Texture-Based Watermarking of 3D Video Objects

Emmanuel Garcia, Jean-Luc Dugelay, Senior Member, IEEE

Abstract— In this article, we describe a novel framework for
watermarking 3D video objects via their texture information.
Unlike classical algorithms dealing with 3D objects that operate
on meshes in order to protect the object itself, the main goal
of our work is to retrieve information originally hidden in the
texture image of the object, from resulting images or videos
having used the 3D synthetic object, thus protecting the visual
representations of the object.

After developing the theory and practical details of this 3D
object watermarking scheme, we present the results of several
experiments carried out in various conditions, ranging from ideal
conditions (e.g. known rendering parameters) to more realistic
conditions (e.g. unknown rendering parameters, but estimated
from 2D view) or within the context of attacks (e.g. mesh
reduction).

Index Terms— Watermarking, 3D objects, texture.

I. INTRODUCTION

Synthetic images of virtual 3D worlds are easier to produce
and look more realistic than ever. Many tools are already
available to a large public allowing them to design such images
and even animated sequences. Many computer applications,
especially games and simulators, use 3D modeling and ren-
dering to represent virtual worlds or to represent abstract data
in an efficient and meaningful way [1].

Other applications mix synthetic images with real images
in order to produce what is called virtualized reality [2].
This is especially the case in the field of medical images
and surgery simulators, or in some movies where cartoon
characters and other computer generated objects are embedded
in real videos. Another application of interest is that of vir-
tual teleconferencing where image and videos of participants
would be replaced by their synthetic clones, allowing for the
creation of a virtualized environment common to all and yet
potentially customized for each person [3].

Considering all the progress made in these fields, it will
be more and more difficult to make the distinction between
reality and fiction. We could imagine a scenario where the
3D model of a real person would be used and manipulated to
make a speech or perform some fictitious action. Provided it
is done in a realistic manner, it would be impossible to know
whether the performance is a simulation or that of the real
person, which could lead to serious abuses.

These concerns are taken seriously by many people and labs
who work out solutions to be able to protect multimedia doc-
uments in general and 3D objects in particular, and to be able
to identify or authenticate them. The keyword watermaking
is used to designate the emerging techniques that allow users
to hide information in computer data much like an invisible

This work was partly supported by the EU Certimark Project and is now
partly supported by the FR RNRT SEMANTIC-3D project

signature, be it in images, multimedia documents, or more
abstract data.

The purpose of this article is to introduce a new framework
for watermarking a 3D video object based on the object’s
texture map instead of its geometrical data. For this reason
it has the potential of protecting all the images derivated (i.e.
synthesized) from a 3D object, after it was watermarked.

After presenting this framework in section I, we will
discuss the links with the underlying still image watermarking
problem in section Ill, then provide algorithmic details in IV,
and finally present preliminary experiments in V. First, we
must recall a few prerequisite notions of watermarking and
3D objects.

A. Basic review on watermarking

Using the special case of images, which was historically the
first type of digital documents investigated for watermarking,
we will recall some basic and useful watermarking notions.

First, image watermarking is a term designating a technique
that aims at embedding and hiding secret information in an
image according to an optional secret key. It is then possible
to check whether secret information has been embedded in
the image (i.e. whether the image is marked), or whether
some given information (i.e. message) is actually embedded in
the image, or to determine the actual information (i.e. mark)
that was embedded in the image. To these correspond three
extraction modes:

« Blind: the watermark can be extracted from the water-

marked image and no other knowledge is needed.

« Semi-blind: one can check whether the watermark is
embedded or not in the image provided one knows what
mark one is looking for.

« Non-blind: the watermark can be extracted provided one
knows not only the image that is being checked, but also
the original image from which it is thought to be derived.

Then, there are two main classes of watermaking applica-
tions:

« Integrity checking: the aim is to be able to detect that a
document has been tampered by inserting a fragile wa-
termark that would disappear if the document is touched,
and possibly tell what parts of the document are altered.

« Authentication: the aim is to be able to say that a given
document originates from a certain source even after it
has been manipulated and tampered, either in a voluntary
attempt to remove the mark or in the course of usual
operations (e.g. image compression).

Finally, a fundamental notion is that watermarking is a
tradeoff between capacity, visibility and robustness. The ca-
pacity of a watermarking algorithm is the amount of informa-
tion that can be hidden in the watermarked image. The term

visibility refers to image distortion and visual degradation due
to the embedding of the watermark, and it is expected that a
watermark be as invisible as possible. Robustness means the
ability to recover the watermark even after the image has been
manipulated and altered in a non-destructive manner (i.e. in
a manner that preserves its semantic and authentic content,
this notion being partly subjective). For a given algorithm, it
is impossible to improve one criterion without degrading one
of the other two. For a more extensive exposition of image
watermarking, we refer the reader to [4].

B. Watermarking of 3D objects

1) Nature of 3D objects: Just as 3D objects may represent
many different things and concepts and be used for many
different purposes, there are many ways to represent them
in a computer system. In its most common form, a 3D
object is seen as a closed surface in a 3D space, possibly
with a notion of inside and outside, and possibly associated
with data that describes its appearance or properties, such
as color, transparency, etc. These properties may vary over
the surface and thus be stored in a map that is associated
to the surface. There might also be properties that describe
the inside of the object as a volume. However, in the context
of multimedia applications, what usually matters is to give a
visual representation of the object and for this what is needed
is to know the aspect of its surface, which is often described
as a mere color map (i.e. image) also called texture map or
texture image. For realistic rendering, a mere color map is
usually not enough and the texture map should also provide
information about the reflectance properties of the surface (i.e.
how it reflects or diffuses incident light) [5].

As for the geometry of the surface itself, it can be described
in various ways. A common and flexible way is to describe it
as a polygonal mesh (i.e. a set of 3D points linked by edges
that form planar polygons). But there exist other ways, such
as using an implicit formulation (i.e. an equation, like that of
a sphere) or CSG (Constructive Solid Geometry), resulting in
a tree of boolean operations of primitive objects, or octrees,
or stitched NURBS (Non-Uniform Rational B-Spline) patches,
etc.

Regardless of the spatial nature and description of 3D
objects, they may also be subject to variations along time if we
intend, for example, to create a video representing a moving
or deforming 3D object, such as a virtual talking head.

2) 3D watermarking algorithms: The purpose of current
3D watermarking algorithms is first to be able to tell, when
given a purely 3D geometrical description, whether the object
it represents is protected or not by a watermark (using one
of the three possible extraction modes, depending on the
algorithm).

In this overview of 3D watermarking algorithms we will
restrict ourselves to the case of 3D objects represented by a
triangular mesh, i.e. a set of 3D points (vertices) linked by
edges that form triangles composing the surface of an object.

In this context, the requirement of a 3D watermarking
algorithm is to be able to hide data in such a mesh description
without noticeably modifying the surface described by the

Reference object.

Step 1. | Embedding of watermark
in original texture.

Modification of
computer representation
of object. -~

Watermarked object.
Step 2. \LZD rendering.

Virtual scene
featuring object.

- - ==

Reconstruction of
original texture.

Alternative computer
representation of object.

Step 3.

Partialy recovered
texture.

Step 4. i/
Watermark extraction.
extracted mark

Fig. 1. General principle of texture-based 3D watermarking.

mesh and to be able to retrieve the hidden data afterwards.
This usually involves slightly modifying the coordinates of the
vertices, or modifying the connectivity and number of triangles
in more or less sophisticated ways.

