

Institut Eurécom

Corporate Communications Department

2229, route des Crêtes

B.P. 193

06904 Sophia Antipolis

FRANCE

Research Report RR-03-082

White Paper:
Honeypot, Honeynet: A comparative survey1

September 14, 2003

Fabien Pouget, Marc Dacier

Institut Eurécom
Email: {pouget,dacier@eurecom.fr}

1 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044

1

1. Introduction ..3

2. Today Available Tools ...4

3. Honeynets...10

3.1 Definition ...10

3.2 First-Generation: GenI Honeynet...11

3.2.1 Data Control ..12

3.2.2 Data Capture..13

3.3 Second-Generation: GenII Honeynet ...14

3.3.1 Data Control ..14

3.3.2 Data Capture..15

4. Detailed presentation of three specific honeypots..17

4.1 Deception Toolkit: DTK ..17

4.1.1 Presentation ...17

4.1.2 Modus Operandi..17

4.1.3 General Remarks ...17

4.1.4 Implementation Details ...18

4.2 LaBrea Tarpit ...20

4.2.1 Presentation ...20

4.2.2 Modus Operandi..21

4.2.3 General Remarks ...22

4.2.4 Implementation Details ...23

4.3 Honeyd ...25

4.3.1 Presentation ...25

4.3.2 Modus Operandi..25

4.3.3 General Remarks ...28

4.3.4 Implementation Details ...29

5. Conclusion..32

6. Bibliography...33

2

White Paper:
“Honeypot, Honeynet: A comparative survey2”

Fabien Pouget, Marc Dacier

 Institut Eurécom

 Email: {pouget,dacier@eurecom.fr}

Institut Eurécom

 2229, Route des Crêtes ; BP 193

 06904 Sophia Antipolis Cedex ; France

Abstract

Many different tools defined as honeypots, honeynets and other honeytokens have been proposed

on the Internet during the last 3 years. However each solution suits well for some specific needs

and can be inadequate in many other cases. In this document, we offer to help the reader having a

good overview of existing tools. We present their main features and we describe some of them

with more details.

1. Introduction

Honeypots, honeytokens and honeynets have been used for some time in computing systems even

if the use of this terminology is recent. During the last two years, many different implementations

of these concepts have been proposed and this paper intends to provide a complete overview of

current available solutions. We present their main characteristics and we describe with more

details three of them.

By exploiting well-defined concepts used by the dependability community, we define honeypots

as specific environments where vulnerabilities have been deliberately introduced in order to

observe intrusions [poSt03, page 32]. We report the interested reader to [PoDa03a] for a more

2 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044

3

detailed presentation of this honeypot terminology. Many simple implementations are classified

as honeypots (an unused web server that logs intrusion attempts for instance), but more

sophisticated solutions can also be found in the Internet. This paper focuses on these existing

honeypot tools only. Our comparative survey aims at giving a complete overview of the current

solutions: their advantages, limitations and implementation requirements. Moreover, we invite

the interested reader to visit [HonWeb]. It is a web site dedicated to honeypots and IDS which

provides a list of currently available honeypots as well as some links to relevant papers and web

pages on the subject.

The paper is organized as follows. Section 2 lists honeypots solutions that are currently available.

Section 3 focuses on so-called ‘honeynet’ solutions (see [PoDa03a]). And Section 4 provides

more in-depth information on three of these solutions: Deception Toolkit (DTK), LaBrea Tarpit

and Honeyd.

2. Today Available Tools

There are several free and a few commercial honeypots available on the market. Their

functionality differs greatly, as well as their complexity and ease of use.

In this section a close look will be taken at today’s available solutions. This is for information

only and many changes are possible within the next few months.

- Symantec Decoy Server is the successor of ManTrapTM, a commercially

honeypot implementation by Recourse Technologies. Symantec Corp. acquired Recourse

Technologies in July 2002. This acquisition brought Recourse’s Mantrap into the

Symantec portfolio with a new commercial name: Symantec Decoy Server. Consequently

both names refer to the same product, which is characterized on its home page by:

”Symantec Decoy Server can create a virtual minefield that an internal attacker must

successfully navigate in order to reach his target. One step in the wrong direction and the

attacker is exposed” [ManT03]

The main concepts of Symantec Decoy Server are so-called cages (see figure 1). A cage

is basically a copy of the host operating system connected to a dedicated network

4

interface card. During installation the operating environments inside the cages are

generated to be essentially the same that of the host. The Symantec Decoy Server

software also installs a kernel wrapper that controls the interaction between the cages and

the host kernel. Consequently the cages are presented on the network as four individual

systems, each with its own network interface. All relevant activities in the cages are

logged, such as keystrokes, process invocation and file accesses for later analysis.

- Deception Toolkit (DTK) is a set of free scripts written in Perl by Fred Cohen

[Coh99]. “DTK is a toolkit designed to give defenders a couple of orders of magnitude

advantage over attackers.”

It uses deception to counter attacks. The basic idea is to make it appear to attackers as if

the system running DTK has a large number of vulnerabilities. One very interesting

feature of the DTK is the so-called deception port. Fred Cohen proposes that a listener on

TCP port 365 should indicate whether a machine one is trying to connect to is running a

deception defense in the hope that attackers who wish to avoid deceptive defenses will

check there first.

5

- Specter is a commercially available honeypot by NeoWorx, a Swiss group

[Spec03]. It simulates a complete machine, providing an interesting target for hackers to

lure them away from the real machines.

- BackOfficer Friendly (or simple BOF) was developed by Marcus Ranum and

Andrew Lambeth. They are members of the team that created the NFR -Network Flight

Recorder- a commercially available IDS [Bof03].

BOF works basically like Specter with the difference that the program is much simpler. It

was released in 1998 and it is freely available for personal use on the NFR website.

- HoneyWeb by Kevin Timm is a deception based web server program that can be

used as a standalone server or in conjunction with Honeyd (see 4.3 for Honeyd

information). This http server written in Python returns different server versions

depending on http requests listened on port 80 and logs activity detected on it. It does

basic regex comparison to incoming request to determine what associated headers to

return. HoneyWeb works in two modes "Persistent" and "Non- Persistent". In "Non-

persistent" mode HoneyWeb is basically a more intelligent netcat and returns back 200

OK for every request, unless defined otherwise, along with the other associated headers

for that type of server. In "Persistent" mode HoneyWeb remembers the IP and always

returns the same server version to the same IP for a specified period of time, in addition it

does basic request comparisons between server families to determine if a 404 should be

sent back or not. For example a host whose requests are distinctly Unix like requests

receives 404 for distinctly Microsoft style requests. Moreover, HoneyWeb does some

bogus request checking and sends back server specific error pages on bogus requests.

Attack specific pages can be specified to make HoneyWeb appear more real for

interactive attackers.

- KFSensor is developed by Keyfocus [KFsens]. It is a host based Intrusion

Detection System (IDS). It acts as a honeypot to attract and detect hackers by simulating

vulnerable system services and Trojans by opening ports on the machine it is installed on

and waiting for connections to be made to these ports. It does this in exactly the same way

6

as conventional server software, such as a web server or an SMTP server. By doing this it

sets up a target, or a honey pot server, that will record the actions of a hacker. KFSensor

has begun an open beta testing program and is currently available for free.

- The Bait N Switch Honeypot developed by Team Violating is defined as “an

active and aggressive part of the network security infrastructure” [BaitSw]. It reacts to

intrusion attempts by redirecting all traffic from ‘bad’ IP addresses to a honeypot that is

partially mirroring the production server. Once switched, the hacker is unknowingly

attacking the honeypot instead of the real data while the client and/or users still safely

accessing the real system. This is not a honeypot use. It is based on snort, linux iproute2

and netfilter [Lin03]. The honeypot component itself can be chosen independently.

