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Abstract

This paper looks at the linear reception of spatially multiplexed signals across MIMO channels. We

address the problem of robustness in the presence of detrimental effects such as correlation and Ricean

components. We consider the error-rate performance of MIMO linear filters, as these can be used in purely

linear receivers, or as part of each stage in successive interference canceling (SIC) receivers. We know

from multiuser detection theory that minimum error-rate (MER) linear receivers significantly outperform

minimum mean-square error (MMSE) receivers when correlation is high, however no direct method exist

to design the MER receiver simply. We derive a scheme allowing a closed-form approximate solution

to this problem. The solution is a good approximation to the true MER receiver upon fulfillment of a

certain, easily checkable, channel-related condition. The algorithms are derived first for the two-input

many-output case. A generalized scheme is provided for the case of arbitrary number of inputs and

outputs. The performance gain compared to that MMSE is evaluated for various correlated and Ricean

channels and transmit power allocation strategies.

I. Introduction

Multiple-input multiple-output (MIMO) antenna systems have shown great potential

in their ability to increase dramatically the data rate of wireless communications. Since

pioneering work such as [1], [2], [3], progress has been made to try and realize the large

capacity gains promised by MIMO information theory with practical transmit and receive

architectures. Space-time coding [4] and spatial multiplexing [5] are the prominent tech-

niques so far. In spatial multiplexing approaches such as BLAST1 type architectures [6],

one typically considers the transmission of multiple (Nt) signals over the Nt-transmitting

antennas Nr-receiving antennas MIMO channel. The signals can be independent as in

BLAST, in which case we assume Nr ≥ Nt, or jointly encoded. Both linear and non-linear

(eg. maximum likelihood (ML)) methods have been proposed in the literature to separate

the spatially multiplexed inputs at the receiver. For complexity reduction reasons, there

has been great interest in the class of linear receivers such as zero-forcing (ZF) and MMSE

filters. Even in simplified non-linear methods such as the successive interference canceling

(SIC) approach, used in V-BLAST [6], one exploits a linear receiver at each stage of de-

tection. Existing linear techniques work well when the signatures of the various inputs are

linearly separable. However, receivers such as MMSE and, to an even greater extent ZF
1Bell Labs Layered Architecture for Space-Time
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have degraded error rate performance when attempting to invert a channel matrix that is

ill-conditioned.

In practice moderately to severely ill-conditioned MIMO channels can arise due to a

number of reasons, including fading correlation and/or the presence of a Ricean compo-

nent. Antenna correlation occurs due to a lack of a rich scattering environment or limited

path angle spread. High correlation levels (> 0.8) can also be obtained by design when

building compact MIMO arrays with very small antenna spacing. Ricean channels (i.e.

having a non-zero line-of-sight (LOS) component) also represent a serious challenge to

spatial multiplexing algorithms. It has been shown that LOS part of the MIMO channel

is usually extremely ill conditioned (see eg. [7]). Therefore the inversion of the overall

MIMO matrix can lead to severe noise enhancement when the LOS part is significant.

Although the adverse effects of channel correlation (in a general sense) have been studied

in terms of the MIMO capacity (see eg. [8], [9]) or algorithm performance degradation

(e.g. [10]), it remains unclear how to best address the problem in terms of improved

algorithm design. At any rate, the derivation of a class of linear receivers which are more

robust to Ricean components and high correlation levels appears practically important

and desirable.

In this paper we propose a new family of narrow-band spatial multiplexing linear re-

ceivers based on error-rate minimization rather than on mean-square noise or interference

minimization. Notably, minimum-error-rate (MER) receivers have been investigated pre-

viously in areas such as channel equalization and CDMA multiuser detection (MUD). In

particular, comparisons between MMSE and MER criteria are performed in [11], where it

is shown that MER and MMSE detection provide similar results in most CDMA cases of

interest. The results there, however, assume good code orthogonality properties between

users. When that is not the case, and especially when combined with near-far effects,

significant differences appear between MMSE and MER multiuser detectors as was noted

in eg. [12]. Note however that unlike in CDMA where good code designs secures some

minimum orthogonality between users, correlation between the MIMO inputs can be dif-

ficult to avoid for reasons mentioned above. Therefore we expect a MIMO receiver design

based on MER to provide the needed robustness to this problem.
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Unfortunately, general solutions to derive the MER filter in MUD are not really tractable

due the complexity of the bit-error rate expression, even in the 2 user case. Several

algorithms have been proposed in the recent past to tackle MER detection. All of these

rely on adaptive descent/gradient approaches such as [12], [13] to cite a few examples.