This point is shared by all algorithms, but they differ
in their robustness to various manipulations of marked 3D
objects. Some algorithms have been made specifically robust
to translation, rotation or scaling of the whole object [7],
[8], adding noise to the 3D coordinates of the vertices (most
algorithms), cropping of the object [9] or remeshing [10] (e.g.
mesh simplification aimed at reducing the number of triangles
to speed up manipulations and rendering).

As later described, the texture-based approach is inherently
robust to all these attacks. However, it only has a meaning
for textured objects and is irrelevant to some CAD (Computer
Assisted Design) objects only described as purely geometrical
shapes.

Il. PROPOSED FRAMEWORK
A. General principle

Before discussing in detail the implementation of our
texture-based 3D watermarking algorithm and the results of
preliminary experiments, we will now present its general
framework.

As shown in Fig. 1, given a known 3D object consisting of
a geometric definition, a texture image and a texture mapping

function (not represented but implicit), we embed information
in the object by watermarking its texture (step 1) using a
robust watermarking algorithm designed for still images. This
watermarked object can then be published for further use and
representations in virtual scenes (step 2). Afterwards, we can
check that the represented object is protected by reconstructing
the watermarked texture (step 3) and by finally extracting
the embedded watermark (step 4) from the recovered texture
image.

Let us point out that this process does not depend on any
modification of the computer representation of the released 3D
object as long as the appearance of the rendered 3D object
remains the same (step 2’). Such a modification of either
the geometry or texture information may be performed to try
to erase the mark or to simplify the object or for any other
purpose. This aspect will be discussed later in Section 1V-B.1.

As can also be seen, one view of a 3D object generally
provides only a partial knowledge of the whole texture image.
So it is better, when possible, to recover partial texture images
from several 2D views of the 3D object (e.g. face and profiles
of the model of a human face) and then to merge them into
a more complete texture image. This might be relevant in the
case of animated virtual scenes.

As indicated by the dashed lines, the knowledge of the
original 3D object is needed for watermark extraction. The
geometry and texture mapping function are needed for the
texture recovery step, and the knowledge of the original texture
may be needed in case we use a non-blind underlying still
image watermarking algorithm. So, our algorithm is basically
non-blind since it requires at least the knowledge of the
original geometry and texture mapping function in order to
represent the visible texture information in its original “frame
of reference” (i.e. where it was actually watermarked).

Finally we also need to know the rendering parameters.
These mainly consists of the way the 3D object was projected
onto the 2D view (i.e. its location in space with respect to
the virtual camera and the intrinsic parameters of the virtual
camera). The knowledge of the lighting model and parameters
may also be required. This is needed in order to undo the
transformations undergone by the texture from its original state
to the final 2D view. The ability to accurately compute or
estimate these parameters directly from the 2D view is the
cornerstone of the presented framework.

I1l. PARALLEL WITH STILL IMAGES

In order to further describe the textured-based 3D water-
marking algorithm we will comment on its features in com-
parison with the well-known case of still image watermarking.

A. Mode of extraction

By analogy with still image watermarking, we can say that
our 3D watermarking algorithm uses a non-blind extraction
mode, as it is necessary to know the original object. This
knowledge is needed to reconstruct the texture image in the
original frame of reference (i.e. where it was marked using
a still image watermarking algorithm) and for the subsequent

extraction of the mark by the still image watermarking algo-
rithm.

More precisely, what must be known is the geometry of the
object and the texture mapping function that describes how
the original texture image is mapped onto the surface of the
object, so that it can be reversed. The knowledge of the original
texture image is not required by the texture reconstruction
process, but it might be required by the underlying still image
watermarking algorithm if it uses a non-blind extraction mode.
It might also be needed to compute the rendering parameters
(especially the perspective projection) with a projective regis-
tration scheme, as explained later in Section I1V-C.

B. Visiblity of the mark

In the case of still image watermarking, the visual impact
of the watermark on the marked image should be as limited as
possible. The visibility is often expressed numerically as the
signal-to-noise ratio between the marked image and the non-
marked image. In the case of textured 3D objects it is slightly
different because the images that are actually seen are not
the marked texture image of the object, but 2D projections
of it. While the visibility of the mark in the texture image
still has a meaning, we are primarily concerned with the
visibility of the mark in the 2D views of the textured 3D
object. As for the signal-to-noise ratio between identical 2D
views respectively using the marked and non-marked texture
image of the object, we have observed that it is mostly the
same as the signal-to-noise ratio between the marked and non-
marked texture images. However, the underlying still image
watermarking algorithm could possibly be better adapted to
the special purpose of watermarking 3D objects in terms of
visibility in the 2D protected views since some parts of the
texture image could be mapped onto large areas of the object,
while other areas could be mapped onto small areas of the
object, and that some areas of similar size in the texture image
may not, on average, be seen as areas of similar size in a 2D
view of the 3D object. This could potentially be used to locally
adapt the watermarking strategy in the texture image according
to how the texture image is mapped on the geometry of the
object.

C. Types of attack

We end our comparison with the still image case by indicat-
ing how the several operations to extract a watermark from a
2D view of a marked 3D object can be related to well-known
attacks of still images.

Between the insertion of a watermark in the texture of a
3D object and its extraction, the texture, and therefore the
watermark that is embedded in it, may have been altered
during any one of the three stages: publishing the object, using
the object, and extracting the mark (Fig. 2).

1) Publishing the object: After the object has been water-
marked and published for use, one might change its file format,
involving modifications of the texture mapping (Fig. 2 (i))
and/or of the geometrical description (Fig. 2 (ii) and (iii)) as
said previously. An important feature of our algorithm is that it
is insensitive to such modifications as long as the appearance

on texture (eg. JPEG compression) (vi) Malicious or non-malicious attack

onview (e.g. JPEG compression)

|
Embedding i Extraction
|
|
mark ' ! mark
3D object !
: (vii) Inaccurate knowledge
of rendering parameters
| —_—
|
| .
| 2D view
|
|
|
I T
Publishing the object 1 Using the object
|
(i) Slight modification of geometry :
or remeshing |
|
(i) Change of texture mapping 3D object : 2D view
(iiii) Global 3D transform A I
|
| (v) Lossof information
(iv) Malicious or non-malicious attack | due to rendering
|
|

Fig. 2. Inventory of the possible impediments to watermarking recovery.

of the object does not change when visualized. However
we mentioned that such modifications could introduce some
noise (although probably invisible to a human eye) in the
reconstructed texture, thus possibly lowering the performance
of the subsequent watermark extraction.

2) Using the object: During the rendering of the object
(Fig. 2 (v)) the texture information is reduced and altered.
First, the whole surface of the object is generally not vis-
ible and thus the texture information is cropped. Then, the
perspective projection induces an alteration similar to that
induced by an image warping. In particular, when a part of the
image is seen from a large distance, the corresponding texture
information is visible only in its coarsest details and thus
suffers an alteration similar to sub-sampling. And lastly, the
texture information is modified, most likely in the low spatial
frequencies, by the synthetic lighting conditions which may
change the colors of the object. All these can be considered
as the introduction of noise at various levels.

