
Precise Semantics for a Behavior Model in the Context of
Object Based Distributed Systems.

D. Sidou (Institut Eurécom, sidou@eurecom.fr)

September 2, 1997

Contents

1 Introduction 1

2 Behavior notation 2

3 Triggering Event Messages and Reaction Semantics 2
3.1 Triggering Event Messages . 2
3.2 Reaction Semantics . 3
3.3 Theis-trigger Reaction Semantics . 3
3.4 Fetching Phase . 3
3.5 Coupling Mode . 3
3.6 Theexec-rules Clause . 4

4 Behavior Propagation Engine (BPE) 5
4.1 Towards an LTS semantics : . 5

4.1.1 Transitions / Execution Steps . 5
4.1.2 States / Configurations of the System . 5
4.1.3 The Trigger Execution Control . 6
4.1.4 Transition Functions 7

5 Conclusion 7

1 Introduction

The objective of this position paper is to define a precise semantics for abehavior language(BL) to be
used in the context ofobject based distributed systems(OBDS). This behavior language was defined and
used in the context of the the TIMS project1[Eberhardt et al.97]. OBDS considered are TMN systems
and CORBA systems. The modeling approach follows the work done in ITU-T SG4 [G851 0196]. The
modeling is limited to functional behavior properties, no timing and real time issues are considered. The
approach towards validation is based on executable specifications, onto which test cases can be submitted
and run thanks to an execution environment. The specification framework is declarative in the sense that
actions2 are specified one by one in an independent way using a form of event-condition-action ECA-
rule. Such a behavior model has been qualified as data oriented [Jarvinen et al.91] in opposition to process
oriented models often used in executable specifications frameworks (e.g. Lotos, SDL). The reason is that
ECA-rules completely abstract away any notion of process or thread of execution. In effect an ECA-rule
simply tells that when a given event occurs and the data is in a proper state then the action is executed,
which may in its turn send some other event or update some data. The association between processes or
threads of control and rules is left totally unspecified. It turns out that such a model is particularly adapted

1This work was done in the context of the TIMS project. TIMS stands for TMN-based Information Model Simulator. This project
is a collaboration between Eurécom Institute and Swiss Telecom PTT. It is supported by Swiss Telecom PTT.

2Action is considered in the ODP [Rm odp2] sense, i.e. as something which occurs, involving one or more objects, and exercising
itself at any level of granularity (atomic or not).

1

to the modeling of functional issues, e.g. state transitions on the information model. For functional aspects
it is not important to know the actual distribution of objects among threads and threads among locations
: : : . Indeed, it may reveal tedious to include such aspects, and this may even lead to overspecify by adding
irrelevant non-functional constraints.
In the context of an executable specification framework, aprecise execution semanticsis essential. The
reason is that even for relatively small behavior specifications, behavior executions can be complex and
unpredictable. In effect, an event can trigger many reactions. Unless otherwise specified, the default exe-
cution model interleaves the execution of actions. In addition, each reaction can send in its turn new events,
that may trigger other reactions. Finally, the execution model leads to complex behavior propagations, just
as what can be observed in a real distributed environment. In our model this semantics is defined by an
algorithm called the behavior propagation engine (BPE) algorithm, it works like a forward search inference
engine, i.e. it performs behavior execution steps until saturation, i.e. nothing remains to be done.
The ECA-rule model is a result mostly coming from theactive database management systems(ADBMS)
community. In this context it is natural to reuse the results also in terms of the rule processing seman-
tics that have emerged in this community. Survey papers about rule processing semantics in the context
of ADBMSs are [Hanson et al.92, Dittrich et al.95]. An interesting example of ADBMS is the SAMOS
system [Geppert et al.95].

2 Behavior notation

Here is the notation used in our behavior model :

de f ine�behavior) (define-behavior label�spec
scope
when
exec� rules
pre
body
post)

Thescope, when clauses correspond to the event and condition of the ECA-rule model, but packaged
differently. Thebody is the ECA-rule action. In addition, our behavior model allows to specify safety
properties by means of assertions (i.e. pre and post conditions) that are checked before and after the
behavior body is executed during simulations.

