Institut EURECOM
Research Report N 90 — RR-03-090

Efficient Search in Unstructured
Peer-to-Peer Networks

V. Cholvi, P. Felber, E.W. Biersack

September 22, 2003






Efficient Search in Unstructured
Peer-to-Peer Networks

Abstract—The huge popularity of recent peer-to-peer (P2P) file Freenet [7]) have no precise control over the file placement and
sharing systems has been mainly driven by the scalability of their generally use “flooding” search protocols.
architectures and the flexibility of their search facilities. Such sys- Directed search protocols are particularly efficient, because

tems are usually designed aanstructured P2P networks, because . .
they impose few constraints on topology and data placement and they accurately route queries toward the peers responsible for

support highly versatile search mechanisms. A major limitation @ given file. They require few communication steps, generate
of unstructured P2P networks lies, however, in the inefficiency of little traffic, and do not produce false negatives (i.e., the search
their search algorithms, which are usually based on simple flood- fails only if there is no matching file in the system). Flooding
ing schemes. protocols are less efficient, because queries are generally broad-

In this paper, we propose novel mechanisms for improving L i : : :
search efficiency in unstructured P2P networks. Unlike other ap- cast indiscriminately in a whole neighborhood and may yield

proaches, we do not rely on specialized search algorithms; instead, falS€ negatives. They have, however, very little management
the peers perform local dynamic topology adaptations, based on overhead, adapt well to the transient activity of P2P clients,

the query traffic patterns, in order to spontaneously create com- take advantage of the spontaneous replication of popular con-
munities of peers that share similar interests. The basic premise of tent and allow users to perform more elaborate queries than

such semantic communities is that file requests have a high proba- , . : :
bility of being fulflled within the community they originate from,  With directed search protocols, which only support exact match

therefore increasing the search efficiency. We propose further ex- dUeries. These properties make unstructured P2P systems more
tensions to balance the load among the peers and reduce the querysuitable for mass-market distributed file sharing.
traffic. Extensive simulations under realistic operating conditions The main objective of this work is to develop techniques to

substantiate that our techniques significantly improve the search render the search process in unstructured P2P file sharing sys-
efficiency and reduce the network load. tems more efficient and scalable, by taking advantage of the
common interests of the peer nodes and effectively implement

a “directed flooding” search protocol.
I. INTRODUCTION

L B. Overview and Contributions
A. Motivations . . .
In this paper we proposécquaintances, an extension to

The last few years have witnessed the appearance of a greyyutella-like unstructured P2P networks that uses dynamic
ing number of peer-to-peer (P2P) file sharing systems. Suglhology adaptation to improve search efficiency. As in
systems make it possible to harness the resources of large RQRutella, our search mechanism uses TTL-limited flooding to
ulations of networked computers in a cost-effective manner, agghadcast queries in a neighborhood. By associating a TTL
are characterized by their high scalability. (time to live) value to the query messages, one can restrict the

P2P file sharing systems mainly differ by their search facikearch diameter, i.e., the size of the flooded neighborhood, and
ities. The first hugely successful P2P data exchange systéit the adverse effects of exponential message generation on
Napster [1], incorporates a centralized search facility that keepp® network links. However, the probability of finding a file that
track of files and peer nodes; queries are executed by the cgbes exist in the network strongly depends on the chosen TTL
tral server, while the resource-demanding file transfers are pgstye: bigger values increase the success rate but may quickly
formed using P2P communication. This hybrid architecture gkad to network congestion.
fers powerful and responsive query processing, while still scal-To minimize this problem, we propose novel techniques to
ing well to large peer populations. The central server neediild self-organized communities of peer nodes that share sim-
however, to be properly dimensioned to support the user quéis interests. These communities are maintained by dynami-
load. In addition, it constitutes a single point of failure and cagally adapting the topology of the P2P overlay network based
easily be brought down in the face of a legal challenge, as w&s the query patterns and the results of preceding searches.
the case for Napster. Consequently, most recent P2P file shadegne of the neighbor links are explicitly reserved for building
systems have adopted more decentralized architectures.  semantic communities and are continuously updated according

Roughly speaking, the P2P networks that do not rely onta some link replacement algorithm; these links allow peers to
centralized directory can be classified as eittercturedorun-  quickly locate files that match their interests. The other links
structured Structured P2P networks (e.g., Chord [2], CAN [3]are mostly static and random; they help maintain global con-
Pastry [4], and Tapestry [5]) use specialized placement algeectivity and locate more marginal content.
rithms to assign responsibility for each file to specific peers, Semantic communities can have the adverse effect of creat-
as well as “directed search” protocols to efficiently locate filegng hot-spots with well-connected peers. To address this prob-
In contrast, unstructured P2P networks (e.g., Gnutella [6] alen, we introduce a load-balancing mechanism that delegates,



whenever possible, the responsibility to answer a query to less-
loaded peer nodes. Finally, we propose a dynamic TTL up-
date scheme to further limit network congestion without signif-
icantly degrading the query success rate.

To evaluate the effectiveness of our techniques, we have built
a network simulator and conducted extensive simulations under
realistic operating conditions. Results demonstrate that, when
extending a basic Gnutella-like network withcquaintances,
one can significantly improve the search efficiency and reduce
the network load.

