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Abstract

State-of-the-art speech recognition systems typically contain a single or very few phonetic
transcriptions per lexical word. Such a sparse encoding of pronunciation variants is challenged
by the great number of pronunciation differences that exist in reality. A standard method
in pronunciation variation modeling consists of adding more pronunciation variants to the
lexicon, but adding too many of them increases risks of lexical confusability and may also
decrease recognition performance. A possible way to address this issue is to limit the number
of variants to add based on a certain criterion. This approach has however the disadvantage
of also limiting pronunciation coverage, which is an important factor for spontaneous and
non-native speech.

This dissertation studies several methods that dynamically model pronunciation variation.
In comparison to more traditional (static) methods, more pronunciations can be modeled,
thus ensuring a higher coverage, but they are activated at different times during recognition
so that lexical confusability can still be limited. T'wo aspects of this dynamic approach were
investigated:

Level of modeling : dynamic pronunciation modeling was applied separately to the pho-
netic and acoustic levels, by respectively adapting the lexicon and acoustic models to the
pronunciations of the speech utterance to recognize. These modifications were governed
by the automatic extraction of phonetic (articulatory) features from the input speech.

Level of dynamism : dynamic pronunciation modeling was applied both on per utterance
and per speaker bases: besides the utterance-level methods mentioned in the previous
point, another technique based on symbolic speaker adaptation built a separate lexicon
per speaker. The objective of the adaptation process was to create a profile per speaker
that modeled the pronunciation characteristics of the latter by a combination of several
pronunciation styles (called here “speech varieties”, SV) known by the system. These
profiles influenced how the canonical lexicon was expanded with pronunciation variants
to yield a speaker-dependent lexicon. The method was evaluated with multiple dialects
and foreign accents as the modeled SVs.

Recognition performance increased significantly when the dynamic lexicon was combined
with canonical transcriptions, compared both to the baseline performance and to the result
obtained with a lexicon augmented with new pronunciation variants, but not dynamically
modified during recognition. On the other hand, although dynamic acoustic models showed
comparable performance to the best result obtained with static models, improvement relative
to the baseline was not significant, suggesting therefore further study in this area.

Automatic detection of phonetic features led to a smaller confusion distance between alter-
natives than phones, suggesting that features are more appropriate to generate pronunciation
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variants. Besides, combination of phonetic features and a pronunciation model based on de-
cision trees helped to significantly increase the phone accuracy of the system. The feature
extraction method was evaluated on both read and spontaneous speech; only slight degrada-
tion per feature was observed when shifting to spontaneous speech, which however led to a
substantial frame-level degradation when these single feature errors were combined.

Basic experiments with symbolic speaker adaptation only slightly improved performance.
However, the technique performed better when combined with acoustic speaker adaptation
(MLLR), suggesting that the two levels of modeling are complimentary. Furthermore, an
analysis of intermediate results indicated that a lot of pronunciations selected by the system
during the adaptation process were biased towards baseforms, even though there were clearly
pronunciation variations between the evaluated SVs. Expansion of the phone inventory with
more SV-inclusive phones significantly reduced this preference for baseforms and further in-
creased word recognition performance in most cases. Some additional experiments suggested
that symbolic speaker adaptation can target a speaker’s speech variety with small adapta-
tion data and that its SV-blending scheme is more efficient than a standard SV-classification
scheme to model speakers from speech varieties unknown by the system.



Résumé

Les systémes standards de reconnaissance de la parole contiennent typiquement une seule ou
tres peu de transcriptions phonétiques par mot lexical. Un nombre si faible en variantes de
prononciation n’est pas suffisant pour modéliser toutes les différences de prononciation qui
existent dans la réalité. Une méthode classique en modélisation des variations de prononci-
ation consiste a ajouter des variantes de prononciation dans le lexique, mais en ajouter trop
augmente les risques de confusion lexicale et peut aussi diminuer les performances en recon-
naissance. Une voie possible pour résoudre ce probléeme est de limiter le nombre de variantes
a ajouter sur la base d’un certain critére. Cette approche a cependant le désavantage de lim-
iter également 1’étendue de la modélisation des prononciations, un facteur important pour les
paroles dites “spontanée” et “non-native”.