3) Texture reconstruction, watermark extraction: During
this last stage the texture information is again affected by
the warping (reverse projection and reverse texture mapping)
of a discrete image but also by another kind of alteration
which is much more severe. This alteration consists of local
deformations of the recovered texture image with respect to
the original texture image. It comes from the imprecision
with which the perspective projection to be reversed is known
(Fig. 2 (vii)). In the case of controlled experiments where this
projection may be perfectly known, there would be no such
local deformations. Only noise, cropping, and colorimetric
alterations. However, we emphasize that in a realistic context,
where the projection is not known a priori, the accuracy
with which this projection is estimated is critical for the
quality of the reconstructed texture image and for limiting
local deformations to a minimum.

4) Comparison with still image attacks: We just mentioned
all the alterations that could be induced in each stage of the

3D watermarking process. The alterations induced in the end-
result reconstructed texture image on which the watermark
extraction is actually performed can be compared to the
following common attacks in still image watermarking.

« Cropping: in our context the end-result reconstructed
texture image is generally a cropped version of the
original texture image due to the fact that a single 2D
view of a 3D object generally doesn’t display the whole
texture.

« Colorimetric alterations: the synthetic lighting used for
2D rendering is likely to modify the colour of the object’s
texture, more or less uniformly.

« Resampling noise: it is generally due to a resampling of
the image to increase or decrease its dimensions, and in
our case it is due to the fact that the 3D object may be
viewed as a small picture (sub-sampling) and that this
small picture will lead to a large reconstructed texture
image (over-sampling), the whole process generating
resampling noise and a loss of resolution due to sub-
sampling.

« Local geometric deformations: they consist in limited dis-
placement/warping of areas of the image. In our case they
may occur due to a lack of precision in the perspective
projection’s estimate or due to a noticeable modification
of the object’s geometry, so that the reversing of the
perspective projection and/or texture mapping would be
more or less erroneous.

Finally, we point out that the overall rendering and texture
reconstruction process consists of a combination of several
above-mentioned attacks. The resulting attack may be seen as a
destructive attack in the context of still images, as the original
image may be barely recognizable. However, in the context of
3D objects, the process of 2D rendering must be considered
as a non-malicious operation as long as the object can be
recognized in the 2D view. This is a difference of interpretation
of the term “destructive” which, in the context of 3D objects, is
much more demanding of still image watermaking algorithms.

IV. ALGORITHMIC DETAILS ON 3D/2D PART
A. Texture reconstruction

In this section we detail the algorithm for reconstructing
the texture image from a 2D view, which is the core of our
framework since the other elements (2D rendering and still
image watermarking algorithms) are supposed to already exist
and need not be documented here. As shown in Fig. 3,

o let S be the set of 3D points of the surface of the 3D

object,

o let T be a 2D view of the 3D object,

« let T be the texture image to recover,

o let F: S — T be the reference texture mapping function,

o let P be the projection from the system of coordinates

of the reference 3D object onto the image of the virtual
camera.

The main problem is to accurately know the projection
matrix P of the virtual camera. Assuming it is known, we
recover the part of texture 7' visible in the image I in the
following steps:

Fig. 3.

Texture mapping and viewing of a 3D object.

1) consider each pixel = of T

2) compute X = F~1(z) (if it exists)

3) compute the pixel z' = P(X) of the image I where X
is projected

4) check that X is actually visible at pixel ' in image T

5) set the color of z to be that of =’ in case X is visible
in I at pixel =’

The fourth step is required because several points of the 3D
object could project on the same pixel in the image I, but, if
we assume the object is opaque, only one would be seen. To
check whether a point X of the 3D object is visible in the
image I, we first fill a Z-buffer associated with the image I.

Another problem that arises is that the computed z' gen-
erally has non-integer coordinates, whereas both the image I
and its associated Z-buffer are only defined at pixels having
integer coordinates. Thus, a strategy for comparing the depth
of pixel ' with the values stored in the Z-buffer has to be
found, and a choice for interpolating the image I at point z’
has to be made.

In both cases we considered the nearest neighbour (with
integer coordinates) of pixel z'. For our experiments, we
decided z’ was visible when its depth did not differ from the
depth of its nearest neighbour in the Z-buffer by more than a
certain fraction, e.g. 1%.

As for interpolating the texture (i.e. colour) at pixel =’ there
is a wide range of formulas which are very well explained
and assessed in [11]. The “nearest neighbour” algorithm is
the most basic and the worst for most applications. However,
in our case, what matters is that the amount of information
present in the image I be used to the maximum extent
for reconstructing 7, and for making the extraction of the
mark easier. It is not at all obvious that one interpolation
scheme would retain more information than an other or would
make the subsequent extraction of the watermark easier (we
can especially remember that a visually good interpolation
scheme always involves a low-pass filtering operation in one
way or another, which can hardly be beneficial, even when
not detrimental, to the preservation of embedded information
such as a watermark). In fact we tested several interpolation

schemes, including “nearest neighbour”, “bilinear” and “cubic

B-spline” and noticed no significant differences, if any, in
the results of our experiments. We thus stuck to a “nearest
neighbour” interpolation scheme.

B. Robustness properties

We pointed out that the algorithm was not affected, in
principle, by a possible transformation of the computer rep-
resentation of the object, as long as its visual representations
did not change.

1) Resilience to projective transformation: In particular,
when the geometry of the object undergoes a rotation, or
even any affine transform, or more generally any projective
transform, the set of possible visual representations via a
perspective projection does not change, since such a projective
transform can be accounted for in the perspective projection
factor (i.e. P). The following diagram

T o
N
1%

shows that if a watermarked object O undergoes a 3D projec-
tive transform 7 (which includes all types of affine transforms)
before being rendered in a view V' with a perspective projec-
tion P’, what matters is to recover the perspective projection P
according to which the original representation of the object O
seems to be projected in the considered view V. In other words
we aim to estimate the overall P = P'o T, from the knowledge
of only V and O, and this problem remains exactly the same
whether or not the geometrical representation of the object
undergoes a projective transform before perspective projection.

2) Resilience to change of texture mapping: Another case
of madification of object format is when the texture mapping
is modified, as illustrated by the Earth globe example in
Fig. 1, step 2’. Even if we use an intermediate computer
representation of the object, the visual representation remains
the same. We still use the original computer representation of
the object (especially the original texture mapping function)
to recover the original watermarked texture, or rather, to
reconstruct the watermark texture in the original “frame of
reference” where the still image watermarking algorithm was
actually applied. Even though our algorithm is inherently
resilient to a modification of the texture mapping of the
watermarked object, the modification of the texture mapping
implies the warping/resampling of the original texture image
and thus introduces some resampling/interpolation noise.

3) Resilience to change of geometrical description: The
last case of interest is when one changes the geometrical
description of an object without significantly altering its shape.
For example, an object described as a triangular mesh could
be simplified by reducing the number of triangles. As long
as the shape does not change (or only unnoticeably) it would
make no difference for the watermark extraction since it is
based on the knowledge of the original geometry. However if
mesh simplifications are too drastic, the rendered shape would
be quite different from the original watermarked shape. This
would lead to local geometrical distortions in the reconstructed

0

texture with respect to the original texture because the pro-
jection of the original shape would not perfectly match the
rendered view of the modified shape, i.e. the match X -z’ in
Fig. 3 would be biaised.

C. Projective registration

As underlined in the introduction, the main problem of our
3D watermarking framework is the necessity to know the 2D
rendering parameters to reverse them for texture reconstruc-
tion. These rendering parameters are two-fold. First there are
the lighting parameters modifying the original colours of the
object. This has not yet been subject to experiment. So far
we are confident that the underlying still image watermarking
algorithm could easily cope with colorimetric alterations.

