

Institut Eurecom
Corporate Communications Department

2229, route des Crêtes
B.P. 193

06904 Sophia Antipolis
FRANCE

Research Report RR-03-093

White Paper:

Alert Correlation: Review of the state of the art1

November 28, 2003

Fabien Pouget, Marc Dacier

Institut Eurecom
Email: {pouget,dacier@eurecom.fr}

1 This research is supported by a research contract with France Telecom R&D, contract N. 425-17044

Table of contents
1 Introduction... 4
2 Definitions... 6

2.1 General Correlation definition .. 6
2.2 Alert Correlation ... 7

2.2.1 The needs .. 7
2.2.2 Correlation specifications ... 8
2.2.3 Input variety .. 10
2.2.4 Correlation specificities .. 13
2.2.5 Anti-correlation notion.. 14

2.3 Basic correlation operations.. 15
2.3.1 Presentation... 15
2.3.2 Compression ... 16
2.3.3 Filtering... 16
2.3.4 Selective Suppression ... 17
2.3.5 Thresholding ... 18
2.3.6 Modification.. 19
2.3.7 Generalization ... 19
2.3.8 Enrichment.. 20
2.3.9 Specialization.. 21

3 Correlation approaches ... 22
3.1 Presentation... 22
3.2 Rule-based Methods.. 26

3.2.1 Rule-based approach: an introduction .. 26
3.2.2 Rules Induction ... 27
3.2.3 Rules Matching ... 28
3.2.4 Additional Comments ... 31

3.3 Attack Scenario Methods.. 32
3.3.1 Attack Scenario-based approach: an introduction 32
3.3.2 LAMBDA and ADeLE (MIRADOR Project) .. 32
3.3.3 Hyper-Alerts approach vs. JIGSAW... 35
3.3.4 CAML... 37

3.4 Context reasoning approaches .. 38
3.4.1 Introduction... 38
3.4.2 IMPACT ... 38
3.4.3 EMERALD M-Correlator... 38
3.4.4 M2D2 .. 39

3.5 Time reasoning approaches... 40
3.5.1 Chronicles ... 40
3.5.2 ASAX.. 42
3.5.3 LogWeaver.. 43

3.6 Reasoning in the presence of Uncertainty .. 43
3.6.1 Fuzzy logic approach .. 43

3.7 State Transition graphs ... 45
3.7.1 State transition graphs approach: an introduction..................................... 45
3.7.2 STATL: overview ... 45

 2

3.8 Neural networks .. 48
3.9 Bayesian Belief Systems... 49

3.9.1 Bayesian belief approach: an introduction.. 49
3.9.2 EMERALD ... 50
3.9.3 Collaborative Intrusion detection System (CIDS) 51
3.9.4 SPICE.. 51

3.10 Other approaches .. 52
3.10.1 Codebooks... 52
3.10.2 Vote... 53
3.10.3 Genetic Algorithms... 54
3.10.4 An endless list ... 55

3.11 Complementary approaches.. 55
3.12 Comparisons and summary... 57

4 Existing tools .. 59
4.1 Generalities ... 59
4.2 Classification... 60

4.2.1 Log analysis tools ... 60
4.2.2 Management consoles... 65
4.2.3 Experimental tools .. 71
4.2.4 Miscellaneous ... 73

5 Conclusion .. 75
6 Bibliography ... 76

 3

White Paper:
“Alert Correlation: Review of the state of the art2”

Fabien Pouget, Marc Dacier

 Institut Eurécom
 Email: {pouget,dacier@eurecom.fr}

Institut Eurécom

 2229, Route des Crêtes ; BP 193
 06904 Sophia Antipolis Cedex ; France

Abstract

The purpose of this document is to offer a review of the state of the art concerning

the emerging field of so-called «alert correlation». Despite the fact that several recent

publications seem to present this domain as a new one, we will show the close

connections that exist with another well established one, namely network management

and its event correlation approaches. We try to highlight the core notions embedded

within the term “correlation” thanks to the definition of several building blocks used to

design “correlation engines”. We focus on the techniques used within the intrusion

detection domain and present a survey not only of papers published in that field but also

of currently available tools. We show the gap that exists, as of today, between

sophisticated techniques presented in research papers and actual implementations that are

readily available.

1 Introduction

Several reasons explain the increasing number of research projects, tools and

products addressing the issue of alert correlation, within the intrusion detection field.

First of all, current sensors are relatively verbose. For a given attack, or anomalous

phenomenon (such as a port scan), they can generate a possibly large amount of alerts.

2 This research is supported by a research contract with France Telecom R&D, contract N. 425-

17044

 4

This large volume of alerts is quite likely to overwhelm the operators in charge of

looking at suspicious events. The situation gets even worse when several sensors are used

to monitor the same systems from a different viewpoint. In that case, a given attack will

generate several threads of alerts from various sensors, but not necessarily from all of

them. Furthermore, it is now well agreed upon within the ID community that most of

these alerts represent false alarms [Julisch00]. Therefore, there is a need for techniques

that could automatically recognize and discard all such false alarms in order to minimize

the cost of dealing with the real alarms. Last but not least, experience shows that the

interpretation of the alerts usually requires more than the sole messages provided by the

sensors. As a consequence, there is a need for techniques that can analyze the alerts

within the context in which they have been generated. This might require the ability to

correlate them with some other, external, contextual information provided by means of

other devices than the sole intrusion detection sensors.

As we see, there are several open issues that need to be addressed in the “alert

correlation” field. In this document, we provide a survey of all the proposed techniques,

not only by the ID community but also by the network management community which

has been facing a similar problem for a longer period, namely the correlation of events

arriving from all network devices in the presence of system failures. We also look at the

various tools and products that have been proposed so far and we show the existing gap

that exists between sophisticated research approaches and rather down-to-earth,

pragmatic, techniques used in most implementations.

This paper is organized as follows. Section 2 presents the notion of “correlation”,

and more precisely, of “alert correlation”. We provide a detailed analysis of the basic

functions that characterize alert correlation and we show that complex correlation

operations can be broken into a few fundamental building blocks. Section 3 offers a

survey of the methods proposed, mostly, in research papers. Section 4, on the other hand,

looks at existing tools and products that are readily available. Section 5 concludes this

white paper.

 5

2 Definitions

2.1 General Correlation definition

The term “correlation” is relatively vague and has been used in many different

ways. Correlation stems from the Medieval Latin and is composed of two Latin roots:

cum, which means ‘with’ (relationship) and relation from relatus, the past participle of

referre, which means ‘to carry back’.

Correlation can be defined as an “action to carry back relations with each

other”.

This word is particularly used to express a relationship between variables. Thus,

correlation can be a statistic relationship between at least two variables such that

systematic changes in the value of one of them induce changes in the others. In other

words, correlation permits to express how closely variables co-vary. It can be represented

by a numerical value from -1 (perfect negative correlation) through 0 (no correlation) to

+1 (perfect positive correlation).

Correlation has been used in several domains, to denote the various treatments to

be applied on large input sets, potentially created by a small amount of common causes.

This is the case in areas such as:

- event correlation

- alert correlation

- alarm correlation

- attack correlation

Event Correlation is a widely accepted technology for managing the complexity

of modern telecommunication and data networks. It has been used for various network

management tasks, but the majority of its applications have been for network fault

management. Different elements of a given system can emit numerous signals, also called

events (simple SNMP traps for instance), that are sent to the administrator in order to

provide him information on the current system status. For instance, specific correlation

 6

applications have been developed to manage switched, SS7, wireless, ATM, SONET, IP

and other networking devices and environments. The objective consists in carrying back

essential information to the administrator from the multitude of events.

Alarm correlation is used in Network Management but in Security also. The

principle remains similar. Alarms are external manifestations of faults, where a fault is a

disorder occurring in an element of the managed network. Alarm correlation is defined

by Jakobson et al. as a conceptual interpretation of multiple alarms such that new

meanings are assigned to these alarms [Jakob93, JakWeBre]. It may be used for network

fault isolation and diagnosis, selective corrective actions, proactive maintenance, and

trend analysis.

The difference between alarm correlation and alert correlation is so tight that we

intend to use only one expression instead of these two.

Attack correlation is not so common. It is used in a very specific situation: some

security experts try to model attacks by building some scenarios. The process which aims

at building these scenarios from primary attacks models is called attack correlation. We

refer the interested reader to Section 3.3.2 for more information on this notion.

One first remark: these expressions are conceptually identical. Based on our

readings and our experience, we find that concepts hidden behind those expressions are

very similar. Consequently, we decide to readapt Jacobson’s definition and to extend it to

all ‘event’, ‘alert’ and ‘attack’ inputs. This leads to the following correlation

interpretation [Jakob93]:

“Alerts [alarms/attacks/events] correlation is a conceptual interpretation of

multiple alerts [alarms/attacks/events], such that a new meaning is assigned to these

alerts [alarms/attacks/events]”.

2.2 Alert Correlation

2.2.1 The needs

We call alert, a message sent by any component of an intrusion detection system.

Thus, an alert results from the detection of a suspicious or a malicious action. Moreover,

 7

it typically contains information about the unusual activity that was detected, as well as

the specifics of the occurrence.

The diversity in the elements of any network presents a significant security and

management challenge. Each security device or application, such as firewall, intrusion

detection, anti-virus, VPN, or specialized device, has its own console that is provided by

a particular vendor. Mission critical applications are running on servers whose operating

systems vary, and the landscape is further diversified by the new generation of small and

powerful network and security appliances and their need to be monitored. There is

limited integration within each class of device, and virtually no integration among device

types, making simpler and more efficient event and alert management at some higher

level difficult.

The main challenge of a security management scheme is to converge alerts from

these multiple alert data sources, so that relationships or patterns can be determined

among seemingly disparate alerts from the network [Open01]. Armed with these patterns

and profiles, security administrators can develop security alert response strategies and

plan some proactive measures for preventing alerts from occurring in the future. The

enabling technique that transforms all of these alerts into more exploitable information is

called alert correlation.

2.2.2 Correlation specifications

Many approaches offer to transform alerts in order to extract more exploitable

information. Some of them are based on simple alerts. For instance, Carey et al. suggest

in [Carey02] a simple approach based upon IDMEF alerts (see 2.2.3 for more details)

generated by different Intrusion Detection Systems (IDSs). It relies on signatures of some

alert patterns. When a signature match occurs, a synthetic alert is generated (which may,

in turn, be used by another signature if another event is detected).

On the other hand, we can find more complex approaches. For instance, M2D2 (a

Formal data Model for IDS Correlation) by Morin et al. distinguishes in [Morin02] four

information types:

- the monitoring system

 8

- its vulnerabilities

- its security monitoring tools

- alerts and observed events

Thus, alert correlation is based upon a combination of all these four information

types.

The correlation process can take various types of data as input. Moreover, some

approaches are applied in ‘real-time’, in parallel with incoming alerts, while others are

launched a posteriori, when all alerts are logged in a given file.

This leads to the following observation: correlation appears with various degrees

of complexity, reactivity, specificities, etc…

Alert correlation itself covers a large and diverse domain. In this document, we

propose to characterize the correlation process by means of the following features:

- Its inputs (Section 2.1.3).

- Its type (Section 2.2.4).

- Its objectives (Section 2.3)

 9

2.2.3 Input variety

Table 1: Examples of specific attack languages (non exhaustive list)

B
SM

 [S
un

M
ic

]

Tc
pd

um
p

[J
ac

ob
00

]

B
is

ho
p

[B
is

h9
5]

C
A

SL
 [C

as
l9

8]

N
A

SL
 [D

er
ai

99
]

C
IS

L
 [C

is
l9

9]

ID
M

EF
 [I

dm
ef

]

K
um

ar
 [K

um
ar

95
]

B
R

O
 [P

ax
s9

8]

Sn
or

t [
R

oe
s9

9]

ST
A

TL
 [E

ck
V

ig
00

]

La
m

bd
a

[C
up

O
rt0

0]

A
D

eL
e

[M
é0

0]

Event
languages X X X

Exploit
languages X X X X

Reporting
languages X X

Detection
languages X X X X X X

Correlation
languages X X

Response
languages

To describe an attack completely, several specific languages have been designed,

with different purposes. Vigna & Al. propose in [Vigna00] six different classes of such

attack languages: event, exploit, detection, correlation, reporting and response. Event

languages describe the format of events used during the detection process [Jacob00,

Bish95]. Exploit languages are used to describe the stages to be followed to perform an

intrusion [Casl98, CupOrt00, Derai99]. Detection languages allow the expression of the

manifestation of an attack in terms of occurrences of events [Paxs98, EckVig00, Roes99,

Mé98]. Correlation languages permit analysis of alerts provided by several IDSs in order

to generate meta-alerts [CupOrt00]. Reporting languages describe the format of alerts

produced by the IDSs [Idmef, Cisl99]. Finally, response languages are used to express

countermeasures to be taken after detection of an attack. Table 1 is extracted from

[Mé00] and provides some examples of attack languages.

 10

As briefly explained in 2.2.2, correlation processes differ greatly according to

what should be correlated. Inputs may have different aspects and we group them into

three distinct categories:

 Row alert input:

Alerts which are directly obtained from Intrusion Detection sensors or other

alerts transmitters.

These alerts are written in a specific format, sometimes even using a specific

language such as the so-called reporting language by Vigna et Al [Vigna00].

The lack of interoperability between Intrusion Detection Systems (IDSs) has been

recognized and in 1997, the US government’s Defense Advanced Research Projects

Agency (DARPA) initiated the Common Intrusion Detection Framework (CIDF)

research project [All00, Kot02]. CIDF contains the Common Intrusion Specification

Language (CISL), which is a Lisp-like language that is used to represent intrusion data

and communicate this data between IDS components. More precisely, this language is

based on the concept of generalized Intrusion Detection Objects, called GIDOs, which, in

turn, are specified as S-expressions. We report the interested reader to [Rivest] for more

details on the S-expressions (SEXP) data structure. CISL is quite expressive and vendors

were invited to participate in the CIDF project, however they never showed much interest

in it [Cisl99]. Development of the project ceased in 1999.

A more interesting reporting format is the Intrusion Detection Message Exchange

Format, also called IDMEF. IDMEF is a product of the Intrusion Detection Working

Group (IDWG) [Idmef]. This group has been created as a follow up to the CIDF one in

order to reach a larger audience. The purpose of IDMEF is to define data formats and

exchange procedures for sharing information of interest to intrusion detection and

response systems, and to the management systems which may need to interact with them.

Communication protocols have also been considered within that working group, resulting

in the creation of IDXP [Idxp]. The Internet-Draft [Idmef] describes a data model to

represent information exported by intrusion detection systems, and explains the rationales

for using this model. An implementation of the data model in the Extensible Markup

 11

Language (XML) is presented, an XML Document Type Definition is developed and

examples are provided.

The Intrusion Detection Message Exchange Format (IDMEF), and its transport

mechanism, the Intrusion Detection Exchange Protocol (IDXP), are generally considered

a useful first step. However, they are sometimes criticized because of the use of XML

DTDs, which lack the ability to adequately represent inheritance. Undercoffer and

Pinkston give a critique of IDMEF in [Underc02].

This being said, IDMEF remains currently the only advanced reporting format

standard. Of course, there are many other approaches that permit to map various alert

inputs into a common format but they are proprietary solutions and they are often limited

to a given set of products.

 Meta-alerts:

All the correlation process inputs that have a higher expression level than native

alerts.

This implies a preliminary task to translate raw alert input into a richer meta-alert. One

example is the P. Ning hyper-alert concept [Ning02]. Alerts are enriched by

complementary information which is named prerequisites and consequences. A more

detailed description of hyper-alerts is given in section.

Another example comes from the ASAX project (Advanced Security Audit-trail

Analysis on uniX). B. Le Charlier et al. introduce in [Asax92] a normalized audit file

format (NADF) which is flexible enough to translate various audit file formats into a

common way and enrich them with some contextual information when needed. The alert

trail analysis, including correlation processes, is performed on normalized trails only. The

meta-alerts would be these normalized trails (the ASAX architecture is given in 3.5.2).

One more example is the fusion alert concept of F. Cuppens et al. described in

[Cuppens02] for the French MIRADOR and Dico Projects. The simple alerts generated

by different IDSs detecting a same attack are merged into a single cluster. This is called

fusion process. It generates a fusion alert (a meta-alert in our own terminology) that is

treated by the correlation process. The correlation process receives the fusion alerts and

 12

tries to correlate them one by one using correlation rules. The correlation process itself is

discussed in 3.3.2.

EMERALD, an acronym for “Event Monitoring Enabling Responses to

Anomalous Live Disturbances” has a similar approach [ValdSkin]. It uses an extension of

the IDWG IDMEF to introduce the concept of “alert thread”. An EMERALD alert thread

consists in alerts that come from the same sensor and are related to the same attack. A

second concept that is used is that of meta-alert. A meta-alert is composed in EMERALD

of one or more alerts that may originate from multiple heterogeneous sensors. The

correlation process of EMERALD is then based on these meta-alerts.

 Other inputs:

This group contains all correlation inputs that do not belong to the two previous

categories.

One classic example is the case of heartbeats. Analyzers use them as messages to

indicate their current status to managers. They are defined in the IDMEF draft but they

can be simple SNMP traps that are periodically sent to the manager. They are not alerts

by themselves. However, they participate to the correlation process and are identified as

another kind of input. It may also be contextual information such as names of users,

configuration information, vulnerability reports (e.g. Nessus), etc.

2.2.4 Correlation specificities

Many whitepapers about correlation exist. Each of them presents new techniques

to achieve particular objectives. We explain in Section 2.3 that all these correlation

processes can be summarized by a few elementary operations. But without going any

further, we notice that all of them have specificities, which allow us to make some groups

according to the following criteria:

• Offline vs. online: some tools launch correlation processes dynamically,

while inputs are still coming into the system. Others launch correlation

processes once data are stored, with all the inputs available at one time. In

the first case, administrators await real-time reports, which enable fast

reactivity. In the second case, administrators extract information a

 13

posteriori, in order to have more global information. This is typically done

for post-mortem analysis.