Whereas its installation is quite arduous, its concept is very promising.

- Big Eye developed by Team Violating is a network utility (dump), which can be

run in different modes. It can run as a sniffer, as a tcp/udp/icmp connection logger, be

bound to a port and listen for tcp/udp incoming connections, or as a honeypot. The

honeypot mode is an emulation scheme to mimic applications protocols such as: ftp or

http. This is a low to medium interaction honeypot [BigEye].

- Smoke Detector is a commercially available hardware honeypot by Palisade

[Smok03]. It is a drop-in network appliance that provides defensive decoy and detection

capabilities including alerting and reporting of unauthorized access attempts. It mimics

interesting or potentially vulnerable elements on a network for the purpose of attracting

and detecting inappropriate activities. It can be configured to emulate up to 19 distinct

networked machines in varying configurations of operating systems and services. Some

complementary tools for analyzing logs are also available.

- Tiny Honeypot (also called THP) is developed by George Bakos. “The goal isn't

to fool a skilled, determined attacker...merely to cloud the playing field with tens of

thousands of fake services, all without causing unreasonable stress on the [tiny honeypot]

host”. It is a simple honeypot program based on IPTables redirects, an xinetd listener. It

7

listens on every TCP port not currently in use, logging all activity. Furthermore, it is

possible to attach to various ports so called ‘responders’ which are simple scripts that

provide limited interaction to fool most automated attack tools, as well as quite a few

humans, at least for a little while. So it can be used as an addition to the state and content-

aware Intrusion Detection System Snort [Snort03], insofar as it allows nearly every

connection attempt to complete. Thus the content rules have a chance to actually fire,

rather than depending on simple port and protocol “context” filters [THP03].

- NetFacade is a commercially available honeypot produced by Verizon since 1999

[NetF03]. The Verizon NetFacade Intrusion Detection service creates a Honeynet that

exists to alert network security or management personnel of an intrusion. In addition, it

distracts intruders from probing and attacking the real targets on a network. NetFacade

can simulate a network of hosts running seemingly vulnerable services. A scan of the

range of IP addresses the NetFacade is simulating will return information on the simulated

services as if they were real network services running on actual hosts. Since there are no

actual users of this virtual network of simulated hosts, all traffic to it is considered to be

suspicious. All traffic to the NetFacade Intrusion Detection service on the virtual network

is logged. Little information is currently available since it uses mostly proprietary

techniques.

- Honeyd developed by Niels Provos and LaBrea Tarpit developed by Tom Liston

will be presented in the next chapter. They are two promising mid-interaction honeypots.

Table 1 summarizes some honeypot functionalities which have been discussed previously. It is

not exhaustive and information may change over time. However, it gives a first approach for

today’s available tools and some of their characteristics. The column ‘Maintained’ gives an

indication of the dynamism concerning the tool updates and public discussions about its

evolution.

8

Table 1: Honeypots comparison 1

 Level of
Interaction

Open
Source

Log
files Fake services

OS

simulation
OS Maintained Requirements Langage

BOF
[Bof03] Low No No 7 (telnet, ftp, smtp,

http, pop3, imap2) Win 32, Unix Not really

Specter
[Spec03] High No Yes

14 (smtp, ftp, pop3,
http, dns, netbus,

bo2K, telnet, finger,
imap4, ssh,sun-rpc,

sub-7, Generic Trap)

13 Windows NT,
2000, XP Nothing special

Decoy
Server

[Deco02]
High No syslog Unlimited

Windows (9x,
2000, NT)

Solaris
 Java runtime Java

DTK
[Dtk03]

Low-
Medium Yes Yes Unlimited Unix Not really Perl, C

Honeyd
[Prov03] Medium Yes Yes Unlimited unlimited Unix Yes

libdnet
libpcap
libevent
(arpd)

C
(scripts

shell-perl…)

Labrea
[Lab03]

Low-
Medium Yes syslog No none Win32s, Linux Not really libnet

libpcap C

Tiny
HoneyPot
[THP03]

Medium No Yes Linux netfilter
 Perl

Smoke
Detector
[Smok03]

High No Yes

22 (auth, finger, ftp,
http, imap, pop3,

printer, rlogin, rsh,
smtp, telnet, smb,

ssh, echo, changen,
domain, tftp,

portmap, rpc.lockd,
rpc.statd, mountd,

nfsd)

9 Windows 2000 Nothing special -

Bait N
Switch

Honeypot
[BaitSw]

Medium Yes No Switch Not really Linux Yes

Iptables/netfilte
r

Iproute2
Snort 1.9.0

-

KFSensor
[KFsens] Medium No No Unlimited none Win32 Yes http -

HoneyWeb
[HoWeb] Medium Yes Yes 1 (web server) none Win32, Unix Not really

Python 1.5 and
better

Honeyd ?
Python

NetFacade
[NetF03] High No Yes 13 8 Solaris Not really Nothing special -

BigEye
[BigEye] Medium Yes No 2

(ftp,http) Unix C

9

3. Honeynets

3.1 Definition

As discussed in [PoDa03a], there is no commonly agreed definition of the term honeypot. To

make a long stay short, we can say that, typically, a honeypot is characterized by the fact that its

implementation resides on a single machine. This is to be compared with honeynets, whose

implementation requires a set of machines.

As presented in [Honey1, Honey2], a typical Honeynet consists of multiple honeypot machines

and a firewall to limit and log network traffic. An IDS is often used to watch for potential attacks

and decode and store network traffic on the system.

By placing a firewall in front of the honeypots, it is possible to control the network flow, the

inbound as well as the outbound connections.

Michael Clark is giving in [Clark01] the common elements of a Honeynet:

- A firewall computer which logs all incoming/outcoming connections and sometimes

provides NAT service and protection against some Denial of Service attacks;

- An Intrusion Detection computer (IDS). The IDS box can be on the same box as the

firewall but it should be on an entirely separate computer that can see all of the network

traffic. It also logs all the network traffic and looks for known exploits and attacks;

- A remote syslog computer. The honeypot is slightly modified so that all commands an

intruder would issue are sent to syslog. Syslog is configured to send the logs to a remote

syslog box;

- The honeypot itself. It can be anything from a default installation to the tools presented

before and a mirror of one of the production systems.

This list is not definitive and the Honeynet word interpretation can be slightly different. Won-

Seok Lee wrote in his course slides that “Honeynet is nothing more than a high-involvement

Honeypot within which risks and vulnerabilities are the same that exist in many organizations

today” [Lee02]. According to his presentation, a honeynet also consists on a network of multiple

systems but no further description is given at this point.

10

However, they all agree that the Honeynet value lies mainly in research and that three

requirements should be taken into account: Data Control, Data Capture and Data Collection

[Honey1].

- Data Control: Once compromised a honeypot cannot be used to harm any non-honeypot

system. So the challenge consists in controlling the data flow without the intruders getting

suspicious and to give them enough flexibility to execute whatever they need.

- Data Capture: The challenge consists in capturing as much data as possible without the

intruders noticing they are monitored. The information needs to be stored remotely to

guarantee its integrity.

- Data Collection: It concerns organizations that have multiple honeynets in distributed

environments only. The challenge is to collect all of the captured information securely

from several distinct honeynets.

Some architectural Honeynet models have been suggested [Honey2, Honey3]. Those of Lance

Spitzner and the Florida Honeynet Project team have received most of the attention and many

security groups coming from various universities as well as from the industry are testing them.

As a consequence, the Honeynet Research Alliance (http://project.honeynet.org/alliance/) has

been created. It is a forum dedicated to “share ideas, experiences and findings, helping to develop

Honeynet research”.

Two models used by this group will be described in the next two chapters. They represent two

Honeynet generations and they differ mainly in the way they implement the three components

mentioned here above.