Cette dissertation étudie plusieurs méthodes qui modélisent dynamiquement les variations
de prononciation. En comparaison avec des méthodes plus traditionnelles (statiques), plus
de prononciations peuvent étre modélisées, ce qui assure ainsi une plus grande étendue de la
modélisation, mais elles sont activées & différents moments durant la reconnaissance pour que
la confusion lexicale puisse toujours étre limitée. Deux aspects de cette approche dynamique
ont été examinés:

Niveau de la modélisation : la modélisation dynamique des prononciations a été appliquée
séparément aux niveaux phonétique et acoustique, en adaptant respectivement le lexique
et les modeles acoustiques aux prononciations contenues dans la parole & reconnaitre.
Ces modifications ont été guidées par ’extraction automatique de traits phonétiques
(articulatoires) contenues dans la parole.

Niveau du dynamisme : la modélisation dynamique des prononciations a été appliquée
aussi bien au niveau du locuteur qu’au niveau de la phrase: en plus des méthodes
“par phrase” mentionnées dans le point précédent, une autre technique basée sur une
adaptation symbolique au locuteur a construit un lexique spécifique pour chaque locu-
teur. L’objectif de 'adaptation était de créer un profil par locuteur qui modélise les
caractéristiques de prononciation de celui-ci par une combinaison de plusieurs styles de
prononciation (appelés ici “speech varieties” en anglais) connus par le systéme de recon-
naissance. Ces profils ont influencé la facon d’augmenter la taille du lexique canonique
avec des variantes de prononciation afin d’obtenir un lexique adapté au locuteur. La
méthode a été évaluée en utilisant plusieurs dialectes et accents étrangers comme styles
de prononciation.

La performance en reconnaissance a été significativement améliorée lorsque le lexique dy-
namique a été combiné avec les transcriptions canoniques, en comparaison avec la performance
de base et le résultat obtenu avec un lexique augmenté avec de nouvelles variantes de prononci-
ation, mais non modifié dynamiquement pendant la phase de reconnaissance. Par contre, bien
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que les modeles acoustiques dynamiques ont obtenu des performances comparables au meilleur
résultat obtenu avec des modeles statiques, I’amélioration par rapport a la performance de base
n’a pas été significative et requiert une étude plus approfondie dans ce domaine.

La détection automatique des traits phonétiques a conduit & une distance de confusion
plus faible entre les résultats alternatifs qu’avec les phones, ce qui suggere que ces traits
sont plus appropriés pour générer des réseaux de prononciation. En outre, la combinaison
des traits phonétiques avec un modele de prononciation basé sur des arbres de décision a
permis d’améliorer de facon significative le taux de reconnaissance en phonéme du systéeme.
La méthode d’extraction des traits a été évaluée aussi bien sur de la parole “spontanée” que
sur de la parole “lue”; une faible dégradation par trait a été perceptible lorsqu’on est passé
a de la parole spontanée, mais cela a tout de méme entrainé une dégradation importante au
niveau des trames lors de la combinaison de ces traits.

Les expériences de base sur ’adaptation symbolique au locuteur n’ont donné que peu
d’amélioration de la performance. Par contre, la technique a donné de meilleurs résultats
lorsqu’elle a été combinée avec une méthode d’adaptation acoustique au locuteur (MLLR en
anglais), suggérant ainsi que les deux niveaux de modélisation sont complémentaires. En
outre, une analyse des résultats intermédiaires a indiqué que beaucoup de prononciations
sélectionnées par le systéme pendant la phase d’adaptation favorisaient les prononciations de
base, bien qu’il y avait clairement des variations de prononciation entre les différents styles.
Une augmentation du nombre de phonémes plus spécifiques aux dialectes et accents étrangers
a permis de réduire significativement ce biais et d’améliorer davantage les performances en
reconnaissance de mots dans la plupart des cas. Des expériences supplémentaires ont suggéré
que la reconnaissance symbolique au locuteur peut identifier le style de prononciation d’un
locuteur avec trés peu de données d’adaptation, et que son principe de combinaison des styles
est plus efficace que le principe standard de classification pour modéliser des locuteurs avec
des styles de prononciation qui ne sont pas connus par le systeme.
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Chapter 1