• Stateless vs. Stateful: Alert correlation approaches may be further

classified as stateful [Houck95, Nyg95] or stateless [Katz95, Yemi96].

Stateless systems typically are only able to correlate alerts independently,

without any time or context constraints. State-based systems support the

correlation of alerts in an alert-driven fashion at the expense of the

additional overhead associated with maintaining the system state. The

stateless characteristic might seem contradictory with the correlation

definition (action to report relation with others).

• Lossless vs. Enrichment: The output of some correlation processes ‘may

not contain all initial inputs that have created it. Loss of information might

occur. On the contrary, other tools enrich initial inputs by adding new

information.

• Context awareness and Context independence: Correlation may rely on

some information sources which are peculiar to the context. A well-known

example consists in using the network topology to help correlating the

alerts. Some tools can be placed in various contexts, without further

context-knowledge installation, while others require a longer and more

fastidious installation to learn the operational context. Thus, we first

distinguish correlation approaches that depend on the context from the

others. Then, we identify those which acquire this context knowledge

automatically from those which need a human/expert intervention.

2.2.5 Anti-correlation notion

This notion is sometimes used in literature. An anti-correlation process consists

in incorporating during the correlation process some information to reduce correlation

complexity without loosing accuracy of prediction. Actually, anti-correlation is a

particular form of correlation where the kind of dependence it introduces is opposed to

 14

the one correlation is looking for. We sometimes see terms ‘negative dependence’ vs.

‘positive dependence’ to express this duality.

For instance, this mechanism can be useful to detect that an intrusion disables a

given attack scenario in progress. It is used this way in [Cuppens02]. L. Langfeldt

explains in [Lang02, section 2.2] the notion of dual rules, which contribute to build an

anti-correlation system in an evaluation context (the evaluation is based on rules). He

distinguishes two sets of rules. This double set of rules pictures an ambiguous situation:

“there are two divergent sets of rules for ‘good’ evaluations” [Lang02]. Thus, they bring

out the incompatible requirements confronting an evaluator.

2.3 Basic correlation operations

2.3.1 Presentation

Several types of correlation may be identified [JakWeis95], according to the

operations executed on the alerts. Correlation can be seen as black box, with some inputs,

and with some objectives to reach. Techniques used inside the black box are complex and

we give in Section 3 a list of the most current ones. However, correlation can be

characterized in a simpler way by observing its different aspects. We notice that a large

number of correlation processes can be ‘broken up’’ into a few fundamental bricks, or

essential operations. We discern seven of them:

- compression

- filtering

- selective suppression

- thresholding

- modification

- generalization

- specialization

- enrichment

They are presented in the following paragraphs.

 15

2.3.2 Compression

Compression (or “compaction”) consists of detecting, from the observation of the

alerts received in a given time window, multiple occurrences of the same alert, and

substituting the corresponding alerts, possibly indicating how many times the alert

occurred during the observation period. It aims at saving storage space or transmission

time. There are many compression methods, but they often induce some information

losses. If the compression is lossless, we use the term aggregation instead. One example

is illustrated in figure 1. During a given time window [t1, t2], five alerts are received,

three of type A, and two of type B. The compression process emits at t2 one single alert

that compresses the information received during this time window: three alerts of type A

and two alerts of type B. However, the generated alert may not contain information such

as arrival time of each alert, that was initially known before compression.

ALERT A

ALERT A
 Correlation

operation: ALERT B
Compression ALERT A’ =

 Alert A x3 ALERT A
+ Alert B x2

ALERT B

Figure 1: correlation operators, Compression

2.3.3 Filtering

Filtering consists of suppressing a given alert or set of alerts, depending on the

values of certain parameters/attributes on the alert(s) to be discarded. Thus, filtering only

takes into account the attributes of the alert which is being filtered. This stateless

operation leads to many losses. One example is illustrated in figure 2. From three

 16

different alerts, only A3 is sent to the administrator as its attribute A matches the filtering

rule.

ALERT A1
Attributes A & B

Correlation
ALERT A2 operation:

Attributes B & C & D Filtering
(filter attributes B,C,D)

ALERT A3
ALERT A3 Attribute A
Attribute A

Figure 2: correlation operators, Filtering

2.3.4 Selective Suppression

Selective Suppression is the discarding of an alert or a set of alerts, according to

criteria continuously evaluated by the correlation system and related to the dynamic

context of the alert management process. The suppression criteria are generally linked to

the presence of other alerts, to the temporal relationship among alerts or to the priorities

established by the administrators. This stateful approach may lead to losses as illustrated

in figure 3. A rule specifies that alert A2 should be discarded if received less than τ

seconds after alert A1.

 17

Correlation
ALERT A1 operation:

 Selective Suppression
Rule: A1 inhibits A2

ALERT A3

Figure 3: correlation operators, Selective Suppression

2.3.5 Thresholding

Thresholding consists in generating a new alert each time the number of

occurrences of a given type of alerts reaches a predefined threshold within a certain time

window. This approach looses information as alerts that do not reach the threshold are

discarded by the correlation process. As illustrated in figure 4, Alert A1, A2 and A3

trigger the emission of alert A’, as the given threshold of 3 is reached.

ALERT A1
Type Z

ALERT A2
Type Z Correlation

operation:
Thresholding

ALERT A’ (threshold=3)
ALERT A3

Type Z

Figure 4: correlation operators, Thresholding

 18

2.3.6 Modification

Modification is an operation in which, depending on the operational context, an

alert is replaced by another one. This stateless operation can be lossless if the

modification is reversible. It is illustrated in figure 5, where Alert A’s severity is

changed.

Correlation
operation:

Modification

ALERT A
ALERT A Severity β
Severity α

Figure 5: correlation operators, Modification

2.3.7 Generalization

Generalization consists in replacing an alert or a set of alerts, depending on the

operational context, by the alert corresponding to its super-class [Bap94]. This is a

stateful operation based on inductive type reasoning, which replaces one or more alerts

by another informational alert. The meaning of the new alert is an induced generalization

of received alerts. Generalization is illustrated in figure 6. Alerts A and B both belong to

the DNS server attack category. Instead of transferring the two specific alert types, the

alert class only is sent to the administrator. This implies some hierarchies among alerts to

determine the so-called super-classes, and some information is lost during the

generalization phase (the type in our example).

 19

ALERT A
=

Attack type a
on DNS server Correlation

operation:

ALERT A’ Generalization
=

DNS server
is attacked ALERT B

=
Attack type b

on DNS server

Figure 6: correlation operators, Generalization

2.3.8 Enrichment

Enrichment is an operation that consists in substituting an alert for another,

corresponding to a sub-class [Bap94]. This implies some hierarchies among alerts, in

order to determine the so-called sub-classes. However, unlike the generalization

approach, there is no loss of information. One example is given in figure 7. The first

incoming alert is alert A, which signals a successful scan on a well-known Trojan port.

Attribute a gives the IP address of the target machine, and attribute b provides the alert

type (successful tcp scan on port X). Alert A’ keeps the same attributes, but contains also

attribute c which gives the list of possible resulting attacks (CERT attack classifications

for example), and attribute d which contains the number of similar scans alerts already

stored in the database.

 20

Correlation
operation:

Enrichment

ALERT A
ALERT A’ =

= Attribute a
Attribute a Attribute b
Attribute b
Attribute c
Attribute d

Figure 7: correlation operators, Enrichment

2.3.9 Specialization

Specialization is an operation which is the reverse of generalization. This

operation, based on deductive type reasoning, does not add any new information besides

the ones that were already implicitly present in the original alerts and in the configuration

database, but it is useful in making evident the consequences that an alert in a given layer

may cause in a higher layer. From a given alert, the correlation process generates multiple

alerts, which should be more specialized to the administrator. One example is illustrated

on figure 8. The correlation engine receives alert A. However, alert A can only be

received if alert A1 and A2 were previously seen. Consequently, the correlation process

generates these two alerts. These two specialized alerts can be used for verification

purposes, for instance.

Correlation
Process: ALERT A1

Specialization
ALERT A

ALERT A2

Figure 8: correlation operators, Specialization

 21

3 Correlation approaches

3.1 Presentation

This section provides a panoramic view of alert correlation through the gathering

of the main approaches existing in literature, classified according to the methods and

algorithms utilized in the correlation process.

Many tools are presented in Section 4. They are either derived from research

applications or distributed by companies as finished products. Thus, we intend to show in

this section the main techniques and approaches implemented in these tools. We invite

the interested reader to have a look at section 4 for more practical details on these tools.

Only two types of approaches have been identified by [Laz92]: the probabilistic

approaches, on the one hand, and, on the other, the approaches in which system entities

are modeled as finite state machines. Today, the number of available approaches is much

larger. Some of these approaches are probabilistic, others utilize traditional artificial

intelligence paradigms and others apply principles in non-conventional logics [Lew99,

Smets88].There are also approaches which adopt ad hoc methods to deal with the alert

correlation problem.

Generally speaking, we distinguish two main categories. The first category

gathers all approaches that do not require a specific knowledge. As explained in Section

4, many tools which are currently available implement some of these approaches. They

are often monitoring consoles, or simple log analysis tools.

Things become more complex when the correlation process relies on certain

knowledge. Tools get scarce, but not research projects. The second category gathers all

these approaches together. However, this knowledge can come from an expert, who

reproduces it thanks to a given language, or it can be automatically deduced from

learning techniques.

We propose to group the various research efforts on correlation according to the

following categories:

1- rule-based

 22

2- scenario-based

3- uncertainty reasoning

4- time reasoning

5- state transition graphs

6- neural networks

7- Bayesian belief networks

8- Context reasoning

This classification scheme is inspired by those presented in [Subra00], [Casey02]

and [Lew99], the last one being the most complete summary of event correlation

techniques observed in the literature.

They correspond to different reasoning approaches. Table 2 summarizes some of

these reasoning with some associated research projects that implemented them. They are

all detailed in the following sections. We explain in paragraph 3.11 how they can

complement each other. Sections 2.2 to 2.6 provide a detailed insight of their

characteristics.

 23

O
th

er
s

 S
TA

T
 M

2D
2

 IM
PA

C
T

 M
-C

or
re

la
to

r
EM

ER
A

LD

B

ay
es

ia
n-

be
lie

f

 C
ID

S
 E

M
ER

A
LD

e-

B
ay

es

 S
PI

C
E

N
eu

ra
l

N
et

w
or

ks
-

ba
se

d

 F
ee

d-
fo

rw
ar

d
N

et
w

or
ks

(B

ac
k

pr
op

ag
at

io
n

ba
se

d
al

go
rit

hm
s)

 S

el
f-

O
rg

an
iz

in
g

M
ap

s

Te
m

po
ra

l

 C
hr

on
ic

le
s

 L
og

W
ea

ve
r

U
nc

er
ta

in
ty

 F
uz

zy
 L

og
ic

 te

ch
ni

qu
es

 P

os
si

bi
lis

tic

m
od

el
s

 D
em

ps
te

r-
Sh

af
er

Th

eo
ry

A
tta

ck

Sc
en

ar
io

s-
ba

se
d

 L
A

M
B

D
A

(M

IR
A

D
O

R

Pr
oj

ec
t)

 A
D

eL
e

 JI
G

SA
W

 H

yp
er

-a
le

rts

R
ul

es
-b

as
ed

 P
ro

lo
g

to
ol

s
 S

EC

 A
SA

X

 C
lu

st
er

in
g

te
ch

ni
qu

es

 D
at

a
M

in
in

g:

(A
ss

oc
ia

tio
n

ru
le

s,
et

c)

So
m

e
lo

g
an

al
ys

is
 to

ol
s (

se
e

Se
ct

io
n

4.
2)

 a
nd

 d
at

ab
as

e
qu

er
ie

s i
nt

er
fa

ce
s (

se
e

Se
ct

io
n

4.
3)

R
ea

so
ni

ng
 ty

pe

M
an

ua
l k

no
w

le
dg

e
ac

qu
is

iti
on

A
ut

om
at

ic

K
no

w
le

dg
e

ac
qu

is
iti

on

N
ot

 K
no

w
le

dg
e-

ba
se

d

 24

An interesting sign that the field is maturing are attempts to build frameworks

within which all alert correlation techniques can be evaluated. Haines et al. describe in

[Haines03] the first experimental testbed to validate alert correlators. They give a

framework to produce attacks and to compare correlators through specific correlation

metrics (three dimensions: prioritization, multi-step correlation and multisensor

correlation). Similar proposals should appear in the coming months. Furthermore,

specific data sets can be created easily to test correlation tools. LLSIM, developed by the

Massachusetts Institute of Technology, is an interesting configurable network simulator

that allows producing a large variety of data sets without expensive testbeds [Llsim03].

It provides models of a small subset of the traffic types and sensor alerts that would be

encountered in the real world. The objective is to provide realistic alert types,

distributions, arrival rates, and also realistic content like source and destination addresses,

and TCP/UDP ports. These features are important to many alert correlation systems.

It is worth mentioning here the following set of metrics suggested by Lewis as a

way to compare different approaches for event correlation [Lew95]:

- knowledge representation

- knowledge acquisition

- computational overhead

- scalability

- learning

- adaptation

These dimensions are important to the evaluation of correlation methods.

However, we are not using them in this section since it is quite difficult to apply these

metrics on the abstract level used in this section. Nevertheless, they reveal themselves

useful to categorize tools and that is the reason why we will apply them in section 4 when

presenting existing tools.

 25

3.2 Rule-based Methods

3.2.1 Rule-based approach: an introduction

Rule-based systems have received most of the attention and were the first to be

developed. These are also referred to as expert systems, because the development of the

rules requires intimate familiarity with the faults and their symptoms. This approach

develops if-then rules for given sequences of events that arrive at the monitoring station.

The general knowledge of a certain area is contained in a set of rules and the specific

knowledge, relevant for a particular situation, is constituted by facts, expressed through

assertions and stored in a database. A rule consists of two expressions -- well-formed

formulas of predicate calculus [Nils80] – linked by an implication connective (=>), and is

evaluated over a global database. The left side of each rule contains a prerequisite which

must be satisfied by the database, so that the rule is applicable. The right side describes

the action to be executed if the rule is applied. The application of a rule alters the

database.

Every rule-based system has a control strategy (a.k.a. inference engine) which

determines the order in which the applicable rules will be applied and which stops the

computing process when a finishing condition is satisfied by the database. In comparison

with the traditional programs, which contain in their code both the knowledge and the

control information – which contributes to make them extremely complex and hard to

maintain- a rule-based system is simpler, more modularized and easier to maintain, for it

is organized in three levels [Cronk88]:

- an inference engine which contains the strategy to solve a given class of

problems; it decides when to apply which rules.

- a knowledge base, containing a set of rules with the knowledge of a specific task,

that is, an instance of that class of problems or attacks;

- a working memory, containing the data about the problem or attack being dealt

with;

With reference to section 2.2.4, we observe that Rule-based approaches are in

general, but not necessarily, executed offline and on a stateful mode. Rules are applied to

 26

alerts and meta-alerts. We distinguish two important questions in this approach: how are

rules constructed? How are rules applied to inputs? Rules Induction answers the first

question and is presented in section 3.2.2. Rules Matching answers the second one and is

presented in section 3.2.3.

3.2.2 Rules Induction

There are two distinct ways to write rules. On one hand, experts can be asked to

write them more or less explicitly. On the other hand, machine learning methods are

developed to accomplish this tedious task. In the latter case, explicit symbolic

classification rules are automatically constructed that generalize the training cases. One

of the main attractions of rule induction is that the rules are much more transparent and

easier to interpret than, say, regression model or a trained neural network (see 3.6 for

more details).

The classification rule learning task can be defined as follows: Given a set of

training examples (alerts or meta-alerts for which the classification is known), find a set

of classification rules that can be used for prediction or classification of new instances,

i.e. new incoming alerts or meta-alerts. A more formal definition of the classification rule

learning task has to take into account the restrictions imposed by the language used to

describe the data (data description language of alerts or meta-alerts) and the language

used to describe the induced set of rules (hypothesis description language). The language

bias refers to the restrictions imposed by the languages defining the format and scope of

input data and knowledge representation.

We report the interested reader to [Berth03, chapter 7] for a more complete study

of rules induction. They present two classical form of induction, named respectively

propositional rule induction (the output are if-then rules) and relational rule learning (the

output are relational rules, possibly in the form of Prolog clauses). Furthermore, they

introduce the important notions of generalization and specialization, and they describe

algorithms for rule and hypothesis construction. Moreover, they discuss some measures

for evaluating the quality of rules (they explain especially the trade off between accuracy

and generality).

 27

The rule learning task can be applied by means of many algorithms and

techniques, such as data mining (association rules). Mannila et al. first studied in

[Manni95] how to identify frequent episodes rules in alert sequences. Their results have

been used in the TASA system [Tasa96]. Subsequently, many researchers have tried to

reuse data mining methods [Manni95, Agraw94, Agraw95, Srik96] to obtain rules.

However, data mining often generates too many rules and usually requires administrators

to identify the useful rules among all the results of the data mining process. In order to

control this process, to make it more focus, and to reduce the number of rules being

generated, many researchers have considered putting various constraints, including

Boolean expressions, regular expressions, and aggregation constraints, etc., into the

methods of mining association rules. Some of them can be found in [Srik97, NgLak98,

Garof99].

In the intrusion detection domain, Manganaris et al. have applied these techniques

to mine association rules in alert bursts in [Mang00]. Subsequently, alerts that are

consistent with these association rules are deemed ‘normal’ and are discarded. Julisch et

al. show in [Julisch02] that data mining can be used to support and partially automate the

investigation of intrusion detection alerts. Specifically, they investigate two techniques,

namely episode rules and a conceptual clustering technique. We report the interested

reader to [Julisch03] for a thorough review of the usage of data mining techniques within

the intrusion detection area.