3 Triggering Event Messages and Reaction Semantics

A behavior in our model can always be reduced to some form of reaction to a triggering event that is
represented by a message. That is the reason why the termtriggering event message(TEM) has to be
introduced. The different forms of reactions to such TEMs, called reaction semantics, are then described.

3.1 Triggering Event Messages

A TEM is sent to the system either from its environment or from within a behavior. Different levels of
event messages can be distinguished. In particular in the context of OBDSs, it is worth to distinguish
between TEMs sent to computational objects (i.e. potential units of distribution in ODP, with well de-
fined interfaces), and between TEMs sent to information object (i.e. universe of discourse in ODP, e.g.
relationships, roles or simple information objects with state). It is interesting to specify most of the behav-
ior at the information viewpoint, and to reuse such specification at the computational viewpoint level. A
typical illustration of this approach is [G851 0196], where at the computational viewpoint level the pro-
posed semi-formal behavior notation template makes explicit references to dynamic schemas specified at
the information viewpoint level.

2

3.2 Reaction Semantics

3.2 Reaction Semantics

Two important issues used to characterize a reaction semantics are thefetching phaseand thecoupling
mode. These issues are specified using theexec-rules clause of the proposed behavior notation tem-
plate. Note that, similar concepts can be retrieved in the ADBMS literature [Hanson et al.92]. The fetching
phase is called the event-condition (EC) coupling mode and our concept of coupling mode is called the
condition-action (CA) coupling mode. But before these issues can be described, it is first required to
introduce a specific kind of reaction semantics : theis-trigger reaction semantics.

3.3 Theis-trigger Reaction Semantics

Because there is no builtin semantics pre-defined for any event message3 entering the system, a first type
of reaction semantics is used to define what has to be actually performed when a given event message is
sent to the system. Very often this consists to do very simple and basic things. For instance, the execution
semantics of aivpmsg-set message consists to make some change in the data store of the system for a
given object and attribute to a given value. This reaction semantics is called theis-trigger semantics
just because it defines the semantics that is directly associated to the execution of the triggering event
message.

3.4 Fetching Phase

The fetching phase specifies when behaviors are candidate for fetching with respect to the occurrence of the
triggering event message. Fetching can be specified to occur immediately (phase-i), in that case fetching
is done as soon as the trigger is sent to the system. Otherwise, fetching can be deferred (phase-ii). One
kind of deferred fetching4 has been defined. In our behavior model, a behavior whose fetching phase is
deferred is candidate for fetching only when all the behaviors executing with theis-trigger reaction
semantics have completed. Note that completion means that the execution of the entire behavior block –
i.e. pre , body andpost – has terminated.

3.5 Coupling Mode

Once a behavior has been fetched, another important issue is to determine how its behavior block has to be
executed. Here two types of reaction semantics can be distinguished :

1. Thecoupled reaction semantics specifies that the execution of the behavior block is coupled with
the caller, i.e. the behavior that has sent the trigger. An important consequence is that the calling
behavior block execution is blocked until all the coupled reactions terminate. Another important con-
sequence is that this results as a cascaded behavior execution model, as soon as new event messages
are sent from a behavior body.

2. Theuncoupled reaction semantics specifies that the execution of the reaction is to be done in an
independent thread of execution of the calling thread. Being able to model such reaction semantics is
very useful in a distributed environment, because distribution lends naturally to independent threads
of execution.

To completely define a coupled reaction, one has to specify when the execution of the behavior block
is expected to initiate and terminate. For an uncoupled reaction, only the initiation issue is relevant. In
both cases such parameters are specified relatively to theis-trigger reaction semantics. In effect, the
execution phase during which behaviors with theis-trigger reaction semantics are executing is called
theduring-trigger phase. As shown in figure 1, the time during which the reactions to a trigger are
being executed can be partitioned into three phases : thebefore-trigger , theduring-trigger ,
and theafter-trigger phases.

3That means that the default reaction to an event message sent to the system is to do nothing.
4One could imagine other ways to do deferred fetching, however it is not clear whether they are actually useful or not.