Although interesting, iterative/adaptive methods have convergence issues such as speed

and local minima. In this paper we propose a first (up to the author’s knowledge) closed-

form algorithm based on an certain approximation of the error rate expression valid for

the the case of two inputs and we give a strategy allowing to exploit the idea further for

the case of arbitrary number of inputs. Clearly, our approach is not limited to MIMO

reception and can, in turn, be used in MUD problems.

Contributions: We introduce the problem on MER-based linear receivers for MIMO

spatial multiplexing systems. Then we present a strategy for MER receiver estimation

based on expressing the receiver as a combination of ZF receivers. The MER receiver can be

found via numerical optimization of the error rate expression. More interestingly however,

this paper presents a simple strategy to obtain a closed-form solution to the approximate

MER receiver estimation problem. We show the closed-form solution is realizable upon a

certain condition that depends on the channel realization and that can be easily checked.

For those channels for which the condition is not met, the algorithm simply falls back to

a ZF or MMSE receiver. The solutions are presented in the Nt = 2 input case. Finally

we present a scheme allowing to exploit the proposed techniques in the general case with

arbitrary Nt. The algorithms are shown for a QPSK modulation but the principle can be

readily extended to other QAM levels. The proposed approach for Nt > 2 is based on

the idea of cascaded receivers, in which the input symbol is first estimated as part of a

group of two symbols, and then finally extracted in the minimum error rate sense. Our

simulations show that the proposed receivers surpass the MMSE receiver, with benefits

becoming very significant in the case of correlated and/or Ricean channels together with

unequal transmit power allocation. In particular, our simulations indicate that the MER

approach helps get rid of near-error-flooring effects occurring with MMSE receivers at

high SNR in Ricean channels. The unequal power scenario is consistent with a V-BLAST

approach where streams decoded in early detection stages should carry more power than
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others to compensate for the lack of diversity in those stages, or else the performance

is strongly limited by the first stream. We simulate various power allocation strategies

based on channel correlation values allowing to optimize performance, however, the specific

problem of optimal transmit power allocation is addressed elsewhere [14].

This paper is organized as follows: In Section II we present the MIMO signal and

receiver model. In III we introduce the error rate expressions and approximations used

in the rest of the paper. In IV we describe the construction of approximated closed-form

MER receivers in the Nt = 2, arbitrary Nr, case. The extension to arbitrary Nt is shown

in V. Sections VI illustrates the behavior of the proposed algorithms in correlated and

Ricean channel scenarios, compared to MMSE receivers. We conclude in VII.

Notations: Throughout the paper, we adopt the following notations: x (lower-case,

bold face): vectors. X (capitals, bold face): matrices. XT and X∗ denote the transpose

and transpose conjugate respectively. E(.) expectation operator. ‖.‖ Frobenius norm of

a vector or matrix. Q(.) standard Q function. Ik identity of size k × k. iid: identically

independent distributed. diag(.) is the matrix with arguments on the main diagonal and

zero elsewhere. Finally, en denotes a vertical vector with 1 at the n-th entry and zeros

elsewhere, the size is determined from context.

II. MIMO signal and receiver model

We consider a narrow-band MIMO system shown in Fig. 1, with Nt inputs and Nr

outputs. Input signals stacked in a vector notation as s = [s1, .., sNt ]
T . Because we focus on

spatial multiplexing systems, we assume the signals to be statistically independent rather

than jointly encoded. However some level of joint (space-time) encoding is admissible

provided that the second-order signal decorrelation between signals (E(sks
∗
l ) = 0, k 6= l)

is preserved. We normalize the input power so that (E|sk|2 = 1). At the receiver, we

observe the vector y = [y1, y2, .., yNr ]
T given by:

y = Hs + n (1)

H = H0Λ (2)
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where H is the Nr ×Nt MIMO flat-fading channel matrix. H0 is a matrix with, possibly

correlated, complex Gaussian entries of unit power. A non-zero mean can be used to

obtain a Ricean channel (see Section VI). n is a white Gaussian noise vector, with iid

entries of variance σ2
n. Λ is the transmit power normalization matrix:

Λ = diag[
√
p1,
√
p2, ..,

√
pNt ],

Nt∑
k=1

pk = 1 (3)

where pi is the power alloted to the i-th input. Because we focus on the narrow-band

case, the system has no memory and we have omitted the time index in both the channels

and signals. At the receive side, we consider filters in the class of linear receivers and SIC

receivers. Note that also in the case of SIC receivers, each stage takes typically the form

of a linear detection (followed by a decision and subtraction).