3.2.3 Rules Matching

This operation consists in comparing rules to inputs. In the following, we adopt

the definition of a “match” as proposed in [Wu94]:

Match: Find the rules in the rule base which LHSs (Left-hand side) are satisfied

from the existing contents of the working memory.

Based on that definition, we distinguish, among the various techniques presented

in the literature, two main families:

 28

- Exact Match: the whole prerequisite expression of a rule must be matched. This

is the case of most popular rule-based tools. One of them, called Simple Event

Correlator (SEC) is presented in 4.3.1.

- Partial Match: The left hand side of a rule consists of a set of conditions (fact

patterns) which have to be fulfilled in order to activate the rule and execute the

actions located on the right hand side of a rule. There is a partial match if some,

but not all, of these conditions are fulfilled. Then, decision techniques are applied

to determine which action, if any, must be triggered for these partial conditions.

Two important rule-matching algorithms have been used and re-adapted for many

years: RETE [Forgy82] and TREAT [Mira87]. The RETE Algorithm is generally

recognized as the most efficient algorithm for the implementation of production systems3.

The algorithm was originally developed by at Carnegie Mellon University in 1979 but

has evolved dramatically over more than 2 decades. RETE is the only algorithm for

production systems whose efficiency is asymptotically independent of the number of

rules.

Many rule-based languages are based on this algorithm. Indeed, most rule

languages used in expert systems have a common origin in the "Official Production

Systems" (OPS) developed during the seventies at Carnegie Mellon University by several

PhD students of Dr. A. Newell4.

OPS5 was the first production system language based on the RETE Algorithm

and the first AI language to succeed in commercial application when Dr. J. McDermott

implemented a rule-based configurer of VAX computer systems for Digital Equipment

Corporation. R1 was originally implemented in Lisp but was later ported to a Bliss

version of OPS5 for performance reasons, after which DEC renamed R1 to XCON.

XCON was tremendously successful and led to the development of a number of

3 It is worth noting though that there are in the literature as well as on the web, several reports and

white papers arguing the superiority of other ones, such as TREAT or LEAPS, over RETE.

4 The historical presentation that follows is mostly based on the data available on line on the web

at the following URL: www.haley.com/ReteAlgorithm.html

 29

additional, substantial expert systems using OPS5, several of which were implemented by

P. Haley. In 1984, P. Haley has developed the Automated Reasoning Tool (ART) and has

implemented its own inference engine. ART extended the RETE Algorithm to support:

• Truth maintenance and logic programming

• Automatic subgoaling and backward chaining

• More expressive pattern matching language

• Support for arbitrary procedural functions and predicates

• More expressive knowledge representation capabilities

• Logical Quantifiers (other than and and not)

• A variety of other improvements beyond OPS5.

Although the ART syntax is much more expressive than that of OPS5, the ART

syntax was designed as an incremental improvement beyond OPS5.

By 1985, NASA had standardized their AI development on ART but needed an

implementation to run on IBM and Macintosh personal computers. As a result, the

Software Technology Branch at Johnson Space Center cloned the forward chaining

capabilities and syntax of ART and introduced the "C Language Integrated Production

System" (i.e., CLIPS) into the public domain. Government funding for development or

support of CLIPS was discontinued several years ago.

CLIPS is rarely used for commercial purposes due to the lack of continued

funding and other, practical, commercial considerations, especially when compared with

the functional advantages of inference engines available from other companies.

Nonetheless, CLIPS remains popular for college-level courses on expert systems.

Following the distribution of NASA's CLIPS, Inference Corporation implemented

a forward-chaining only derivative of ART/CLIPS called ART-IM, subsequently

renamed "ART*Enterprise". The ART inference engine remains available from MindBox

. This company is a spin-off from Brightware which, itself, is a spin-off from Inference

[Mindb].

Developed by an employee of Sandia National Laboratories, JESS is a Java

version of NASA's CLIPS that has added a few more of the capabilities and performance

 30

characteristics of contemporary, commercial rule engines. Its syntax remains roughly

CLIPS compatible but has added some of the extensions first introduced in Eclipse by

The Haley Enterprise. JESS is not public domain or open-source like CLIPS but can be

downloaded at no charge for academic use. Therefore, it is also popular for college-level

courses on rule-based programming.

In 1989, P. Haley founded The Haley Enterprise and developed Eclipse.

• Eclipse supports an extended version of the CLIPS syntax.

• Eclipse is the only C/C++ inference engine that uses the RETE Algorithm to

support both forward and backward chaining.

• CIA Server (©Haley Enterprise) goes beyond the limitations of CLIPS, JESS, and

other rules engines by sharing one knowledge base for scalability and multi-

threaded performance

• Rete++ is a C++ class library encapsulates Eclipse and seamlessly integrates it

within C++ on Windows, UNIX, and other operating systems

• Cafe Rete is a Java class library that implements the functionality of CIA Server

for J2ME, J2SE, and J2EE environments

3.2.4 Additional Comments

The rule-based approach has been criticized because it has high maintenance

costs, it does not automatically adjust to a changing environment, it does not scale well,

and does not perform reliably under congested conditions [Smarts]. In other words, rule-

based correlation is appropriate if the administrative domain is not large and the

environment does not change much. A supplementary technique used with the rule-based

approach is to parse network logs to create a database of rules, referred to as data mining

[Sterr00, Gard98] or machine learning techniques [Michal83, Good91] (see Section

3.2.2).

Having its knowledge limited to the rules of its database, the system can not deal

with the situations to which these rules do not apply. This affects its robustness [Lew95],

since the system may lack alternatives in many common situations.

 31

http://www.haley.com/1339483061486611/Rete++.html
http://www.haley.com/1339483061486611/CafeRete.html

Another limitation of this approach is the fact that they do not take advantage of

past experiences in the deductive process, that is, they lack ‘memory’. Therefore, a purely

rule-based system that has triggered thousands of rules in order to, from a given set of

alerts, deduce the occurrence of a given fault or attack, will trigger again all those rules

whenever it is submitted to the same set of alerts, getting once again the same conclusion.

Because they do not make use of past experiences, the rule-based systems are subject to

repeating the same errors over and over again, which contributes to degrade the precision

and performance of the system.

 Despite these weaknesses, the approach is intuitive to develop and widely used.

Examples in Network Management are BMG Patrol, Tivoli TME, Computer Associates

TNG, Platinium ServerVision, etc [Lew99].

These tools are presented in Section 4.

3.3 Attack Scenario Methods

3.3.1 Attack Scenario-based approach: an introduction

Attack Scenario-based correlation is a knowledge-based method, like the rule-

based approach described in 3.2. The specificity of this approach lies in the fact that rules

are not generic but, instead, very precise to represent well-defined scenarios of attacks.

The language used to express the scenarios plays an important role in the applicability of

the method. As we see here below, this leads to the creation of new languages, instead of

reusing well known ones (such as, e.g., first order logic, etc...).Like rules, attack

scenarios can be specified by human users or learned through training datasets. This is

currently a hot topic, and many research groups are developing their own approaches. We

propose to have a deeper look at the most important of them.

3.3.2 LAMBDA and ADeLE (MIRADOR Project)

 LAMBDA (MIRADOR Project)

MIRADOR is a project initiated by the French Defense Agency (DGA) and is led

by Alcatel in collaboration with three research laboratories (Onera, ENST Bretagne and

Supelec). It aims at building a cooperative and adaptive IDS platform [CupMie02].

 32

In this approach, every alert is modeled using the IDMEF format. However, the

correlation function does not directly deal with this XML representation of alerts. It is

automatically converted into a set of logical facts.

On the other hand, attacks are specified in the LAMBDA language. In this

language, an attack is specified using five fields:

• Attack pre-condition: a logical condition that specifies the conditions to be

specified for the attack to succeed.

• Attack post-condition: a logical condition that specifies the effect of the attack

when this attack succeeds.

• Attack scenario: the combination of events the intruder performs when executing

an attack.

• Detection scenario: the combination of events which are necessary to detect an

occurrence of the attack.

• Verification scenario: A combination of events to be launched to check if the

attack has succeeded.

The pre-conditions and post-conditions of an attack correspond to description of

conditions over the system’s state. For this purpose, a language based on the logic of

predicates is used. Predicates are used to describe properties of the state relevant to the

description of an attack. In practice, predicates are combined with conjunctions and

negations. Other fields of an attack description (attack/detection/verification scenarios)

are specified using event calculus algebra. This algebra enables the authors to combine

several events using operators such as sequential composition (“;”), parallel

unconstrained execution (“|”), non deterministic choice (“?”), synchronized execution

(“&”) and exclusion of an event when another event occurs (“if_not”).

Once attacks are correctly modeled, some predicates are defined and some simple

algorithms are applied in order to perform attack correlation [CupMie02, Cuppens01,

Cuppens02]. Intuitively, correlation between attacks A and B means that A enables the

intruder to perform attack B.

 33

They suggest to automatically generate correlation rules, which would always

have the form alert_correlation(Alert1, Alert2); this simply means that Alert1 and Alert2

can be correlated as part of a given attack scenario.

The method they propose is modeled by specifying possible logical links between

the post-condition of an attack A and a pre-condition of an attack B. If such a link exists,

then it is possible to correlate an occurrence of Attack A with an occurrence of attack B

because we can assume that the intruder has performed A as a step that enables him to

perform B. Some practical definitions of correlation are given in [CupMie02, Cuppens02]

and are implemented in the Mirador platform.

 ADeLe

The Adele language has been developed simultaneously with the Lambda

language within the Mirador Project. The specificity of the ADeLe language is to offer a

common formalism to express not only the detection and correlation rules but also the

actual code of the attack itself.

The motivation is quite ambitious: “ADeLe is designed to allow attack

descriptions which are readable (…), comprehensive (it is possible to represent every

aspect of an attack, i.e. from the attacker’s and the defender’s points of view, in only one

description), generic (…), and modular (defining an attack composed of several attacks

already described is allowed and defining a meta-alert also)” [MicMe01]. Actually, the

primary goal of ADeLe is to combine all the knowledge available for a given attack in

one and only one readable description.

The body of the attack description is made of three parts: the exploit part, the

detection part and the response part. The description itself is written in an XML-like

code.

However, ADeLe, which was designed in parallel with LAMDA for the Mirador

project, does not appear to be used within the MIRADOR project. LAMBDA has been

chosen to represent attacks. Cuppens et al. mention in [CupMie02] the possibility to

include other fields in the attack description. For instance, the ADeLe language suggests

introducing a reaction field to specify the actions to be launched when the attack is

 34

detected. As a consequent, ADeLe can be seen as an interesting complement of

LAMBDA.

3.3.3 Hyper-Alerts approach vs. JIGSAW

Another approach closely related to LAMBDA is proposed by the Department of

Computer Science from the North Carolina State University, and more specifically by P.

Ning et Al [Cui02, Ning02, NingX02, Ning03]. These two approaches present multiple

similarities since both are related to attack scenarios (i.e. steps that attackers use in their

attacks). Peng Ning first suggested his approach to address some limitations of JIGSAW

[Templ00].

JIGSAW was originally proposed to represent complex attacks, and the authors

envisaged to apply it to correlate intrusion alerts. It is based on the preconditions and

consequences of individual attacks; it correlates alerts if the preconditions of some later

alerts are satisfied by the consequences of some earlier alerts. However, several problems

make it difficult for JIGSAW to be a practical alert correlation technique. First, JIGSAW

requires all the preconditions (i.e. required capabilities in [Templ00]) of an attack to be

satisfied in order to consider its consequences. This is fine in theory; however, it has a

negative impact on alert correlation in practice. In particular, if an IDS sensor fails to

detect one of the attacks that prepare for later attacks, JIGSAW will miss the opportunity

to correlate the detected attacks. Moreover, JIGSAW treats low-level attacks

individually, and does not correlate an alert if it does not prepare for (or are prepared for

by) other alerts. For example, if an attacker tries several variations of the same attack in a

short period of time, JIGSAW will treat them separately, and only correlate those that

prepare for (or are prepared for by) other alerts. In addition, JIGSAW ignores failed

attempts of attacks even if they belong to a sequence of well planned attacks. Finally, no

mechanism has been provided in JIGSAW to process alerts, though this has been

speculated as an application of JIGSAW in [Templ00].

P. Ning et al. present in [Ning03] an alert correlation technique to address these

limitations. The concept remains identical, based on the following observation: most

intrusions are not isolated, but related as different stages of attacks, with the earlier stages

preparing for the other ones.

 35

First and foremost, they use two important definitions:

- a hyper-alert type. It encodes the knowledge about a type of attack; it includes all

the prerequisites and consequences information. Prerequisite specifies what must

be true in order for the attack to be successful, and consequence described what is

true if the attack indeed succeeds.

- A hyper-alert instance. Given a hyper-alert type, it can be generated if the

corresponding attack is detected and reported by an IDS sensor.

The knowledge comes from the Knowledge base. It contains the necessary

information about hyper-alert types, as well as relationships between all predicates

(prerequisites and consequences predicates). This table is filled by experts in a XML-like

format.

Alerts are processed by the alert-preprocessor to generate hyper-alerts and

instantiate the prerequisite and consequence sets of each hyper-alert. The knowledge

comes from the knowledge base.

Then, the correlation engine tries to find out all the prepare-for relationships

between these previously instantiated hyper-alerts. After that, they output these

relationships as hyper-alerts correlation graphs. It represents attack scenarios constructed

through the alert correlation.

All that has been recently implemented in an open-source tool called Intrusion

Alert Correlator (IAC). In particular, Ning et al. discuss in [Ning04] additional

techniques to hypothesize and reason about attacks missed by IDSs (false negatives),

based on the indirect causal relationship between intrusion alerts and the constraints they

must satisfy (prerequisites and consequences). They introduce two types of classic

correlation methods: correlation based on prerequisites and consequences of attacks,

which they call causal correlation method, and correlation based on similarity between

alert attribute values, which they call clustering correlation method. In the latter case, the

authors propose a technique, based on similarity between graphs of attacks, which is such

that scenarios can be recognized even in the case of missing events. It is worth noting that

Cuppens et al., in [CupMie02], in parallel, had proposed another approach able to deal

 36

with missed alerts. Their technique is based on abductive rules. If an alert, which is the

known consequence of an event that should have generated another alert, is received by

the correlation engine and if that other event has not been received by the same

correlation engine then, by means of a simple abductive reasoning, the missed event can

be identified. This approach, very different from the one by Ning et al., finds its

limitations in the fact that it can not cope with missing events that are not linked to other

events by means of cause/consequence relationships. Also, identifying all these

relationships is a non trivial task that comes on top of the writing of the scenarios.

3.3.4 CAML

CAML (Correlated Attack Modeling Language) is a recent language presented by

SRI International in [Caml03]. It aims at modeling multistep attacks, in the same way

than previous approaches. Attack scenarios are trees. They identify logical steps (sub-

goals) in attack scenarios and they specify some relationships among these steps:

temporal, attribute values, and prerequisites. More precisely, attacks are described by

attack patterns, which characterize common attack techniques from the detection point of

view. As a result, detecting attacks in a correlation phase can be reduced to detecting

instances of the attack patterns and their relationships.

Furthermore, CAML enables one to specify multistage attack scenarios in a

modular fashion. A CAML specification contains a set of modules, which describe a

correlation step. The relationships among modules are specified through pre- and post-

conditions. Thus, modules can be linked together to recognize attack scenarios. This

makes the approach very modular.

The structure of CAML events is based on IDMEF. CAML has been tested within

the EMERALD framework. This work is very similar to those of LAMBDA, JIGSAW

and P. Ning. However Cheung et al. have apparently spent a large effort to solve

implementation issues (modules reuse and modules interfacing with the EMERALD

existing).

 37

3.4 Context reasoning approaches

3.4.1 Introduction

There are many ways to model knowledge. In the previous section, attack

scenarios are built to correlate incoming alerts. However, other approaches are built on

different knowledge models. In this section, we present some approaches that rely on

‘context models’. The environment where alerts are issued is modelized in different

manners.

3.4.2 IMPACT

This prototype [Jacob93] was developed for network management purposes. They

describe a network configuration model, and a network-element class hierarchy. The

network configuration models describe the Network-Elements (managed objects) and the

connectivity and containment relations between them. The network-element class

hierarchy describes the NE types and the class/subclass relationships between the types.

Then, the conditions under which the correlations are asserted are described by

correlation rules, which are provided by expert knowledge.

This example simply shows that the model-based approach has been used for

many years in the Network management area. Other examples exist in different domains.

For instance, [Zheng03] implements a classic model-based approach to ease the alarm

correlation process in GSM Networks.

3.4.3 EMERALD M-Correlator

EMERALD (Event Monitoring Enabling Responses to Anomalous Live

Disturbances) is an environment for anomaly and misuse detection and subsequent

analysis of the behavior of systems and networks. EMERALD is being developed under

DARPA Contract by SRI International [Neum99, Porr97, Porr02]. It employs a building-

block architectural strategy using independently tunable distributed surveillance

monitors, which should detect and respond to malicious activity on local targets, and

should interoperate to form an analysis hierarchy. The description of this architecture,

with its specific sensors is beyond the scope of this paper. However, we are particularly

 38

interested in one component called Mission-Impact Intrusion Report Correlation System,

or M-Correlator [Porr02].

M-Correlator is designed to consolidate and rank a stream of alerts relative to the

needs of the analyst, given the topology and operational objectives of the protected

network. More concretely, alerts are vetted against the network model. A relevant score

is produced through a comparison of the alert target’s known model against the known

vulnerability requirements of the incident type (i.e. incident vulnerability dependencies).

