribution {0 < f; < 1,i =
1,...,n4e0} and a degree set {2 < d; < d,i =
1,...,ngeq}, SUch that f;k is the number of information
bitnodes of degree d;, and

Ndeg

Y fi=1 3)
i=1

Therefore, the graph has N = dk edges between
information bitnodes and checknodes where d is the
average information bitnode degree, given by:

Ndeg

d="7_ d;f; @
7j=1

The bit error rate (BER) performance of the BP
message-passing decoder averaged over the IRA code
ensemble can be analyzed in the limit of £ — oo, by the
Density Evolution (DE) technique [2], as shown in [5].
In [5], we have proposed DE approximation methods
to optimize the degree sequences of the IRA code
ensemble, for a broad class of binary-input symmetric-
output channels. It is shown that some of the proposed
methods on the binary symmetric channel (BSC) and
the BIAWGNC, yield IRA codes that are competitive
with respect to the best-known LDPC codes [11].

Randomly constructed IRA codes of finite length
may have poor performances under BP decoding, in
the following aspects:

o In the low SNR region, the BER waterfall is far
from the code ensemble threshold, hence the gap
from channel capacity is not as good as predicted
by the infinite length DE analysis;

o In the medium to high SNR region, the BER flat-
tens in an even larger gap from channel capacity
for very low BER. This behavior is referred to as
an “error floor”;

o If fo # 0, as is the case for optimal degree
sequence distributions, then the word error rate
(WER) is poor.

There exists a tradeoff between the threshold SNR and
the “error floor” BER of irregular versus regular codes



[12]. For short code block lengths, regular codes usu-
ally exhibit better error floor BER than their irregular
counterparts. On the other hand, for large block lengths,
optimized irregular codes largely outperform their reg-
ular counterparts in approaching their DE threshold.
Different approaches have been adopted for the con-
struction of finite-length LDPC codes. [7], [13], [14]
propose methods to remove short cycles in order to
maximize the girth, and [9] proposes a method to
remove short cycles that contribute to small stopping
sets. In the following section, we summarize the PEG
algorithm [7] as well as the stopping set maximizing
algorithm [9] that we use to construct IRA codes.

Information
bitnodes

oy Ty T3 s Tk

Checknodes

Parity bitnodes

Fig. 2. Tanner graph of IRA code

3 Construction of Finite Length
IRA Codes

Without loss of generality, assume that r; <
ro... < rp, i.e., information bitnodes are indexed
in the non-decreasing order of repetition degrees.
Let ej,es,...,en denote the edges connected to
the information bitnodes vy, vs,...,v; SO that edges
e1,€2,...,ep, are connected to information bitnode
v1, edges ep 41,€r42,---,€r+r, are connected to
information bitnode v, and so on. Define the mapping
V as

V:{l,...,N} —= {1,...,k}
j — dsuch thate; is connected to v;

We construct the a-to-1 mapping C'

C:{1,...,N} = {1,...,n}
j — 4such that e; is connected to ¢;

on an edge by edge basis. Initially, C(INV) can take any
value in the list

Ly ={1,1,...1,2,2...2,...,n,n,...,n}

which is formed by repeating every element of the set
{1,2,...,n} a times. Once C(N) is selected, the list
L —1 from which C (N —1) can be selected is obtained
by removing C'(V) from L n. Likewise, £; is obtained
by removing C'(j + 1) from the list £;4. We construct
the mapping C' using either one of the following two
methods.

Depth 1

Depth 2

Depth 3

Depth 4

Fig. 3. Local neighborhood expanded on 4 levels

A Progressve Edge Growth Algorithm [7]:
The PEG algorithm allows to construct a graph
free of cycles of length 4,6,...,2S. Assuming that
C(N),C(N—-1),...,C(+2),C(j+1) have all been
determined, and that there are no cycles of length
smaller than 25+2, then C(j) is determined as follows.
We first randomly select C'(j) from £;. Then, a local
neighborhood originating at V' (j) is expanded up to
depth S (see Fig. 3 for S = 4). If there is no cycle in the
local neighborhood then let £L,_; = L; — {C(j)} and
proceed to edge e;_1, otherwise select another C(j)
and redo the previous step.

Edges e; are assigned in the decreasing order j =
N,N —1,...,1, i.e, in the non-increasing order of
repetition degrees rv (ny,Tv(n—-1),--->Tv(1), because
it is easier to assign edges connected to high-degree
information bitnodes under a girth constraint at the
beginning of the algorithm than toward the end.