A. Arbitrary linear detectors

We consider the linear estimation of an arbitrary symbol sk, from y, using the Nr × 1

vector filter wk :

w∗ky = ŝk (4)

where ŝk is an estimate of sk in any given sense. With this notation, and for a known

channel, the ZF and MMSE receivers are given respectively by:

wzf
k = (eTkH#)∗ (ZF) (5)

wmmse
k = R−1

y rysk (MMSE) (6)

where Ry = E(yy∗) (7)

and rysk = E(ys∗k) (8)

where H# is the pseudo-inverse of H. Since the input symbols are decorrelated and

independent from the noise, we have the standard results:

Ry = HH∗ + Rn (9)

rysk = Hek (10)
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where Rn is the noise covariance, here we assume Rn = σ2
nINr . By design, the ZF receiver

is orthogonal to the signatures of all inputs except that of sk and thus cancels out all

interference while the MMSE receiver lets a small amount of interference in the interest

of minimizing the mean-square error. In general the combined response of an arbitrary

linear receiver wk is given by:

w∗kH = [α1, α2, .., αNt ] (11)

where the vector [α1, .., αk−1, αk+1, .., αNt ]
T constitutes the residual response of the receiver.

A.1 Re-parameterizing linear MIMO detectors

In this section, we show that linear detectors of interest can be expressed uniquely

in terms of a linear combination of ZF detectors. This re-parameterization turns out

extremely useful when optimizing the error rate expression. Without loss of generality, we

can normalize wk by α∗k so that we adopt the following notation:

w∗kH = tT = [α1, .., αk−1, 1, αk+1, .., αNt ] (12)

Clearly the residual for the ZF receiver is zero. Given the combined response t in (12)

it is possible to express the corresponding minimum norm2 receiver wk in the form of a

linear combination of ZF receivers:

wk = H#∗conj(t) = wzf
k +

∑
l 6=k

wzf
l α

∗
l (13)

where conj means complex conjugation. We choose to optimize the receiver in terms of

the coefficients of t. Note that, when optimizing the normalized receiver in the MMSE

sense, it appears that one selects t such that:

tmmse = argmint{(
∑
l 6=k
|αl|2 + σ2

n‖w
zf
k +

∑
l 6=k

wzf
l α

∗
l ‖2)} (14)

2The min norm receiver is defined by the solution wk to (12) such that ‖wk‖ is minimum. We restrict ourselves

to those solutions because they can be easily shown to minimize noise amplification among all other solutions to

(12).
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while the conventional (non normalized) MMSE receiver in (6) has its combined response

optimizing:

argmint{|αk − 1|2 + (
∑
l 6=k
|αl|2 + σ2

n‖w
zf
k +

∑
l 6=k

wzf
l α

∗
l ‖2)} (15)

III. Error rate performance

The MMSE receiver is doing the best compromising between noise amplification and

noise enhancement by selecting an appropriate linear combination of ZF receivers. How-

ever, it does not so in view of error-rate minimization but merely in order to minimize the

total interference plus noise power. To closely approach the behavior of the MER receiver,

the residual noise plus interference should be Gaussian distributed. This assumption is ac-

ceptable in MUD with a large number of users but not in typical MIMO antenna systems.

In fact the implicit Gaussian assumption made in the MMSE receiver is a pessimistic one,

since Gaussian noise is generally known to be the worst possible additive noise [15].

The analysis of error rate performance of linear MIMO receivers has been initiated in

the case of MUD for CDMA signals in eg. [11]. It is very difficult (or impossible) to

optimize the general error-rate expressions in closed-form though. The strategy that we

adopt is to two-fold:

1. Address the problem in the Nt = 2 case where optimization is simplest and, following

remarks above, MER receivers have the largest advantage over MMSE ones. Unfortunately

there is no available closed-form solution for a MER receiver in that case either. However,

by using the equivalent representation of wk in (13) and a judicious approximation, we

are able to propose a simple solution that mimics the behavior of the true MER receiver.

2. In the Nt > 2 case, break the problem down into a set of simpler two-input problems,

where the above solutions apply, following a philosophy reminiscent of [16].

A. Error-rate for Nt = 2

Now we consider Nt = 2 inputs and arbitrary Nr ≥ 2 outputs. Without loss of generality

we consider the estimation the first input s1 from the Nr × 1 receiver w = w1 (index 1 is

dropped below). From (13), we write our receiver as:

w = wzf
1 + wzf

2 α
∗
2 = wzf

1 + wzf
2 ρe

−jφ (16)
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where α2 is expressed in terms of its amplitude and phase by α2 = ρejφ. At the output of

w in (16) we observe:

ŝ1 = w∗y = s1 + ρejφs2 + w∗n (17)

The output of the receiver can be seen as the superposition of the original constellation

with another scaled down and rotated version of it. ρ measures the scale of the interfering

constellation (clearly ρ < 1 is required) and φ its rotation angle. This is illustrated in

Fig.2 in the case of QPSK signals.