Introduction

“Speech technology is destined to play a decisive role in this societal transformation by virtue
of its ability to facilitate and automate communication between humans and machines. (...)
Cellular phones, personal digital assistants and computers, “smart” chips in the home, car and
office will all make extensive use of speech technology.” Greenberg wrote in [57]. Who has
indeed never seen in TV-series or movies, or at least imagined, cars that talk and understand
whatever we say and can for instance drive us safely from a point A to a point B 7 Or robots
that can communicate with us like a true human being ?

Although such technology is still too early to be conceived in real life, progresses are being
made towards that goal. A common aspect between the two examples (cars and robots)
mentioned above is that they speak the same language as us, so that we do not need to put
more effort in talking to machines than to humans. In order to make this perspective a reality,
machines must first be capable of identifying any sequence of words that humans say; this is
the concept of speech recognition.

At this point, someone may notice: “But speech recognition technology already exists !”.
It does exist indeed, but in a form simplified in a way or another. For example, possibilities
of using vocal commands implemented nowadays in mobile phones are often limited to single
words or to some easy recognition tasks with small vocabulary (e.g., sequence of digits).
Alternatively, some mobile phones can recognize a sequence of arbitrary words, but under
the condition that exactly the same sequence was recorded in a previous session. Dictation
systems do allow the recognition of continuous speech, but again with some constraints. Tan
Stobie, a journalist who used such a dictation system, reported in his article [133]: “you need
a powerful PC and quiet surroundings to have much chance of success. (...) Initial training
takes about 10 minutes, but for accuracy to improve you must take the time to correct the
errors it makes as you go along. I've probably spent five hours in total in training it, but it
now knows the idiosyncrasies of my pronunciation and vocabulary.”. The good point about
this is that, in the end, the dictation system worked well for him, but after what amount
of effort 7 There are some exceptions that require less effort and even let speakers utter in
conversational style, but most often when vocabulary and grammar are tuned for a specific
task (e.g., radiology).

All these examples of restrictions suggest that speech recognition systems need to be more
robust against various factors. There are three main factors in speech technology that need
to be taken into account, the task, the speaker and the environment:

The task : it corresponds to the “topic” on which the recognition is performed. A specific
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task (e.g., phone number dialing) generally requires a small amount of vocabulary words
and/or combinations of these words. The system can perform fairly well in those situa-
tions because sequences to recognize are quite predictable. On the other hand, when a
task has a more general scope and implies more words and possible word combinations,
things are more complicated and recognition performance is sensitively lower. Much
research is therefore intended for improving recognition accuracy with large vocabulary
and more complex grammars.

The speaker : two speakers do not pronounce words in the same way, and even the pro-
nunciation of a single speaker varies in time. Many factors are responsible for this
pronunciation variation, for instance age, gender or emotional state. Most standard
speech recognition systems simplify however the problem by assuming only a few possi-
ble phonetic transcriptions per word (even a single transcription in some cases), which is
not enough to cover all possible pronunciations. This is especially true in conversational
(also called “spontaneous”) speech, which includes a lot more variations than in carefully
read speech. The situation gets even worse when a person speaks with a certain dialect
or foreign accent. All these pronunciation variations not accounted for by the system
provoke a substantial drop in performance.

The environment : recognition systems are much sensitive to noise due to the location
where the recognition is performed (background noise) and to the equipment used (chan-
nel noise). Even a change of microphone between the moment a system is trained and
the moment it is evaluated can substantially affect the performance. Background noise
also affects pronunciation variation and makes therefore the situation worse, because
people tend to hyperarticulate in adverse conditions in order to be better understood
(this is called the “Lombard effect”). A comprehensive study of methods against noise
can be found for instance in Junqua and Haton [75].