Consequently, this approach is quite different from the previous ones. There is no attack

scenario built. However, a network model is created and alerts are then processed using

the vulnerability requirements of the incident type together with the model knowledge.

In addition to the relevant score, another parameter is computed: the importance

of the asset that the alert targets. Based on these two parameters, M-Correlator selects

alerts that will cause greatest risks to the monitored network.

M-Correlator maintains an internal topology map of the protected network, which

is dynamically managed by the analyst. Automated topology map generation is supported

using nmap [Fyo97], through which M-Correlator can identify the available assets on the

network, IP address to hostname mappings, OS type and version information, active TCP

and UDP network services per host, and hardware type. Nmap is periodically run to

update the topology database.

3.4.4 M2D2

Morin et al. introduce in [Morin02] a formal information model for security

information representation and correlation. The model includes four types of information:

information system’s characteristics, vulnerabilities, security tools and events/alerts.

The information system’s characteristics depend on both the topology (network of

hosts) and the products used. Vulnerability affects a configuration. In that way, a host is

vulnerable if its configuration is a superset of one vulnerable configuration. Security tools

group IDSs and vulnerability scanners that detect exploited or latent vulnerabilities.

A formal format to structure these information types is detailed in [Morin02].

Furthermore, some examples of correlation are specified, using the formal bases of

 39

M2D2. They consist in aggregating alerts. In other words, they group alerts following

various criteria provided by the M2D2 information (by targeted hosts, by vulnerabilities,

etc).

3.5 Time reasoning approaches

3.5.1 Chronicles

The system of chronicle recognition aims at giving an interpretation of the system

evolution given dated events [Douss93, Douss94]. It takes as input a stream of dated

events and recognizes instances of chronicles as they are developing. It is mainly a time-

series reasoning system that relies on the reified temporal logic formalism [MaKnig,

Morin03]. In the Artificial Intelligence literature, chronicles are related to other

approaches such as plan recognition5 and event calculus6. It is predictive in the sense that

it predicts forthcoming events relevant to its task, it focuses its attention on them and it

maintains their temporal windows of relevance. Its main function is to efficiently

recognize complex temporal patterns on the fly, as they occur.

Each chronicle can be viewed as a set of patterns and a set of temporal and

contextual constraints over them. If the observed events match the chronicles patterns and

if they occur as the contextual and temporal constraints allow them to, then an instance of

the modeled chronicle is recognized. However, some hypotheses are made on the events.

First, all events specified in a chronicle must be observable, i.e. unobservable (or

5 Plan recognition is the act of reasoning from a set of observed actions to goal, a possible next

action, or a complete plan recipe (a sequence of steps for completing a plan). It can be viewed as another

instance of the classification problem.

6 The event calculus is an attempt to codify intuitive reasoning about action and change in such a

way that the frame problem is avoided. It is based upon the supposition that all change must be due to a

cause–spontaneous changes that do not occur. In this way it achieves a formalization of the common sense

principle of inertia: ‘normally, nothing changes’. That is, if an action a does not affect a property F, then if

F is true before doing a, it will be true after.

 40

unrecognized) activities are not included in the chronicle expression. It is also assumed

that the events are reported to the system as they occur, and that they must be collected in

the same order as they occur (synchronization hypothesis).

This approach has several advantages:

• Chronicles based system gives an efficient recognition process.

• The hypothesis stating that all actions are observable makes unnecessary the

abduction of unobserved events.

• It is possible to define so-called “deactivating events” that invalidates a partially

recognized chronicle (similar to the anti-correlation definition in Lambda).

• The explosion of the search space is more limited than with other approaches,

such as the plan recognition approach.

The chronicles main advantages are consequences of the strong hypotheses made.

Unfortunately, the synchronization hypothesis and the hypothesis which states all

intruder’ s actions specified in a chronicle can be detected , are very hard to fulfill in

security domain. These assumptions and the fact that this system is based on a chronicle

library lead to the following drawbacks:

• As for plan recognition systems (and many other approaches), the exhaustively of

the plan library is a main concern.

• Including or not in the chronicle an event which is sometimes not detected may

lead to false positives and false negatives.

Consequently, a chronicle system is especially efficient to recognize stereotyped

attack scenarios, such as the ones launched by automatic intrusion tools. In this case, it is

quite straightforward to represent each attack scenario by a chronicle. But it has some

important limitations in other cases. A noticeable exception comes from Morin et al.

They introduce in [Morin03] a new chronicle formalism. Instead of applying chronicles

to model attack scenarios, they use chronicles to represent known phenomena which

involve several alerts, and to strengthen and enhance single alerts by combining them

with other events, as well as other information not found in the alerts. For this purpose,

 41

they suggest using M2D2 (described in Section 3.4.3). M2D2 information is modeled and

served as non temporal information to the chronicles logic. Actually, there is a two-way

relationship between M2D2 and the chronicles: as a correlation system, the chronicles

take advantages of the data provided by M2D2 and acts as an alert provider for M2D2.

3.5.2 ASAX

The Project ASAX, “Advanced Security Audit-trail Analysis on UniX” aims at

supporting intelligent analysis of audit trails [Asax92]. Initially, ASAX was not really a

correlation engine, rather a detector, but it could fit nicely that objective. The audit trail is

normalized thanks to the specific language called NADF described in 2.2.3. In particular,

ASAX uses a general rule-based language to carry out its analysis, named RUSSEL

(Rule-baSed Sequence Evaluation Language). This language was initially tailored for

processing large sequential files in one pass, efficiently. It aims at recognizing particular

patterns in files and triggering appropriate actions, e.g. activating other alerts, or sending

reports to administrators.

Thus, RUSSEL can be viewed as a procedural language, including a particular

predefined control structure, which allows making reasoning about sequences of records.

This control structure is based on a rule triggering mechanism that can be roughly

summarized as follow:

- The audit trail is analyzed sequentially, record by record, by means of a collection

of rules. At a given time, there is a current record being analyzed and a collection

of rules which are active.

- Active rules encapsulate all the relevant knowledge about the past of analysis.

This knowledge is then applied to the current record by executing the rules for

that record. The process, in turn, generates new rules to be applied latter.

- From the programmer point of view, a rule is like a classical parameterized

procedure but which may involve statements for a particular kind of actions;

triggering rules off for instance.

- The process is initiated by a set of rules activated for the first record.

 42

Consequently, programming correlation in RUSSEL consists in writing a number

of adequate rules which will be activated according to the global scheme above.

However, ASAX has some limitations: There is no real rules database and data

types are limited within RUSSEL. This makes ASAX approach constraining and difficult

to apply in practice. A new Java-based module is under development which should relax

some of the limitations observed with the existing implementations and facilitates a wider

usage of that tool.

3.5.3 LogWeaver

LogWeaver is a log auditing tool which checks a log file against temporal logic

signatures [Rog01]. This approach is very similar to ASAX’s one. LogWeaver could,

most likely, be adapted to correlate alerts coming from various sources rather than events

stored in a single log file. The authors implement a logic, consisting of flat, Wolper-style,

linear-time formula,, which is very promising. It allows detecting complex correlation of

events, on-line, using a declarative set of signatures, expressed in a variant of temporal

logic. However, one drawback is the potential combinatorial explosion of the algorithm if

signatures are not carefully designed. It is worth noting that the same problem exists with

ASAX.

3.6 Reasoning in the presence of Uncertainty

3.6.1 Fuzzy logic approach

Due to the complexity of managed systems, it is not always possible to build

precise models. The knowledge of cause and effect relations among attacks and alerts is

generally incomplete. Besides that, some of the alarms generated by an attack or a fault

are frequently not made available to the correlation system in due time, because of losses,

corruption or delays in the route from the element which originated them. Finally, due to

the fact that configuration might change frequently, the more detailed a model is, the

faster it becomes outdated. The imprecision of the information supplied by experts very

often causes great difficulties. Consequently, fuzzy logic has been proposed as an

 43

alternative to deal with the uncertainty and the imprecision which characterize some

applications.

The basic concept underlying fuzzy logic is the fuzzy sets. In classic logic, given a

set A and an element X, the expression “X is a member of A” is supposed to be evaluated

either as true or false. When it comes to fuzzy sets, each element X has, in relation to the

set, a certain grade of membership, which may take any value between 0 (when the

element definitely does not belong to the set) and 1 (when the element is certainly a

member of the set). The concept of fuzzy set brings in itself the novelty that any given

proposition does not have to be only true or false, but that it may be partially true, in any

degree in a scale 0 to 1. Through a specific algebra, several operations on fuzzy sets are

defined (for example, complementation, intersection and union).

Other similar models exist to handle the issue of reasoning in the presence of

uncertainty, namely possibilistic models7 and Dempster-Shafer Theory (DST)8.

Classical expert systems are programs that emulate the reasoning of human

experts or perform in an expert manner in a domain for which no human expert exists.

Rule-based and model-based approaches (attack-scenarios or context models) belong to

this category. However, these expert systems typically try to cope with uncertain and

imprecise information (false positives, false negatives, alert omission, etc), using various

ad hoc methods. On the other hand, these new models provide built-in capability to

express rules based on uncertain knowledge. Each model will provide different

mechanisms to define and to handle the variables “important” and “high”. The rules are

typically of a form similar to the following:

IF alert is important AND target is vulnerable THEN attack is very likely

7 A possibilistic propositional base is a collection of logical statements associated with qualitative

certainty levels. We report the interested reader to [Dubo92] for more information on this approach.

8 DST is designed to deal with the distinction between uncertainty and ignorance. It is very

interesting in the case of incomplete models as some beliefs can be left unspecified. We report the

interested reader to [Klir94] for more information.

 44

Where ‘alert’ and ‘target’ are (linguistic) input variables, ‘important’ is one of the

possible linguistic values of the variable ‘alert’ and ‘high’ a linguistic value of ‘target’.

Unlike rule-based approaches, which use knowledge-based rules, these systems

use uncertainty-based rules (rules coping with uncertain knowledge). However, it is

correct to say that they are a special case of rule-based systems.

A number of applications using these systems have been implemented in several

areas such as Strategic Planning, Geology, Medicine, Environmental Sciences or

Electrical Engineering. However, some researchers argue that all problems that may be

solved by means of these new logics can be equally solved by means of probabilistic

models such as, for example, Bayesian methods, with the advantage of counting, in the

latter case, on a solid mathematical basis which, they claim, is lacking in the other models

[Luna94].

To conclude, we want to point out that all complex correlations systems that were

built so far required more than just one basic technology in order to be successful. In a

large measure, techniques from fuzzy logic and from artificial intelligence for instance

are complementary rather than competitive. These kind of resulting hybrid systems will

(most likely) be more and more important in the future [Klem94, Abra01, PerrMe].

3.7 State Transition graphs

3.7.1 State transition graphs approach: an introduction

The concept behind a state-transition graph is very similar to a rule-based

approach. The difference lies in the representation of the rules which is implemented by

means of a state, a token, an arc and the movement of a token from one state to another

via an arc [Lew99]. The advantages and disadvantages of the approach are similar to the

rule-based approach: building the states and transitions are similar to building rules.

Thus, it is appropriate for smaller, stable systems. Examples in network management are

HP OpenView used with Veritas’ NerveCenter [Lew99].

3.7.2 STATL: overview

STATL is an extensible state/transition-based attack description language.

 45

In other words, it is an extensible language that is used to represent graphically

attack scenarios. The language defines the domain-independent features of the STAT

formalism. Attack scenarios are represented as sequences of transitions that characterize

the evolution of the security state of a system. This characterization of attack scenarios

allows for an intuitive graphical representation by means of state transition diagrams (see

Figure 1).

In an attack scenario, states represent snapshots of a system's security-relevant

properties and resources. A description of an attack has an "initial" starting state and at

least one "compromised" ending state. States are characterized by means of assertions,

which are predicates on some aspects of the security state of the system. For example, in

an attack scenario describing an attempt to violate the security of an operating system,

assertions would state properties such as file ownership, user identification, or user

authorization. Transitions between states are annotated with signature actions that

represent the key actions that, if omitted from the execution of an attack scenario, would

prevent the attack from completing successfully. For example, in an attack scenario

describing a network port scanning attempt, a typical signature action would include the

TCP segments used to test the TCP ports of a host.

Figure 1: A State Transition Diagram

The STATL language can be extended to express the characteristics of a

particular domain and/or environment. The extension process includes the definition of

 46

the set of events that are specific to the particular domain or environment being addressed

and the definition of new predicates on those events.

For example, to extend STATL to deal with events produced by the Apache Web

Server one would define one or more events that represent entries in the application logs.

In this case an event would have the fields host, ident, authuser, date, request,

status, and bytes as defined by Apache's Common Log Format (CLF). After having

defined new events it may be necessary to define specific predicates on those events. For

example, the predicate isCGIrequest() would return true if an event is a request for a

CGI script. Event and predicate definitions are grouped in a Language Extension Module.

Once the event set and associated predicates for a Language Extension Module are

defined, it is possible to use them in a STATL scenario description by including them

with the STATL use keyword. Extensions for TCP/IP networks, Sun BSM audit records,

IDMEF Alerts, and Apache event logs have been developed.

STATL scenarios are matched against a stream of events by a system called

‘STAT Core’.

The State Transition Analysis Technique has been initially used as the basis for

developing a host-based intrusion detection system called USTAT. Later on, the

technique has been extended to network traffic analysis and a network-based intrusion

detection systems, called NetSTAT, has been developed. In 1998 and 1999 NetSTAT and

USTAT were evaluated as part of both the MIT Lincoln Laboratory's off-line intrusion

detection system evaluation and the Air Force Research Laboratory (AFRL) real-time

evaluation. They showed promising results.

However, we are more interested by a more recent tool called AlertSTAT.

AlertSTAT is a STAT-based intrusion detection system whose task is to fuse,

aggregate and correlate alerts from other intrusion detection systems –or sensors.

Therefore, alertSTAT uses the alerts produced by other sensors as input and matches

them with respect to attack scenarios that describe complex, multi-step attacks, using a

STAT core system. Resulting alerts are an aggregated report that conveys a higher level

view of the overall attack process.

 47

AlertSTAT operates on alerts formatted according to the IETF’s Intrusion

Detection Message Exchange Format (IDMEF) proposed standard [Idmef]. Furthermore,

a number of attack scenarios have been developed, including the detection of complex

scans, “many-to-one” and “one-to-many” attacks, island hoping attacks, and privilege

escalation attacks [Vigna03].

3.8 Neural networks

An Artificial neural network (ANN) is a system constituted by elements –

neurons- interconnected according to a model inspired by the neural network existing in

the human brain. Conceptually, each neuron may be considered as a simple autonomous

processing unit, provided with local memory, and with unidirectional channels for the

communication with other neurons. The functioning of an input channel in an ANN is

somehow similar to the operation of a dendrite in the biological neurons. In an analog

way, an output channel has an axon as its model. A neuron has only one axon, but it may

have an arbitrary number of dendrites. The output ‘signal’ of a neuron may be utilized as

the input for an arbitrary number of neurons [Kumar94].

In its simplest form, the processing carried out in a neuron consists in calculating

the weighted sum of the signals present in their inputs and of generating an output signal

if the result of the sum reaches a certain threshold. In the most general case, the

processing may include any type of mathematical operation on the input signals, also

taking into consideration the values stored in the neuron’s local memory [Meira97].

The distributed control and storage of data and parallelism are interesting features

of the ANNs. Besides that, an ANN does not require a previous knowledge of the

mathematical relationship between inputs and outputs, which may be automatically

learned, during the system’s normal operation (thanks to algorithms such as

Backpropagation, Quickprop, Cascade Correlation, etc). This makes them a good

alternative for applications such as alarm correlation or fault diagnosis where the

relationships between faults and alarms are not always well defined or understood and

where the available data is sometimes ambiguous or inconsistent.

 48

More concretely, Neural Networks seem not to be frequently applied in Alert

Correlation tools. One first and important reason is that it is difficult to ‘know’ what is

exactly done inside the ANNs. This is problematic for the administrator’s understanding

of outcoming alerts.. A second reason is that most of the efficient ANN implementations

are commercial and proprietary solutions. As a result, it is ever hard to know which

approaches are implemented inside. There are is a notable exception presented in

[Wiet97] where Wietegrefe et al. apply neural networks to correlate alarms from Cellular

Phone Networks.

Nevertheless, neural Networks are widely used in Intrusion Detection Systems

[Deb92, Lippm99, Biv02, DuSha03]. Neural Networks is a strong and well-studied

domain. Thus, it is possible to see this technology being soon applied to a larger number

of alert correlation tools.

3.9 Bayesian Belief Systems

3.9.1 Bayesian belief approach: an introduction

Probabilistic reasoning using Bayesian statistics is an approach that attempts to

overcome the problems of knowledge acquisition, scalability, learning and adaptation.

Typically, Bayesian models are used to monitor performance and determine

abnormalities. This is done by profiling critical system parameters under normal

conditions, then monitoring the system: a subjective probability expresses the degree of

belief of an expert related to the occurrence of a given event/alert, based on the

information this person has available up to the moment [Henr91]. The use of subjective

probabilities is very often the only resource, in situations where analytical or

experimental data is very hard, or even impossible, to obtain. Consequently, Bayesian

statistical methods are able to combine prior knowledge with partial statistical data to

make inferences on other parts of the system. However, it is difficult to implement in

practice. Very few commercial products are known to use this technique specifically, but

it is being seriously studied [Hood97, Sterr00, Thot98]. One notable exception comes

from the Honeywell technology Center, in cooperation with DARPA. They produce

Argus, “an Architecture for Cooperating Intrusion Detection and Mitigation

 49

applications”. This tool correlates information from multiple intrusion detectors by

applying qualitative Bayesian estimation technology [Argus].

We present in the following sections two projects that implement this approach.

Both were included in tools, named eBayes and SPICE.

3.9.2 EMERALD

Valdes et al. introduced in [Val00] a probability-based sensor called eBayes.