Then there are the projection parameters that consist of
the 3D location of the 3D object with respect to the virtual
camera (6 degrees of freedom) and in the intrinsic parameters
of the virtual camera (5 degrees of freedom), though we do
not make a distinction between these two kinds of parameters
and designate them under the common term of projection
parameters, or projection matrix, which is a 3 x 4 matrix
defined up to a scale factor (thus having 3 x4 —-1=6+35
degrees of freedom).

It is possible to carry out experiments with controlled
rendering parameters (especially projection parameters) that
would then be directly used for texture reconstruction. How-
ever, in a realistic context we would not know these parame-
ters. They would have to be estimated as accurately as possible
from the 2D view of the object and the knowledge of the
3D object, with no other a priori knowledge. Estimating the
projection parameters involves what is called 3D/2D projective
registration, that is, finding a 3 x 4 projection matrix that maps
a set of 3D points onto a set of corresponding 2D points.

The problem of projective registration has been addressed
in several other contexts, as in the case of medical imaging
and robotics [12]. But then it is often a matter of registering
pure geometrical features, e.g. points of maximum curvature
or crest lines (which are hard to find in 2D images of textured
objects, if possible at all), instead of textured patches of sur-
face (which would be particularly adapted to our application).

A texture-based approach to registration is mentioned in
[13] in the specific case of a human head model, where it is
modeled as a cylinder. In the special case of human faces,
results of face tracking independent of lighting conditions
such as in [14] could maybe be reused and adapted. Still
in the case of human faces, a gradient descent approach to
estimating projection parameters (only the pose of the face
actually) is proposed in [15]. A source of inspiration might
also be found in [16] which deals with piecewise projective
registration between successive images of a scene in a video
sequence.

However, a dedicated algorithm to register a textured 3D
object with a 2D view, possibly taking into account light-
ing conditions, has still to be specifically developed for
our purpose. In Appendix Il we present a simple projective
registration algorithm that provides accurate results (mean
distortion of about 1/20 pixel in the projected view with

respect to the original projection) under the no-synthetic-
lighting assumption.

V. EXPERIMENTAL RESULTS

We have carried out several experiments to provide a first
assessment of the performances that can be expected from
the presented 3D watermarking framework. The first of these
experiments was conducted under minimal constraints and
ideal conditions, while the others dealt with more realistic
conditions.

In the following experiments we watermarked a 3D object
using our 3D watermarking scheme and the underlying still
image watermarking software called Eurémark [17] (see Ap-
pendix | for a short description) with a fixed visibility of 38dB.
The visibility parameter being fixed, we assessed the tradeoff
between capacity and robustness.

Obviously, other technologies designed for still image wa-
termarking can be used within our framework of 3D video ob-
ject watermarking based on texture. Nevertheless, the selected
technology should include some relevant properties in terms
of robustness, against photometric and possibly geometric
attacks. As reported in [17], this is the case of the technology
used in the following simulations. The watermarking algorithm
is robust to any global affine transformation, local distortions
[18] (e.g. Stirmark) and the main non destructive photometric
attacks (e.g. typically, with a payload of 64 bits in a 512 x 512
image and a distortion of 38dB, the chosen technology is
robust to a JPEG compression with a quality factor of as low
as 25%).

A. Reference experiment

The conditions and parameters of this experiment, which
we call the reference experiment, were completely controlled.
First, there was no synthetic lighting (or, according to another
point of view, there was only a unit ambient light) which
means that the colours of the object, as described in its texture
image, were projected directly in the 2D image plane with no
alteration.

Then, the perspective projection that we used for 2D render-
ing was known during the texture reconstruction process. All
this allowed for the best possible reversing of the 2D rendering
process. Therefore it is hard to conceive that these results could
be improved when assuming more realistic conditions (i.e.
with more unknown parameters). They actually outline some
of the limit performances to be expected from the presented
3D watermarking framework.

The only condition that may not have been ideal is the
choice of the still image watermarking algorithm. Perhaps
performances could be improved by using a still image water-
marking better adapted to our specific purpose. For example,
one can notice that some tuning (e.g. the proportion of over-
sampling vs. the duplication of the message to hide during
the formatting step) designed within a context of still images
may be reconsidered, customized and optimized with respect
to the new context of 3D video object approach proposed in
this article.

(a) Geometry. (b) Texture (512 x 512 pix-

els).

Fig. 4. 3D model of a real human head.

Fig. 5. Two 2D views of the 3D face model under same point of view but
with varying scale factor.

We will now present the results of this experiment applied to
an object that was used throughout the other experiments, we
will also test the performances of the still image watermarking
algorithm in the absence of rendering and attacks, and finally
perform an additional test on another object in order to check
the consistency of these results.

1) First object: Fig. 4 shows the first 3D object used for
the experiment, it is made up of a triangular mesh and a
texture image and represents a realistic human head. We first
watermarked the texture image with a 64-bit mark, and then
viewed the 3D object under a fixed arbitrary point of view
but with a varying scale factor (i.e. zoom). Fig. 5 shows two
such views. Finally, we reconstructed the part of the original
texture image that was viewable in those views. Fig. 6(a) and
6(b) show the texture images that could be reconstructed from
the views shown in Fig. 5(a) and 5(b) respectively. It is to be
noted that both views displayed the same part of the object, and
thus, the same part of its texture. However, they displayed it
with different resolutions, and the corresponding reconstructed
texture images also had different resolutions: Fig. 6(b) displays
less accurate details than Fig. 6(a).

Fig. 7 shows the number of erroneous bits in the recovered
watermark from the view of Fig. 5 versus the scale factor
(zoom). Actually, the z variable is not the scale factor of the

(b)

Texture images reconstructed from views of Fig. 5.

Fig. 6.

Number of bit errors
=
&

15
Distinct recovered pixels

Fig. 7. Bit error rate versus number of recovered texture pixels from view
of Fig. 5 with varying zoom factor and with a 64-bit mark.

120
100
80

60

Number of bit errors

40t

201

0

I I I T ,
0 0.5 1 15 2 25 3
Distinct recovered pixels

Fig. 8. Bit error rate versus number of recovered texture pixels from view
of Fig. 5 with varying zoom factor and with a 256-bit mark.

2D view but rather the number of distinct texture pixels that
could be recovered from the 2D view. The circles indicate
experimental results while the continuous line represents a
curve fitting of the form

y 1 8

i 2erfc(a;c)

where erfc : @11 — [Zﬁe_tht is the complementary
error function. This choice is inspired by the formula p =
%erfc(SNR%) which is a well-known formula in the field of
signal processing that relates the bit-error rate p to the signal-
to-noise ratio (SN R) in the case of a basic noisy channel. In
fact, it is logical that the bit error rate be close to 3 when the
available texture information is close to zero. It means that
the bits of the so-called extracted watermark are determined
completely at random when there is no texture information.

Fig. 8 shows the results of the same experiment, except that
the size of the watermark was 256 bits. We used the same
formula for curve-fitting, but then it was fitted to 5%z. It can
be noted that the bit-error rate converged more slowly to zero
than with a 64-bit watermark.

Fig. 9 represents some performances of the algorithm in
another way. Here we used the same view (that of Fig. 5(a))
but we varied the size of the watermark. As can be seen, a 200-
bit mark can be hidden and recovered from the most magnified
2D view of the object that is considered in this experiment.