3.2 First-Generation: GenI Honeynet

The first model which is the older is called GenI Honeynet. ‘GenI’ stems from the first generation

Honeynet where one firewall separates the Honeynet into three different networks, as shown in

figure 2.

11

http://project.honeynet.org/alliance/

3.2.1 Data Control

The firewall is the primary tool for data control. It allows any inbound connections but control

outbound connections. If a honeypot reaches a certain threshold of outbound connections, the

firewall will then block all further attempts. The South Florida Project gives some firewall

implementation examples in [Sfp03]:

- CheckPoint Firewall-1 and Shell scripts [ChkPt]

- IPTables with its limit functionality [IPTab]

- OpenBSD’s pf with a session-limit pf path [Opbsd]

We observe on figure 1 that the layer-three firewall separates the Honeynet into three different

networks: specifically, the Honeynet, the Internet, and the Administrative Network.

A router is used to supplement this filtering. Any packet entering or leaving the Honeynet has to

go through both the Firewall and the router. The Firewall is the primary tool for controlling

inbound and outbound connections. The router acts as second access control device. It can

supplement the firewall; ensuring compromised honeypots are not used to attack systems outside

the Honeynet.

The firewall is designed to allow any inbound connections, but control outbound connections.

The outbound policies depend on the honeynet administrator choice. Won-Seok Lee suggests for

instance in [Lee02] to allow only packets with the IP source address of the Honeynet and to block

all ICMP outbound traffic.

The firewall keeps track of how many connections are initiated from a honeypot out to the

Internet. Once a honeypot has reached a certain limit of outbound connections, the firewall

blocks any more attempts. The South Florida Project “found five to ten outbound connections per

an hour to be a good number to keep blackhat's happy, while protecting others from attacks. This

protects the Honeynet from being used as a platform to scan, probe, or attack most other

systems.” [Honey1].

The router acts as a second layer of access controls for avoiding the Honeynet to depend on a

single source for Data Control. The South Florida Project primarily uses this to protect against

spoofed, DoS, or ICMP based attacks. The router allows only packets with the source IP address

of the Honeynet to leave the router. This prevents most spoofed based attacks, such as SYN

flooding or SMURF attacks.

12

3.2.2 Data Capture

It can be done directly from the firewall. It logs all connections initiated to and from the

Honeynet and sends alerts if necessary. Another tool could be an Intrusion Detection System

(IDS) such as Snort, which will alert the administrator of any suspicious activity and give

detailed information. In the GenI description whitepaper, Snort captures all network activity to a

binary log file [Honey1]. In addition, snort logs all ASCII communication (such as keystrokes

from an FTP session) to session breakout files. Both binary and ASCII logs are logged to their

own directory for each day. Then, all snort alerts are forwarded to a syslog server by a simple

cron script [Honey1].

However, Data Capture can be initiated from the honeypots themselves. Capture keystrokes and

screen shots can be made thanks to a modified version of bash for Unix systems and to ComLog

for Windows systems. Generally speaking, logs are not kept locally but sent to a remote log

server. This exchange must be as secure and discrete as possible [Sys03].

Figure 2: GenI Honeynet example from [GenH03]

13

http://project.honeynet.org/papers/honeynet/ftp.txt
http://project.honeynet.org/papers/honeynet/ftp.txt

3.3 Second-Generation: GenII Honeynet

The second model is called GenII Honeynet. ‘GenII’ stems from the second generation Honeynet

which was suggested in 2002 by the South Florida Honeynet Project as shown in figure 3

[GenH03].

Won-Seok Lee has characterized this new generation as “easier to deploy, yet more difficult to

detect” [Lee02]. The main difference with GenI is that it uses a layer2 gateway which acts as a

bridge, instead of a router, as shown in figure 3.

3.3.1 Data Control

Described in [GenH03], the GenII Data Control has been designed and developed by members of

the Honeynet Project. GenII incorporates firewall and intrusion detection in one system to

produce a more stealthy and flexible level of control. Within the Honeynet environment, packets

traverse the GenII Data Control system from the Internet to the Honeynet using layer2 frames.

The Data Control system sits in line between the Honeynet and the internet watching, capturing

and controlling packets as they move along the wire as shown in figure 3.

Unlike GenI Honeynets, GenII Honeynets have “all requirements combined onto a single device.

This means all Data Control, Capture, and Collection happen from a single resource. It makes it

easier to both deploy and manage. This single device consists in a layer2 gateway which acts as

a bridge” [GenH03]. This provides several advantages. The fact the device is layer2 makes it

more difficult to detect, as it has no IP Stack. There is neither routing of traffic nor any TTL

decrement. The device is stealthier as it avoids the bad guys to easily know their traffic is being

analyzed and controlled. The second advantage is, as a gateway, all inbound and outbound traffic

must go through the device. This means both control and capture of all inbound and outbound

traffic can be done from the single device.

The second change is in the way the Honeynet responds to unauthorized activity. Instead of

simply blocking connections, it intends to modify or throttle the attacker's activity. The Honeynet

Alliance suggests modifying packets as they travel through the layer2 gateway. For example,

once an attacker has taken over a system within the Honeynet, they may attempt to launch an

FTP exploit against a non-Honeynet system. With GenI technology, the data control is limited.

After the fifth attempt outbound (see 3.2.1), all further activity, including any exploits, would be

14

blocked. However, with the GenII architecture, the exploit attempt would be identified and then

modified to make the attack ineffective. The layer2 gateway would modify several bytes within

the exploit code, disabling its functionality, and then allow the crippled attack to proceed. The

attacker would see the attack launched and packets return, but would not understand why her

exploit never worked. The Honeynet also has the ability to fake responses, such as blocking

entire connections, but it returns RST packets to the attacker, forging a dropped connection.

The tool which is used in [GenH03] is Snort-Inline, a hybrid version of snort that can drop or

modify packets. We note that the Honeynet Project ambition to gather all data Capture, Control

and Collection in one single place (the layer-two gateway) is not respected in figure 3. Data

Control is done thanks to the snort-inline tagged machine, while all data are centralized on the

syslog-ng/mysql system. Thus, there are some differences between their GenII whitepaper and

their own implementation.

3.3.2 Data Capture

The South Florida Project members suggest in [GenH03] to capture data from Kernel space.

Indeed GenI operates mainly at the network level (sniffer and firewall information), which might

prevent from reading some encrypted data and so gathering precious information.

Some attempts were made by the Honeynet Alliance to obtain data from the honeypots

themselves, such as Trojaned versions of /bin/bash, however these solutions have limited

capabilities. GenII Honeynet enhances these capabilities by capturing data from kernel space. It

ensures that regardless of the communication means, such as SSH, SSL, or IPSEC, this

information is still captured.

Another idea they point out is to encapsulate the captured activity in spoofed packets that appear

as normal traffic. So attackers do not realize logs are going out of the system. One

implementation could be to send naive NETBIOS broadcast timing packets.

15

Figure 3: GenII Honeynet example from [GenH03]

So far, we have given a high level overview of the various existing honeypots and

honeynets. In the next chapter we intend to provide a more concrete perception of their

implementation and use. Consequently, three honeypots are analyzed thoroughly: Deception

Toolkit from Fred Cohen, LaBrea Tarpit from Tim Liston and Honeyd from Niels Provos. Their

levels of interaction cover the three categories: low, medium and high. Some implementation

details are also given to facilitate their installation.