Ebayes analyses TCP sessions, which are temporally contiguous burst of traffic from a

given source. The analysis is done by Bayesian inference at periodic intervals in a

session, where the interval is measured in number of events or elapsed time. Between

inference intervals, the system state is propagated according to Markov model. So, after

each inference, the system emits an alert for sufficiently suspicious sessions. Even if

Valdes writes in [Val01] that “the Adaptive Model –based Monitoring effort of eBayes

permits to correlate and comprehend the results of various sensors, both for improved

sensitivity and for false alarm suppression”, this is not really exact. eBayes is a sensor (or

a couple of sensors: respectively eBayes-TCP and eBayes-Host) without any alert

correlation capacities. However, Valdes et al. provide in [ValdSkin] a more serious alert

correlation proposition. First, they introduce a new approach, called alert fusion.

 They maintain a permanent list of ‘meta-alerts’ that are possibly composed of

several alerts, potentially from heterogeneous sensors. For two alerts, typically a new

alert and a meta-alert, they identify features they have in common (feature overlap). Such

features include the source of attack, the target IP and port, the class of the attack and

time information. With each feature, they have a similarity function that returns a number

between 0 and 1, with 1 corresponding to a perfect match. For attack class similarity, they

maintain a matrix of similarity between attack classes, with values of unity along th

diagonal and off-diagonal values that heuristically express similarity between the

corresponding attack classes.

The probabilistic approach provides a technique to use efficiently the deductive

knowledge from the model (meta-alerts). This simply means that the model and the way

 50

to use it are two distinct parts that can be implemented by various techniques. One clear

example of this is given in the next paragraph.

3.9.3 Collaborative Intrusion detection System (CIDS)

[Cids] presents the design and implementation of a framework of a collaborative

intrusion detection system [Bagc03]. CIDS employs multiple specialized detectors (at

different layers) and a manager based framework for “aggregating the alerts from the

different detectors to provide a combined alert to the administrator”. We are particularly

interested in this last aspect. First and foremost, we need to clarify a terminological issue.

Aggregation, for the authors of CIDS, is different from what we have defined above; it

corresponds to the generic notion of “correlation” as discussed in this paper.

 The correlation is the Inference Engine task. It processes alerts in the queue and it

comes up with the determination of potential intrusion detection. The determination is

performed by matching the observed events against a signature database (or deductive

knowledge).

However, the authors design two ways to use this knowledge. One is a graph-

based inference engine, and the other one is a Bayesian network based inference engine.

They build the Bayesian graph construction starting from the signatures. It

describes the conditional probability relationship among alerts and the conditional

probabilities to specify. Then, when a new alert comes into the Inference queue, the

inference function provides the probability of the root node, which is the probability of

the attack based on the observed evidence.

Their presentation is very clear. It highlights the fact that many techniques can be

applied to use previously-defined knowledge. There are no exclusive techniques. We can

even imagine using many techniques in parallel, in order to exploit pros and cons of each

of them and to obtain complementary correlation information.

3.9.4 SPICE

SPICE (Stealthy Probing and Intrusion Correlation Engine) is a tool proposed by

Silicon defense in [StanHoag] to detect portscan. Even if they use simple log events as

 51

input for their correlation process, we believe that their approach can be extended to other

inputs, and specifically alerts.

It combines events based on similarity of certain events attributes. To be more

precise, source and destination IP addresses and ports are used for determining similarity,

and Bayesian graphs are drawn with links between related alerts.

Their design maintains a probability model for the total activity on the network.

To do so, they use nested self-balancing binary trees to encode the joint probability

tables. Then, they maintain historical state for anomalous events (keeping them longer,

the more anomalous they are). They apply a simulated annealing method (see [StanHoag]

for further details) to cluster events together into portscans, using some heuristics they

developed from real scans.

The approach uses classic probabilistic methods and is very interesting. One

drawback, however, is that it might miss out a quite large set of related events.

3.10 Other approaches

3.10.1 Codebooks

The codebook approach is somewhat very similar to the rule-based approach, but

rather than being treated separately, all events are grouped into an alarm vector, which is

then matched to problem signatures, stored in a so-called codebook [Klig95].

Relationships between known events/alerts sequences are characterized by a

correlation matrix, essentially a binary matrix that maps incoming events/alerts to attack

signatures. That is, a matrix of ones and zeros, where events/alerts are the rows, and

attack signatures the columns. A one in the matrix indicates the event/alert in that row is

necessary to perform successfully the attack in that column; attacks can require more than

one initial event/alert to occur.

In real time, each situation of abnormality may be described by means of an

attack vector ā where each element indicates the occurrence or not of the corresponding

attack. The correlation is made through the choice, in the codebook, of the problem p,

 52

whose code is closest to the vector ā, in terms of a given distance, for instance the

Hamming one [Ham50].

The codebook approach always produces a diagnosis, as opposed to the rule-

based scheme, though some diagnoses will be more likely than others. Unfortunately, the

codebook approach requires the same expert knowledge as a rule-based system in order

to accurately populate the codebook, though Yemini et al. claim in [Yemi96] that

problem signatures can be created automatically. Furthermore, many of the details of this

system appear hidden behind corporate patents; so it is hard to find evidence to backup

their claims.

This approach has been pioneered in Network Management by System Arts

Management, Inc. with their InCharge product. Research examples of this integrated to

HP OpenView or IBM NetView have been published [Lew99, LoChen00]. However, no

solution currently exists in Alert Correlation.

3.10.2 Vote

In correlation by voting, each element must express its opinion on a specific topic.

Then, a majority rule (absolute majority or k-majority for instance) is applied on this set

of opinions (i.e. votes). The rule’s consequence aims at representing the opinion of the

majority of elements. A further extension can then be added to handle abstention from

voting. We report the interested reader to [Dough02] for more details on voting rules.

Rules are compared in their ability to fulfill some criteria, such as the Pareto criterion, the

Expected Social Gain, etc…

Such a technique is presented in network management by Houck et al. in

[Houck95]. When a node detects a strange behavior in the system, it sends an alert to the

correlation system. In its alert, the node includes a WHERE description field, which

indicates the possible location of the problem. Then, the correlation system forwards this

WHERE information (which might be quite vague) to other nodes in the system and asks

each of them to give its opinion concerning the location of the problem. The causal node

is determined on the basis of these collecting votes (i.e. opinions).

 53

A similar technique can be adapted to intrusion detection systems in a distributed

environment. Du et al. implement such an approach in [DuSha03] to identify poison

messages. Each subnetwork manager outputs a score to design a particular message type

(score based on certainty of such messages detection). Votes are then combined to obtain

more relevant information on the message type. Actually, this operation is executed each

time a ‘message poison’ alert is detected.

The correlation by voting technique may be associated to other techniques such as

dependence tree search [Houck95], which allows the identification among the

components of the most voted elements, the most probably responsible for the fault that

caused the alerts. Moreover, the correlation by voting allows each node to be an active

element in the correlation process. Nevertheless, we are not aware of alert correlation

tools that implement this approach beside the one presented in [DuSha03].

3.10.3 Genetic Algorithms

Genetic algorithms were invented by John Holland in the 1960s. It is a method for

moving from one population of "chromosomes" to a new population by using a kind of

natural selection together with the genetics-inspired operators of crossover (exchanging

genetic material between two single chromosome haploid parents), mutation (flipping the

bit at a randomly chosen locus), and inversion (rearranging the order in which genes are

arrayed). The selection operator chooses those chromosomes in the population that will

be allowed to reproduce, and on average the fitter chromosomes produce more offspring

than the less fit ones.

It turns out that there is no rigorous definition of ‘Genetic Algorithms’ accepted

by all in the evolutionary-computation community. However, it can be said that most

methods called "GAs" have at least the following elements in common: initial

populations, selection according to fitness, crossover to produce new offspring, and

random mutation of new offspring.

One illustration is presented by L. Mé in [Mé98]: GASSATA, which is a GA-

based tool designed to deal with audit trails. However, there are some drawbacks which

make this solution very limited. First, an attack-event matrix which gives the set of events

generated by each attack must be initially defined. This work can be very tedious.

 54

Secondly, GASSATA does not take into account missing events. Then, it cannot detect

multiple realizations of a particular attack.

Finally, there exist many variations of GAs, and they are often used in

combination with other methods (fuzzy logic, machine learning…). However, we are not

aware of other alert correlation tools that implement such a technique.

3.10.4 An endless list

Due to the importance of the Event Correlation domain, techniques and paradigms

coming from different fields have been proposed as potential good candidates to solve the

issues. As of today, none of them has managed to bring some concrete solutions on the

table. This is why we choose not to discuss them here. However, certain concepts are

certainly worth being investigated, and could offer interesting result in the near future.

This is certainly true for the following ones:

- Visualization techniques [SteCu00]

- Event Forwarding Discriminator (EFD) [Ietf00]

- Divide and Conquer paradigms [Bayer02]

- Constraint Satisfaction Problem (CSP) [Sabin97]

- Distributed and Cooperative architectures (multicast) [Elvin]

Alert Correlation, however, is a very recent topic. There are currently few

available solutions, and the current approaches are almost all listed in Sections 3.2 to 3.7.

Worse, these approaches are not implemented in practical tools. This gives the negative

impression that tools development and research approaches are totally isolated.

Moreover, we notice a non-surprising opacity of techniques used in the few existing

commercial products, perhaps because of patent restrictions.

3.11 Complementary approaches

The categories summarized above cover a large field of research. The field is

being driven by the increasing problem of event and alert correlation as systems increase

in complexity and importance. Achieving standard representation of correlation events

and alerts is a recognized industry goal. Although some private sector efforts claim

success using rule-based, context-based and codebook-based approaches, these appear to

 55

be based on highly specific examples that have not been subjected to open evaluation

from outside sources [Yemi96, Lew95]. Published reviews that attempt to compare event

or alert correlation products have been rare [Board01]. Without further evidence,

effective solutions to date appear to be so costly that they have been, and are likely to

remain, limited to the relatively few organizations that can afford them.

There is not a unique solution that is the ‘best’, in terms of precision and/or

complexity, to solve a generic problem of alert correlation. Recent researches indicate a

tendency for the adoption of combinations of different approaches for the solution of the

problem in complex networks [Lew99].

For instance, in the ‘codebook’ approach description we claimed that the

codebook could be seen as a matrix where each row corresponds to a symptom (or event

or alert) and each column corresponds to a problem (or fault, or attack). Each element of

a column vector contains a measure of the causality of the problem to the corresponding

symptom. We said that the value could be either 0 or 1. However, it is not completely

exact and it is not demanded that the values of the causality measures belong to the set

(0,1); the model allows these values to belong to any semi-ring, which constitutes a

special class of partially ordered sets. This leaves open possibilities to use several

approaches to describe the likelihood of causality, such as deterministic, probabilistic,

fuzzy logic and temporal models.

Other examples are SPICE [StanHoag] and the probabilistic alert correlation

method [ValdSkin]. They correlate alerts based on the similarities between their

attributes. Though they are effective for correlating some alerts (e.g. alerts with same

source and destination IP addresses), they do not discover causal relationships between

related alerts and they can be complemented by scenarios-based methods [Ning03].

This simply shows that many solutions currently exist. Each of them proposes a

new solution with different input information and correlation technical approaches. We

find them quite complementary, even if they tend, at first glance, to ignore each other.

The choice depends mainly on the conditions where correlation should be applied. The

first step consists in defining carefully the operational constraints:

- the input information;

 56

- the correlation objectives (approximate vs. exact summary of alerts for instance);

- the available resources. Some techniques require high-level knowledge to be

installed and/or maintained;

These hypotheses contribute to select some solutions among the panel of methods.

Actually, a correlation approach is often composed of multiple correlation approaches.

Thus, many papers propose a combination of correlation techniques, in order to carry out

a more efficient correlation.

3.12 Comparisons and summary

A comparison between methods and algorithms presented in the previous section

is a difficult process and must take into account some factors among which, in general,

there is a tacit agreement:

1- facility for constructing a theoretical model

2- implementation complexity

3- facility to adapt the changes

4- performance

5- precision

Rule-based approaches are appropriated for the correlation in systems whose

configuration is rarely altered; the high costs of implementation and adaptation to

changes make it difficult to apply these strategies to large systems (with large amount of

alerts). Other approaches, such as the probabilistic ones are less sensitive to changes in

the system.

Furthermore, the nature of the application to which the correlation is applied (for

example, a reduction of the amount of information to be analyzed by the administrator,

the identification of the faults that originated alerts, a prediction as to the occurrence of

faults in the future, etc) determines the type of correlation to be used (see 2.3), which by

its turn, must be taken into consideration in the choice of the method or algorithm to be

adopted in a given situation. Alert compression, selective suppression, simple filtering,

counting and specialization are examples of correlation types that may be implemented

by using rule-based conventional approaches.

 57

Applications involving filtering, scaling or temporal relationship may also be

implemented. Nevertheless, the increase in the complexity of the problem is a

consequence of exceptions (i.e. unknown cases) which are not always suitably treated by

some traditional approaches. For instance, simple techniques which are based on some

expert knowledge do suit well with so-called exceptions. Beside that, the possibility of

the occurrence of non-identified exceptions affects the system robustness, which does not

have alternatives to deal with these situations.

The most interesting applications of alert correlation, such as fault diagnosis,

generally involve generalization or clustering. In these cases, the problem complexity

makes it difficult to obtain of exact solutions, uncertainty being an important factor in the

correlation process. Among several approaches to deal with uncertainty in alert

correlation, fuzzy logic, Bayesian networks, voting-based reasoning, codebooks and

artificial neural networks are noteworthy. There is much controversy involving

advantages and drawbacks of each alternative. For example, defenders of fuzzy logic

based approaches argue that they rather simplify the development of applications and

result in products that work and that have an excellent performance.

We have listed five comparison factors at the beginning of this section. The first

three factors that must be taken into account while comparing methods are easily

evaluated in general. However, it is harder to understand the two last ones, respectively

performance and precision. Nevertheless, noticeable exception has been recently

published by the IEEE Computer Society [Haines03]. Haines & Al. point out the need to

compare correlation systems. They describe an environmental setup to validate various

correlation systems with the explicit goal of quantifying their ability to recognize cyber

attacks and correctly designate their targets. It is a first and interesting step. Therefore,

they compare in [Haines03] five correlators to validate their testbed. However, a more

scientific comparison needs to be performed between combinations of correlation

algorithms. Indeed, the five correlators which are used in the experiment are very

different (some of them having generalized capacities and others being very attack

specific).

 58

To conclude, this chapter has demonstrated that there currently exists a large

variety of correlation approaches. Most of them are implemented in network management

solutions. Some are still in their experimental phase. In alert correlation, things are

different. We do not find such a variety of approaches. Research groups tend to focus on

same sorts of techniques: for instance, a particular attention is given on scenario-based

approaches. We believe, however, that this will change in the coming months. New

techniques are emerging, trying to adapt advances of Event Correlation to the security

domain.

Chapter 4 intends to illustrate our previous statement. We present some tools that

are currently available. Each of them offers some correlation properties that will be

presented in more details.

4 Existing tools

4.1 Generalities

By simply searching alert correlation tools on the Internet, we obtain a long list of

names. Indeed, the ‘correlation’ word is used in a generic way (see Section 2.1), and

many products use it as a commercial asset.

This section intends to present the main existing tools, in relation with general

approaches presented in Section 3. Generally speaking, we notice that tools can be

grouped into three categories:

- log analysis tools (Section 4.2.1)

- management consoles (Section 4.2.2)

- testbed research tools (Section 4..2.3)

These tools are listed in the next three subsections. Lists are not exhaustive, but

we try to present the more representative solutions. Furthermore, a major part of these

tools are commercial, and some proprietary patents prevent us from clearly understand

which kinds of correlation approaches are implemented. There might be a gap between

whitepapers and executable codes. Consequently, we invite the interested reader to

 59

download and test open-source solutions or free-trial versions, in order to strengthen his

(or her) opinion.

4.2 Classification

4.2.1 Log analysis tools

4.2.1.1 Tools presentation

We present in table 1 some tools belonging to the so-called ‘log analysis tools’

category. The ‘Current version’ column provides the tool’s version at the time of this

writing. The ‘Open source’ column indicates that the tool can be freely downloaded and

tested or not. We give the specific system requirements of each tool in the ‘System

Requirements’ column. The ‘tool maintenance’ column helps determining if the tool is

well maintained (based on tool website modifications and last tool updates).

 60

Table 1: Log Analysis Tools Description

Name Authors Current
Version

Open
Source

System
Requirements

Tool
maintenance

SnortSnarf
[SnSnf]

Silicon Defense v021111.1 Yes Perl support Yes

WOTS
[Wots]

Tony Curtis v1.22 Yes Perl support Not really
(stable version)

Swatch
[Swatch]

Todd Atkins v3.0.8 Yes *nix OS,
Perl support

Yes

Lire
[Lire]

LogReport
Foundation

v1.4 Yes *nix OS,
Perl support

Yes
(project 2.0)

AWACS
[Awacs]

Georg Greve v0.1.1
(alpha

version)

Yes Linux (GNU) No

XlogMaster
[Xlogmst]

Georg Greve v1.6.0 Yes *nix OS,
GTK+ v1.2

No

LogRep
[Logrep]

ITEF!X Consulting v1.4.2 Yes Perl support Yes

ZoneLog
Analyzer
[Zlana]

MCS v1.18 Yes Windows,
Visual Basic 6
runtime files

Yes

SEC
[Sec]

Reto Vaarandi v2.1.11 Yes Perl support Yes

LogSurfer
[Lsurf]

DFN-CERT v1.5a Yes *nix OS
C support

No

LogIDS
[LogIds]

Adam Richard
(SecurIT

Informatique Inc.)

v2.0 Yes
&
No

Windows Yes

ipLog
[IpLog]

Ojnk Software
Design

v2.2.3 Yes *nix OS No

LogWeaver
[LgWeav]

J. Goubault-
Larrecq : DICO

Project

Evaluation
version

Yes Linux (with
glibc)

Yes

First and foremost, this list is not exhaustive. We only present the most important

solutions. We notice however that they in general are quite simple and that they require

few system resources: most of them are built in Perl, and are open source. Finally, we

 61

would like to point out that many of them were not initially designed to deal with alert

correlation specifically. This aspect is more widely developed in the following section.