2) Bare performance of the still image watermarking algo-
rithm: In order to see how the mere fact of projecting the
object and undoing this projection affects the performance
of the still image watermarking algorithm, we carried out an
experiment that shows the performance of the watermarking
algorithm without projecting and reconstructing the texture
image. It consists in watermarking the texture image of Fig.

w
8
T

Number of bit errors
s
]

L L)
0 200 400 800 1000 1200

600
Bit size of the watermark

Fig. 9. Results obtained when using the view of Fig. 5(a), showing 28445
distinct texture pixels, and when varying the size of the watermark.

50 o

a5

Number of bit errors
Boe N N W oW oA
S 6 8 &% 8 & 38
T T
¢}

o

o

@
o

N 0°4°%°0 . . .)
0 200 400 600 800 1000 1200
Bit size of the watermark

o

Fig. 10. Performance of the image watermarking algorithm after a cropping
that keeps only the part of the texture visible in the 2D view.

4(b) and in performing the watermark extraction directly from
this watermarked texture image, after retaining only the area
that is visible in the view showed on Fig. 5(a), i.e. after
applying a mask that has the shape of the reconstructed areas
of texture in Fig. 6(a) to the watermarked texture. In this case,
this represents a cropping to about 20% of the original area
of the texture image.

Fig. 10 shows results that can be directly compared with
those of Fig. 9 since the image used for watermark extraction
had same shape and size (illustrated in Fig. 6). We can see that
the projecting and “unprojecting” of the texture image slightly
degrades the results of the still image watermark extraction
process even when, as here, we projected the object with a
large scale factor so that the texture was seen with a high
resolution.

3) Second 3D object: Fig. 11 shows a second object used
in this experiment. It is a polyhedral representation of the
Earth. Then, Fig. 12 shows two 2D views of this object,
under the same point of view but with different scaling factors
(zoom), and Fig. 13 shows the two texture images that were
reconstructed from these two views respectively. As in the case
of the human head model, the two reconstructed textures have
the same shape in both cases because the same part of the
object was visible in both 2D views, even if the scaling factor
was different. Here too, the image of Fig. 13(b) has a much
lower resolution than the image of Fig. 13(a) because it was
reconstructed from a 2D view where the object’s texture is
seen with a lower resolution (the object appears very small).

Fig. 14 and 15 show the results of recovering a 64-bit mark
and a 256-bit mark respectively, from views identical to those
of Fig. 12 but with a varying scaling factor. As with the
first object (human head), we plotted the number of erroneous
bits in the recovered watermark versus the number of distinct

(a) Geometry. (b) Texture (600 x 300 pixels).

Fig. 11. 3D model of a Earth-icosahedron.

(b)

Fig. 12. Two 2D views of the Earth object under same point of view but
with varying scale factor.

visible texture pixels, and we performed the same curve-fitting.
Comparing those results with the case of the human head, we
can see that they are not as good: 20000 distinct texture pixels
are needed to recover a 64-bit mark whereas only 10000 were
required in the the previous experiment (human head).

We did not investigate the causes of these differences
very deeply, we only carried out the same experiment as in
Section V-A.2 on this second object, to check the performances
of the image watermarking algorithm on the texture image
cropped to the shape shown in Fig. 13. Thus, we also noticed
that the performances were lower than in Section V-A.2. This
in turn could be explained by the fact that the performances
of still image watermarking algorithms (including the one
we used) are usually highly dependent on the content of the
images. In our special case, the shape of the crop appearing
in the reconstructed texture image may also play a major role.

B. Impact of imperfect projective registration

As already mentionned, the first experiment was carried out
in most ideal conditions. The most significant assumption was
that the perspective projection with which the 3D object was
rendered in the 2D image was known. This assumption is

Fig. 13. Texture images reconstructed from views of Fig. 12.

Number of bit errors

15
Distinct recovered pixels

Fig. 14. Bit error rate versus number of recovered texture pixels from view
of Fig. 12 with varying zoom factor and with a 64-bit mark.

80

@
3
T

Number of bit errors

N
3
T

N
S

o

15
Distinct recovered pixels

Fig. 15. Bit error rate versus number of recovered texture pixels from view
of Fig. 12 with varying zoom factor and with a 256-bit mark.

what makes the previous experiment a bit unrealistic, even
though it has the merits of showing the performances towards
which we could tend if we were to develop an efficient 3D/2D
projective registration algorithm, i.e. an algorithm that allows
to accurately estimate the perspective projection between a 3D
object and a perspective 2D view of it.

The other rendering parameters are mainly the lighting
conditions but even if they are unknown and not cancelled
when reconstructing an object’s texture from a 2D view, it
would have little consequence on the watermark recovery
because any competitive still image watermarking algorithm
is usually resilient to color alterations.

In order to assess the impact of an imperfect estimation
of the rendering perspective projection on the texture re-
construction and watermark recovery process, we developped
a simple projective registration algorithm (cf. Appendix II).
This algorithm, which is currently designed to work in the
absence of lighting alterations, could almost recover exactly
the exact perspective projection used for rendering (the mean
displacement of viewed pixels being around 1/20 pixel). Using
this accurately recovered perspective projection for texture
reconstruction, the results were the same as in the reference
experiment without any noticeable degradation.

However, this projective registration algorithm cannot han-
dle synthetic lighting (i.e. color alteration of the texture) and
we do not currently know what accuracy is achievable in
terms of projective registration in the presence of synthetic
lighting. The following experiment hints at how performances
are lowered when the perspective projection is not accurately
estimated.

For this experiment we thus used the same protocol as for
the previous one, except that the perspective projection used

(a) 2D view showing 28445 dis- (b) Reconstructed texture
tinct pixels of texture. image.

300

250

Number of bit errors
= e n
1) o S
3 3 3
T

o

o

¢}

a
3
T

° o

o

009)

0 200 400 600 800 1000 1200
Bit size of the watermark

o

(c) Bit error rate versus size of watermark.

Fig. 16. Watermarking experiment using a fixed view of the human head
model, a varying watermark size, and an inaccurate perspective projection for
texture reconstruction.

for texture reconstruction was the one used for rendering but
shifted one pixel to the right in the 2D view.

Fig. 16 shows the 2D view, the corresponding reconstructed
texture image, and the results of extracting a varying size
watermark when using the above-mentioned inaccurate “esti-
mate” of the perspective projection for texture reconstruction
(shifted one pixel to the right).

This is to be compared to the results of Fig. 9. We can see
that in this case, an inaccurate projection estimation leading
to a mean translation of one pixel in the perspective view
decreases the capacity of the overall 3D watermarking algo-
rithm by a factor between 3 and 4 (instead of retrieving 200
bits without error we can only retrieve around 60 bits). Again
these results emphasize the need for an accurate projective
registration algorithm.

C. Impact of mesh simplification

The purpose of this experiment is to support the claim that
our watermarking scheme is resilient to modifications of the
computer representation of a 3D object, and, in this example,
to mesh reduction.

We used the same protocol as in the reference experiment
with the human head model. The object’s original mesh
consisted of 10000 triangles. This is the mesh that was used
to reconstruct the texture. But before creating the 2D view of
the object, we have simplified its mesh to various numbers
of triangles and down to as low as 100 triangles 1. This
corresponds to the scenario where the owner of the object
knows its 10000-triangle representation and the user of the
object might simplify the mesh before rendering, but in the end
the owner does not know what mesh simplifications have been

1We used Michael Garland’s QSlim mesh simplification software [19] to
perform mesh simplifications.