16

4. Detailed presentation of three specific honeypots

4.1 Deception Toolkit: DTK

4.1.1 Presentation

The Deception Toolkit (DTK) was designed by Fred Cohen in the early 2000. It is based on the

Deception concept explained in [Coh88] and [PoDa03a]. The basic idea is not new. A system

running DTK seems to have a large number of widely known vulnerabilities. The system does

not actually have these vulnerabilities, but the attacker cannot discover this from an 'innocent

scan'. He must actually try to exercise the vulnerability. This, of course, increases his risk of

being detected. Moreover an additional deception port (TCP port 365) is opened and acts as a

pre-signaling port. DTK’s principle is thus to increase the attacker’s fear of being detected in

order to discourage him from attacking the machine.

4.1.2 Modus Operandi

Written in Perl, DTK uses TCP wrappers to process incoming service requests on ports that

would be normally blocked. Subroutines are used to log an attacker’s activity and to build

appropriate responses to inputs. Responses can be customized to lure the attacker into thinking he

has come across a poorly secured and readily exploitable service.

DTK simply listens for inputs and provides responses that seem normal (i.e., full of bugs). In the

process, it logs what is being done, provides sensible answers, and lulls the attacker into a false

sense of insecurity.

4.1.3 General Remarks

DTK's deception is programmable, but it is typically limited to producing output in response to

attacker input in such a way that it simulates the behavior of a system which is vulnerable to the

attackers’ method.

17

To be flexible enough, the deception port can be changed but IANA has assigned these ports to

DTK [34]:

> dtk 365/tcp Deception ToolKit

> dtk 365/udp Deception ToolKit

Finally DTK is not interfering with the normal operations of a system (tcp-wrappers) insofar as

deception can be done on the ports that are not used or ports that tcp-wrapper would deny.

As Cohen replied in a FAQ on his webpage, DTK is not the end all to information protection. It is

not a strong protection against serious attackers. Today, it is not even very good against experts.

But it is a beginning that has some reasonable value. It works, it is reasonably secure, and it

definitely increases the uncertainty level for the bad guys. The code running on the deception port

is made of only 1-line in C. The whole DTK today is only 100K [Coh88].

4.1.4 Implementation Details

DTK currently uses Perl and C programs. So a C compiler and Perl interpreter must be installed

before running DTK.

DTK currently has the following components:

• Generic.pl - a generic interface that works via tcp wrappers to service incoming

requests.

• listen.pl - a port listener that listens to a port and forks slave processes to handle

each inbound attempt.

• logging.pl - the subroutines and initialization to log what is happening.

• respond.pl - the subroutine for responding based on 'response' file content.

• notify.pl - a sample program to notify administrators of known attacks by email.

• coredump.c - produces a coredump message on a port (what a fakeout).

• deception.c - working on a C version of the program - don't even think about

compiling it yet.

• makefile - makes the C programs into executables - truly trivial.

18

• [nn].response - the responder finiate state machine for each port. This takes some

understanding of finite state machines and will be detailed later in this document.

• @[nn].[something] - a response file for non-trivial outputs.

• @fake.passwd - a fake password file that nobody will ever be able to decode.

• expandlog.pl - expand's compressed logfiles into more readable form

DTK has been tested on Linux machines (RedHat 7.3). In this case the "Generic.pl" program is

used and it requires TCP wrappers to be in place as well as the InterNET services daemon inetd

[Inet02].

Script files are not so well documented and one possible implementation procedure is given in the

next paragraphs to facilitate the installation. The distribution file should be copied to a convenient

directory (an empty one) and unpacked, unzipped, untared, etc. A precaution should be taken

here. A different folder must be used to install DTK. Otherwise it will crash.

Then configuration is done by typing: “Configure”. The working directory ('.'), Perl libraries and

the Perl interpreter must be in the path. Defaults can be chosen for most of the entries most of the

time. /dtk is assumed here to be the location of the running programs for the rest of this

instruction. Configure helps implement the deception by renaming all of the system-dependent

entries in the deceptions and the programs so that everything appears to be coming from the

system and so that email and other things done by DTK go to the right places.

The relevant lines from the /dtk/dtk.hosts.allow file must then be copied into the /etc/hosts.allow

file to implement the desired deceptions from addresses not otherwise authorized to perform the

applicable services. The same operation must be done with the appropriate lines from the

/dtk/dtk.inetd.conf file. They must be copied into the /etc/inetd.conf file to enable the services

that are going to provide deception.

At this point of the installation the command 'kill -HUP' on inetd should not be used.

Now, the appropriate lines from the /dtk/dtk.services file must be added into the /etc/services file

to reflect the services which are going to provide deception and to add the now official DTK

"deception active" port - 365 to the services file.

Thus, if the telnet service (telnetd daemon) has to be replaced by the fake telnet service of DTK,

the following lines should be put:

19

Into /etc/hosts.allow:

in.telnetd:all:twist /dtk/telnetd –aL/dtk/Telnet.pl %a 80 %u %d testing

Into inetd.conf:

telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

The process of the inetd daemon must be found ("ps -a | grep inetd"). For recent Unix kernels this

might be a problem as inetd is replaced by xinetd.

To conclude a hangup signal must be sent to reload the /etc/inetd.conf file into the memory - "kill

-HUP <ID>" where <ID> is the process Id discovered by the ps command previously.

The deception can be tested out by trying something like: "telnet localhost 365". The result

should be a slight delay followed by a message indicating that DTK is operating. The same

method can be applied to the other services.

In addition, the rc.local file might be modified to include services that do not need to go through

TCP wrappers. This will enable them at startup. A typical example is given in /dtk/dtk.rc.local

which is to be added (on some Unix systems) to /etc/rc.d/rc.local to be run at startup. To start

these services, the commands must be taken as they appear in the /dtk/dtk.rc.local file and run as

root.

A commercial DTK GUI is also available on the web site [Dtk03]. It can be found with the

White Glove Linux suite produced by Fred Cohen & Associates.

4.2 LaBrea Tarpit

4.2.1 Presentation

LaBrea is a program written in C by Tom Liston that creates a tarpit or, as some have called it, a

“sticky honeypot”. It consists in a small, open-source network application that monitors traffic on

the local segment. It takes over unused IP addresses on a network and creates ‘virtual machines’

that answer to connection attempts. LaBrea answers those connection attempts in a way that

causes the machine at the other end to get ‘stuck’, sometimes for a very long time. Worms

trapped in the tarpit are unable to move along to infect other computers. Stuck hackers first waste

20

their time flailing away at a non-existent machine; they are then forced to shut down their

hacking program or computer to escape.

Liston programmed LaBrea in response to Code Red, the worm that has been scouring the

Internet since June 1999.

Some of Liston's nasty little visitors have been stuck in his tarpit for over a week [List03].

4.2.2 Modus Operandi

LaBrea works by watching ARP requests and replies. When it sees consecutive ARP requests

spaced several seconds apart, without any intervening ARP reply, it assumes that the IP in

question is unoccupied. It then creates an ARP reply with a bogus MAC address, and fires it back

to the requester.

That way the router associates this MAC address to the IP address and acts accordingly. So

LaBrea watches for TCP traffic destined for this MAC address and ‘tarpits’ the connection

attempt: for instance when it sees an inbound TCP SYN packet, it replies with a SYN/ACK.

LaBrea tries to give its ‘virtual machines’ some character: They can be pinged, they can response

to a SYN/ACK with a reset… To be more precise LaBrea answers connection attempts in two

different ways that tie up the connecting process: Tarpitting and Persist Trapping [List03].

Tarpitting:

 It is the tactic of slowing down a TCP connection when a hostile party’s autonomous agent is on

the other end. LaBrea completes the connection initialization, tells the connecting machine that it

will only accept small (~5 byte) chunks of data, and then ignores any other traffic.

 To be more concrete, LaBrea mimics the TCP handshake but dutifully checks and ignore for

instance the ACK packet. At that point the requesting computer has committed many other

resources to the connection (computer time, memory for counters, buffers, etc) and it starts a

countdown clock, waiting for the destination computer (the tarpit honeypot) to start talking.