We now derive the probability P (ŝ1 → s̃1) of deciding in favor of a wrong symbol s̃1.

We use a standard technique in assuming that s̃1 is confined to be a nearest neighbor of

s1. Making use of elementary geometry in Fig.2, we extend classical results of [17] to find,

for QPSK signals in white Gaussian noise:

Pe(ρ, φ) = P (ŝ1 → s̃1) =
1

2

[
Q

(
1−
√

2ρ sin(φ+ π
4
)

σn‖w‖ρ,φ

)
+Q

(
1−
√

2ρ cos(φ+ π
4
)

σn‖w‖ρ,φ

)

+ Q

(
1 +
√

2ρ sin(φ+ π
4
)

σn‖w‖ρ,φ

)
+Q

(
1 +
√

2ρ cos(φ+ π
4
)

σn‖w‖ρ,φ

)]
(18)

where ‖w‖ρ,φ = ‖wzf
1 +ρe−jφwzf

2 ‖. The MER receiver can now be defined by (ρopt, φopt) =

argminρ,φ{Pe(ρ, φ)}. The expression above does not admit closed-form minima to our

knowledge. It can be optimized numerically for ρ, φ but it may be difficult to avoid

local minima in the present form however. In the following we present a way to tackle this

problem based on a leading-term approximation of (18). Although the presentation is made

for QPSK signals, a similar approach can be used to deal with other QAM modulation

with regular grids such as binary, 16-QAM, 32 QAM etc.

IV. Approximate Minimum-error based receivers

To simplify the optimization for interference amplitude ρ and phase φ, we follow the

strategy below:

1. We solve for ρ and φ separately. Clearly relaxation-type approaches could be used

here, however we found our strategy to provide a simple closed-form algorithm with good

performance. The main explanation for this is that we find the role of φ to be mainly

limited to the minimization of the noise enhancement factor σn‖w‖ρ,φ in (18), whose

solutions turn out to be independent of ρ, as we will see.
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2. We ignore cases where the optimal amplitude ρopt returned by the closed-form algorithm

is not significantly larger than zero (when that happens we simply pick the ZF or, better,

MMSE receiver instead). The intuition for this is two-fold: first, the case when ρ is close

to zero (defined in an algorithmic sense via ρ < ρmin, where ρmin is a chosen threshold)

is the case when the computation of the MER receiver (over, say, the ZF receiver) is

least justified, since for ρ → 0, w → wzf . Second, when ρ is significantly larger than 0

(ρ ≥ ρmin in the algorithm below), which is the most meaningful case for a MER approach,

considerable simplifications of the error-rate expression are obtained.

We now describe the closed-form optimization. For exposition purposes, we present the

optimization of ρ first, however, in practice, the algorithm will estimate the phase φ first.

A. Optimization of ρ

Assume ρ > ρmin: we define ξφ = max{| sin(φ + π
4
)|, | cos(φ + π

4
)|}. We now use the

exponential decay property of the Q function and we approximate the probability of error

by its leading term. Indeed, for an appropriate choice of the threshold ρmin, we have:

Pe ≈ P̂e =
1

2
Q(

1−
√

2ρξφ
σn‖w‖ρ,φ

) (19)

Remarks on the approximation. We note that the approximation above will be

poor in the case when φ ≈ nπ/2. Since for that case | sin(φ+ π
4
)| ≈ | cos(φ+ π

4
)| ≈ 1/

√
2,

and we obtain for that special case:

Pe(φ ≈ nπ/2) ≈ Q(
1− ρ

σn‖w‖ρ,φ
) (20)

Interestingly, however, the expressions in (20) and (19) only differ by a constant fac-

tor 1/2 when φ ≈ nπ/2. Therefore we argue that it is reasonable to use (19) for the

optimization of ρ for any arbitrary phase φ. This fact is confirmed by our simulations.