3

3.6 Theexec-rules Clause

Trigger Occurs)
phase-i / immediate fetching is done

First is-trigger initiates)
End ofbefore-trigger execution phase

Last is-trigger terminates)
End ofduring-trigger execution phasê

phase-ii / deferred fetching is done

End of (coupled) reactions

before-trigger execution phase

during-trigger execution phase

after-trigger execution phase

Figure 1: Trigger Reaction Phases

3.6 Theexec-rules Clause

In conclusion, the different reaction semantics are defined using two parameters : the fetching phase and
the coupling mode. As indicated before, they are specified in theexec-rules clause as follows5:

exec� rules) (exec-rules f etch� phase
coupled) j

(exec-rules f etch� phase
uncoupled)

f etch� phase) (fetch-phase i) j
(fetch-phase ii)

coupled) (coupled be f ore� trigger) j
(coupled be f ore� trigger

during� trigger) j
(coupled be f ore� trigger

a f ter� trigger) j
(coupled during� trigger) j
(coupled is� trigger) j
(coupled during� trigger

a f ter� trigger) j
(coupled a f ter� trigger)

uncoupled) (uncoupled be f ore� trigger) j
(uncoupled during� trigger) j
(uncoupled a f ter� trigger)

5In coupled mode if only one execution phase is given, that means that the behavior block is intended to initiate and terminate in
that phase. Note also that(coupled is-trigger) defines a behavior with theis-trigger execution semantics.

4

4 Behavior Propagation Engine (BPE)

In this section the concepts previously introduced are integrated altogether. This results as a complete and
precise semantics for the proposed behavior notation. First of all, the BPE is a forward search inference
engine, i.e. it performs behavior execution steps until saturation, i.e. nothing remains to be done. This
allows to define the concept of behavior execution (also called behavior propagation or simply walk) as
follows :

A walk or behavior execution or behavior propagation is a sequence of execution steps performed
from the initial state to a state reached at saturation. LetSbe the configuration of the system or its state at
each step. Letenabledsteps(S) be the function giving the set of enabled steps that are ready to be executed
from stateS. The overall algorithm of a forward search inference engine is :
bpe:walk(S)
While enabled_steps(S)6= /0 Do

S := execute_step(s2 enabled_steps(S), S);
Od

4.1 Towards an LTS semantics :

Now we have to define more precisely what represent and how are represented the important notions of
execution step and system’s configuration. Once this is done, since system’s configurations and execution
steps correspond respectively to the states and transitions of a labeled transition system (LTS). This makes
the semantics associated to our behavior model being defined operationally by this LTS.

4.1.1 Transitions / Execution Steps

Transitions / execution steps are defined by the atomic pieces of execution. Basically, two kind of execution
steps have been identified :

1. assertion evaluation step is apre or apost clause that is evaluated.

2. behavior body evaluation steps correspond to the algorithmic pieces of behaviorbody code delimited
by statements sending event messages. A point in the execution of a behavior body where event
messages are sent is called ablocking point. When such a statement is executed, the execution of the
behavior body is blocked until all the coupled reactions to the event messages sent are terminated. A
point where all such coupled reactions terminate is called aresume point. So, in the end evaluation
steps in the execution of behavior bodies are either :

(a) the execution from its beginning to the first blocking point.

(b) an execution from a resume point to the next blocking point. It is important to note that this
includes the evaluation of the behavior fetching corresponding to the triggering event messages
sent at the blocking point.

(c) the execution from the last resume point to the end of the behavior body.

4.1.2 States / Configurations of the System

The state or configuration of a system is usually partitioned into adata stateand acontrol state. Here it is
important to note that the data state can be abstracted away. The reason is that the BPE machinery is totally
independent on any underlying model used to represent the data state and its associated transitions. Indeed
the data state can be represented / implemented by any means appropriate, e.g. a database, a repository in
main memory: : : . Therefore in this section, only control states issues are considered, i.e. the structures
used to represent the control state and the transitions allowed between such structures.
The important structure used to represent the control state is based on the concept ofbehavior execution
node(BEN). A behavior execution node encapsulates a behavior being executed along with the associated
information needed at execution time. Then the concept ofbehavior execution treefollows naturally from
the fact that each time a behavior sends one or several triggering event messages during the execution of
its body code, to the reactions of the system are associated new behaviors that are typically being fetched