(@ 2D view of the human head (b)

Texture
model simplified down to 100 tri- reconstructed
angles and showing 27975 distinct 100-triangle model

image
from the
view,
using the 10000-triangle 3D
model.

pixels of texture.

Bit errors

2o}
s}
50FQ
o
o
o

o

o

[e}Ne)

. 0 %,0 q o o, el

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Complexity of the model (triangles)

(c) Bit error rate versus mesh complexity for a 256-bit mark.

Fig. 17. A view of the simplified head model and results of watermark
recovery for various mesh reduction rates.

performed on the object and can only use its original 10000-
triangle description of the object to extract the watermark from
the 2D view of the simplified object. However, as said earlier,
if the 2D view of the object is the same, or mostly the same,
whether the mesh is simplified or not, this should make no,
or little, difference in the watermark extraction process.

Fig. 17 shows a 2D view of a simplified version of the
human head, along with the corresponding reconstructed tex-
ture image (that was reconstructed using the knowledge of the
10000-triangle model) and the watermarking extraction results
for a varying mesh complexity and a 256-bit mark. We can
see that between 10000 and 1000 triangles, the number of
errors in the recovered watermark fluctuates around 0 and that
it increases dramatically as the mesh complexity decreases
towards 100. In fact, we can see that the example reconstructed
texture image shown is a slightly distorted version of the
original texture image.

Let us note here that since other 3D watermarking algo-
rithms usually modify the geometry in a visually imperceptible
way, it is possible to use these watermarking algorithms
after having applied our watermarking algorithm, since the
former will not have any effect on the latter. The other way
around is also true since whether or not we watermark the
texture image, it does not make any difference for geometry-
based 3D watermarking algorithms. Thus, the object could be
simultaneously protected in various ways, both its computer
representation as a geometry and texture, and its possible
representations as 2D images.

Finally, let us point out that when the computer representa-
tion is modified to such an extent that it appears to be distorted,
the watermark may not be recoverable (as in the case of a mesh
simplification to 100 triangles) but in this case the object does

Number of bit errors

101

0 0.5 1 15 2 25 3
Distinct recovered pixels

(a) Same experiment as in Fig. 7 except the 2D view is subject
to a 75%-quality JPEG encoding.

250

e = N
] @ S
] 3 3
T T T
¢}
o
¢}

Number of bit errors

@
3
T

o
0o0©

0 Q
0 200 400 800 1000 1200

600
Bit size of the watermark

(b) Same experiment as in Fig. 9 except the 2D view is subject
to a 75%-quality JPEG encoding.

Fig. 18. Impact of a JPEG compression applied to the 2D view used for
watermark recovery.

not look the same anyway, so we cannot really talk about an
object that is the same as the original object. It is as if it has
undergone a more or less destructive attack, in which case
watermarking ceases to be relevant.

D. Impact of JPEG compression on 2D view

We performed an experiment to underline another kind of
problem that may emerge when applying our algorithm in a
realistic context. In fact, it is often the case that 2D images are
compressed in order to save space or to reduce transmission
times when they are to be viewed over a network. This is
much more so when they are part of a video sequence (e.g.
encoded following the MPEG-2 standard). Such compression
not only degrades the visual quality of the image but is also
likely to make a watermark extraction more difficult.

Fig. 18(a) and 18(b) are to be compared to Fig. 7 and 9
respectively. The latter experiments differ from the former only
in the fact that the 2D view from which the watermark was
extracted was subject to a JPEG compression with a quality
factor of 75% (default normal usage).

We can see that the 75%-quality JPEG compression sig-
nificantly decreases the robustness/capacity of the overall 3D
watermarking scheme, whereas the underlying still image
watermarking algorithm that we used is normally robust to this
kind of compression. However, the still image watermarking
algorithm operates in the “frame of reference of the texture
image” whereas the JPEG compression that we consider
operates in the “frame of reference of the 2D view”.

As in the previous experiment (mesh reduction) we can
argue that if an image is heavily altered, as would be the
case when a small view of a 3D object is subject to JPEG
compression, it is no longer relevant to protect that view in the

Number of bit errors

15
Distinct recovered pixels

(a) Same experiment as in Fig. 7 except the watermarked
texture image is subject to a 75%-quality JPEG encoding.
200 o

180

Number of bit errors
B e e
2 ®» & B & o
3 8 8 3 8 8
T
o
o
o

IS

S
T
o

201 00©°
o
09°
0 200 400

L L)
600 800 1000 1200
Bit size of the watermark

(b) Same experiment as in Fig. 9 except the watermarked
texture image is subject to a 75%-quality JPEG encoding.

Fig. 19. Impact of a JPEG compression applied to the watermarked texture
image of the 3D object.

first place, since it can then be barely recognized, or mistaken,
as a faithful representation of the original object. However this
argument does not really hold for the results of Fig. 18(b)
which were obtained using a large image of the human head
model, and for which the effects of the compression should not
be very visible. So, we must consider that these results better
outline the limits of our scheme, at least if we are concerned
with JPEG compression of 2D views.

E. Impact of JPEG compression on texture image

This last experiment is aimed at showing how common
operations performed on the texture image can alter the whole
watermarking process. In this case we assessed the impact of
a JPEG compression of quality 75% applied to the texture
image of the 3D object.

The results are shown in Fig. 19(a) and 19(b) and are to
be compared with Fig. 7 and Fig. 9 respectively (no JPEG
compression).

In order to compare this with the robustness of the still
image watermarking algorithm to JPEG outside the context of
3D objects, we carried out the same experiment as in Section
V-A.2 (Fig. 10) except that after watermarking and before
cropping, we applied a 75%-quality JPEG compression.

The results of Fig. 10 are only slightly worse than those
of Fig. 20, which means that what prevails here is the JPEG
compression and not whether the still image watermarking
algorithm is applied to a reconstructed texture or not.

We also see, by comparing Fig. 10 with Fig. 7, that the JPEG
compression on the original texture image had little impact on
the performances of our framework in the case of a “small” 64-
bit mark. The JPEG compression had much more impact when
applied to the 2D view, as reported in the previous experiment.

Number of bit errors

L L)
0 200 400 800 1000 1200

600
Bit size of the watermark

Fig. 20. Performance of the image watermarking algorithm after 75%-quality
JPEG compression and a cropping keeping only the part of the texture visible
in the 2D view. To be compared with Fig. 10.

F. Summary of all experiments

Table I gives a summary of the described experiments. There
is a reference experiment, and others which are variations of
this reference experiment to assess the impact of one or the
other of the negative factors mentioned on Fig. 2.

What emerges from the results that can be compared (Fig. 9,
16(c), 18(b), 19(b)) is that the negative impact of a one-pixel
inaccuracy of the projective registration is more severe than,
but still comparable to, the impact of common operations such
as 75%-quality JPEG encoding applied to either the texture
image or the 2D view. So, while it is worthwhile finding
efficient registration algorithms adapted to our purpose, it is
possible that in the end the performance of the overall 3D
watermarking scheme will be limited by common operations
such as JPEG encoding.

V1. CONCLUDING REMARKS

In this article we proposed an alternative framework for
watermarking 3D objects. Whereas all currently known water-
marking algorithms dealing with 3D objects seek to hide data
in the 3D geometrical description of a 3D object, we pointed
towards a dual direction, namely that data can be hidden in
the texture map of a textured 3D object. The concerns are
also different in that the former type of algorithms aims at
protecting the computer description of a 3D object regardless
of its visual representations, whereas our research was driven
by the will to protect the subsequent visual representations of
a textured 3D object in images or videos after it has been
marked.