To minimize the error rate in (19) is equivalent to maximizing the argument of the Q

function in its positive region. Equivalently we select the optimal ρopt in [0, 1/(
√

2ξφ)]

such that:
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ρopt = argmaxρ

(
1−
√

2ρξφ
σn‖w‖ρ,φ

)2

= argmaxρJ(ρ) = argmaxρ
(1−

√
2ρξφ)2

‖wzf
1 + ρe−jφwzf

2 ‖2
(21)

Setting the gradient of J(ρ) to 0 and eliminating the minimum point in ρ = 1/(
√

2ξφ),

we easily find an equation which admits one single solution, given by:

ρopt = −η +
√

2ξφ‖wzf
1 ‖2

√
2ξφη + ‖wzf

2 ‖2
(22)

where η = Real(wzf∗
1 wzf

2 e
−jφ) (23)

Validity of the closed-form solution: The closed-form solution above remains valid

as long as the optimal ρ returned by (22) lies in the interval of positivity of 1 −
√

2ρξφ.

In addition, the algorithm must check that ρopt > ρmin to justify our approximation of Pe.

Our simulations indicate that these conditions are most often satisfied for a proper choice

of ρmin (typically ρmin ≈ 0.1). This condition is the price for replacing minimization of the

error-rate in (19) by the well-behaved cost in (21). Note that for those channels for which

ρopt falls outside the validity interval, then the MER receiver estimation may not have a

simple closed-form solution. In that case, a possible strategy is to fall back to a MMSE

receiver instead. Our experience is this does not result in a significant performance loss

in practice, due to the fact the gain brought by the MER receiver over the MMSE one is

obtained mostly from those cases when ρ ∈ [ρmin, 1/(
√

2ξφ)].

B. Optimization of phase φ

To optimize the phase φ in closed-form from (19) independently of ρ is not possible.

However we make the following argument from (19):

1

2
Q(

1− ρ
σn‖w‖ρ,φ

) ≤ P̂e ≤
1

2
Q(

1−
√

2ρ

σn‖w‖ρ,φ
) (24)

Here it is possible to minimize both the upper bound and lower bound of P̂e by selecting

φopt such that
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φopt = argmaxφ{
1− ρ

σn‖w‖ρ,φ
} or equivalently

φopt = argminφ{‖w‖2
ρ,φ} = argminφ‖wzf

1 + ρe−jφwzf
2 ‖2 (25)

The solution to (25) is obtained from a standard gradient approach and is given by:

ejφopt = − wzf∗

1 wzf
2

|wzf∗

1 wzf
2 |

(26)

Note that, as desired, this solution does not depend on ρ. Thus it can be carried out first

and independently of ρ.

C. Summary of algorithm for Nt = 2

The approximate MER receiver algorithm goes as follows, given selected threshold ρmin

and given channel H:

1. Compute ZF receivers wzf
1 ,w

zf
2 from (5)

2. Compute φopt from (26).

3. Compute ρopt from (22).

4. If ρopt ∈ [ρmin, 1/(
√

2ξφ)], compute w = wzf
1 + ρopte

−jφoptwzf
2 . If not, compute MMSE

receiver wmmse from (6), let w = wmmse.

Once signal s1 is estimated, the second signal s2 can be obtained by following a similar

procedure, or by subtracting the contribution s1, followed by maximum ratio combining,

in the standard SIC/V-BLAST fashion [6].

V. Receiver algorithms for arbitrary Nt

Error rate expressions for linear receivers and Nt > 2 are available, however their op-

timization in closed-form is difficult (or impossible) up to our knowledge. To extend the

closed-form algorithm to arbitrary Nt, we propose an approach that reduces the Nt-input

problem to a 2-input problem where the closed-form MER-based receiver can be used. Im-

portantly, this technique is also consistent with exploiting the MER-based receiver where it

yields the largest advantage over other known linear receivers, i.e. the case of two strongly

correlated signals.
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The algorithm consists in two stages for the estimation of the k-th input sk, k = 1..Nt,

which is reminiscent of the approach used for simplified space-time decoding in [16]. In

the first stage, we select one other input index l (along with k) and use a group receiver to

estimate the contribution of the pair of inputs (sk, sl) in the MMSE sense. In the second

step, we design a 2-input MER-based receiver to estimate sk from the output of the group

receiver. The MER-based receiver is slightly modified to take into account colored noise

statistics at the output of the group receiver, but otherwise follows the design shown in

the previous section.

Importantly, the index l in the group (sk, sl) can be selected so as to minimize the

probability of error of sk, as shown in Sec.V-E. The 2-stage decomposition is illustrated

in Fig.3.