However, LaBrea does not keep track of the connection.

Consequently, the requesting will wait a decent time interval and send a few ACK packets spaced

out over time and which are still ignored, and then eventually the requesting computer drops the

connection. While the timeout values may vary between Operating Systems, most are measured

21

in minutes (about 5 to 30 minutes in general), compared to the usual milliseconds for a

handshake. Any scanner looking for vulnerable systems will get very slow answers.

Persisting Trapping:

This is an “extra sticky” option that can be chosen. After the handshake the source computer

waits for LaBrea station to call back but it never happens as it was said previously. After a certain

amount of time has passed, the source computer sends another ACK packet. If LaBrea is set for

persistent connections it promptly replies by sending a packet with the TCP RECV window set to

0 byte. LaBrea ACKs the first inbound data packet with a WIN 0 and responds to all following

WIN probes with a WIN 0, causing the connecting machine to hang in the "persistent" state. Each

time, the source computer thinks the connection is good so it resets its timeout clock and starts

waiting again. Indeed, as long as TCP is receiving the proper responses within the times it

expects, the connection is never broken. The connection is hold open for an indefinite period of

time so that only a process reset at the other end will end it. And LaBrea Tarpit offers to trap

connections this way for days, weeks, or according to the LaBrea site, even months [List03].

4.2.3 General Remarks

LaBrea is a very friendly tool that gives a simple overview of what a honeypot looks like. The C

files are very well documented and based on them few arrangements can be made. Options are

abundant and correctly explained.

This tool was built with the same motivation than another one, called DTK (Deception Tool Kit

by F.Cohen). The argument consists in giving a lot of work to the attacker so that she becomes

annoyed and decides to give up [MicRi01]. This is typically a production honeypot.

It basically accepts connections to nonexistent IPs, then just sits on them, forcing the remote end

to tie up a socket until it times out. Tom Liston thinks that “this effectively drops a worm's scan

rate from a few dozen tries per second per socket, to a few dozen tries per hour per socket. Even

if a next-generation worm had the intelligence not to wait on a connection for the full default

timeout, they need to wait at least 5 seconds or so to give the other side a fair chance to respond.

That would still drop the scan rate by a factor of 10 or more (ratio between the traditional

handshake delay and the TCP timeout value)” [Lab03].

22

As a bonus, this even provides an easy way of logging and recognizing attempted port-scans.

On the other hand LaBrea can be seen as an insensitive for some malicious people: Security

experts doubt that LaBrea will have a big impact on the Internet as a whole. And they argue that

LaBrea only gives “antisocial” responses to unsolicited connection attempts [Foc03, Cook02,

ScoYu01]. This might be dangerous if this method becomes too widespread by tarpitting on

purpose network connections attempts. Tim Liston’s answer was that LaBrea is a concept that is

on the “benign” end of the spectrum of possible responses and it is still legitimated.

To conclude laBrea is a very interesting tool for people to initiate themselves to honeypots and

for people who are looking for very low interaction in order to capture specific activity, such as

Worms or scanning activity. Its “antisocial” behavior should be kept in mind while using it.

4.2.4 Implementation Details

LaBrea tarpit requires both libnet and libpcap to compile. Other than that, a "make" with the

included Makefile should work. No more configuration procedure is required. It has been tested

under Linux Red Hat 7.3. However a new version 2.4 was released on February 10th, 2003 and

should enable Labrea to work on all Win32 platforms.

Installation is relatively easy and many options are available:

All the free IP addresses might not be used by LaBrea. To specify those which should not be

chosen the /etc/LaBreaExclude file has to be modified. It contains a list of IPs (1/line) to exclude

from LaBrea's attention. LaBrea won't do anything to these IPs.

For instance if the NetBEUI ports (137, 138 and 139) and all local addresses have to be excluded

from being tarpitted, these lines must be added to the /etc/LaBreaConfig file:

137-139 portignore

<x.x.x.x>-<y.y.y.y> ipignore

where the <x.x.x.x> and <y.y.y.y> are the starting and ending addresses of the local subnet.

IP address can be specified either as single addresses (i.e.: "192.168.0.2") or they can be specified

as a range of addresses: (i.e.: "192.168.0.10 - 192.168.0.20"). It works the same way with ports.

23

Syslog logging can be chosen instead of the standard output (log to the screen). That way logs are

stored and can be monitored using “tail –f <system log file>”.

However the LaBrea logging may grow by megabytes, which is far too large to examine without

filtering. A specific tool called LaBrea Reporter is designed to summarize what happened. It is a

script written by Sverre Stoltenberg in the Python open-source language [Pyth02]. It gives

summaries of the packet activity, the source hosts in order and the destination hosts in order,

along with short comments (ports count. The following picture (fig. 4) is part of one report that

has been shortened. The full version can be found on the LaBrea web site [Lab03]. It lists all the

source and target addresses, which is important information.

LaBrea rapport:
===============

Start date: Wed Jun 26 00:01:28
End date: Wed Jun 26 23:55:05

Total transactions: 380634

New source hosts tarpitted this period: 105
 Number of target hosts: 1145
 New tarpitted connections this period: 12695
 Answered SYN/ACK & FIN/ACK scans: 32969 ...

Tarpit Target ports
===================
 21: 2
 22: 996
 25: 6
 80: 2676 ...

Source address
==============
 996 129.81.42.202 Wed Jun 26 01:07:08 - Wed Jun 26 01:08:32 EST
 1134 213.10.150.199 [ipd50a96c7.speed.planet.nl] Wed Jun 26 12:23:27 - Wed Jun 26 12:25:13
EST ...

Target address Total Port: Count Port: Count Port: Count
============== ===== ============ ============ ============
 xxx.xxx.xxx.10: 13 | 22: 1 80: 2 1433: 7
xxx.xxx.xxx.101: 26 | 22: 2 80: 17 1433: 7 ...

This report is created with LaBrea-file.py, a variation
of LaBrea-stats.py. The latest version can be found at
http://people.opera.com/sverrest/LaBrea/

Information abount what LaBrea is can be found at
http://www.threenorth.com/LaBrea/

figure 4: LaBrea Report from [Lab03]

24

Finally a simple executable file (LaBrea@Home) originally built against CodeRed and Nimda

worms is also available. It can send specially crafted packets to the worm. The other end is lured

into thinking it has a genuine connection on port 80 and then prepares to send its payload. But

LaBrea@Home will then instruct the other end to wait by setting what is known as the TCP

"window" to zero and replying the same way each and every time the other end attempts to send

information. The other end - the scanner or worm - will then be held up forever, or until

LaBrea@Home releases it [Lab03, MicBiz02].

(More information is available on the web page: http://www.hackbusters.net/LaBrea/)

4.3 Honeyd

4.3.1 Presentation

Honeyd, created by Niels Provos in 2002, is an extremely powerful, open source honeypot. It is

designed to run on the Unix system and it has the ability to emulate over 400 different operating

systems and thousands of different computers. Like Specter, Honeyd emulates operating systems

at the application level stack but it also emulates operating systems at the IP level stack. As

mentioned before, Honeyd is an open source solution which is free to use and the number of fake

services will grow as members of the security community develop and contribute code.

4.3.2 Modus Operandi

Honeyd introduces several new concepts to honeypots. First, it does not detect attacks against its

own IP address, as BOF and Specter do. Instead, Honeyd assumes the identity of any unused IP

address. The goal is to forward the traffic of all non-existent systems to the Honeyd honeypot.

Indeed Honeyd is receiving attacks by implementing ARP Spoofing [Arps98]. This layer2-based

method binds an IP address of the intended victim (one which is currently not in use) to the MAC

address of the honeypot. This way all systems on the network (including routers) send IP packets

of non-existent system to the Honeyd honeypot.