We drew attention on the fact that the presented scheme was
inherently robust to modifications of the computer description
of a 3D object as long as its appearance does not change
significantly, and this was proven by experiments where a
watermarked object was subject to mesh simplification before
rendering. We also drew attention on the fact that currently the
main limiting factor is the accuracy with which a watermarked
3D object can be registered with a 2D view. Good projective
registration algorithms adapted for our purpose and able to
cope with lighting conditions have still to be investigated and
developed.

The presented technique, mainly intended to protect 2D
representations of a textured 3D object, could also be used
to protect the 3D object itself, much like geometry-based
watermarking algorithms. This application has been left aside

TABLE |
SUMMARY OF EXPERIMENTS.

Section |
V-A.1

Description of experiment

Reference. “Reference” experiment, watermark-
ing a human head 3D model, projecting it in
a 2D view with unit ambient light, reconstruct-
ing the texture image from the 2D view with
completely known rendering parameters, and
extracting the watermark therefrom.

Bare performance. Check the bare performance 10
of the underlying still image watermarking algo-
rithm with respect to capacity/robustness when
the watermarked texture image is directly used
for watermark extraction (i.e. bypassing map-
ping on 3D object, rendering on 2D view, and
reconstructing from 2D view) except that it is
subject to a crop similar to that of the previous
experiment.

Other object. Same as first experiment but using
a different 3D object: a polyhedral representa-
tion of the Earth.

Inaccurate projection. Same as first experiment 16
but the texture image is reconstructed from the
2D view using an inaccurate projection (ob-
tained by shifting the actual one by one pixel
to the right in the projected view).

Mesh reduction. Same as first experiment but 17
simplifying the mesh of the object after water-
marking and before rendering.

JPEG view. Same as first experiment but ap- 18
plying a 75%-quality JPEG compression to the
2D view before texture reconstruction and wa-
termark extraction.

JPEG texture. Same as first experiment but ap- 19
plying a 75%-quality JPEG compression to the
texture image after watermarking and before 2D
rendering.

Bare performance JPEG. Check the perfor- 20
mance of the still image watermarking algorithm
with 75%-quality JPEG compression, and crop-
ping to the area of the texture visible in the 2D
view, but using directly the altered texture image
without mapping, projecting and reconstructing
it.

| Figures
7,8,9

V-A.2

V-A.3 14, 15

V-C

V-D

V-E

V-E

for the time being as we focused on protecting 2D views of
a 3D object, but would be worth investigating and comparing
with geometry-based algorithms as regards the robustness of
the watermark to manipulations of the geometry; if the texture
was left untouched, and only the texture mapping function
changed to accomodate changes of geometry, then there would
be no problem at all to extract the watermark from the texture
image. Otherwise, if the texture image was warped in another
frame of reference, it would all come down to registering,
in 3D, the original watermarked object with a manipulated
version of it, just like in the presented framework it was mainly
a matter of registering a 2D view with the original 3D object.
Such a technique would expectedly be at least as robust to
modifications of the computer representation of the object as
it is now when applied to 2D views.

Finally, let us point out that the features of both 3D
watermarking approaches, texture- and geometry-based, could
easily be combined in a unified watermarking scheme as either
approach does not interfere, or little, with each other.

Domain block Geometric Tf.

Block matching

Origina image Photometric Tf.

Fig. 21. Image fractal coding.

APPENDIX |
THE EUREMARK ALGORITHM

The Eurémark still image watermarking software used in
our simulations is a blind watermarking algorithm that can be
summarized as follows, and which is documented in [20].

The considered approach is inspired from fractal image cod-
ing theory, in particular the notion of self-similarity, illustrated
in Fig. 21. The main idea is to use some invariance properties
of fractal coding, such as invariance by affine (geometric and
photometric) transformations, to ensure watermark robustness.

A. Embedding

The watermark embedding process can be described in
the following three steps: formatting and encryption of the
message to hide, cover generation, merging of the watermark
and the cover.

1) Formatting and encryption of the watermark: The mes-
sage bits to be hidden are redundantly distributed: by over-
sampling and duplication of the message to obtain a watermark
of the size of the image. This redundancy is necessary for a
good robustness. Finally, the watermark is globally encrypted
using an XOR with a pseudo-random noise generated from a
secret key, yielding the encrypted watermark 1. The XOR
operation allows, on one hand, to secure the hidden message,
and on the other hand, to remove repetitive patterns reducing
in this way the psycho-visual impact of the watermark em-
bedding. In order to improve robustness against photometric
attacks, error correcting codes can be added to the message
prior to over-sampling and duplication of the message.

2) Cover generation: First, a “fractal approximation”
Tapproz 1S computed from the original image Ioriginai. The
cover I...er COrresponds to the error image, that is the
signed difference between the original image and its fractal
approximation.

Icover = loriginal — Iapprow

3) Merging of the watermark and the cover: The last step
of the embedding process consists in modulating the cover
I.oper With V. The modulation consists in zeroing some of
the cover pixels depending on their sign and the corresponding
watermark bit to hide. For visibility reasons, only the low
valued pixels in I.,ue- Will receive a mark. Finally, the
modulated cover I.,,., is added to the fractal approximation
Iyppros 10 produce the watermarked image Iyqtermarked-

IwatermaTked = IappTo:c + Icover

(a) Given 2D view.

(b) Given 3D object (only
the texture is shown here
but the geometry is also
known and there is a one-
to-one correspondance be-
tween texture and geometry
via the also-known texture
mapping function).

Fig. 22. Given data for the 3D/2D projective registration problem.

B. Extraction

The watermark extraction algorithm is similar to the embed-
ding algorithm (i.e. dual operations) as is its complexity. First
a fractal approximation is calculated from the watermarked
image, which generates a cover close to the original one.
Finally the cover is decoded according to the modulation rules
(e.g. a positive pixel is supposed to carry a one-valued bit
and a negative pixel a zero-valued bit). The crucial point is
that most geometric transformations on the watermarked image
are also transferred to the cover: the mark is not lost but the
noise has to be correctly positioned with respect to the cover
before applying XOR. Therefore, some additional bits called
“resynchronisation bits” are added to the useful message bits in
order to allow a self and blind resynchronisation of samples via
two procedures: one for global geometric distortion (rotation
and rescaling) based on FFT properties of periodic signals and
Hough transform, one for local geometric distortion based on
block-matching. The watermark can then be decrypted and the
message rebuilt.

APPENDIX Il
A SIMPLE 3D/2D PROJECTIVE REGISTRATION ALGORITHM

The fundamental element in the proposed 3D watermarking
framework is the ability to recover the perspective projection
parameters from a given perspective 2D view of a given
textured 3D object with a very high accuracy. Although work
related to this problem exists (as explained in Section 1V-C),
and although our problem may seem comparatively simple, we
found no algorithm that actually tackles this specific problem
in a simple manner. We thus propose an idea for such a 3D/2D
registration algorithm.

This algorithm consists in iterating a few times a projection
refinement process starting from a rough initial estimate.

This process aims at finding point correspondances between
2D points of the object’s given 2D view (Fig. 22(a)) and 3D
points of the 3D object’s surface (represented in Fig. 22(b)
as the texture image) so that the projection matrix P can be
computed from these pairs by solving a mere linear system.

It seems rather difficult to find these pairs by directly
matching points in the 2D view to points in the texture image
using 2D non-rigid registration.

(b) Target view reconstructed
from blocks of approximate view.