A. Optimality of a two-stage MMSE receiver

Interestingly, the optimality of the decomposition into two cascaded receivers, where

each receiver is MMSE-based, can be demonstrated through the result below:

Lemma 1. Let input signal indexes k, l ∈ [0, .., Nt], k 6= l, be arbitrary. Let wmmse
k be

the MMSE receiver for sk as in (6). Let skl = [sk, sl]
T . Let Hkl = [H(:, k),H(:, l)] be the

submatrix of H only consisting of the signatures of sk, sl. We define Wkl, the Nr × Nr

MMSE group receiver matrix for sk, sl, by:

Wkl = argminW{E‖W∗y −Hklskl‖2} (27)

Finally, let wkl→k be the Nr× 1 receiver allowing the estimation of sk from zkl = W∗
kly in

the MMSE sense. Then wmmse
k is equal to the cascaded filters Wkl,wkl→k:

wmmse
k = Wklwkl→k (28)

Proof. See Appendix 1. 2

The result above shows that nothing is lost in decomposing a MMSE receiver into the

product of a Nr×Nr MMSE group receiver for symbols sk, sl and a Nr×1 MMSE receiver

for symbol sk.

May 2, 2003 DRAFT



IEEE TR. SIG. PROC. SPECIAL ISSUE ON MIMO: D. GESBERT, ROBUST MIMO LINEAR RECEIVERS 14

In fact the result above is valid for any group size ≤ Nt. However, when the group size

is two, the second stage receiver can be replaced by a MER-based receiver similar to that

developed in the previous section. Only, colored noise statistics must now be taken into

consideration. We now describe the construction of the cascaded receiver.

B. MMSE group receiver

We’re interested in detecting input sk, where k is arbitrary k = 1, .., Nt. The MMSE

group receiver for (sk, sl), where sl is another input distinct from sk, is defined in (27).

From standard derivative analysis, the solution to this problem is obtained from:

RyWkl = HklH
∗
kl (29)

which can be seen as direct generalization of the usual case when the group size is one

(such as (6)). At the output of the group receiver, we observe:

zkl = W∗
kly = W∗

klHklskl + W∗
klH̃kls̃kl + W∗

kln (30)

where H̃kl is the Nr × (Nt − 2) submatrix of H consisting of the signatures of si, i 6= k, l.

Correspondingly, s̃kl is obtained by removing entries sk, sl from s.

B.1 Noise covariance

We merge all terms of (30), except the contribution of desired inputs sk, sl, into a single

composite noise term. The covariance of this composite noise at the output of the group

receiver, denoted by Rn̄, is no longer identity, yet is obtained easily:

Rn̄ = W∗
kl(H̃klH̃

∗
kl + σ2

nINr)Wkl (31)

C. MER-based receiver

The MER-based is applied at the output zkl of the group receiver. For convenience, we

rewrite (30) into

zkl = Gklskl + G̃kls̃kl + W∗
kln (32)

where Gkl = W∗
klHkl and G̃kl = W∗

klH̃kl.
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Note that this time we can assume the interference term G̃kls̃kl to be close to Gaussian,

this approximation being well justified when the number of antennas Nt becomes large.

It is then possible to exploit the two-input MER-based receiver developed in Section IV,

with slight modifications since the channel matrix H is replaced by the equivalent channel

Gkl here, and the additive noise is no longer white.

Let wmer
k be a Nr×1 vector receiver acting on zkl. Let wzf

Gk and wzf
Gl the ZF filters such

that wzf∗
Gk Gkl = [1, 0], and wzf∗

Gl Gkl = [0, 1]. Then, similarly to results in (26), (22), the

MER-based receiver is found from an appropriate linear combination of wzf
Gk and wzf

Gl:

wmer
k = wzf

Gk + ρopte
−jφoptwzf

Gl (33)

C.1 Phase optimization

As earlier, the phase is found from minimizing the (here colored) noise power σ2
n‖wmer

k ‖2
Rn̄

=

σ2
nw

mer∗
k Rn̄w

mer
k . We find for this:

ejφopt = − wzf∗
Gk Rn̄w

zf
Gl

|wzf∗
Gk Rn̄w

zf
Gl|

(34)

C.2 Amplitude optimization

Defining again ξ = max{| sin(φopt + π
4
)|, | cos(φopt + π

4
)|}, the amplitude is found by

extending (19) to the colored noise case and minimizing:

ρopt = argminρ
1

2
Q

(
1−
√

2ρξ

σn
√

wmer∗
k Rn̄wmer

k

)
(35)

Following the same strategy as in Sec. IV, a closed-form optimum for (35), subject to

the condition on the interval of validity, can be found by

ρopt = −η +
√

2ξwzf∗
Gk Rn̄w

zf
Gk√

2ξη + wzf∗
Gl Rn̄w

zf
Gl

(36)

with η = Real(wzf∗
Gk Rn̄w

zf
Gle
−jφopt) (37)