C. Paper Organization

The rest of this paper is organized as follows: In Sec-
tion 1l, we discuss related work, and we introduce the design

of Acquaintances in Section Ill. Section IV describes the
methodology used for the evaluation df:quaintances, and
the simulation results are presented in Section V. Finally, Sec- Neighbor @ Peer | sharing
tion VI concludes the paper. - -~ » Acquaintance nfiles
Il. RELATED WORK Fig. 1. Sample minimal network, with a single neighbor and acquaintance link
per peer.

Our system builds on top of unstructured P2P networks, such
as Gnutella [6], but dynamically adapt the network topology

to build semantic communities. Several alternative approach@ger the search process to peers that are more likely to have an
have been proposed to improve search efficiency by taking agswer to the query. In contrast, our approach does not require
vantage of the common interests of the peer nodes. specialized searching rules; it rather drives the search process

In [8], the authors propose the use gifortcutsto eXplOit by dynamica"y adapting the network topo|ogy_
interest-based locality: peers that share similar interests create

shortcuts to each other. Queries are first disseminated through I. Acquaintances DESIGN
shortcuts and, if the search fails, they are flooded through theIn this section. we introduce the basic princiol f
underlying P2P overlay. In contrast, our approach does notcre- " ' P pies o
ate additional links, nor does it require a specialized search pféggquammnces and we present the key components and al-
cess; it rather dynamically modifies the topology of the overIa%/0
network to reflect the shared interests of the peers, and canthus_ i
be incorporated seamlessly into existing Gnutella-like P2P néy. Pefinitions and Terminology
works. Each peer is connected to a set of other peers in the network
In [9], the authors propose techniques to reduce the numbyé uni-directionallinks, that is, each peer can locally select the
of nodes that process a query, with the premise that by intether peers it wishes to link to. We distinguish between two
ligently selecting subsets of peers to send queries to, one &4pes of links:
quickly obtain relevant results. This work focuses on the peere Neighbor linksconnect a pees to a set of other peerp’s
selection algorithms, which yield various performance gains, neighbors) chosen at random, as in typical Gnutella-like
but does not consider the dynamic evolution of the structure networks.
and connectivity of the P2P overlay. « Acquaintance linksonnect a peey to a set of other peers
In [10], the authors propose a query algorithm based on mul- (p's acquaintances) chosen based on common interests.
tiple random walks. This technique reduces message overheaBach peer has a bounded number of neighbor and acquain-
compared with flooding, but at the expense of an increase in taace links. We calp’s friendsthe set of peers that haye
number of hops necessary to find the requested file. among their acquaintances. The number of friends of a peer is
Gia [11] is a P2P file sharing system that extends Gnuteltg in-degree(which is unbounded, let alone by the size of the
with one-hop replication Each peer maintains an index of thenetwork).
files stored on its neighbors, and can thus process queries oA peer can make some of its local files accessible to other
their behalf for increased scalability.ocal indices[9] imple- peers. Peers that do not share any file are cditstriders
ment the same concept, but extend the scope of indexes to allttom-free-ridersor serving peersre those peers that contribute
peers located within a predefined hop distance. We also relyfidas to the community. A successful request yields a list of
similar techniques to increase search efficiency, but we furthezers that have a file matching the original query. We assume
use them for load balancing purposes and we show that they #na, when several peers have the desired file, the peer that is
effective even when indexes have stringent size limitations. closest to the requester (in number of hops) is chosen. We call
In [12], the authors propose to use file associations to buildtzat peer theanswerer Note that answering a query typically
so-calledassociative overlagnd present various algorithms tamplies sending a file to the requester.

rithms used in its design.



Algorithm 1 LRU replacement policy at requestgr

i Variables:
, AcqList Ordered list of N acquaintances, initially chosen at random
. : ) v
’ Upon successful query answered py:

A . .
o @ Result ; if po € AcqListthen

/ removep,, from AcqList

N %é?uery . \
N / . else
N N | —= 1 Promotion )
A K remove last element fromcqlList

p . end if
ERN addp, to front of AcqList

@ (b) ©

its list, and drops the last peer of the list (see Algorithm 1). If
Fig. 2. Basic principle of dynamic topology adaptation: ga)issues a query. the answering peer is already an acquaintance, itis moved to the
(b) ps returns a positive response. {g) promotesps as acquaintance. front. This scheme guarantees that a promoted peer always re-
places the peer that was promoted least recently, and that a peer
that regularly answers queries can remain an acquaintance for a
Some of the mechanisms that we will introduce shortly reong duration. However, when peers have diverse interests and
quire peers to maintain state information about their friendgaye only few acquaintance links at their disposal, the composi-
Thestateof a peer consists of the list of the names of its sharg@, of the acquaintance list may well change after every query;
files. For load-balancing purposes, peers also need to know {hg volatility can yield non-negligible connection management
in-degree of their friends. costs.
To illustrate these definitions, consider the sample network
depicted in Fig. 1, in which each peer has a single neighbRfgorithm 2 MOU replacement policy at requester
and acquaintance link. Pegr share99 files and its state con- Variapies:

sists of the names of all these files. It hasas random neigh_ AcqList Ordered list of N acquaintances, initially chosen at random
CandList List of { peer, ranking} pairs, ordered by ranking,

bor; p4 as acquaintance; and, ps, ps, ps, andps as friends, ~ initially filled with peers fromAcqListand null rankings
which corresponds to an in-degree of Peersp; andpg are o Aging factor, with value in(0; 1]
free-riders and have no friends. As we will see later, a higfon successful query answered by, reached Vidp, , p1. - - -, P—1, Pn = Pa)’
in-degree generally indicates that a peer shares many files, orfrs{all {f; r}{e Canlestdo
. . Ty ;ar

well-connected to peers that share many files; in contrast, freeng for b
riders typically have a null in-degree. Pair-wise acquaintance <—‘}-0 downto 1 d

. . . .. : or rom n downto o
relationships between serving peers that have similar mteres{sifj{pj;r} ¢ CandListthen

(e.g., betweem, andp,) are also common in practice, and ef- els{epw’} —A{pj;r+i}

fectively yield bi-directional links. insert{p, ; i} in CandList
end if
. . i—1i/2
B. Dynamic Topology Adaptation end for

AcqList« first N peers ofCandList

The basic principle ofAcquaintances consists in dynam-
ically adapting the topology of the P2P network so that the
peers that share common interests spontaneously form “well-To alleviate this problem, we use tHdost Often Used
connected” semantic communities. It has been shown that ug@4©U) policy, which maintains rankings of the peers and elects
are generally interested in only some specific types of coads acquaintances those that have the highest rankings. A peer
tent [13], therefore being part of a community that shares cofas a high ranking if it answers to many queries, or (to a lesser
mon interests is likely to increase search efficiency and succextent) if it is close to peers that have answered many queries,
rate. i.e., it is well connected and could thus be a valuable acquain-
Dynamic topology adaptation is implemented by directintpnce. After each successful query, each peer on the path fol-
acquaintance links toward the peers that have returned relevamed by the query, in reverse order from the answerer to the
results in the past (see Fig. 2). Indeed, a peer that consistengguester, has its rank increased by an exponentially decreasing
returns good results is likely to have common interests with tivalue (see Algorithm 2). To better adapt to the dynamics of the
requesting peer and/or to serve a large number of files. A cgreer population and shared content, we also introduce an aging
sequence of this scheme is that selfish peers and free-ridersfagtor that gives more weight to recent answers by decreasing
likely to be acquainted with almost no other peer. the rankings over time. This scheme clearly yields acquaintance
Each peer maintains an bounded list of acquaintances. Tisés with low volatility, which give preference to peers that stay
decision of replacing a peer from this list, i.e., promoting a pekmger in the system and are expected to be more stable.
as acquaintance, depends on the history of the responses to prée best illustrate the effect of dynamic topology adaptation
vious requests issued by each peer (note that this decisioinisAcquaintances, we have represented in Fig. 3(a) and 3(b)
local). In this paper, we evaluate two acquaintance replacem#re acquaintance links of a small P2P network, before and after
policies. running a simulation (as described in Section V). The network
TheLeast Recently Used (LR\gplicy is the simplest. After evolves from a random configuration toward a graph with well-
a successful request, a peer adds the answering peer in frortafnected communities.



(a) At the begin of the simulation. (b) At the end of the simulation.

Fig. 3. Graphical representation of the effect of dynamic topology adaptatior2066-peers network, with one acquaintance link per peer (neighbor links are
not shown for clarity).

C. Search of overhead in P2P file-sharing networks and should not be

As previously mentioneddcquaintances does not require Overlooked.
complex or specialized search algorithms. It uses the sam@Ve therefore use the following mechanism to better balance
TTL-limited flooding scheme as in Gnutella-like P2P networkéhe file traffic. Before successfully answering a query, a peer
and yet exhibits much improved search efficiency. p first checks if any of its friends also has the requested file. If
First, by organizing peers in communities that share commé, it delegates the responsability for answering the query to the
interests, we improve response time by increasing the chanpesr among those serving the file that hassthellest in-degree
that matching files are found inside the community, i.e., withighote that this peer may bg. Otherwisep sends the file itself.
a short distance, of the requester. We can therefore use smalldrhe rationale behind this approach is that well-acquainted
TTL values for queries and thus reduce the network traffipeers are likely to be more loaded, i.e., receive more requests
without significant impact on the success rate. and serve more files, than peers with fewer friends. Further,
Second, peers can be configured to maintain a (partial) indéere is a good probability that some of the friends of a peer
of the files stored on their friends. Using this state informatioa)so have the same files. Therefore, we force the less loaded
a peer can explore several other peers with similar interestgpeaer to assume part of the load.
no communication cost. Clearly, this also increases the success
rate and reduces the network traffic.
Semantic communities also have some drawbacks. First, freDynamic TTL

network can quickly become divided in several disconnectedTq further reduce the query traffic generated by the flooding
subnetworks with disjoint interests. Second, peers SearChﬁlgorithm, we propose an extension for the case where peers
for unpopular or marginal content (not part of their interestgye “conscious” of the sematic communities and can check if
may experience very low success rates. For these reasonsgWegquested file falls within their interests. Intuitively, a query
enforce some random connectivity by means of the neighl@gt enters a community of peers to which the requested file
links. Searches are performed by forwarding queries on chEIongs, is likely to be answered by a peer of that community

the acquaintance and neighbor links. within a few hops. Conversely, a query for a file that does not
_ match the interests of the community is likely to traverse more
D. Load Balancing peers before being satisfied. Therefore, we propose decrement-