25

http://www.hackbusters.net/LaBrea/

This method is not intrinsically coded within Honeyd insofar as two approaches can be applied

here:

- Honeyd can depend on another program called Arpd [Arpd] that will help to do that. Arpd,

developed by Dug Song, identifies non existent systems and then forwards any connections to

them to the Honeyd honeypot. The IP address of the non existent system is bound to the MAC

address of the Honeyd honeypot. Arpd process confirms periodically that the IP is not in use by

sending ARP requests. And since this spoofing happens at layer 2, it works in switched

environments just as well as in hubbed environments.

- An alternative to Arpd is ARP Proxy [Arpp03]. It is working quite the same but the ARP entries

are statically introduced. Non existent IP addresses can be statically bound to Honeyd’s MAC

address. Most versions of Unix allow a system to assign and broadcast such ARP assignments.

The arp –s command on the honeypot is used to accomplish this. The –s parameter statically

assigns the MAC address to an IP.

For instance if the following addresses 192.168.0.201, 192.168.0.202 and 192.168.0.203 are

destined to be used by Honeyd, Arpd will automatically check that they are not used before ARP

spoofing. On the contrary, with ARP Proxy ARP spoofing will be activated by means of static

entries such as:

arp -s 192.168.1.201 <honeypot MAC address> permanent pub

arp -s 192.168.1.202 <honeypot MAC address> permanent pub

arp -s 192.168.1.203 <honeypot MAC address> permanent pub

The result from the two previous approaches will be the ARP Table being updated. So when an

attacker attempts to connect to a system that does not exist, Honeyd receives the connection

attempt, assumes the identity of the non-existent system and then replies to the attacker.

Something interesting is that Honeyd can emulate different operating systems at the same time. In

comparison, Specter can emulate more than 13 different operating systems but it can only

emulate one system at one time [Spec03]. Honeyd can emulate many different systems at the

same time. It takes the very same database of signatures that Nmap uses and replies to Nmap

26

probes based on the emulated operating system [Fyo98, Toor01]. This can be seen as responses in

order to lure the OS fingerprinting of Nmap-based tools.

Table 2 gives an example of the Nmap signature database. So if Linux 2.2.14 is emulated,

Honeyd will use the given test descriptions to fill the packets coming from the virtual machine

running Linux 2.2.14. From the outside an Nmap OS fingerprinting attempt will only reveal that

this virtual machine is effectively running on Linux 2.2.14.

Table 2: Nmap Fingerprinting database

This collection of fingerprint data is (C) 1998,1999 by
Fyodor (fyodor@dhp.com, fyodor@insecure.org).
The usage license for this file is the same as that for which
you acquired nmap (probably the GNU General Public License)

TEST DESCRIPTION:
Tseq is the TCP sequence ability test
T1 is a SYN packet with a bunch of TCP options to open port
T2 is a NULL packet w/options to open port
T3 is a SYN|FIN|URG|PSH packet w/options to open port
T4 is an ACK to open port w/options
T5 is a SYN to closed port w/options
T6 is an ACK to closed port w/options
T7 is a FIN|PSH|URG to a closed port w/options
PU is a UDP packet to a closed port

Contributed by mouse-aj3d@datastacks.com, Samuel Knapp,
madranis@madranis.com
Fingerprint Linux 2.2.14
TSeq(Class=RI%gcd=<6%SI=<2DD9C88&>755F7)
T1(DF=Y%W=7C38|7F53%ACK=S++%Flags=AS%Ops=MENNTNW)
T2(Resp=N)
T3(Resp=Y%DF=Y%W=7C38|7F53%ACK=S++%Flags=AS%Ops=MENNTNW)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S%Flags=AR%Ops=)
PU(DF=N%TOS=C0%IPLEN=178%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=F|E)

(...)

27

 Furthermore, Honeyd may be configured to interact with the attacker using an emulated service.

This is done by executing one specific script.

Each unique script determines the interaction with the attacker. Also, each unique script

determines the OS type of the application, so different scripts will be used depending not only on

the service type but the OS type as well. They can be developed with any scripting or coding

language: Shell Code, Perl… Some are already available on the web (google search: Honeyd

<service_name> script).

4.3.3 General Remarks

Honeyd has many advantages including the fact that it is a free and open-source tool.

One application: blackholing. This enlightens a concept first demonstrated by the Cooperative

Association for Internet Data Analysis (CAIDA). Without exploiting any honeypot but thanks to

their own tools, they conducted an analysis of source-spoofed distributed denial-of-service

attacks based on return connections for an entire /8 network [Caid03]. This can also be applied to

monitoring the level of ‘noise’ on the Internet, including worms, exploit tools, and automated

attacks.

Honeyd offers an interesting way to apply this method. Instead of monitoring a single IP address,

entire networks with non-existent systems can be identified. Then all traffic from that network

could be routed to Honeyd honeypot. The intent of blackholing is not to identify a single attack

but to identify trends.

Configuration can be very granular: Honeyd may be used to create a virtual honeynet or for

general network monitoring. It supports the creation of a virtual network topology including

dedicated routes and routers. The routes can be attributed with latency and packet loss to make

the topology seem more realistic and to defeat the attacker’s attempt to understand the network

topology.

Currently, this ability to interact with different attackers is limited to TCP services, ICMP

requests and ICMP replies. Currently all UDP ports are assumed to be either blocked or proxied

28

or opened as it is specified in the Implementation Details part. But no script is designed on UDP

protocol.

As Honeyd OS emulation is based on Nmap signatures, a Nmap file can be found in the Honeyd

source package with more than 473 different operating systems fingerprinted. This is where

Honeyd gets its limitation of emulating 473 different operating systems. This method is not really

foolproof. Nmap is but one of many ways to determine the OS type (Ofir Arkin’s Xprobe tool,

passive OS fingerprinting) [Ark1, Ark2, ArkYa02]. This makes Honeyd detectable.

Finally a special attention can be paid to new systems that are going to be introduced in the

network. Valid systems will start using the IP addresses for which ARP entries were added (via

Arpd or ARP Proxy), this will cause conflicts on the local network.

As it is typical of most low-interaction honeypots, Honeyd introduces limited risk to an

organization. The honeypot is not designed to provide a complete operating system to attackers;

instead attackers are limited to the functionality emulated by the scripts.

4.3.4 Implementation Details

Installation is not commented yet but it is not complicated insofar as *nix basis are acquired.

In order to compile Honeyd, you need the following libraries:

libevent - an asynchronous event library.

libdnet - the [not so] dumb network library.

libpcap - a packet capture library.

One more tool is eventually required: Arpd (or proxy arp as described before).

Then install commands are:

>./configure

> make

> make install

One example of Honeyd configuration file is given in table 3:

29

http://www.monkey.org/~provos/libevent/
http://libdnet.sourceforge.net/
http://www.tcpdump.org/

Table 3 : Honeyd configuration example

Honeyd configuration file ##

Windows computers (default)

create default

set default personality "Windows NT 4.0 Server SP5-SP6"

set default default tcp action reset

add default tcp port 110 "sh scripts/pop.sh"

add default tcp port 80 "perl scripts/iis-0.95/main.pl"

add default tcp port 25 block

add default tcp port 21 "sh scripts/ftp.sh"

add default tcp port 22 proxy $ipsrc:22

add default udp port 139 drop

set default uptime 3284460

Cisco router

create router

set router personality "Cisco 4500-M running IOS 11.3(6) IP Plus"

add router tcp port 23 "/usr/bin/perl scripts/router-telnet.pl"

set router default tcp action reset

set router uid 32767 gid 32767

set router uptime 1327650

Bind specific templates to specific IP address

If not bound, default to Windows template

bind 192.168.1.150 router

Different types of computers are created. Honeyd calls them templates. These templates define

the behavior of each emulated operating system. In this configuration file, two different emulated

computers have been created: default and router. For each template, one defines its "personality":

the operating system to be emulated at the IP level. Personality names are defined based on those

used in the Nmap fingerprint database. The personality does not affect the behavior of the

emulated services; it only modifies the behavior of the IP stack. For the emulated services,

different scripts can be selected based on what type of OS you want to emulate. In other words, if

the personality is Windows, nothing forbids you from choosing to emulate an Apache server on

the HTTP port. A script emulating an IIS server should be used instead. However this would

likely be suspicious to an attacker.