D. Algorithm summary for Nt > 2

To estimate input sk, we proceed as follows. given selected threshold ρmin, channel H,

selected index l:
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1. Compute Wkl from (29) and Rn̄ from (31)

2. Compute ZF receivers wzf
Gl,w

zf
Gk from Gkl

3. Compute φopt from (34)

4. Compute ρopt from (36)

5. If ρopt ∈ [ρmin, 1/(
√

2ξφ)], compute wmer
k from (33). Then let wk = Wklw

mer
k . If not,

compute the MMSE receiver wmmse
k from (6), let wk = wmmse

k .

E. Selection of optimum group

Note that, in the first stage (Sec.V-B) the group receiver does not attempt to separate

the inputs selected in the group (or, here, pair) (sk, sl), as this task is let to the MER-based

receiver used in the second stage. Because the MER receiver is more robust to correlated

inputs than the MMSE receiver, a reasonable strategy in the first stage is, for any given

input sk, to select input sl, l 6= k, such that the signatures of sk, sl are simultaneously

the ’most’ correlated with each other and the ’most’ linearly separable as a group from all

other signatures, so that both the MMSE and MER stages give best performance. This

approach is also consistent with practical arrays, where, for instance, pairs of neighboring

antennas tend to exhibit higher correlation than more distant antennas in the array.

The optimum way to realize this is to select l = lk so as to optimize the error rate

performance for the detection of sk. For a given l, the error rate can be again approximated

and lk found by:

lk = argminlP̂e(l) = argminl
1

2
Q(

1−
√

2ρoptξ

σn
√

wmer∗
k Rn̄wmer

k

) (38)

where the dependence in l is implicit in the expression above. It is also possible to use

the more complex expression found in (18), modified according to the colored noise’s

covariance, to get more accurate results. In our simulations we limit ourselves to the

approach shown in (38).

F. Detection of remaining inputs

Once sk has been estimated, other inputs may be obtained following the same procedure.

For better performance however, the contribution of sk may be subtracted first before

estimation of sk+1. This procedure can be iterated in way analogous to V-BLAST.

May 2, 2003 DRAFT



IEEE TR. SIG. PROC. SPECIAL ISSUE ON MIMO: D. GESBERT, ROBUST MIMO LINEAR RECEIVERS 17

VI. Simulations

We test the error-rate performance of the proposed algorithms (with ρmin = 0.1) in

the case of MIMO channels with severe correlation and/or significant Ricean components.

All plots including averaging over 1000 Monte-Carlo runs each featuring one independent

channel realization.

The realization for a (transmit-) correlated Ricean MIMO channel is obtained through

a channel matrix of the form

H0 =

√
β

1 + β
Hlos +

√
1

1 + β
HrR

1/2 (39)

where R is the standard correlation matrix (here for transmit side), Hr is zero mean i.i.d.

complex Gaussian, Hlos is the LOS channel matrix and β is the Ricean factor. The LOS

matrix is built simply from specifying antenna positions of (broadside) linear arrays at

transmit and receive and the distance between transmitter and receiver, see for instance

[7]. We choose a compact antenna spacing of 0.3 wavelengths and a propagation distance

of 1000 wavelengths. This results in condition number of about 3000 for Hlos.

We consider two cases. In the first one we take Nt = 2, Nr = 4 and compare the MER-

based algorithm of Sec. IV to a MMSE receiver. We assume perfect channel knowledge.

The antenna correlation is 0.9 (this corresponds to a severe lack of angular spread or closely

spaced antennas) [7]. The Ricean factor is 8dB, within the typical range for suburban

MIMO channels [18]. In Fig. 4 we plot the symbol error rate for the first input (the order

is pre-determined randomly). We consider several power allocation strategies between the

first and second input, with the first input having a power ratio of 0dB, 3dB, 5dB, 7dB,

respectively, above the second input. The second input is detected after subtraction of

the first one in a SIC fashion. Unequal power allocation can occurs for e.g. by design to

compensate for lack of diversity in the first input, or by propagation differences when the

input do not originate from the same physical transmitter (as in space division multiple

access). We do not attempt to optimize the power allocation as this separate problem is

treated in [14]. However, we also plot the performance on the second input to test the

impact of the power allocation.