Flooding algorithms naturally direct much of the traffic toing the TTL value twice (i.e., b instead ofl) when a received
ward highly connected peers. In our system, a peer that ltagery falls within the interests of the traversed peer. Clearly,
many friends can quickly become a hot-spot, not only becaus¢hiis mechanism reduces the number of messages sent by the
receives more queries, but also because it typically sends mtboeding algorithm. Our basic premise, which we substantiate
files to requesting peers. Although we do not explicitely adater, is that this extension significantly reduces network traffic
dress the issue of file transfers in this paper, it is a large sourehout affecting much the success rate.



IV. EXPERIMENTAL SETUP Parameter Value

Active peers 20,000 '
We now present the experimental setup and methodology gggo SEare ?lflle Tof(;]e]gl—nd?rs_f \

1 - © Share 1es (unirorm
useq for the evgluathn Qilcquamtances. All results were . 7% share (101" 1000] files (uniform)
obtained from simulations, with extra care taken at reproducing 3% share [1001 .. . 2000] files (uniform)
realistic operating conditions. Distinct files 200, 000

Categories 50

Categories per peer | [1...6] (uniform)
Links per peer 6
A. System Model Acquaintance links {0,1,3,5}

6

a) Network: Similarly to Gnutella, we consider a system | Query TTL

. . uery rate 10%
model where peers are organized in an overlay network. Eac Query .
peer has a set of neighbors with which it communicates by mes- TABLE |
sage passing. Links are directed: a peenay have another PARAMETERS USED IN THE SIMULATIONS

peerp’ as neighbor withoup’ consideringp as its neighbor.
Traffic can however flow in both directions on the links.

We consider a peer-to-peer netwqu made@fo0o peers, a_small proportion of the users (less tH&id) contribute more
which corresponds to an average-size Gnutella network ufﬂan two thirds of the files shared in the system and essentially
Each peer has of outgoing links. Some of them are chosefyoave a5 servers. Based on the study in [16], we assign the
randomly (neighbor links), and others adapt dynamically basﬁﬂlowing storage capacity to the peers in the netwdit of

on t.he query traffic .(acquaintance Iinks). The r_1umber of Afhe peers do not share any file (free-ride?8f% sharel 00 files
quaintance links varies betweemnd5 in our experiments (the less:7% share betwee01 and 1, 000 files: finally, 3% of

remaining links being neighk_Jor IinI_<s). As we ne_ed to maifipe peers share betweén)01 and2, 000 files (actual storage
tain global network connectivity during the whole simulation t_%apacities are chosen uniformly at random). With this distribu-

obtain consistent results, we make sure that the network is i 5. we have observed in our experiments a total storage ca-
tially fully connected through the peers’ neighbors links (whic acity of more thari, 600, 000 files, with more thari 50, 000
do not change over time). The number of incoming links is UGctinct files being shared

bounded and varies over time as acquaintance links get updated.
b) Content: It has been observed [13] that users are gen- )

erally interested in a subset of the content available in a peer-f- Simulation Methodology
peer network. Furthermore, they are interested in only a limitedOur simulator proceeds in a sequence of synchronous rounds.
number of “content categories” (e.g., music styles, literatute each round, a subset of the peer8’% in our experiments)
genres). Among these categories, some are more popular &sde requests. Similarly to Gnutella, searches are conducted
contain more content than others; for instance, pop music fikesing TTL-limited flooding. Each request is assigned a time-
are more widely held than jazz or classical music files. Simie-live (TTL) value and is disseminated via neighbor and ac-
larly, within each category, some files are much more populguaintance links. When receiving a request for the first time, a
than others. The popularity of the Gnutella content and querigger decreases the TTL value and, if it is strictly positive, prop-
has been shown to follow a Zipf distribution, with a skew facagates the request further.
tor betweer.63 and1.24 [15]; in the rest of this paper, unless To generate a request, a peer first selects one category among
mentioned otherwise, we use a Zipf skewld for all our ex- its categories of interest based on their rankings. Then, it selects
periments. afile (that it does not already hold) from that category according