The next step is to define the behavior of each port. Specific ports can be assigned specific

behavior, or general behavior. For example, in the template default all the TCP ports are assigned

the reset behavior: they respond with a RST to any connection attempts. Other options are open

30

(will respond with ACK) or block (will not respond). A fourth option is the use of scripts to

emulate services. In the case of the template default scripts are bound to the ports 21, 80, and

110. These are the actual scripts that are executed and interact with the attackers. The option to

proxy connection attempts to other systems is also available. In the default template, all SSH

connections are proxied back to the attacker. There are several other more advance features of

Honeyd, such as creating virtual, routed networks and spoofed timestamps, but a detailed

explanation is beyond the scope of this paper.

Once templates are created, IP addresses must be bound to one of them. In the example given in

table 3, IP address 192.168.1.150 is bound to template router. In this case, if anyone attempts to

connect to IP address 192.168.1.150, they will be interacting with the Honeyd honeypot using the

router template. The default template is a key template to Honeyd. The template with the name

default becomes the default for all other connections to non-used IP space. So if any connections

in the example are made to any unused IP space in the 192.168.1.0/24 network, they will get a

Windows box emulated by Honeyd, except for the IP 192.168.1.150, for which they will get the

Cisco router.

When the configuration is correct Honeyd can be launched. Default command series (with root

acess) might be:

> arpd –i eth0 193.55.112.50/24

> Honeyd –d –p nmap.prints –f /etc/Honeyd/Honeyd.conf 193.55.112.50/24

In this case, we use Arpd instead of Arp Proxy. The arguments are the network interface to

communicate with and the range of IP addresses that will be checked by Arpd daemon in order to

find non-used addresses.

‘-d’ is optional. It prints directly logs on the screen. However ‘-p’ and ‘-f’ are mandatory. They

give the access path to the OS fingerprint file of Nmap and Honeyd configuration file

respectively.

The address class specified to Arpd and Honeyd should be identical or Honeyd sub-class should

be at least included in Arpd larger one.

31

We refer the interested reader to http://www.citi.umich.edu/u/provos/Honeyd/ for more detailed

information.

A Honeyd-win32 version has been released in March 2003 [Dav03]. Thanks to the efforts of

Michael A. Davis, it has all the capabilities of the Unix version.

The installation is quite simple. It requires Winpcap Developer Pack, as well as libdnet-msvc and

libevent-win32 libraries [CDref, Winpcap]. All of them must be extracted with Honeyd-WIN32

source file into a common directory. Then the Honeyd.dsw project has to be loaded into MS

VC++ 6 (there is currently no support for MS VC.NET). Finally the Platform SDK must be

added to the directory search path (Tools->Options->Directories). And the Honeyd.exe

executable can be built.

5. Conclusion

In this document, we have offered a survey of the various honeypots implementations that existed

as of June 2003. A more detailed presentation of the following tools has been proposed: DTK,

LaBrea and Honeyd. Each one is associated to specific usages: LaBrea intends to “tarpit”

attackers while DTK hopes to deceive them into making them think they are observed. This

highlights the need of a careful study of the means and goals to achieve, before choosing any

particular honeypot solution. This step is all the more mandatory that many tools appear every

month in the Internet, driving by different motivations. The default choice consists in

implementing a honeypot that is more general and highly configurable, such as Honeyd.

32

http://www.citi.umich.edu/u/provos/Honeyd/

6. Bibliography

[Ark1] O. Arkin. XProbe tool home page: http://www.sys-security.com/

[Ark2] XPRobe2 home page: http://www.xprobe2.org/

[ArkYa02] O. Arkin, F. Yarochkin, « Xprobe v2.0: A fuzzy Approach to Remote Active Operating System

Fingerprinting”. August 2002. Available on line: http://www.xprobe2.org/

[Arpd] Arpd RPM packages for Linux Red Hat, available at:

http://rpmfind.net/linux/RPM/cooker/contrib/alpha/arpd-0.2-1mdk.alpha.html

[Arpp03] ARP Proxy presentation by Freenix. Available on line at:

http://www.freenix.fr/unix/linux/HOWTO/mini/Proxy-ARP.html

[Arps98] ARP Spoofing, Vergenet Presentation, April 98, available on line at:

http://www.vergenet.net/linux/redundant_linux_paper/talk/html/node3.html

[BaitSw] Bait N Switch Honeypot from Team Violating home page: http://violating.us/projects/baitnswitch/

[BigEye] BigEye home page: http://violating.us/project/bigeye/

[Bof03] Back Officer Friendly BOF (NFR Security) home page: http://www.nfr.com/resource/backOfficer.php

[Caid03] Cooperative Association for Internet Data Analysis, CAIDA home page: http://www.caida.org

[CDref] F. Pouget, M. Dacier. Research Report CD. Institut Eurecom. Ref CD-RR-03-089. Sept. 2003.

[ChkPt] CheckPoint Firewall. CheckPoint Software Technologies Ltd. Product. Home page:

http://www.spiderneteurope.com/chekpoint.htm

[Clark01] M. Clark, “Virtual Honeynets”, SecurityFocus. November 2001, available on line:

 http://online.securityfocus.com/infocus/1506

[Coh88] F. Cohen, “Deception and Perception management in Cyber-Terrorism”. 1988

[Coh99] F. Cohen, “A Mathematical Structure of Simple Defensive Network Deceptions”, 1999.

[Cook02] C. S. Cook, “Tarpits for an Imperfect World”, July 2002.

[Dav03] Honeyd-Win32 README file at : http://www.securityprofiling.com/Honeyd/WIN32_README.txt

[Deco02] Symantec Decoy Server page: http://enterprisesecurity.symantec.com/products.cfm?ProductID=157

[Dtk03] Deception Toolkit home page: http://www.all.net.dtk/

[Ether02] Ethereal Network Protocol Analyzer version 0.9.3. Network Associates, Inc. July 2002. Available on

line: http://www.ethereal.com

[Foc03] Security Focus mailing lists available at: http://www.securityfocus.com/archive

[Fyo98] Fyodor, “Remote OS Detection via TCP/IP Stack Fingerprinting”, October 1998. Available on line:

 http://www.nmap.org/nmap/nmap-fingerprinting-article.html

[GenH03] “Know Your Enemy: GenII Honeynets Easier to deploy, harder to detect, safer to maintain”, by the

honeynet Project members, June 2003. Available on line: http://project.honeynet.org/papers/gen2/

[HonWeb] Honeypots web site: http://www.honeypots.net

[Hone02] “Know Your Enemy: Learning with User-Mode Linux Building Virutal Honeynets using UML”,

Honeynet Project, December 2002. Available on line: http://www.honeynet.org/papers/uml/