5

4.1 Towards an LTS semantics :

for further execution. To each newly fetched behavior is associated in its turn a BEN that is identified as as
a child of the original BEN (the message(s) sender BEN). This reflects the causality relationship existing
between behavior executions. As a consequence, a natural representation for behavior propagations is a
graph. More precisely it is a tree, called thebehavior execution tree(BET).
The actual structure used to represent a BEN can be described using a record with the following fields :

ben)� id;children; parent;behavior;bec;state;ccrc; tecs; parent� tec� id;cont;
bbody�src� lno;bbody�conts�stack;undo� in fo�stack;bbody�src� lnos�stack;ops�seqs�

In the BEN record it is worth to describe the following fields :

1. Thebehavior field points to a record where all the behavior features are stored. This field points
to the internal representation of a behavior. This representation is based on a language mapping of
the behavior notation defined in section 2 into theScheme[Clinger et al.91] programming language.

2. Thebec field is the scoping behavior execution context. It was determined when this behavior was
fetched. It references all the data needed by thewhen, pre , body andpost clauses when executed.

3. Thestate field indicates the execution state of the behavior. The states and transitions defined are
described in figure 2. Underlined node labels indicate states from which an execution step is possible
directly from the BEN. Transition from non-underlined nodes result from transition in related BENs,
i.e. child or brother BEN. A particular state is thewait� ccrc= 0 state, in this state the BEN is
blocked because its behaviorbody has sent event messages and at least one coupled reaction has
been fetched. When thestate field has this value, the BEN state is completed by the fieldsccrc
andtecs described below.

4. Thecoupled children remaining counterccrc field is the counter for the number of coupled children
whose behavior execution (behavior block) is not yet completed.

5. The triggers execution controls(tecs) field is a vector. Each element of this vector is called a
trigger execution control(TEC) record. In such a record is stored all the information used to control
the execution of all the behaviors associated to one triggering event message sent. So the number of
elements of thetecs vector is the number of event messages sent by the BEN behavior body at its
last blocking point.

6. Theparent-tec-id field is the index in the parenttecs field vector of the TEC controlling the
execution of the behavior in this BEN.

7. Thecont field is a continuation. A continuation is a powerful control structure that can be used to
capture a state of processing, stop it and resume it later on. Continuations are particularly adapted
to the control of the execution of behavior bodies. Note that thecont is meaningful in the BEN as
soon as the BEN is in thereadystate, because when the BEN enters this state, the execution of its
behavior body is ready to resume. A behavior body continuation is captured (and stored in this field)
as soon as message sending occurs (blocking point). Because it is a continuation, this field provides
the mean to perform the resume6.

8. The other fields are not useful to describe the operational semantics. They are used for the execution
environment, e.g. for debugging.

4.1.3 The Trigger Execution Control

The trigger execution control(TEC) is used to schedule the reactions that have been fetched for a trigger.
Such schedule consists to go through the different trigger reaction phases that have been identified in
figure 1. It is a record with the following fields :

tec)� children;ccrc; itccrc; phase�

6Since the execution environment used is based onSchemeand that continuations are a feature ofScheme, it was natural and
easy to implement the blocking and resume points using continuations. In other execution environments without continuations it is
probably possible to work with other facilities, e.g. threads.

6

ready� pre ready0 ready ready� post

f ail wait wait�ccrc= 0 done f ail

1
(brother�ben)
check� post̂

activate

2
check� pre^:ok

3
check� pre^ok

4
end�body

5
step�bodŷ

end�body

6

(c
hil

d�
be

n)c
he

ck�
po

st̂

cc
rc
=

0

7
step�

bodŷ

evt-msgs sent̂

ccrc
>

0

8
step�bodŷ

evt-msgs sent̂
ccrc> 0

9
step�bodŷ

ccrc= 0

10
check�

post

^

ok

11

check�
post^

:ok

Figure 2: BEN FSM.