B Sopping Set Maximization (SSMAX) [9]: The
algorithm proposed in [9] attempts to maximize the size
of stopping sets in the graph, by ensuring that cycles of
length 4,6...,2dscg have ACE > n, where ACE is
the number of external edges connected to a cycle, and
is given as

ACE 2 (d; - 2)

where d; is the degree of the 5 (information or parity)
bitnode in the cycle. Assuming that C(N),C(N —
1),...,C(j+2),C(j+1) have all been determined, and
that all cycles of length up to 2d4cg have ACE > n,
then C(3) is determined as follows. We first randomly
select C(j) from L;. Then, a local neighborhood orig-
inating at V' (j) is expanded up to depth S. If all cycles
in the local neighborhood, of length up to 2d 4¢ g, have
ACE >, thenlet L,_; = L; — {C(j)} and proceed
to edge e;_1, otherwise select another C(j) and redo
the previous step.

The following proposition shows two simple condi-
tions, that if satisfied, ensure that the resulting IRA
graph is free of cycles of length 4.

Proposition 1: An IRA graph satisfying the follow-
ing two conditions

1)
Vi, i €{1,...,N}, j' #j

fV(E) =V =1C6H -CE)N =2 ©)



2)

Vj:jl7j17j{ € {17"'7N}7 jl 75.77 jl 75.7.,7 Ji 75.71

V(D =V3)
if C() =0C0) = |C(GN-CHDI =1
V() =V0u)}

(6)
is free of cycles of length 4.

Proof: Suppose conditions 1 and 2 are satisfied,
and that the graph contains a cycle of length 4. There
are only two ways in which this cycle forms in the
graph of an IRA:

1) The cycle is composed of one information bitn-
ode and one parity bitnode (cf. Fig. 4(a)). Be-
cause of the zigzag pattern of the graph of the
accumulator, the two checknodes in the length-
4 cycle are adjacent to each other, therefore the
distance between them is exactly 1. There remain
two edges connecting the information bitnode to
the two checknodes. Then, condition 1 is violated.

2) The cycle is composed of two information bitn-
odes sharing two checknodes (cf. Fig. 4(b)). De-
noting the four edges of the cycle as 3, j1,J', j1,
and letting V(5) = V(j') and V(j1) = V(51),
then because condition 1 is met, |C(j)—C(j')| >
2 and |C(j1) — C(j1)] > 2. Then because the
cycle is of length 4, C(j) = C(j1) and C(j') =
C(j1)- This is a contradiction with condition 2,
which requires one of the two distances |C(j) —
C(j1)| and |C(5") — C(j1)| to be at least equal
to 1.

@ (b)

Fig. 4. Length-4 cycles

4 Upper Bound on the Girth of IRA
Graphs

An upper bound on the girth of IRA codes can be
obtained using results in [15], which were used in [14]
to derive an upper bound on the girth of LDPC codes.
The average variable node degree A and the average
check node degree p are given as:

A = dk(24+a)—a

7 Zaj—(aQJr?l Y

which can be approximated, for practical information

and parity block lengths & and n, as
~ 3(2+a)
I (8)
p o=a+2

Let g denote the girth of the graph. Then, from [15],
the following upper bound can be derived:

log [HTH((M —DA-1)—1)+ 1]

9% log [~ DO\~ D) ©
then, using (8) and n = kd/a, we get:
log [k(d — 1) + 1] 10)

log [Zi}z(c?a +d- a)]

Using the adjacency matrix of the parity check matrix
associated to a Tanner graph [14], we can evaluate the
girth of graphs generated by the methods described in
the previous section. Let us consider regular RA codes
with parameters a = 4 and d = 4 generated using the
PEG method. The following table shows the minimum
k required to obtain a graph with girth g, as well as the
corresponding theoretical girth upper bound.

| k | 9bound | a9 |

21 7.2 6

190 11.0 8

1930 15.0 10
TABLE |

GIRTH OF REGULAR RA GRAPHS

5 Maximum Likelihood Decoding

An upper bound on the BER and WER of the random
ensemble of IRA codes, under ML decoding on the
BIAWGNC, can be determined using the tangential
sphere bound (TSB) [16], [17], [18]. The computation
of the TSB requires the knowledge of the input-output
weight enumerators (IOWE) of the random IRA ensem-
ble Ayp, w=0,1,....;kand h = 0,1,...,m. Ay
is the number of codewords with weight 4, generated
by information words of weight w. Using the uniform
interleaver technique [19], we can calculate the average
Aw.p, by assuming that the encoder of Fig. 1 has
a uniform interleaver at the output of the repetition
encoder, and a second uniform interleaver between the
grouping and the accumulator (cf. Fig. 5). Then

_ i Aﬁ’p z": AS AL,
p=1 (p) 1=0 (l) (11)

forw=0,1,--- kand h=0,1,--- ,n

where AR  AC . Af, are the IOWE of, respectively,
the repetition code, the grouping and the accumulator.

The following IOWE computation is the extension
of the results in [20] to the case a > 1 and irregular

repetition.