(c) Blocks found in approximate (d) Given blocks in target view.
view.

(e) Location of block cen-
ters on texture image.

() New approximate view.

Fig. 23. Finding 3D/2D pairs through block-matching.

Our approach rather consists in rendering the model using
an approximate of the perspective projection (Fig. 23(a)) and
in performing a simple block-matching between this approxi-
mate view and the given target 2D view (Fig. 23(c) and 23(d))
We thus find point correspondances between the target 2D
view and the approximate 2D view.

This approximate 2D view is in a known one-to-one cor-
respondance with the object’s surface (Fig. 23(c) and 23(e))
because it was rendered using a known estimate of the
projection matrix.

This yields by transitivity the needed point correspondances
between the target 2D view and the 3D object’s surface (Fig.
23(d) and 23(e)).

Fig. 23(b) shows the target 2D view reconstructed from
blocks of the approximate 2D view and Fig. 23(f) shows the
improved approximate 2D view using the projection matrix
computed from the newly computed pairs.

In the given example, the initial estimate of the projection
was computed from 6 manually selected pairs and after 4 iter-
ations the mean distortion between the real and the estimated
projections was 1/20 pixel in the projected image, which, as far
as watermark extraction is concerned, is similar to no distor-
tion at all. This algorithm, which presents some analogies with
stereovision (especially in the matching of two different views
of the same object) and with camera calibration, cannot yet
cope with colorimetric differences between the two matched
images, although this would be a requirement in the end.

[1]

[2]

[3]

[4]
[5]

[6]
[7]

8]

[0

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

P. Abel, D. Loisel, J.-P. Paris, and C. R. Dos Santos, “Automated
construction of dynamic 3d metaphoric worlds for network management
information visualization,” in Proc. of SPIE Electronic Imaging, San
Jose, California, Jan. 2000.

I. Kitahara, H. Saito, S. Akimichi, T. Ono, Y. Ohta, and T. Kanade,
“Large-scale virtualized reality,” in Proc. of CVPR, 2001.

J.-L. Dugelay, K. Fintzel, and S. Valente, “Synthetic natural hybrid video
processings for virtual teleconferencing systems,” in Picture Coding
Symposium, Portland, Oregon, Apr. 1999.

S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding Techniques
for Seganography and Digital Watermarking. Artech House, 2000.
S. R. Marschner, B. Guenter, and S. Raghupathy, “Modeling and
rendering for realistic facial animation,” in Proc. of 11th Eurographics
Workshop on Rendering, Brno, Czech Republic, June 2000.

C. Mallauran, “3d video object watermarking,” Sept. 2001.

O. Benedens, “Two high capacity methods for embedding public wa-
termarks into 3d polygonal models,” in Proc. of ACM Multimedia and
Security Workshop, Orlando, Florida, 1999, pp. 95-99.

R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama, “Water-
marking 3d polygonal meshes in the mesh spectral domain,” in Proc. of
Graphics Interface, 2001.

E. Praun, H. Hoppe, and A. Finkelstein, “Robust mesh watermarking,”
in ACM Sggraph 99 Conference Proceedings, Los Angeles, California,
Aug. 1999.

O. Benedens, “Watermarking of 3d polygon based models with bo-
bustness against mesh simplification,” in Proc. of SPIE Security and
Watermarking of Multimedia Content, 1999, pp. 329-340.

P. Thévenaz, T. Blu, and M. Unser, “Image interpolation and resam-
pling,” in Handbook of Medical Imaging, Processing and Analysis,
I. Bankman, Ed. San Diego CA, USA: Academic Press, 2000, ch. 25,
pp. 393-420.

J. Feldmar, N. Ayache, and F. Betting, “3D-2D projective registration of
free-form curves and surfaces,” Journal of Computer Vision and Image
Understanding, vol. 65, no. 3, pp. 403-424, 1997.

M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking
under varying illumination: An approach based on registration of texture-
mapped 3d models,” IEEE trans. on Pattern Analysis and Machine
Intelligence, vol. 22, no. 4, pp. 322-326, Apr. 2000.

S. Valente and J.-L. Dugelay, “A visual analysis/synthesis feedback loop
for accurate face tracking,” Jan. 2001.

F. Pighin, R. Szeliski, and D. Salesin, “Resynthesizing facial animation
through 3d model-based tracking,” in International Conference on
Computer Vision, 1999.

M. Gleicher, “Projective registration with difference decomposition,” in
Proc. of CVPR, June 1997.

J.-L. Dugelay and C. Rey, “Image watermarking for owner and content
authentication,” in ACM Multimedia, Los Angeles, California, Nov.
2002.

J.-L. Dugelay and F. A. P. Petitcolas, “Image watermarking: possible
counterattacks against random geometric distortions,” in Proc. of SPIE
Security and Watermarking of Multimedia Contents 1, San Jose, Cali-
fornia, Jan. 2000.

M. Garland, “Qslim mesh simplification software.” [Online]. Available:
http://graphics.cs.uiuc.edu/"garland/software/gslim.html

J.-L. Dugelay and C. Rey, “Method of marking a multimedia document
having improved robustness,” French Pending Patent EUP 99480 075.3
(EURECOM 14 EP), May, 2001.

Jean-Luc Dugelay (Ph.D. 92, IEEE M94-SM02)
joined the Institut Eurécom (Sophia Antipolis) in
1992, where he is currently a Professor in charge
of image and video research and teaching activities
inside the Department of Multimedia Communi-
cations. His research interests are in the area of
multimedia signal processing and communications;
including security imaging (i.e., watermarking and
biometrics), image/video coding, facial image analy-
sis, virtual imaging, face cloning and talking heads.
He contributed to the first book on watermarking
(Information hiding techniques for steganography and Digital watermarking,
Artech House 1999). He is an author or coauthor of more than 65 publications
that have appeared as journal papers or proceeding articles, 3 book chapters,
and 3 international patents. He gave several tutorials on digital watermarking
(co-authored with F. Petitcolas from Microsoft Research, Cambridge) at major
conferences (ACM Multimedia, October 2000, Los Angeles, and Second
IEEE Pacific-Rim Conference on Multimedia, October 2001, Beijing). He has
been an invited speaker and/or member of the program committee of several
scientific conferences and workshops. He was technical co-chair and organizer
of the fourth workshop on Multimedia Signal Processing, Cannes, October
2001. His group is involved in several national and European projects related
to digital watermarking (RNRT Aquamars and Semantic-3D, IST Certimark).
Jean-Luc Dugelay is currently an Associate Editor for the IEEE Transactions
on Multimedia, the IEEE Transactions on Image Processing, the EURASIP
Journal on Applied Signal Processing and the Kluwer Multimedia Tools
and Applications. He is a member of the IEEE Signal Processing Society,
Image and Multidimensional Signal Processing Technical Committee (IEEE
IMDSP TC), Multimedia Signal Processing Technical Committee (IEEE
MMSP TC), and ICME Steering Committee. Jean-Luc Dugelay serves as a
Consultant for several major companies; in particular, France Telecom R&D
and STMicroelectronics.

Emmanuel Garcia graduated from the Ecole
Polytechnique, Paris, France, in 1998 and
from the Ecole Nationale Supérieure des
Télécommunications, Paris, France, in 2000, and
is currently a Ph.D. student in the Multimedia
Department of the Institut Eurécom, France. His
research interests include 3D facial animation and
modeling, and 3D object watermarking, in the
context of virtual talking heads.