4.2.1.2 Tools specificities

Table 2 details their correlation approaches, as well as their requirements, such as

the input and output formats.

 62

Table 2: Log Analysis Tool Specificities

Name Input formats Output
formats

Correlation
types

Remarks

SnortSnarf
[SnSnf]

Snort alerts HTML report Filtering
(colorizing):

src/dst IPs, snort
signatures

A simple tool to obtain
Snort alerts summary.

Its correlation capacities
are limited.

WOTS
[Wots]

Any file type Reports and
actions

Pattern matching
rules (regular
expressions)

Simple pattern matching
through various file

inputs
Swatch

[Swatch]
Syslog files Reports and

actions
Pattern matching

rules (regular
expressions)

Similar to Wots but
more restrictive on the

input format
Lire

[Lire]
Many log files (X)HTML, PDF,

Excel, charts,
LogML

Filtering (given
some schemas).

Other approaches
are possible.

Its xml-driven reporting
engine allows a large

variety of input formats.
Very flexible. A good

framework.
AWACS
[Awacs]

Any (in theory) Reporting Not defined This project seems
abandoned since 2001.

XlogMaster
[Xlogmst]

Any file type Reporting and
actions

Two-levels
filtering rules

(stateful/stateless)

More complex than
Swatch. Filters can be
applied at display time
(Xwindow) or read time

LogRep
[Logrep]

Many log files
(snort, squid,
syslog, etc…)

HTML reports
and graphs

Not mentioned
(pattern matching
rules apparently)

There is little (if no)
documentation on its

working.
ZoneLog
Analyzer
[Zlana]

Log files
generated by
ZoneLabs’
ZoneAlarm

DB visualization
and report

Data mining rules Limited to ZoneAlarm
products. A friendly
graphical interface.

SEC
[Sec]

Any file type Any (reports,
scripts,

programs, etc…)

Rule-based
correlation

(pattern matching
rules)

Important effort to help
building rich rules. Very

promising.

LogSurfer
[Lsurf]

Any text-based
log files

Reports and
actions

Pattern matching
rules

Similar to primary
versions of Swatch

LogIDS
[LogIds]

Any ASCII files Network map of
events

Filtering with
pattern matching
rules and given a
network model

Interesting tool for
multi-IDS log

monitoring

ipLog
[IpLog]

Pcap data Reports Not defined.
Very basic
operations

A tcp traffic logger with
poor correlation

capacities
LogWeaver Syslog files Reports Time Event rules It can filter, count and

match regular

 63

[LgWeav] expressions, but also
detect correlations

between events, while
maintaining temporal

relations.

Some observations result from table 2. First of all, most of these tools implement

rule-based approaches. To be more precise, they exploit Perl pattern matching capacities

to extract interesting information from the log files. The expert must write rules and

introduce regular expressions before launching any correlation process.

We distinguish two sub-classes:

• Tools which were designed to fulfil a very specific goal: some listed tools were

initially designed to deal with specific input formats. Some of them are designed

for instance to help analyzing Snort IDS output (SnortSnarf). Others are designed

to help analyzing firewall logs (ZoneLogs Analyzer) or Unix Syslog reports

(Swatch). This makes them hard to be reused in other situations. They are often

optimized for some given inputs and thus, have limited applications.

• Tools which were designed as general solutions: they often accept any kind of

input formats and are very flexible. One interesting example is SEC (Simple

Event Correlator). However, this flexibility implies some drawbacks: writing

complex correlation rules can become a tedious work. Tools in this category can

be compared by their rules expression capacity. We want to point out that even if

many tools seem very similar (WOTS, SEC, Swatch, LogSurfer), they do not

have the same facility to express rules. Intuitively, we would classify them as

follows: E(LogSurfer) < E(Swatch) < E(WOTS) < E(SEC), with E(X) being the

rules expression capacity of tool X.

Many of these tools were not initially designed to deal with alerts only. They can

be very convenient for basic correlation operations. However, they may imply some

difficult work in more complex correlation requirements, as they do not suit well for

these tasks.

 64

Finally, IDMEF is the current alert format standard. Even if none of these tools is

specific to this input format, we can easily imagine adapting some of them to it. Along

this line, two tools seem very promising: SEC and Lire [Sec, Lire].

SEC is a Perl application released around midyear 2000 by R. Vaarandi [Sec]. It

provides an effective rule-based correlation engine that is simple to maintain. The

product’s author has published thorough technical descriptions, the results of rigorous

testing of the product and he actively supports its current development [Vaar02]. There

are nine basic operations that can be combined to create rules of arbitrary complexity.

Furthermore, a time window can be specified for the alerts observation.

Lire is an Open Source reporting and analysis software maintained by LogReport

Foundation. Its xml-driven reporting engine can theoretically parse any kind of log,

given that a service driver is written to convert the raw log into a Lire DLF (Distilled Log

Format) file. The engine performs calculation on these data which go into a report. This

operation consists of two phases: analysis (extract derived information) and aggregation

(statistics for instance). Furthermore, Lire allow an important choice of output formats.

4.2.2 Management consoles

In order to make IDSs suitable for corporate environments, the dispersed and

various agents need to report to a central console. This console aims at gathering

information in a single place and at analyzing it. We present in table 3 such central tools.

The ‘Description’ column gives a short overview of the tools’ characteristics. We do not

give their exact system requirements, as they are in general quite important. Management

consoles centralize information. Thus, it implies secure data transfers, secure central

machines, secure data storage and so on. Consequently, we report the interested reader to

the tools home page for more information.

 65

Table 3: Management Consoles Description

Name Authors Open
Source

Description

eTrust Network
Forensics

(formerly known
as SilentRunner)

[Etrust]

Computer
Associates
(previously
Raytheon
Company)

No It is a network discovery, analysis and
visualization tool for safeguarding some

information assets.

TruThreat Risk
Correlation

[TruTh]

Arcsight Inc. No It combines the severity of potential threats
and attacks with the value and vulnerability
of business processes and assets to calculate

and communicate the intrinsic risk of a
particular security event [Annex A].

ACID
[Acid]

R. Danyliw
(CERT)

Yes It is a PHP-based analysis engine to search
and process a database of security events

generated by Snort, iptables, ipchains, ipfw,
tcpdump, etc..

Dragon Server
[DragSer]

Enterasys
Networks

No It is similar to ACID but dedicated to
Dragon deployments.

IPFC
[Ipfc]

Conostix Yes It is a simple tool to manage and monitor
multiple types of security modules such as
packet filters (netfilter, pf, ipfw, IP Filter,

checkpoint FW1...), NIDS (Snort, ISS
RealSecure...), webservers (from IIS to

Apache), etc…
Lightning
Console

[LighCon]

Tenable Security No It includes vulnerability scanning; reporting
and scheduling; asset management; real time

aggregation of IDS events and correlation
with vulnerabilities.

Prelude
[Prelu]

Y. Vandoorselaere Yes It adds support to Prelude IDS of
Vulnerability correlation with Nessus

Report.
Tivoli Risk
Manager
[TivoMa]

IBM No It manages security incidents from a single
web-based security console by correlating
security information and risk alerts from

firewalls, routers, networks, host- and
application-based intrusion detection
systems, desktops, and vulnerability-

scanning tools. It may include IBM Tivoli
Enterprise Console and IBM Tivoli

NetView to provide the capability to drill
down to the network topology to see where

the affected resources are located and
delivers root cause problem determination.

PureSecure
[PureSec]

Demarc Security No It is a commercial product similar to ACID,
but with more functionalities and flexibility.

 66

SnortCenter
[SnoCen]

S. Dens Yes It is a web-based client-server management
system written to help configuring Snort and

querying the alert database.
Real Secure Site

Protector
[RealSec]

Internet Security
Systems (ISS)

No It is a centralized security management for
all ISS products (Proventia, RealSecure,

etc).

Net Forensics
Console
[NetFor]

NetForensics No It collects, analyzes, and correlates security
device information from across the network

in a series of four distinct phases:
Normalization, Aggregation, Correlation,

and Visualization.
neuSecure
[NeuSec]

GuardedNet No It is a security management and incident
response platform implementing interesting

correlation features (see below).
IDSCenter
[IdsCen]

Engage Security
U. Kistler

Yes It is another Snort front-end to walk
through the alert database and display

reports.
LogIDS
[LogIds]

Adam Richard
(SecurIT

Informatique Inc.)

Yes &
No

It is a simple but interesting tool for multi-
IDS log monitoring: a limited open-source

version and a commercial version.

InCharge
[InCha]

SMARTS No It is a complex management suite, including
the Service Assurance Manager. It integrates

and correlates management information,
including infrastructure topology, polled

data, events, and authentic problems from
various sources spanning network, system,

application, and business objects, seamlessly
integrating with customer relationship

management (CRM), provisioning, and
other OSS systems.

Shadow
[Shad]

US Navy Yes It performs traffic analysis; a sensor collects
packet headers from all IP packets that it
sees; the analyzer examines the collected

data and displays user defined “interesting”
events on a web page. More an IDS than a

correlation tool…

Table 3 observation leads to the following remark: there is a larger number of

commercial products than in the previous category. Actually, most companies which

product IDS sensors design their own central monitoring tools to offer to their customers

a complete suite (Computer Associates, IBM, ISS, GuardedNet, etc). However, there are

some noticeable exceptions. Indeed, some IDSs are open-source (Snort or Bro for

 67

instance) and require a central monitoring console as well. Thus, some open source

consoles are designed to fulfill this requirement: ACID, SnortCenter, IDSCenter, etc…

We do not give in table 3 the tools’ requirements. Actually, they often need

particular setups at their installation phase (databases, secure communication, sensors’

configurations…). Thus, they require a more complex setup before being put into service

than log analysis tools. Table 4 presents the correlation characteristics they implement.

Some descriptions are shortened for lack of available information on these tools.

 68

Table 4: Management Consoles Characteristics

Name Correlation characteristics
eTrust Network

Forensics
(formerly known
as SilentRunner)

[Etrust]

Clustering based on database queries. Visualization.

TruThreat Risk
Correlation

[TruTh]

Correlation based on three factors: (Real time events from heterogeneous
devices, Results of vulnerability scans and other sources of threat data, Value

of the host, database or application to the organization). The correlation
system combines the severity of potential threats and attacks with the value

and vulnerability of business processes and assets to calculate and the intrinsic
risk of a particular security event. In addition, it provides a very promising

alert monitoring interface.
ACID
[Acid]

Basic correlation operations (filtering, etc..) on a database. Visualization.

Dragon Server
[DragSer]

Correlation based on database queries (data mining) and vulnerabilities
reports (thanks to a vulnerability scanner).

IPFC
[Ipfc]

Correlation based on data mining queries (data mining).

Lightning
Console

[LighCon]

Correlation based on the network topology (vulnerability scanners, traceroute
results): Filtering and data mining queries.

Prelude
[Prelu]

Selective suppression, based on Nessus report for instance, aggregation.

Tivoli Risk
Manager
[TivoMa]

aggregation, clustering, prioritization, state-based correlation [Deb01].

PureSecure
[PureSec]

Simple correlation operations based on database queries.

SnortCenter
[SnoCen]

Simple correlation operations based on database queries.

Real Secure Site
Protector
[RealSec]

Not clear. Alert aggregation and prioritization. Filtering.

Net Forensics
Console
[NetFor]

A rule-based correlation (explicit time-aware security policy rules) and a
statistical correlation (event categorization and threat scoring to determine the

threat potential of security-based anomalies).

neuSecure
[NeuSec]

A multi-phased alert correlation: the first is based on vulnerabilities (impact
correlation), The second tries to detect unknown attacks and anomalous

behavior (statistical correlation). The last one enforces security policies (rule-
based correlation). It is called Deterministic Threat Analysis (similar to

Arcsight)

 69

IDSCenter
[IdsCen]

Simple correlation operations based on database queries.

LogIDS
[LogIds]

Simple correlation operations. Alerts are grouped per hosts, and rules can be
defined to display them.

InCharge
[InCha]

A complex correlation process based on the codebook approach, the state-
based approach (root cause maps), and some user-defined rules (filtering),

etc…
Shadow
[Shad]

Statistics and clustering. Simple operations.

We have presented some management consoles in tables 3 and 4. The list is not

complete, but it gives a good understanding of their correlation capacities. Some of them

are simple interfaces to query back-end databases. Others complement alert information

with logs coming from vulnerability scanners, anti-virus or any other security devices.

Thus, with regard to these various characteristics, we distinguish two categories:

• Simple Consoles: they are the simplest management console solutions. They

generally consist in a database interface and they permit simple data reports.

They include ACID, Prelude, IPFC, IDSCenter, LogIDS, PureSecure, etc. In

short, this category contains almost all open source solutions plus the simplest

commercial ones.

• Specific consoles: Most Network-based IDSs (NIDS) vendors produce a central

console for their own products. We list some of them in table 4, for instance ISS,

Enterasys Networks, IBM, etc. These tools are often opaque and little

information is available. In general they are just one part of a complex security

suite. This implies de facto a complex installation, a long maintenance formation

and huge costs.

In usual cases, efforts are made on the interface. Almost all visited sites show proudly

the graphical aspects of their tools (systematic screenshots sections) and the convenient

manners to launch information requests. However, technical details are quite

disappointing. This seems all the more surprising that implemented approaches are

correlation key points. If we have a deeper look at the correlation approaches they

implement, we realize that they are limited to:

 70

- data mining requests

- basic operations: counting , filtering, aggregation

Some of them look for additional information. One solution consists in using results

from vulnerability scanners (it is the case of eTrust Network Forensics, Prelude, etc) or

network management requests (it is the case of Tivoli Risk manager in association with

IBM Netview, InCharge, etc). But very few implement original correlation approaches.

Exceptions are:

- InCharge from SMARTS: It implements the codebook approach described in

[Klig95] (among other methods)

- TruThreat Risk Correlation from Arcsight: They use a wide range of information

to calculate the intrinsic risks. Furthermore, interesting rule matching algorithms

are implemented. This makes the monitoring interface very complete.

- NetForensics Console from netForensics: Beside the traditional rule-based

approaches, they implement a statistical approach that complements the first one.

They build some attributes profiles and they check that incoming events adopt

these profiles. Anomalous profiles are thus detected and reported (like some

IDSs do). However, they do not precise how attributes are chosen in their product

whitepaper.

4.2.3 Experimental tools

We group in this category tools which are designed to validate research ideas.

They are not mature enough to be used in a production system, but this can change in a

near future. At the time writing, there are more whitepapers applications than applicable

tools.

Some tools that belong to this category are presented below:

• Intrusion Alert Correlator (version 0.2) developed by the North Carolina State

University. It implements the approach presented in section 3.3.3. It identifies the

pre-requisite (e.g. existence of vulnerable services) and the consequence of each

type of attacks, and correlates the corresponding alerts by matching the

 71

consequence of some previous alerts and the prerequisite of some later ones. A

resulting hyper-alert graph is displayed to show the structure of series of attacks.

More practically, the tool is currently able to process alerts generated by ISS

RealSecure network Sensor 6.0. It is written in java and can be downloaded from

[Iac02].

• AlertSTAT (version 2.0) developed by the Department of Computer Science in

Santa Barbara. It is a STAT-based analyzer (see section 3.7.2). AlertStat extends

xStat with an IDMEF extension module, an IDMEF event provider, and a number

of scenarios (3 are furnished with the downloadable version). The alerts processed

by the vent provider must be in the standard format defined by the Intrusion

Detection Working Group (RFC 2026).

• Threatman: It is an IDMEF compliant threat manager application which makes

use of a multi-tier architecture. It aims at correlating event and vulnerability with

alerts sent by IDSs, firewalls and other IDMEF compliant applications. The tool is

in pre-alpha development phase [Threat].

• OSSIM: it claims to unify network monitoring, security, correlation and

qualification in one single tool. It is a complex mix of all Snort, Acid, mrtg,

NTOP, OpenNMS, nmap, nessus and rrdtool. The 0-7 beta-version has been

released in November 2003 [Ossim]. The tool whitepaper describes two

correlation methods:

o Correlation using sequences of events: It uses if-then rules defined within

a xml-configuration file in order to detect event sequences.

o Correlation using heuristic algorithm: It is based on CALM (Compromise

and Attack Level Monitor), an assessment algorithm that uses event

accumulation over time. Little information is given on the algorithm

implementation (how risk levels are determined for instance).

 72

• MACE – Meta Alert Correlation Engine: It is built upon the CLIPS expert system

(see Section 3.2.3), creating a distributed application that is capable of filtering

and correlating Intrusion Detection alerts into Meta-alerts from multiple sources

[Mace]. Moreover, it uses IDMEF to represent alerts and meta-alerts. Finally, two

remote modules are particularly interesting:

o ARPMonitor: it sniffs ARP traffic in promiscuous mode. MAC/IP address

pairs are stored in a given database. Each time a new or changed MAC

address appears, the tool generates an IDMEF alert to MACE.

o Bandwidth Monitor: it measures the bandwidth on the network, split out

per source/destination port or IP address. Values are statistically analyzed

to detect anomalous bandwidth activity. In this last case, an IDMEF alert

is sent to MACE for further processing.

However, there is no explanation in [Rieb03] reagarding how these additional

alerts are correlated with the others.