Aw,h—i—w



k - N | Uniform | ™ Unifom Accumu-| 7T

Repetition ——| ——== Grouping ——=

i . =
interleaver interleaver lator

Fig. 5. Modified IRA encoder

A IOWE of Repetition Code: The IOWE of the
repetition code is given by

AR, = Z A%, (12)
where
Ndeg fjk . B Ndeg »
an, =) 1l <w]- Th=2 s g
s j=1 Jj=1
0 otherwise

and the summation is carried out over all ordered in-

teger partitions w = [wy, ..., wy,,,] Of w into at most
Ndeg

Teg PAIts, i€, Y w; =wandw; =0,1,...,w. The
=1

number of these partitions grows at least as © (w™d<s 1)
[21], making the computation of the irregular repetition
IOWE intractable for information block lengths & >
200.

If ngeg = 1, the repetition is regular with repetition
degree d, and the resulting IOWE is [20]

k if h=d
Ag,h:{ (()w) v

otherwise (14)

B IOWE of Grouping: A% ,.n 1 the coefficient of
z% in G(z), denoted by |G(x )Jw,where

6@ = ()2 " @+ oy - -

(A+z)*+ (1 —z))"" (15)
For a = 2, the grouping IOWE is
2" (") (%=k) ifw — his even
G(z)|w = R/ A== 16
G()] {0 ifw—hisodd )

and the IOWE of grouping with a =4 is

l
m = (n—nh 2n — 2l — h
2" (h)Z( l )221( w_h_l>
|G(x)]w = 1=0 2
if w — his even
0 ifw—~hisodd
(7)

h, “’—_h) (18)

where

. w+h
lmaz = min (Qn— T,n— 2

For a # 2 and a # 4, the grouping IOWE cannot
be expressed in closed-form. However, noticing that the
coefficients of G(z) are positive, the following result
[22] provides an upper bound on the grouping IOWE:

G(@)]w < inf E&) (19)

>0 W

C IOWE of Accumulator (without grouping): As
stated in [23], the IOWE of the accumulator is given

as: n—~h h—1
Aun= (me) ([wm - 1)

D Regular RA Code with Grouping Factor a = 2
and a = 4: Consider a regular RA code with repetition
degree d. Using (16) and (17), the IOWE of the RA
code with grouping factor a = 2 is

Auan = g—i)) 2.7 (@) (TLLJ;D ([t?ﬁi 1)

(21)

(20)

and the IOWE with grouping factora =4 is
—h h-1
oo () ()
e ( Z [t/2]) \[t/2] -1

(Se()(50)) @

where
w =0,...,k
h =0,...,n
lmaz = min(n —t, %)

and summations are on all integers ¢ such that dw — ¢
is even and ¢ < min(n, dw).

6 Simulation Results

6.1 Regular RA codes

Figs. 6, 7 and 8 show the average performances of
randomly and semi-randomly PEG constructed regular
RA codes, with S = 2 and S = 3 (graphs are free of
cycles of length up to 25), on the BIAWGNC under
BP decoding with 25 decoder iterations. Also shown
is the TSB on the BER and WER of the random
regular RA ensemble under ML decoding. The code
rate is R = 1/2, and the information block lengths are
respectively k£ = 150, k = 256 and k = 512. The code
parameters d = 4 and a = 4 were selected because they
correspond to the best DE threshold of the random-like
regular RA ensemble at rate R = 1/2.

The semi-random regular RA ensemble under BP
decoding outperforms its random counterpart under
both BP decoding and ML decoding, in the error floor
region. We notice that, as expected for such short code
lengths, the BER waterfall is far from the DE evolution

threshold (}3—;) = 0.2108 dB.

Comparing the semi-random regular RA codes with
the regular LDPC codes proposed in [14] of the same
conditioning level (girth 6 and 8) and the same in-
formation block lengths, we note the following. For
k = 150, the girth 6 semi-random regular RA code
outperforms the regular LDPC code by 0.3 dB at a
BER of 2 x 1075, For k = 512, the girth 6 and 8
regular RA codes outperform the LDPC code in the



waterfall region (at Ey/Noy = 3 dB, BER of semi-
random regular RA code is 5 x 107 while the BER of
the LDPC code is 5 x 107¢ ). In the error floor region,
BER performances of RA codes of girth 6 and 8 are
comparable to those of LDPC codes(at Ey/No = 3.5
dB, the BER of the girth 8 regular RA code is 2 x 10~8
while the BER of the girth 8 LDPC code is 10~8). Note
that the complexity of the PEG algorithm (as well as
that of the SSMAX) is exponential in the girth and
linear in the block length, whereas that of the algorithm
proposed in [14] is linear in the girth and polynomial in
the block length. Therefore, for short block length and
small girth, it is preferable to use the PEG algorithm
for girth conditioning.