In the TEC record it is worth to describe the following fields :

1. Thephase field is the trigger execution phase as described in figure 1. It is eitherbefore-trigger,
during-trigger, after-trigger.

2. Theccrc field in the TEC record plays the same role as theccrc field in the BEN record, but it
counts the number of coupled children for this trigger an in the current trigger reaction phase. When
this counter is decremented to zero, phase switching occurs as described in figure 1.

3. Theis-trigger coupled children running counter(itccrc) field is used in theduring-triggerphase.
It counts the number of children still running an is-trigger reaction semantics. This counter is neces-
sary, because when it is decremented to zero,phase-ii behavior fetching has to occur.

4.1.4 Transition Functions

In summary, to implement the transitions three transition functions have been implemented :

1. Thecheck� pre function simply evaluates the pre-condition and stops the behavior propagation in
case of failure.

2. Thestep�bodyfunction executes the portion of behavior body by resuming the BEN continuation.
When the next blocking point is encountered, a new continuation is created to capture a new blocking
state, behavior fetching (phase-i) occurs and the newly fetched BENs are registered as children
of the BEN from which the originalstep�bodywas executed.

3. Thecheck� post transition function is probably the more complex, because in this function side-
effects on the parent BEN and brother BEN are done to implement (i) trigger execution phase switch-
ing, (ii) phase-ii behavior fetching, and (iii) resume parent BEN execution. Last but not least,
this function also evaluates the post-condition and stops the behavior propagation in case of failure.

5 Conclusion

Our work has shown that concepts about rule execution semantics that were established in the context of
active database management systems can be reused in the context of our behavior model. Though our
goals are oriented towards specification and validation, the experiences resulting from the realization of
several case studies proved that such concepts are still reusable in our context. In the end a satisfactory and
comprehensive semantics for our behavior model has been obtained.

7

REFERENCES

References

[Clinger et al.91] Clinger (W.) et Rees (J.). –Revised4 Report on the Algorithmic Language Scheme.
ACM Lisp Pointers, vol. 4 (3), 1991. – Available at http://www.cs.indiana.edu/scheme-
repository/doc/standards/r4rs.ps.gz.

[Dittrich et al.95] Dittrich (Klaus R.), Gatziu (Stella) et Geppert (Andreas). –The Active Database
Management System Manifesto: A Rulebase of ADBMS Features. – Techni-
cal report, University of Zurich, Dept. of Computer Science, 1995. Available at
http://www.ifi.unizh.ch/techreports.

[Eberhardt et al.97] Eberhardt (Rolf), Mazziotta (Sandro) et Sidou (Dominique). – Design and test-
ing of information models in a virtual environment.In : The Fifth IFIP/IEEE
International Symposium on Integrated Network Management “Integrated Man-
agement in a Virtual World”. – San Diego, CA, USA, may 1997. available at
http://www.eurecom.fr/˜tims/papers/im97.ps.gz.

[G851 0196] Management of the Transport Network – Application of the ODP Framework, ITU-T
G851-01, 1996.

[Geppert et al.95] Geppert (Andreas), Gatziu (Stella), Dittrich (Klaus R.), Fritschi (Hans) et Vaduva
(Anca). – Architecture and Implementation of the Active Object-Oriented Database
Management System SAMOS. – Technical report, University of Zurich, Dept. of Com-
puter Science, 1995. Available at http://www.ifi.unizh.ch/techreports.

[Hanson et al.92] Hanson (Eric N.) et Widom (Jennifer). –An Overview of Production Rules in
Database Systems. – Technical report, University of Florida (CIS), 1992. Available at
ftp://ftp.cis.ufl.edu/cis/tech-reports/tr92/tr92-031.ps.

[Jarvinen et al.91] Jarvinen (Hannu-Matti) et Kurki-Suonio (Reino). – DisCo Specification Language:
Marriage of Action and Objects.In : Proc. of 11th International Conference on
Distributed Computing Systems. – IEEE Computer Society Press. Available at
http://www.cs.tut.fi/laitos/DisCo/DisCo-english.fm.html.

[Rm odp2] Basic Reference Model of ODP – Part 2: Foundations, ISO 10746-2, ITU X.902.

8