We model content by creating) distinct categories. Eachto the file popularities. The peer then issues a request for that
category has an associated popularity index, chosen accorditgy For simplicity, we always request individual files, i.e., we
to a Zipf distribution. We then creaf®0, 000 distinct files and do not consider broad gueries that match several distinct files.
assign each of them to exactly one category chosen accordinyVhen a serving peer receives a positive response to his query
to the categories’ popularities: the more popular a category &d it still has some storage capacity available, it creates a local
the more files it contains. We also associate a Zipf popularieppy of the file and makes it accessible to other users. A posi-
to the files inside each category. Finally, each peer is assigneiya response to a query can also result in an update of a peer’s
random number (uniformly distributed betweeand6) of cat- acquaintance links. We used an aging factonof 1 for the
egories of interest, that it chooses according to their popularOU acquaintance replacement policy (see Algorithm 2).
index. The categories of interest of a peer are ranked using dhe simulation is made of two phases:
Zipf distribution: the peer is more interested in (i.e., requests1) During the first phase (bootstrap phase), we populate the
and shares more files from) the first chosen category than the system and establish acquaintance link connectivity be-
second one. This behavior models the few peers that are highly tween the peers. To that end, serving peers issue queries,
interested in marginal content. at a rate proportional to their storage capacity, and create

c) Cooperation: All peers do not share the same number local copies of the files they request. In case a file is not

of files and do not exhibit the same “social behavior”. As ob- found (e.g., because it does not yet exist in the system),
served in [16], a large proportion of the user population is made  we “inject” it at the requesting peer; this models the be-
of so-called free-riders, who do not make any file accessible to  havior of peers joining the network with a pre-existing
other users and essentially behave as clients. On the other hand, set of files. Acquaintance links are dynamically updated



25000

' requests '
10000 >~ copies
8 20000 f 1
(= B (%]
8 100}F e, ke
a | T,
LS & 15000 g
< 9]
= “
£ 10} T °
a g 10000 b
g . >
E A z
L T ]
z 10 el 5000 | 1
1 1 1 1 1 1 0 1 1 1 1 1
1 10 100 1000 10000 100000 0 500 1000 1500 2000 2500
Order of popularity Number of copies

Fig. 4. The number of requests for, and copies of, each file strongly depemdg. 5. The number of requests for a file is correlated with its number of
on the file popularity. copies.

based on the query traffic and the acquaintance replace1) Hops: The first metric used in our evaluation is them-

ment policy in use. The first phase ends wBefk of the  per of hopsnecessary to reach the first peer that serves the re-
storage capacity has been filled. At the end of the firgliested file. We compute the average over all successful re-
phase, the storage and acquaintance link connectivity @fests issued during each round. The number of hops is a mea-
the core network—composed on the serving peers thifre of the response time and allows us to choose adequate TTL
actually contribute to the content of the system—havgjlues to experience a good query success rate without over-
been established. This corresponds to the expected s{ggiing the network.

of a pre-existing peer-to-peer network at the time a new

user connects. 5 , , , ,
2) During the second phase, we take measurements and ob- - 2 ggg LRU
serve the network’s behavior under traffic load fromboth | s 1 acq MOU

free-riders and serving peers (which fill up the remaining 4}
20% of their storage capacity). This phase allows us in 2 acd MOU

particular to observe the evolution of the connectivityof =~ ——————————
the free-rider population with respect to the serving peers%1 3R 1
in the core of the network.

We run the simulation for at lea$t 000 rounds in the second
phase. Table | summarizes the main parameters used in our
simulations.

Based on the content and query models, it appears clearly
that the number of requests to each file, as well as the number * 200 200 600 800 1000
of copies held in the system, are strongly correlated with the Number of rounds
popularity of the file. Fig. 4 shows the number of requests and
copies observed for each file based on its order of popularifjg- ¢-
Fig. 5 further exhibits the strong correlation between the num-

Number of hops to the closest peer that serves the requested file.

ber of requests for a file and its number of copies. Fig. 6 shows that the system, initially with random connec-
' tivity, needs only a few rounds to set up acquaintance links and
V. Acquaintances EVALUATION stabilize in an efficient configuration. Regardless of the ac-

In this section, we present and analyze the results of theaintance replacement policy, the number of hops is reduced
experimental evaluation oficquaintances. We first start by by around30% with 1 acquaintance, b§0% with 3 acquain-
studying the overall impact of acquaintances on our systetances, and b$0% with 5 acquaintances. Note that the mini-
We then analyze search and load balancing improvements wineimm number of hops necessary to reach a filg &s peers do
each peer knows the state of some of its friends. Finally, wet search for files that they already have. We have observed

evaluate the effect of the dynamic TTL optimization. that more popular files are generally found closer to the re-
) ) quester; this behavior can be explained by the fact that popular
A. Acquaintance Links files have more copies (see Fig. 4).

For all the experiments in this section, we assume that the2) In-degree: The in-degreeof a peerp is defined as the
peers have no knowledge of the state of their friends. This casember of other peers that have chogeas acquaintance. We
corresponds to a traditional Gnutella-like network with no exti@ave computed the maximum over all peers at the end of each
information being transmitted between peers. round. As the number of queries received by a peer is clearly



proportional to its in-degree, it is important to keep this value Coefficient of | # requests answere(l
L variation of by the busiest peer
within reasonable bounds. answered requests
#acq| LRU | MOU | LRU MOU
0 2.3 2.3 55 55
1000 ' ' — 120q LRU T | 31 3.0 10.0 9.7
- 1 acq MOU 3 37 36 115 12.7
- 3acqLRU 5 471 3.8 13.8 13.5
800 r + 3acq MOU -
5 acq LRU
2 aca MOU TABLE I
o 600 i EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION
[}
b
S 400 FES ]
T o 4) Load distribution: In order to analyze how the introduc-
200 5 | tion of acquaintances affects the load distribution of the system,
i we have computed thepefficient of variatiorof the number of
o ‘ ‘ ‘ requests answered by each peer (i.e., the standard deviation of
400 600 800 1000 the values divided by their mean). This metric shows how the
Number of rounds file transfer load, which is a bandwidth- and time-consuming

operation, is distributed among the peers. Small values indicate
that the load is well balanced among the peers. Table Il shows
that acquaintances have a relatively small influence on the co-