Comparing the semi-random regular RA codes of
girth 6 with the regular LDPC codes proposed by
MacKay in [24] of information block length around
k = 256, we note that their BER performances are
similar. At E,/No = 3.5 dB, the BER of the RA
code is 2 x 107, and that of the MacKay LDPC
code is 1076, The regular RA codes of girth 8 are
found to outperform both MacKay regular LDPC codes
and PEG-constructed LDPC codes of girth 8 [7] for
information block length k = 256. In fact, at E, /Ny =
3.25 dB, the BER of the RA code is 5 x 10~7, while
the BER of of the McKay LDPC code is 4 x 10~ and
that of the PEG LDPC code is 2 x 1076,

Using the error impulse method proposed in [25],
we compute the minimum distances (d,;,) of 200
realizations of randomly and PEG constructed regular
RA codes. Table Il shows the minimum, maximum
and average d,,;» thus obtained, and indicates that as
the girth of the bipartite graphs increases from 4 to
6, so does the minimum distance of the associated
regular RA codes. Fig. 9 shows the performance of rate
1/2 random and PEG codes with respective minimum
distances d,,in = 9 and d,.;n = 11, for information
block length k£ = 512.

6.2 Irregular RA codes

Fig. 10 compares the average BER performance of
randomly and semi-randomly (PEG and SSMAX) con-
structed IRA codes to that of an LDPC code of the
same rate, on the BIAWGNC under BP decoding with
25 decoder iterations. The code rate is R = 0.5, and the
information and parity block lengths are respectively
k = 5020 and n = 4940. The code degree sequences
and grouping factor are obtained by optimizing the code
with method 1 in [5], and have a maximum repetition
degree of 20.

Although the maximum achievable girth of the con-
sidered IRA graph is 12.4, the maximum girth obtained
using the PEG algorithm is 6. The curves labeled
(deye,dace,n) in fig. 10 represent the average perfor-
mances of codes constructed with the SSMAX method.
(deye,dace,n) means that the IRA code is free of
cycles of length up to 2d.,., and all cycles of length

Average RA performance: k=150, n=150, q=4, a=4
10 T T T T

T
—©- FER Random
— FER girth 6

— FERMLTSB
=©- BER Random ||
—+- BER girth 6

—— BERMLTSB

BER/FER

E/N,

Fig. 6. Average RA performance with £ = 150, n = 150, d = 4,
a=4

up to dacg have ACE > 1.

The LDPC code has rate 1/2, a code block length
of 10000, and a degree sequence optimized in [11].
It is generated randomly, but the degree-2 nodes are
arranged in a single cycle.

Fig. 10 shows that the SSMAX method yields a
better error floor than the PEG algorithm with S =
2. Comparing the (1,9,3) code with the randomly
constructed LDPC code ensemble, we note that it
outperforms the random LDPC in the error floor region.
But, its performance is inferior to that of the (1,9,4)
LDPC code of [9].

7 Conclusion

We have presented a comparative study of the per-
formance of finite length regular and irregular repeat
accumulate codes, constructed according to two crite-
ria: girth maximization and stopping set maximization.
Our simulations show that girth conditioning yields an
improvement in the error floor region of short-length
regular RA codes in the BER and WER, as compared
to the random regular RA ensemble. The codes thus
designed perform as well as the best known LDPC
codes [7], [13], [14], [9]. Hence, the performance-
complexity tradeoff of the constructed regular RA codes
is very advantageous.

Large block length irregular RA codes exhibit a
better error floor using the stopping set maximization
method, as compared to the random and girth-
conditioned IRA ensembles. But the average IRA code
performance remains inferior to that of LPDC codes
with comparable graph conditioning and block length.



| Code [ Random [ PEG S =2 |
k d| a min. dpin | MaX. dmin | av. dmin min. dpyin | MaX. dmin | aVv. dipin
150 [ 4] 4 411 8 6.54
256 | 4 | 4 2 8 5.27 5 9 7.07
512 | 4 | 4 2 9 6.09 5 11 8.59
TABLE I

MINIMUM DISTANCE OF REGULAR RA CODES

Average RA performance: k=256, =256, q=4, a=4
10 T T T T

T
-6~ FER Random
—4 FERgirth 6
—+— FERgirth 8
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—~ BERgith 8
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Fig. 7. Average RA performance with k£ = 256, n = 256, d = 4,
a=4
) Average regular RA performance: k=512, n=512, d=4, a=4
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: -6~ FER random
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10 — FERMLTSB f§
-8~ BERrandom
-e- BER girth 6
) =+ BER girth 8
10 — BERMLTSB [§
107} 4
i
L 4
w
o
107k 4
107 4
107k 4
10'5 L L L L L
1 2 4 5 6 7
E,N, (dB)
Fig. 8. Average RA performance with k£ = 512, n = 512,d = 4,
a=4
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