We found the closed-form condition to be met in about 90% cases, with some variation
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depending on the power allocation. The closed-form MER-based always outperform the

MMSE receiver. The difference is small when we use equal power allocation, which con-

firms the predictions of [11], [12], but it becomes extremely significant for unequal powers

(equivalent to near-far effects in MUD). From Figs. 4, 5, we see that a power ratio of

up to 7 dB improves on the performance of both the first and second input, regardless of

the receiver used. That is because although the second gets less power than the first, it

benefits from a better error rate in s1 in the SIC algorithm. This effects reverses for more

than 7dB of power ratio (not shown here). We also see that the MER approach helps

suppress the a “near error flooring” phenomenon occurring at high SNR with MMSE for

both inputs. This slow decreasing of the error rate for MMSE is due to the high antenna

correlation and the irreducible interference coming from ill-conditioned LOS component,

which causes the curve to differ dramatically from an ideal 4 − 2 + 1 = 3-order diversity

performance.

In Fig.6, we compare for the same channel parameters as above and for a power ratio

of 5dB, the closed form approximate MER detector with an “exact” MER detector. As

done in previous papers such as [12], the exact MER receiver has no closed form solution

and is obtained by e.g. running a two-variable gradient descent on the exact error rate

expression (18) for every channel realization. The results show that little is lost in the

approximations used in (26) and (22).

Let us stress here that the closed form algorithm is derived independently of the power

allocation. However it is known from MUD theory that the exact MER detector out-

performs the MMSE receiver significantly (only) in the case of unequal power allocation,

which makes this latter case the interesting one to study for our algorithm.

In the second case, we take Nt = 3, Nr = 6 and use the algorithm shown in Sec. V. We

plot the error performance in Fig. 7 for the same channel conditions as earlier: Correlation

is 0.9 between neighboring antennas and decays exponentially after that (0.81,0.73..). The

power allocation specifies the power ratio between input k and k+1, k = 1, 2. Once again,

the MER-based receiver outperforms the MMSE receiver in all cases.

Finally we measure the increased robustness of the MER-based receiver to various levels

of correlation (with Ricean factor 0) and Ricean factors (with correlation 0) in the 2× 4
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case, in Fig. 8 and 9 respectively. The SNR is fixed at 15dB in this case. Unlike for

MMSE, the performance keeps improving with β for the MER-based solution and power

ratio 7dB. Once again the MER-based receiver is helpful, with the greatest impact on

Ricean channels.

VII. Conclusions

This paper presents new algorithms for the construction of approximate minimum-error-

rate linear MIMO receivers. The key contribution is a simple closed-form solution to this

problem, shown for the Nt = 2 case. In the general case of Nt we extend the method

using cascaded MMSE and MER-based receivers. The MER-based receiver is applied on

selected pairs of inputs so as to minimize the probability of error. The advantage of the

proposed approach over existing linear MMSE-type receivers is a greater robustness with

respect to ill-conditioned MIMO channel matrix arising in eg. correlated fading scenarios

or Ricean environments. The advantage of the MER approach is increased in the case of

unequal input power allocation, as predicted from MUD theory.
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Appendix:Proof of Lemma 1

The second stage receiver wkl→k is defined by:

wkl→k = argminw{E|w∗W∗
kly − s1|2} (40)

hence can is obtained from :

(W∗
klRyWkl)wkl→k = W∗

klhk (41)

where hk is the k-th column of H Therefore we have:

W∗
kl(RyWklwkl→k − hk) = 0 (42)

Let us denote x = RyWklwkl→k − hk and show it is 0. Then this will prove our result

since Wklwkl→k will be equal to the single stage MMSE receiver.
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We have also x = HklH
∗
klwkl→k − hk which shows that x lies in the span of Hkl. Then,

let us denote the 2 × 1 vector u such that x = Hklu . From (42),(29), we get:

W∗
klHklu = 0 = R−1

y HklH
∗
klHklu (43)

We can assume Hkl is of full rank 2 (happens with probability one). Then H∗klHkl has full

rank 2. Since R−1
y also has full rank, then the only solution above is u = 0, hence x = 0.
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Fig. 1. Diagram of a MIMO spatial multiplexing system.

May 2, 2003 DRAFT



IEEE TR. SIG. PROC. SPECIAL ISSUE ON MIMO: D. GESBERT, ROBUST MIMO LINEAR RECEIVERS 24

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ρ jφes1+          s2

1

ρ

φ+π/4

Fig. 2. Superposed QPSK constellations at the output of linear MIMO receiver with Nt = 2. The

interfering constellation has amplitude ρ and phase φ.
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Fig. 3. Diagram of cascaded receiver for source sk: a group MMSE receiver extracts the contribution of

sk, sl. A MER receiver is then applied to estimate sk.
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