Fig. 7 shows that, by introducing acquaintances, we increaesfgcient of variatign,.anq consequently do not significantly de-
the maximum in-degree in the network. This is not surpri&rade, the load d|_str|but|on of the system (When compared to
ing as the peers that serve many files are more likely to Béo.asw Gnutella—lllke netyvork). The acqualntgnge rgplacement
chosen as acquaintances by the other peers. Conversely, folicy has no noticeable impact on the load distribution.
riders should be acquainted with almost no other peerLR¢ Ve also represent theumber of requests answered by the

acquaintance replacement policy exhibits more volatility thafSiest peercomputed over all peers during each round (re-
MOU. member that the query rate i8%, which means that approxi-

L . . . mately2, 000 requests are issued during each round). This met-
8) Promotions: To quantify the stability of inks, we use theric helps us to identify hot-spots. Table Il shows that, while

percentage of promotionge., the proportion of successful re-,~ . : . .
. : : he introduction of acquaintances leads to a higher request load
quests that have induced a dynamic topology adaptation (update ) L ) .
0N _the busiest peer, this increase remains quite moderate and

of the requester’s acquaintance list). We compute the average - .
. . s not indicate the creation of hot-spots. The values show not
over all successful requests issued during each round. A sm . .
value means that the connectivity of the system is stable. influence from the acquaintance replacement policy.
5) TTL values: With TTL-limited flooding, the success rate
of queries strongly depends on the chosen TTL value. Con-
i i i i sequently, it is very important to choose a value that simulta-

Fig. 7. Maximum in-degree over all the peers in the network.

100

bz ] neously provides a high success rate and limits the number of
messages sent over the network.
%]
5 - lacgLRU A
B3 - 1acq MOU 0 acq lacq 3acq 5 acq
E 3acqLRU | 1
g + 3acq MOU o
5acq LRU ®
5 acq MOU @ 08
Q
Q
&)
| =
® 0.6
(]
=
L E
0 200 400 600 800 1000 2 04
Number of rounds 8
; . . . 0.2
Fig. 8. Percentage of successful requests that yield an acquaintance promotion.
1

) ] ) 1234567 1234567 1234567 1234567

_ Fig. 8 shows that th_e_RU acquaintance r(_eplagement policy TTL value

introduces much volatility, while the1OU policy yields a very .

stable network after a few rounds. Stability is particularly imFig. 9 Cumulative success rate, averaged over thestasrounds of the
. . LT sm}ulatlon, with aMOU acquaintance replacement policy.

portant when updates to acquaintance links have a significan

connection management cost, or require extra messages to be

transmitted between peers (e.g., to transfer state). The metric used to study the effect of the TTL value is the



cumulative success ratee., the cumulative probability of suc-that serves, the requested file drops to the optimal valag
cess in the TTL-limited neighborhood of the requester. Higler a few rounds. This occurs regardless of the acquaintance
success rates for small TTL values indicate that search is mogplacement policyL(RU or MOU). As almost all requests are
efficient. Fig. 9 shows the results for various number of aeatisfied after a single hop, peers have no incentive to change
quaintances. We can observe that more acquaintances leadbed acquaintances; we have indeed observed that the number
higher success rates for any TTL value. Without acquaintanoé,promotions with both th& RU and MOU acquaintance re-
we need a TTL value of to have a90% success rate. With placement policies is almost null.
acquaintances, we only need a TTL3db get the same success The experiments also show that the in-degree of the busiest
rate, and a TTL of still provides better thaf0% success rate. peer grows quickly to almost attain the total number of peers in
We have also measured themulative number of hits.e., the system. This indicates that one peer acts as a central hub that
the cumulative number of positive responses to a query in thk other peers choose as acquaintance; it is chosen initially be-
TTL-limited neighborhood of the requester. We have contause it serves many files, and later because it has many friends
puted the average over all successful requests issued duang consequently can answer to almost all queries. This snow-
each round. Having several positive responses can reducelih effect leads the system to spontaneously self-configure as
download times as we can request a file from the least loadedystem with a central “index” peer, like Napster. The major
or topologically-closest peer, or even use multi-source paraltfifference with a centralized system is that, if the central index
download techniques [17]. fails or leaves, the system quickly reconfigures and chooses an-
other index peer.
A configuration with a central index has the major drawback