4.2.4 Miscellaneous

We have presented so far many tools that present correlation capacities. Some of

them are based on pattern matching techniques, others on data mining approaches and

few on more original methods. This leads to two major remarks:

First, the alert correlation domain is not mature enough. Many techniques exist,

and only a few of them are currently implemented in practical tools. Furthermore, we

observe that the Network Management domain is still very active. An illustration of this

is shown in figure 9. It is a summary of INMAN, a Network Management Project

(Intelligent Network Management) that was carried out from June to December 2001.

This summary was found on the Project home page:

 73

INMAN
Intelligent Network Management
(2001)

The size of communication networks keeps on growing, with more subscribers, faster connections and
competing and co-operating technologies and the divergence of computers, data communications and
telecommunications. Thereby, the management of the resulting networks gets more important, complex
and time-critical. More advanced tools are needed to support this activity.

In this project we have reviewed the published articles for the main application areas of intelligent
methods in the domain of communications network management. With intelligent methods we mean
various knowledge based reasoning methods capturing the domain expertise and also methods capable of
learning from past experiences using statistical, data mining or artificial neural network methods and also
combinations of these methods.

The project was carried out from June to December 2001.

Objectives

• To survey the current state-of-the-art in applying intelligent methods in the domain of
communications network management.

Results

In the literature survey, it was found that in the past most effort has been directed to reducing the alarm
load by filtering redundant alarms using alarm correlation tools. Data mining has been used to support the
maintenance of the alarm correlation knowledge bases. Integration of fault diagnosis and the repair
activities has also attracted attention. In recent years proactive anomaly detection methods have been
developed based on statistical techniques (…)

Figure 9: correlation operators, Selective Suppression

Secondly, there is a prevalent trend to adapt Event Correlation Techniques to

alerts. For instance, this is the case of MACE, which uses CLIPS as backbone, or

chronicles approach described in [Morin03]. Otherwise, simplest tools are basic database

interfaces or text parsers and commercial tools implement complex and fuzzy solutions

that need to be evaluated. As a result, we wonder if the correlation problem has well been

stated. Instead of applying traditional methods blindly, it would be good to first define

correlation requirements properly. This is quite a paradox with our first remark.

However, we are convinced that a major prerequisite consists in initially stating

correlation objectives. After such an in-depth analysis, technical methods can be chosen.

This is an a posteriori approach, by opposition to a priori approaches which seem

currently applied.

 74

5 Conclusion

Intrusion Detection Systems are parts of the technologies employed in keeping

computers and their data secure. These systems are powerful solutions for detecting

suspicious or anomalous behavior. They are often defined as a second line of defense.

However, security professionals have a tough challenge coping with the vast amounts of

alerts (and mainly false positives) that are produced by IDSs. Alerts often come from

multiple sensors, spanning multiple complex subsystems. There may also be data from

multiple brands or types of IDSs, as well as from other tools. This complexity implies

that such systems require constant monitoring and maintenance. Human capacities are not

sufficient, and the ‘alert correlation’ field tries to address these issues.

In this document, we have provided a survey of all the proposed techniques. They

are not only from the ID community but also by the Network Management community,

which has tried to solve similar problems for many years. Descriptions in Section 3 show

that many approaches currently exist. They come from various research domains and

have proven their efficiency in many cases. However, Section 4 leads to a deceiving

observation: among tools and products that have been proposed so far in Alert

Correlation, very few implement such approaches. Most of them are limited to down-to-

earth, pragmatic techniques, such as pattern matching or database queries.

As a consequence, the Alert Correlation field is far from being totally beaten

track. We believe that on one hand, products are going to use more and more approaches

that currently exist in Network Management. Thus, alert correlation research will widen

out to other techniques than scenario-based solutions. We do not say that these solutions

are useless, but we believe that they only cover one part of the alert correlation issues. On

the other hand, we claim that solutions must be thought from precise issues. Instead of

applying naively fashionable techniques, designers must first analyze specific correlation

requirements.

 75

6 Bibliography

[Abra01] A. Abraham. “Neuro Fuzzy Systems: State-of-the-art Modeling
Techniques”. School of Computing & Information Technology Monash
University, Australia. 2001.

[Acid] ACID , Analysis Console for Databases, by R. Danyliw, home page:
http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html

[Agraw94] R. Agrawal, R. Srikant. “Fast Algorithms for Mining Asssociation rules”.
In Proceedings of the 20th Int’l Conference on Very Large Databases,
Santiago, Chile. Sep. 1994.

[Agraw95] R. Agrawal, R. Srikant. “Mining Sequential Patterns”. In Proceedings of
the 11th International Conference on Data Engineering. Taiwan, 1995.

[All00] J. Allen. “State of the Practice of Intrusion Detection Technologies”.
Technical Report, Carnegie Mellon Software Eng. Institute, Jan. 2000.

[Argus] Honeywell Technology Center. Argus Project home page:
http://www.htc.honeywell.com/projects/argus/

[Asax92] N. Habra, B. Le Charlier, A. Monji, I. Mathieu. “ASAX: Software
Architecture and Rule-Based Language for Universal Audit Trail
Analysis”. In the Proceedings of ESORICS’92, Toulouse, Nov. 1992.

[Awacs] AWACS Project, from G. Greve, available at:
http://www.gnu.org/software/awacs/

[Bagc03] S. Bagchi. “Collaborative Intrusion Detection System (CIDS): A
Framework for Accurate and Efficient IDS”. Paper 127 to ACSAC 2003.

[Bap94] S. Bapat. “Object-Oriented Networks: Models for Architecture,
Operations and Management”. PTR Prentice Hall, NJ, USA, 1994.

[Bayer02] R. bayer, G. Carls, B. Frohnhoff. “Divide et Impera – A Layered
Appraoch to Rule based Alarm Correlation for SDH networks”. Apr 2002.

 [Berth03] M. Berthold, D.J. Hand. “Intelligent Data Analysis: An Introduction”.
Second Edition, Springer Eds. 2003.

[Bish95] M. Bishop. “A standard audit trail format”. Technical report, department
of Computer Science, University of California Davis, 1995.

[Biv02] A. Bivens, C. Palagiri, R. Smith, B. Szymanski, M. Embrechts. “Network-
based Intrusion Detection using Neural Networks”. NY, US. 2002

[Board01] B. Boardman. “Peregrine perches atop the pack”. Network and Systems
Management. 2001.

[Caml03] S. Cheung, U. Lindquist, M. Fong. “Modeling Multistep Cyber Attacks for
Scenario Recognition”. SRI International presentation, April 2003.
Available on line at: http://www.iaands.org/discex3/DISCEX3-
AsPresented/25-Cheung-SRI.ppt

 76

http://www.andrew.cmu.edu/~rdanyliw/snort/snortacid.html
http://www.htc.honeywell.com/projects/argus/
http://www.gnu.org/software/awacs/
http://www.iaands.org/discex3/DISCEX3-AsPresented/25-Cheung-SRI.ppt
http://www.iaands.org/discex3/DISCEX3-AsPresented/25-Cheung-SRI.ppt

[Carey02] N. Carey, A. Clark, G.M. Mohay. “IDS Interoperability and Correlation
using IDMEF and Commodity Systems”. ICICS 2002, p. 252-264. 2002.

[Casl98] Secure Networks. “Custom Attack Simulation Language (CASL)”.
January 1998.

[Casey02] H.R. Casey. “The Simple Event Monitor, A Tool for Network
Management”. Master thesis, University of Colorado. 2002.

[Cids] S. Bagchi. “Collaborative Intrusion Detection System (CIDS): A
Framework for Accurate and Efficient IDS”. Purdue University.
Submitted to ACSAC 2003.

[Cisl99] R. Feiertag, C. Kahn, P. Porras, D. Schnackenberg, S. Staniford-Chen, B.
Tung. “A common intrusion specification language (cisl)”. Specification
draft from the Gidos Project.

[Cronk88] R. Cronk, P. Callahan, L. Bernstein. “Rule-based expert systems for
network management and operations: an introduction”. IEEE Networks,
2(5):7-21, 1988.

[Cui02] Y. Cui. “A toolkit for intrusion alerts correlation based on prerequisites
and consequences of attacks”. PhD Thesis from the North Carolina State
University. Raleigh, US. Dec. 2002.

[CupMie02] F. Cuppens, A. Miege. “Alert Correlation in a Cooperative Intrusion
Detection Framework”. IEEE Symposium on Security and Privacy, 2002.

[CupOrt00] F. Cuppens, R. Ortalo. “Lambda: a language to model a database for
detection of attacks”. In Proceedings of the Third International Workshop
on the Recent Advances in Intrusion Detection (RAID’2000), Oct. 2000.

[Cuppens01] F. Cuppens. “managing alerts in a multi-intrusion detection
environment”. In Proceedings of the 17th Annual Computer Security
Applications Conference, (ACSAC’01). Dec. 2001.

[Cuppens02] F. Cuppens, F. Autrel, A. Miege, S. Benferhat. “Correlation in an
intrusion detection process”. Sécurité des Communications sur Internet
(SECI’02). Sept. 2002.

[DainCunn] O. Dain, R.K. Cunningham. “Fusing a heterogeneous alert stream into
scenarios”. In proceedings of the 2001 ACM Workshop on Data Mining
for Security Applications, p. 1-13, Nov. 2001.

[Deb01] H. Debar, A. Wespi. “Aggregation and correlation of intrusion-detection
alerts”. In Recent Advances in Intrusion Detection, LNCS 2212, p. 85-
103, 2001.

[Deb92] H. Debar, M. becker, D. Siboni. “A Neural Network Component for an
Intrusion Detection System”. In the Proceedings of the IEEE Symposium
on Research in Computer Security and Privacy. Oakland, CA. May 1992.

[Derai99] R. Deraison. The Nessus attack scripting language reference guide.
Available on line at: http://www/nessus.org

 77

http://www/nessus.org

[Dough02] K.L. Dougherty, J. Edwards. “Sim[le vs. Absolute m

[Douss93] C. Dousson, P. Gaborit, M. Ghallab. “Situation recognition:
Representation and Algorithms”. In Proceedings of the 13th IJCAI, pp166-
172, Aug. 1993.

[Douss94] C. Dousson. “Suivi d’évolutions et reconnaissance de chroniques”. PhD
Thesis 1994, available at: http://dli.rd.francetelecom.fr/abc/diagnostic/

[DragSer] Dragon Server products by Enterasys Networks, home page:
http://www.enterasyspartner.com/

[Dubo92] D. Dubois, J. Lang, H. Prade. “Possibilistic logic”. Handbook of Logic in
Artificial intelligence and Logic Programming, volume 3: Nonmonotonic
Reasoning and uncertainty Reasoning. 1992.

[DuSha03] X. Du, M. Shayman, R.A. Skoog. “Using Neural networks in distributed
Management to identify Control and Management to identify Control and
management plane poison messages”. University of Marynland, MD, US.
Research supported by DARPA. 2003.

 [Gard98] R.D. Gardner, D.A. harle. “Pattern discovery and specification techniques
for alarm correlation”. IEEE Network Operations and Management
Symphosium, 3:713-722. Feb. 1998.

[EckVig00] S.T. Eckmann, G. Vigna, R.A. Kemmerer. “Statl: An attack language for
state-based intrusion detection”. In proceedings of the ACM Workshop
on Intrusion Detection, Nov. 2000.

[Elvin] Elvin Product, from DSCT Inc. home page: http://elvin.dstc.com/

[Etrust] eTrust Network Forensics from Computer Associates (formerly known as
SilentRunner, by Raytheon): http://ca.com/acq/silentrunner/

[Forgy82] C. Forgy. “RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”. Artificial Intelligence, 19, pp.17-37, 1982.

[Fyo97] Fyodor. “The Art of Port Scanning”. Phrack magazine, Vol. 7, Issue 51
Home. Dec. 1997. Tool home page: http://www.insecure.org/nmap/

[Garof99] M.N. Garofalakis, R. Rastogi, K. Shim. “SPIRIT: Sequential Pattern
Mining with Regular Expression Constraints”. The VLBD Conference,
Scotland, UK. 1999.

[Good91] R.M. Goodman, H. Latin. “Automated knowledge acquisition from
network management databases”. In IFIP International Symphosium on
Integrated Network Management (ISINM’91), p. 541-549, 1991.

[Haines03] J. Haines, D.K. Ryder, L. Tinnel, S. Taylor. “Validation of Sensor Alert
Correlators”. IEEE Computer Society, p. 46-57. 2003

[Ham50] R.W. Hamming. “Error detecting and error correcting codes”. Bell
System Tech. J., 29:147-160, Apr. 1950.

[Heg99] H. Hegering, S. Abeck, B. Neumair. “Integrated Management of
Networked Systems”, p.326-335. Morgan Kaufman, 1999.

 78

http://dli.rd.francetelecom.fr/abc/diagnostic/
http://www.enterasyspartner.com/
http://elvin.dstc.com/
http://ca.com/acq/silentrunner/
http://www.insecure.org/nmap/

[Holl86] J. H. Holland, K. J. Holyoak, R. E. Nisbett, P.R. Thagard. “Induction:
Processes of Inference, Learning and Discovery”. MIT, USA, 1986.

[Hood97] C.S. Hood, C. Ji. “Proactive network fault detection”. Proceedings of
INFOCOM 1997, 1997.

[Houck95] K. Houck, S. Calo, A. Finkel. “Towards a practical alarm correlation
system”. In IFIP/IEEE International Symphosium on Integrated network
management (ISINM’95), p. 226-237, 1995.

[Idmef] H. Debar, D. Curry. “Intrusion Detection Message Exchange Format:
Extensible markup Language (XML) Doument Type”. IETF Draft 10,
expired July 2003. URL:http://www.ietf.org/internet-drafts/draft-ietf-
idwg-idmef-xml-10.txt

[IdsCen] IdsCenter, written by U. Kistler for Engage Security. Home page:
http://www.engagesecurity.com/products/idscenter/

[Idxp] The IETF Intrusion Detection Exchange Protocol (IDXP) draft (v0.7),
available at: http://www.ietf.org/internet-drafts/

[Ietf00] IETF Presentation, “Event Forwarding Discriminator Behavior”. In
Proceedings of the 47th IETF Workshop, Marc 2000. Available at:
http://www.ietf.org/proceedings/00mar/slides/tmnsnmp-bof-
00mar/tsld023.htm

[Ilgun95] K. Ilgun, R. Kemmerer, P. Porras. “State Transition Analysis: A Rule-
Based Intrusion Detection System”. IEEE Transactions on Software
Engineering, 21(3):181-199, March 1995.

[InCha] InCharge Suite from SMARTS Inc. home page: http://www.smarts.com/

[Inman] INMAN, Intelligent Network Management Project from VTT Information
Technology. Home page: http://www.vtt.fi/tte/projects/inman/inman.html

[Ipfc] IPFC Inter-Protocol Flexible Control from Conostix S.A., home page:
http://www.conostix.com/ipfc/

[IpLog] ipLog tool from Ojnk Software Design, available at: http://stat.iplog.md/

[Jacob00] V. Jacobson, C. Leres, S. McCanne. Tcpdump 3.5 documentation.
Available on line : http://www.tcpdump.org

[Jakob93] G. Jakobson, M.D. Weissmann. “Alarm Correlation”. IEEE Network,
p.52-59. Nov. 1993.

[JakWeis95] G. Jakobson, M. Weissman. “Real-time telecommunication network
management: extending event correlation with temporal constraints”. In
IFIP/IEEE International Symphosium on Integrated Network
Management, IV, page 290-301. 1995.

[JakWeBre] G. jakobson, M. Weissman, L. Brenner, C. Lafond, C. Matheus. “GRACE:
Building Next Generation Event Correlation Services”. GTE Laboratories
Incorporated, USA, IEEE, 0-7803-5864-3, p.701-714, 2000.

 79

http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt
http://www.engagesecurity.com/products/idscenter/
http://www.ietf.org/internet-drafts/
http://www.ietf.org/proceedings/00mar/slides/tmnsnmp-bof-00mar/tsld023.htm
http://www.ietf.org/proceedings/00mar/slides/tmnsnmp-bof-00mar/tsld023.htm
http://www.smarts.com/
http://www.vtt.fi/tte/projects/inman/inman.html
http://www.conostix.com/ipfc/
http://stat.iplog.md/
http://www.tcpdump.org/

[Julisch00] K. Julisch. “Dealing with False Positives in Intrusion Detection”. In
Extended abstract at the 3rd International Symposium on Recent Advances
in Intrusion Detection (RAID’00). 2000.

[Julisch02] K. Julisch, M. dacier. “Mining Intrusion detection Alarms for Actionable
Knowledge”. In Proceedings of SIGKDD’02, Canada. 2002.

[Julisch03] K. Julisch. “Using Root Cause Analysis to handle Intrusion Detection
Alarms”. Dissertation, PhD Thesis. Dortmund, 2003.

[Katz95] I. Katzela, M. Schwartz. “Schemes for fault identification in
communication networks”. IEEE Transactions on Networking, 1995.

[Klem94] P. Klement, W. Slany. “Fuzzy Logic in Artificial Intelligence”. CD-
Technical Report 94/67 from Technische Universitat of Wien, Austria.
June 1994.

[Klig95] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, S. Stolfo. “Integrated Network
Management“. 1995.

[Klir94] G. J. Klir, "Measures of Uncertainty in Dempster-Shafer Theory of
Evidence," in R. R. Yager, J. Kacprzyk, and M. Fedrizzi, editors,
Advances in the Dempster-Shafer Theory of Evidence, Wiley, pp. 3549,
1994.

[Kot02] P. Kothari. “Intrusion Detection Interoperability and Standardization”.
Feb. 2002, available on line at: http://rr.sans.org/intrusion/interop.php

[Krueg03] C. Kruegel, T. Toth. “using Decision Trees to Improve Signature-based
Intrusion Detection”. In 6th Symphosium on Recent Advances in Intrusion
Detection (RAID’03). Springer Verlag, USA, 2003.