33

http://www.sys-security.com/
http://www.xprobe2.org/
http://www.xprobe2.org/
http://rpmfind.net/linux/RPM/cooker/contrib/alpha/arpd-0.2-1mdk.alpha.html
http://www.freenix.fr/unix/linux/HOWTO/mini/Proxy-ARP.html
http://www.vergenet.net/linux/redundant_linux_paper/talk/html/node3.html
http://violatin.us/projects/baitnswitch/
http://violating.us/project/bigeye/
http://www.nfr.com/resource/backOfficer.php
http://www.caida.org/
http://www.spiderneteurope.com/chekpoint.htm
http://online.securityfocus.com/infocus/1506
http://www.securityprofiling.com/honeyd/WIN32_README.txt
http://enterprisesecurity.symantec.com/products.cfm?ProductID=157
http://www.all.net.dtk/
http://www.ethereal.com/
http://www.securityfocus.com/archive
http://www.nmap.org/nmap/nmap-fingerprinting-article.html
http://www.honeypots.net /
http://www.honeynet.org/papers/uml/

[Honey1] Honeynet Project, “Know Your Enemy: Defining Virtual Honeynets”. Sep. 2002

[Honey2] Honeynet Project, “Know Your Enemy: Part I”. 2001. Available on line at:

http://project.honeynet.org/papers/index.html

[Honey3] Honeynet Project, “Know Your Enemy: Part II”. 2001. Available on line at:

http://project.honeynet.org/papers/index.html

[Honey4] Honeynet Project, “Know Your Enemy: Motives”. 2002. Available on line at:

http://project.honeynet.org/papers/index.html

[Honey5] Honeynet Project, “Know Your Enemy: A Forensic Analysis”. 2002

[HoneyW] Honeyd from N. Provos home page: http://www.citi.umich.edu/u/provos/Honeyd/

[HoWeb] HoneyWeb download page: http://www.var-log.com/files/

[Inet02] Internet Service Daemon Inetd home page: http://www.xinetd.org

[IpTab] The IPTables/netfilter project home page: http://www.netfilter.org/

[Incid02] Incidents Mailing List archives available on line:

http://www.incidents.org/archives/intrusions/msg03763.html

[KFsens] KFSensor, by KeyFocus, home apge: http://www.keyfocus.net/kfsensor/

[Lab03] LaBrea-The Tarpit home page: http://hackbusters.net/LaBrea.May2002

[Lee02] Won-Seok Lee, “Honeypots”. Ajou University Info. Comm. & Security lab.

[Libevt] Libevent-win32, lidnet-msvc and winpcap Librairies available on line: http://securityprofiling.com

[Lin03] Linux documentation on Netfilter and IPTables available on line at: http://www.linux.org/docs/

[List03] “LaBrea::Tarpit HELD SINCE” home page: http://www.hackbusters.net/cgi-bin/guests.cgi?captured

[Mant03] “Intrusion Detection Systems: SymantecTM Mantrap TM” technical paper available at

http://enterprisesecurity.symantec.com/

[MicBiz02] R. Michael and Bizsystems, “LaBrea::tarpit” Perl Module, release 1.03. June 2002. Available on line:

http://scans.bizsystems.net

[MicRi01] J.B. Michael, R.D. Riehle, “Intelligent Software Decoys”. California US. 2001

[NetF03] NetFacade Intrusion Detection Service, by Verizon, home page:

http://www22.verizon.com/fns/netsec/fns_netsecurity_netfacade.html

[Opbsd] The OpenBSD Project home page: http://www.openbsd.org/

[PoDa03a] F. Pouget, M. Dacier, “Honeypot, Honeynet, Honeytoken: Terminological Issues”. Eurecom Research

Report RR-03-081. August 2003.

[PoSt03] D. Powell, R. Stroud, “Conceptual Model and Architecture of MAFTIA”. MAFTIA Project (IST-1999-

11583), Deliverable D21, January 2003, available on line at: http://www.maftia.org

[Prov02] N. Provos, “Honeyd: A Virtual Honeypot Daemon (Extended Abstract)”, University of Michigan. US.

[Prov03] Honeyd home page: Niels Provos, http://www.citi.umich.edu/u/provos/honeyd/

[Pyth02] Python Scropting Language. Release 2.2 Python Organization. Available on line: http://www.python.org

[ScoYu01] B. Scotteberg, W. Yurcik, D. Doss, “Internet Honeypots: Protection or Entrapment?”. US University of

Illinois. 2002

34

http://project.honeynet.org/papers/index.html
http://project.honeynet.org/papers/index.html
http://project.honeynet.org/papers/index.html
http://www.citi.umich.edu/u/provos/honeyd/
http://www.var-log.com/files/
http://www.xinetd.org/
http://www.netfilter.org/
http://www.incidents.org/archives/intrusions/msg03763.html
http://www.keyfocus.net/kfsensor/
http://hackbusters.net/LaBrea.May2002
http://securityprofiling.com/
http://www.linux.org/docs/
http://www.hackbusters.net/cgi-bin/guests.cgi?captured
http://enterprisesecurity.symantec.com/
http://scans.bizsystems.net/
http://www22.verizon.com/fns/netsec/fns_netsecurity_netfacade.html
http://www.openbsd.org/
http://www.maftia.org/
http://www.citi.umich.edu/u/provos/honeyd/
http://www.python.org/

35

[Seif02] K. Seifried, “Honeypotting with VMware – basics”. www.seifried.org/security/ids/20020107-honeypot-

vmware-basics.html

[Sfp03] South Florida Honeypot project. Home page: http://www.floridahoneynet.org/

[Smok03] Smoke Detector, product home page: http://palisadesys.com/products/smokedetector/index.shtml

[Snort03] Snort Intrusion Detection System home page: http://www.snort.org/

[Spec03] Specter home page: http://www.neoworx.com/products/specter/

[Spit02] L. Spitzner, “Honeypots: Tracking Hackers”, , Addislon-Wesley, ISBN from-321-10895-7, 2002.

[Spit03] L. Spitzner, “Honeytokens: The Other Honeypot”, 2003. www.securityfocus.com/infocus/1713

[Stol03] S. Stoltenberg, “LaBrea Reporter script Release 1.10”. June 2002. Available on line:

http://people.opera.com/sverrest/LaBrea/

[Sys03] M. Bishop, “Computer Security: Art and Science”. Addison-Wesley book published in 2003.

[THP03] Tiny Honeypot home page: http://www.alpinista.org/thp/

[Toor01] “The Science of OS Fingerprinting”, Computer Security Conference Toorcon 2001. Available on line:

http://toorcon.org/2001/lineup/osfinger.ppt

[Usm03] User-Mode-Linux home page: http://user-mode-linux.sourceforge.net

[Winpcap] Winpcap version 3.0 beta home page: http://winpcap.polito.it/

http://www.floridahoneynet.org/
http://palisadesys.com/products/smokedetector/index.shtml
http://www.snort.org/
http://www.neoworx.com/products/specter/
http://people.opera.com/sverrest/LaBrea/
http://www.alpinista.org/thp/
http://toorcon.org/2001/lineup/osfinger.ppt
http://user-mode-linux.sourceforge.net/
http://winpcap.polito.it/

	1. Introduction
	2. Today Available Tools
	3. Honeynets
	3.1 Definition
	3.2 First-Generation: GenI Honeynet
	3.2.1 Data Control
	3.2.2 Data Capture

	3.3 Second-Generation: GenII Honeynet
	3.3.1 Data Control
	3.3.2 Data Capture

	4. Detailed presentation of three specific honeypots
	4.1 Deception Toolkit: DTK
	4.1.1 Presentation
	4.1.2 Modus Operandi
	4.1.3 General Remarks
	4.1.4 Implementation Details

	4.2 LaBrea Tarpit
	4.2.1 Presentation
	4.2.2 Modus Operandi
	4.2.3 General Remarks
	4.2.4 Implementation Details

	4.3 Honeyd
	4.3.1 Presentation
	4.3.2 Modus Operandi
	4.3.3 General Remarks
	4.3.4 Implementation Details

	5. Conclusion
	6. Bibliography