0acq 1 acq 3acq 5 acq of overloading the index peer (experiments show a significant
degradation of the load distribution). In addition, the index
100 peer must have enough resources to maintain the state of all
its friends, i.e., the list of almost all the files served by all the
2 10 peers in the P2P network.
2
**
60 : : : :
P N N I O N O I O O O Y Y e Lacq LRU
s 1 acq MOU
50 b 3acqLRU |
------------ 3 acq MOU
5 acq LRU
0.1 I ca0t 5acq MOU |
123456 123456 123456 123456 3 <4
S g
TTL value g 30§ ]
o .; """"" S 2|
Fig. 10. Cumulative number of hits, averaged over the8astrounds of the S 20 bk ]
simulation, with aMOU acquaintance replacement policy. A e
100 et e e e T e u'A
Fig. 10 shows that, for small TTL values, the number of
L . . . 0 ‘ ‘ ‘ ‘
_hlts increases with the number of gcqualnta_nces. This b_e_hav 0 200 200 600 800 1000
ior results from the fact that acquaintance links are explicitly Number of rounds

designed to connect to peers that have a high probability of
Serving the requested files. However, for high TTL values V\F@._ll. Improvemen_t of the average nu_mber of hops per request when main-
observe an opposite behavior: the number of hits is higher wH&{jin9 the state o5 friends (w.r.t. maintaining no state).
using less acquaintances. This can be explained by the fact that,
when using more acquaintance links, we have less randomnesgo overcome these drawbacks, we adopt a less extreme ap-
and it becomes harder to find the extra copies of a file that g®ach and we bound the maximum number of friends that a
located outside of the requester's semantic communities. TRiger needs to keep track of. We have run simulations with this
problem is more severe when a peer searches for marginal ciiit set to 25. Fig. 11 shows the improvement of the num-
tent that does not belong to its semantic communities. Thegger of hops needed to reach the first peer that answers a query,
fore, it is desirable to maintain a good balance of acquaintangh respect to the case where peers keep no state. We observe
and random links. gains ranging fron8% to 16% with the LRU acquaintance re-
placement policy, and fror25% to 35% with MOU. The lower

) performance of.RU can be explained by the higher volatility

B. Friends Awareness of the network connectivity, which leads peers to only perform
We now consider the case where each peer maintains anshert-term optimizations.

dex of the files stored on its friends and uses this knowledge toFig. 12 shows the increase of the maximum in-degree result-
answer to queries on their behalf, when possible. Our expdrig from the introduction of friend state knowledge. This in-
ments show that, even with a single acquaintance, the numberase is pretty important witlOU (between80% and95%)
of hops needed to reach the first peer that serves, or has a fribut as we shall see shortly, moderate enough to not cause hot-



# messages % faults
—————————— 1'acq LRU static | dyn | static| dyn7 | static| .-
140 | 1 acg MOU | #acd| (7 =) (TT)L/=6) n (TT{=7) Gyn7 | static dyn |dyn7
120 | o SacqlR 0 [ 41312 4953 | 8.3 | 22524 1.8 | 0.27|10.47[ 0.03
5an LRU 1 | 33624] 4217 | 7.9 | 18559| 1.8 | 0.14] 6.64 ] 0.02
wol 5 acq MOU | 3 | 17613] 2883 | 6.1 | 10267 1.7 | 0.36| 4.76 | 0.02
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 | 6765 [ 1709 | 39 | 4474 | 1.5 [0.90] 448[0.02

TABLE IV
NUMBER OF MESSAGES AND PERCENTAGE OF FAULTS PER REQUEST
AVERAGED OVER THE LAST800 ROUNDS OF THE SIMULATION, WITH A

% Increase

MOU ACQUAINTANCE REPLACEMENT POLICY

20 » \\,\7",/\\

0 I | .
0 200 400 600 800 1000 (successful or not) issued during the 1886 round of the sim-
Number of rounds ulation, after the network topology has stabilized. Table IV
Fig. 12. Increase of the maximum in-degree when maintaining the state of SNOWS & important reduction of the query traffic when using the
friends (w.r.t. maintaining no state). dynamic TTL optimization, by factors dfto more tharg8. Note
that adding acquaintances has the effect of decreasing the num-
Coefficient of variation]  # requests answered ber of messages sent in the network, because well acquainted
of answered requests (# files sent) peers receive higher query traffic but forward each query only
Facq LRU(sent f"e,\jgu ngLtjhe bus'eﬁ,tlopfjer once. We_ha\{e also performed exper_iments with the dynamic
0 2.4 24 538 538 TTL optimization and a TTL value of (instead of6). Results
1 30(25) | 41(3.2) | 9.7(7.2) | 30.9(13.8) show that query traffic is still reduced by factorsiof to 1.8.
g 2:3 g% 3:3 gég ﬂ:? gf’& g% 8‘113 We have also measure_d thaery fai_lure rate i.e., the pro-
portion of requests that yield a negative result although the re-
TABLE Il quested file is available in the system. Unsurprisingly, the per-
EFFECT OF ACQUAINTANCES ON THE LOAD DISTRIBUTION WHEN centage of failures with the dynamic TTL optimization is high
MAINTAINING THE STATE OF 25 FRIENDS. (10%) with no acquaintances, because it is designed to take ad-

vantage of the semantic communities that are created by the
acquaintance links. When using acquaintances, the failure rate

spots. WithLRU, the increase is almost negligible. The evodecreasesi{ to 6%) but remains significantly higher than with
lution of the number of promotions is not shown, as it follow& static TTL value. In contrast, when increasing the TTL value

the very same trend observed in Fig. 8 (except for values befify > the dynamic TTL optimization exhibits much lower failure

approximatelyl5% lower with LRU). rates (less thaf.1%). This optimization can thus at the same
Table Il shows that the load distribution of the system is nd{M€ improve the success rate and reduce the query traffic, when

much affected by (compare with Table Il). The increase of tHing an adequate TTL value.