[Kumar94] S. Kumar, J. A. Meech. “A Hypermanual on Expert Systems”. Canada
Center for Mineral and Energy Technology, 1994.

[Kumar95] S. Kumar, E.H. Spafford. “A software architectureto support misuse
intrusion detection”. Technical Report CSD-TR-95-009, The COAST
Project Department of Computer Sciences, Purdue University, 1995.

[Lang02] L. Langfeldt. “decision-making in expert panels evaluating research:
Constraints, Processes and bias”. PhD Thesis, Oslo. 2002.

[Laz92] A. A. Lazar, W. Wang, R. H. Deng. “Models and algorithms for network
fault detection and identification: A review”. In IEEE International
Conference on Communications’92 (ICC92), p. 999-1003. Nov. 1992.

[Lew95] L. Lewis. “Managing Computer Networks: A Case Based reasoning
Approach”. Artech House: Norwood, MA, 1995.

[Lew99] L. Lewis. “Service level Agreements for Enterprise Networks”, p. 158-
190. Artech House: Norwood, MA, 1999.

[LgWeav] LogWeaver from J. Goubault-Larrecq (DICO Project), available at:
http://www.lsv.ens-cachan.fr/~goubault/DICO

 80

http://rr.sans.org/intrusion/interop.php
http://www.lsv.ens-cachan.fr/~goubault/DICO

[LighCon] Tenable Lightning Console, from Tenable Security, home page:
http://www.tenablesecurity.com/console.html

[Lippm99] R. Lippmann. “Using key String and Neural networks to Reduce False
Alarms and Detect new Attacks with Sniffer-Based Intrusion Detection
Systems”. In Proceedings of the 2nd Int’l Workshop on the Recent
Advances in Intrusion Detection (RAID’99). Oct. 1999.

[Lire] LIRE from LogReport Foundation, available at: http://logreport.org/

[Llsim03] J.W. Haines, S.A. Goulet, R.S. Durst, T.G. Champion. “LLSIM: Network
Simulation for Correlation and Response Testing”. In Proceedings of the
DARPA Information Survivability Conference and Exposition
(DISCEX’03), IEEE. 2003.

[LoChen00] C. Lo, S. Chen, B. Lin. “Coding based schemes for fault identification in
communication networks”. J. Network Mgmt; 10:157-164. 2000.

[LogIds] LogIDS 2.0 from Securit Informatique Inc., available at:
http://iquebec.ifrance.com/securit/download.html

[Logrep] LogRep tool from ITEF!X Consulting, available at:
http://logrep.sourceforge.net/

[Lsurf] LogSurfer log analysis tool from DFN-CERT, available at:
http://www.cert.dfn.de/eng/logsurf/

[Luna94] H.P. Luna “Sistemas de apoio a desiciao”. Brazil, 1994.

[Mace] MACE, Meta-Alert Correlation Engine Project home page: http://mace-
project.sourceforge.net/

[MaKnig] J. Ma, B. Knight. “A reified Temporal Logic: An overview”. University of
Greenwich. Artificial Intelligence Review, pp.189-217. 2001.

[Mang00] S. manganaris, M. Christensen, D. Zerkle, K. Hermiz. “A Data Mining
Analysis of RTID Alarms”. Computer Networks, 34(4), Oct. 2000.

[Manni95] H. Mannila, H. Toivenen, A.I. Verkamo. “Discovering frequent episodes
in sequences”. KDD-95, p. 210-215. Aug. 1995.

[Mé98] L. Mé. “Gassata: a genetic algorithm as an alternative tool for security
audit trail analysis”. In Proceedings of the First international workshop on
the Recent Advances in Intrusion Detection (RAID’98), 1998.

[Meira97] D. M. Meira. “A Model For Alarm Correlation In Telecommunications
Networks”. PhD Thesis, University of Minas Gerais, Brazil. Nov. 1997.

[Michal83] R.S. Michalski, J.G. Carbonell, T.M. Mitchell. “Machine learning: An
Artificial Intelligence Approach”. Springer-Verlag, Germany, 1983.

[MicMe01] C. Michel, L. Mé. “ADeLe: An Attack Description Language for
Knowledge-Based Intrusion Detection”. In Proceedings of the 16th
International Conference on Information Security (IFIP Sec.). June 2001.

 81

http://www.tenablesecurity.com/console.html
http://logreport.org/
http://iquebec.ifrance.com/securit/download.html
http://logrep.sourceforge.net/
http://www.cert.dfn.de/eng/logsurf/
http://mace-project.sourceforge.net/
http://mace-project.sourceforge.net/

[Mindb] MindBox from ART Enterprise Technologies, web page:
http://www.mindbox.com/home.html

[Mira87] D. P. Miranker, "TREAT: A better match algorithm for AI production
systems", In Proceedings of the Sixth National Conference on Artificial
Intelligence (AAAI-87), pages 42-47, August 1987.

[Morin02] B. Morin, H. Debar, L. Me, M. Ducasse. “A Formal Data Model for IDS
Alert Correlation”. In Proceedings of the 5th Int’l Symposium on Recent
Advances in Intrusion Detection (RAID’02), Oct. 2002.

[Morin03] B. Morin, H. Debar. “Correlation of Intrusion Symptoms: an Application
of Chronicles”. In Proceedings of the 6th Int’l Symposium on Recent
Advances in Intrusion Detection (RAID’03), Sept. 2003.

[NetFor] NetForensics Console, from NetForensics Inc. home page:
http://www.netforensics.com/

[Neum99] P.G. Neumann, P.A. Porras. “Experience with EMERALD to Date”. In
Proceedings of the 1st USENIX Workshop on Intrusion Detection and
network Monitoring, CA-US. Apr. 1999.

[NeuSec] NeuSecure from GuardedNet, home page: http://www.guarded.net/

[NgLak98] R.T. Ng, L.V.S. Lakshmanan, J. Han, A. Pang. “Exploratory Mining and
Pruning Optimizations of Constrained Association Rules”. In Proceedings
of the 1998 ACM SIGMOD International Conference on Management of
Data, Washington, US. June 1998.

[Nils80] N. J. Nilsson. “Principles of artificial intelligence”. Palo Alto, US, 1980.

[NingX02] P. Ning, D. Xu. “Learning Attack Strategies from Intrusion Alerts”. Dept.
of Computer Science, North Carolina, US. 2002.

[Ning02] P. Ning, Y. Cui, D.S. Reeves. “Constructing Attacks Scenarios through
Correlation of Intrusion Alerts”. CCS’02, Washington DC, US. 2002.

[Ning03] P. Ning, D. Zu. “Adapting Query Optimization techniques for Efficient
Intrusion Alert Correlation”. In Proceedings of the 17th IFIP WG 11.3
Working Conference on Data and Application Security, August, 2003.

[Ning04] P. Ning, D. Xu, C. G. Healey, R. St. Amant. “Building Attack Scenarios
through Integration of Complementary Alert Correlation Methods”. To
appear in the 11th Annual Network and Distributed System Security
Symposium (NDSSS’04). Feb. 2004.

[Nyg95] Y.A. Nygate. “Event correlation using rule and object based techniques”.
Chapman and Hall, p. 278-289, USA, 1995.

[Open01] OpenService Inc., “Event Correlation: The enabler of Active Internet
Security Management”. White paper available at: http://www.open.com

[Ossim] OSSIM Project home page: http://www.ossim.net/

[Paxs98] V. Paxson. “Bro: A system for detecting network intruders in real-time”.
In Proceedings of the 7th Usenix Security Symphosium, Jan. 1998.

 82

http://www.mindbox.com/home.html
http://www.netforensics.com/
http://www.guarded.net/
http://www.open.com/
http://www.ossim.net/

[PerrMe] N. Perrot, L. Me, G. Trystram, J.M. Trichard, M. Decloux. “An hybrid
approach based on fuzzy logic and genetic algorithms to control a
crossflow microfiltration pilot plant”. INRA and SUPELEC, France.

[Porr02] P.A. Porras, M.W. Fong, A. Valdes. “A Mission-Impact-based Approach
to INFOSEC Alarm Correlation”. Supported by DARPA, SRI
International Paper, 2002.

[Porr97] P. A. Porras, P.G. Neumann. “EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances”. Computer Science
Laboratory, SRI International, 1997.

[Prelu] L. Oudot. “Tools to make correlation in Prelude-ids”, home page:
http://www.rstack.org/oudot/prelude/correlation/

[PureSec] Demarc PureSecure from Demarc Security, home page:
http://software.freshmeat.net/projects/demarc/

[RealSec] Real Secure Site Protector, from Internet Security Systems (ISS), home
page: http://www.iss.net/

[Rieb03] M. R. Rieback. “The Meta-Alert Correlation Engine”. MSc. Thesis
Report from Delft University of Technology, NL. July 2003.

[Rivest] R. L. Rivest. S-Expressions –SEXP tutorial, MIT, available on line at:
http://theory.lcs.mit.edu/~rivest/sexp.html

[Roes99] M. Roesch. “Snort- lightweight intrusion detection for networks”. In
Proceedings of the Usenix Lisa’99 conference. Nov. 1999.

[Rog01] M. Roger, J. Goubault-Larrecq. “Log auditing through Model-Checking”.
In Proceedings of the 14th IEEE Computer Security Foundations
Workshop (CSFW’01), Canada, June 2001.

[Sabin97] M. Sabin, R.D. Russel, E.C. Freuder. “Generating diagnostic tools for
network fault management”. In Integrated Network Management V, pp
700-711. 1997.

[Sec] Simple Event Correlator (SEC) from R. Vaarandi, available at:
http://www.estpak.ee/~risto/sec/

[Smarts] System Management ARTS Inc. Codebook vs. rulesbased event
correlation: Automated root cause and effects analysis of network
problems. Technical Report, System Management ARTS Inc., Dec 2000.

[Smets88] P. Smets, A. Mamdani, D. Dubois, H. Prade. “Non-Standard Logics for
Automated Reasoning”. Academic Press, England, 1988.

[SnSnf] SnortSnarf, a product from Silicon Defense available at:
http://www.silicondefense.com/software/snortsnarf/

[SnoCen] SnortCenter, written by S. Dens, home page: http://users.pandora.be/larc/

[Shad] NSWC Shadow, from the Naval Surface Warfare Center (US Navy) home
page: http://www.nswc.navy.mil/ISSEC/CID/

 83

http://www.rstack.org/oudot/prelude/correlation/
http://software.freshmeat.net/projects/demarc/
http://www.iss.net/
http://theory.lcs.mit.edu/~rivest/sexp.html
http://www.estpak.ee/~risto/sec/
http://www.silicondefense.com/software/snortsnarf/
http://users.pandora.be/larc/
http://www.nswc.navy.mil/ISSEC/CID/

[Srik96] R. Srikant, R. Agrawal. “Mining Sequential patterns: Generalizations and
performance Improvements”. In Proceedings of the 5th International
Conference on Extending Database Technology (EDBT’96). France, 1996.

[Srik97] R. Srikant, Q. Vu, R. Agrawal. “Mining Association Rules with Item
Constraints”. In proceedings of the 3rd Int’l Conference on KDD,
California, Aug. 1997.

[StanHoag] S. Staniford, J.A. Hoagland, J.M. McAlerney. “Practical automated
detection of stealthy portscans”. Journal of Computer Security, 2000.

[SteCu00] R. Sterritt, E.P. Curran, K. Adamson, C.M. Shapcott. “Visualisation for
Data Mining telecommunications network data”. Data Mining II, (eds.),
WIT Press, Southampton, UK, pp 445-454. 2000.

[Sterr00] R. Sterritt, A. H. Marshall, C. M. Shapcott, S. I. McClean. “Exploring
dynamic Bayesian belief networks for intelligent fault management
systems”. Proc. IEEE Int. Conf Systems, Man And Cybernetics, pages
3646-3652. Sept. 2000.

[Subra00] M. Subramanian. “Network management: Principles and practice”, p.
514-531. Addison-Wesley, 2000.

[SunMic] Sun Microsystems, Inc. “Installing, Administrating, and Using the Basic
Security Module”. CA, US. Dec. 1991.

[Swatch] SWATCH log analysis tool from T. Atkins, available at:
http://freshmeat.net/projects/swatch/

[Tasa96] K. Häthonen, M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivenen.
“TASA: Telecommunications Alarm Sequence Analyzer, or How to enjoy
faults in your network”. IEEE/IFIP 1996, Network Operations and
Management Symphosium (NOM’96), Kyoto, Japan. Apr. 1996.

[Templ00] S. templeton, K. Levit. “A requires/provides model for computer attacks”.
In proceedings of New Security Paradigm Workshop, p.31-38. Sept. 2000.

[Thot98] M. Thottan, C. Ji. “Adaptive Thresholding for proactive network problem
detection”. IEEE Network: Special issue on Network Management, 1998.

[Threat] Threatman Project home page: http://sourceforge.net/projects/threatman/

[TruTh] TruThreatRisk Correlation, from Arcsight Inc., home page:
http://www.arcsight.com/

[TivoMa] Tivoli Risk Manager, from IBM Software, home page: http://www-
3.ibm.com/software/tivoli/products/risk-mgr/

[Underc02] J. Undercoffer, J. Pinkston. “Modeling Computer Attacks: A Target-
Centric Ontology for Intrusion Detection”. 2002.

[Val00] A. Valdes, K. Skinner. “Adaptive, Model-based Monitoring for Cyber
Attack Detection”. In Proceedings of the Int’l Workshop on Recent
Advances in Intrusion Detection (RAID’00). 2000.

 84

http://freshmeat.net/projects/swatch/
http://sourceforge.net/projects/threatman/
http://www.arcsight.com/
http://www-3.ibm.com/software/tivoli/products/risk-mgr/
http://www-3.ibm.com/software/tivoli/products/risk-mgr/

[Val01] A. Valdes, K. Skinner. “An approach to Sensor Correlation”. SRI
International report, 2001.

[ValdSkin] A. Valdes, K. Skinner. “Probabilistic alert correlation”. In Proceedings
of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), p. 31-38, 2001.

[Vaar02] R. Vaarandi. “SEC – A Lightweight Event Correlation Tool”. Estonia
Science Fundation, IEEE. 2002.

[Vigna00] G. Vigna, S.T. Eckmann, R.A. Kemmerer. “Attack languages”. In
Proceedings of the IEEE Information Survivability Workshop, Oct. 2000.

[Vigna03] G. Vigna, F. Valeur, R.A. Kemmerer. “Desiging and Implementing a
Family of Intrusion Detection Systems”. ACM 1-58113-743-5. University
of California Santa Barbara, 2003.

[Wiet97] H. Wietgrefe, K.D. Tuchs, K. Jobmann, G. Carls, P. Frohlich, W. Nejdl, S.
Steinfeld. “Using neural Networks for Alarm Correlation in Cellular
Phone Networks”. Hannover University, Germany. 1997.

[Wots] WOTS tool from T. Curtis, available at: http://www.tony-
curtis.cwc.net/tools/

[Wu94] X. Wu. “Rule Schema+Rule Body: A 2-level Representation Language”.
Dept. Of Computer Science, James Cook University, Australia. 1994.

[Xlogmst] XlogMaster log analysis tool from G. Greve, available at:
http://www.gnu.org/software/xlogmaster/

[Yemi96] S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie. “High Speed and
robust event correlation”. IEEE Communications. May 1996.

[Zheng03] Q. Zheng, K. Xu, W. Lv, S. Ma. “Intelligent Search of Correlated Alarms
for GSM Networks with Model-Based Constraints”. Beijing University of
Aeronautics and Astronautics, 2003.

[Zlana] ZoneLog Analyzer from MCS, available at: http://zonelog.co.uk/

 85

http://www.tony-curtis.cwc.net/tools/
http://www.tony-curtis.cwc.net/tools/
http://www.gnu.org/software/xlogmaster/
http://zonelog.co.uk/

ANNEX A

This Security Information Taxonomy is developed by ArcSight in real time to

provide both the security analyst and the business manager with the information needed

to protect important assets. By classifying attacks according to their level of threat and

degree of success, and targets according to their vulnerability and value, a simple and

powerful four stage warning system is generated. This combination of technical and

business filters clearly communicates business-oriented security information while

identifying the most important areas of focus for the security staff.

 86

	Introduction
	Definitions
	General Correlation definition
	Alert Correlation
	The needs
	Correlation specifications
	Input variety
	Correlation specificities
	Anti-correlation notion

	Basic correlation operations
	Presentation
	Compression
	Filtering
	Selective Suppression
	Thresholding
	Modification
	Generalization
	Enrichment
	Specialization

	Correlation approaches
	Presentation
	Rule-based Methods
	Rule-based approach: an introduction
	Rules Induction
	Rules Matching
	Additional Comments

	Attack Scenario Methods
	Attack Scenario-based approach: an introduction
	LAMBDA and ADeLE (MIRADOR Project)
	Hyper-Alerts approach vs. JIGSAW
	CAML

	Context reasoning approaches
	Introduction
	IMPACT
	EMERALD M-Correlator
	M2D2

	Time reasoning approaches
	Chronicles
	ASAX
	LogWeaver

	Reasoning in the presence of Uncertainty
	Fuzzy logic approach

	State Transition graphs
	State transition graphs approach: an introduction
	STATL: overview

	Neural networks
	Bayesian Belief Systems
	Bayesian belief approach: an introduction
	EMERALD
	Collaborative Intrusion detection System (CIDS)
	SPICE

	Other approaches
	Codebooks
	Vote
	Genetic Algorithms
	An endless list

	Complementary approaches
	Comparisons and summary

	Existing tools
	Generalities
	Classification
	Log analysis tools
	Tools presentation
	Tools specificities

	Management consoles
	Experimental tools
	Miscellaneous

	INMAN�Intelligent Network Management�(2001)
	Objectives
	Results

	Conclusion
	Bibliography