number of requests answered by the busiest peer is moderate

even with theMOU acquaintance replacement policy, which VI. CONCLUSION

confirms that friends awareness does not cause hot-spots.
We have also analyzed the effectiveness of the load balancg3

technique described in Section IlI-D. The distribution of the

file traffic in the system with the load balancing optimization ig
also shown in Table Il (values are in parentheses). Note thgg . s : .
having each peer maintain a list of acquaintances that are

in that case, the peer that answers a query is not necess |k¥Iy to best answer queries. Acquaintance links connect peers

the one that sends the requested file. We observe low variat{ﬁn e . |
at share similar interests and spontaneously build semantic

and moderate load on the busiest peer, which indicates that our o .
. . . ) communities. They provide a short path to content that belongs
techniques balance effectively the file traffic load.

to the core interests of a requesting peer. To guarantee some
diversity and help find more marginal content, each peer also
C. Dynamic TTL maintains a set of random neighbors. This combination of se-
We finally evaluate the effectiveness of the dynamic TTantic and random links provides efficient, yet robust, search
mechanism described in Section IlI-E, which decrements tfeilities to unstructured P2P networks.
TTL value twice when a query falls within the interests of the Query forwarding is implemented by the same TTL-limited
peer being traversed during query flooding. As queries requfteoding mechanism found in Gnutella-like P2P file sharing
fewer hops to be satisfied within the scope of a semantic corystems. .Acquaintances does therefore represent a non-
munity, we expect this optimization to have little impact on thimtrusive extension to legacy P2P networks, where each peer
success rate while significantly decreasing the query traffic. modifies the network topology by locally optimizing its con-
We have measured thietal number of query messagsesnt nectivity. It also incorporates load-balancing mechanisms that
across the network, and computed the average over all requefiit®ad potential hot-spots in popular semantic communities, as

q-gé\cquaintances is a novel approach for improving search
ciency in unstructured P2P network. Its fundamental design
rinciple lies in the dynamic adaptation of the network topol-
y, driven by the history of successful requests, and achieved



well as a dynamic TTL optimization that further reduces the
network traffic. Experimental evaluation has shown that our
techniques are effective at improving search efficiency. Op-
timizations to the actual search algorithm, such as random
walks [10], are orthogonal to our techniques and could thus be
used to further improve the efficiency dicquaintances.

(1]
(2]

(3]

[4]

(5]

6]
(71

(8]

[9]

(20]

(11]

(12]
(13]

[14]

(15]
(16]

(17]

REFERENCES

“Napster,” http://lwww.napster.com

I. Stoica, R. Morris, D. Karger, M. Kaashoek and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM Aug. 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” iACM SIGCOMM Aug. 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systemsJFIR/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware)
Nov. 2001.

B.Y. Zhao, J. Kubiatowicz, and A.D. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” Tech. Rep. UCB/CSD-
01-1141, Computer Science Division, University of California, Berkeley,
Apr 2001.

“Gnutella,” http://gnutella.wego.com

I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong “Freenet: A distributed
anonymous information storage retrieval systemY¥Morkshop on Design
Issues in Anonymity and Unobservabilifyly 2000.

K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location
using interest-based locality in peer-to-peer systemsRFOCOM, Apr.
2003.

B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer sys-
tems,” inInternational Conference on Distributed Computing Systems
(ICDCS) July 2002.

C. Ly, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,”A@M International Conference

on Supercomputing (ICSJune 2002.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and L. Breslau,
“Making gnutella-like P2P systems scalable,”A&GM SIGCOMM Aug.
2003.

E. Cohen, H. Kaplan, and A. Fiat, “Associative search in peer to peer
networks: Harnessing latent semantics,INdFOCOM, Apr. 2003.

A. Crespo and H. Garcia-Molina, “Semantic overlay networks for P2P
systems,” submitted for publication, 2003.

S. Saroiu, K.P. Gummadi, and S.D. Gribble, “A measurement study of
peer-to-peer file sharing systems,” Multimedia Computing and Net-
working (MMCN) Jan. 2002.

K. Sripanidkulchai, “The popularity of gnutella queries and its implica-
tions on scalability (http://www.openp2p.com),” Feb. 2001.

E. Adar and B.A. Huberman, “Free riding on gnutelld&irst Monday
Sept. 2000.

P. Rodriguez and E.W. Biersack, “Dynamic parallel-access to replicated
content in the internet /EEE/ACM Transactions on Networkingpl. 10,

no. 4, 2002.

10