1.1 Brief description of pronunciation modeling

The general goal of this dissertation is to better account for characteristics inherent to a
speaker and differences between speakers by modeling pronunciation variation. Research in
this field is far from being new since the first contributions were already noticed in the early
1970’s. However, this topic has especially become important in the past ten years due to
the availability of spontaneous speech databases (e.g., Switchboard [54]), which contain a lot
more pronunciation variation than in read speech. The gain of interest in this field is testified
among others by the two workshops on pronunciation modeling organized during the past five
years (1998 and 2002).

The basic idea of pronunciation modeling consists of explicitly including more alternative
pronunciations into the speech recognition system, typically inside a component called the
lezicon (cf. section 2.3.3 for more information). However, early works showed that it is not
enough to just take account of all possible pronunciations, because a lot of them are similar
to each other but correspond to different words. Consequently, they may increase the number
of possible confusions and lead to a drop in recognition performance; this is a problem called
lexical confusability (cf. section 3.6.1). Many contributions aim therefore at reducing this risk
of confusion, in most cases by keeping only the most representative variants based on a certain
criterion.

A detailed description about pronunciation variation modeling will be given in chapter 3.
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1.2 Objectives of this dissertation

Although a careful selection of pronunciation variants can limit the risks of lexical confusability,
it also limits pronunciation coverage, which is an important factor to consider when dealing
with spontaneous and non-native speech. This is a possible reason why most contributions
in this field led to only small improvements. An experiment made by McAllaster et al. [104]
on simulated data revealed however that when pronunciations found in the lexicon exactly
matched those found in the data, recognition performance increased by five to ten times.
It is therefore important to insure good pronunciation coverage while still reducing lexical
confusability.

Following this line of thought, this dissertation will study the possibilities of dynamically
modeling pronunciation variation: it consists of keeping more pronunciation variants to insure
a better pronunciation coverage, but of activating them at different times during recognition to
reduce lexical confusability. The few existing contributions in this area focused on a soft acti-
vation process, which only changes the relative importance of pronunciation variants through
probabilities but without rejecting any of them. In contrast with previous works, this disserta-
tion will rather focus on a hard process, which consists of keeping a subset of the variants and
of eliminating the rest. Two aspects of dynamic pronunciation modeling will be investigated:

Level of modeling : this dissertation will first study the dynamic approach at the lexicon
level, by selecting during recognition a set of pronunciation variants per utterance. The
selection process will be guided by the automatic extraction of phonetic features - which
describe how a segment of speech is produced in terms of the human articulatory system
- from the input speech. Then, the study will be extended to a lower (acoustic) level of
the recognition system, based on a concept called state-level pronunciation modeling.

Level of dynamism : the two levels of modeling above were processed on a per utterance
basis, that is, a separate lexicon or acoustic models were created for each utterance.
Additionally, a speaker-level (pseudo-)dynamic pronunciation modeling was also investi-
gated by introducing the concept of symbolic speaker adaptation. The issue of modeling
multiple dialects and foreign accents will also be addressed through this method.

1.3 Outline of this dissertation
This dissertation is divided in the following chapters:

e Chapter 2 will review the basic concepts of automatic speech recognition (ASR). In
particular, the most popular system based on Hidden Markov Models (HMM) will be
described.

e Chapter 3 will review the basic concepts of pronunciation variation modeling. The
problems associated with ASR systems due to this factor will be described as well as
some methods proposed in the literature to address this issue.

e Chapter 4 will introduce the concept of dynamic pronunciation modeling at the lexicon
level, based on the detection of phonetic features. A literature survey on the latter will
first be given, then the proposed method and related experiments will be described in
detail.
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Chapter 5 will extend the dynamic approach to the acoustic (HMM) level. For this
purpose, the state-level pronunciation modeling concept will first be presented, followed
by the corresponding extension to implement a dynamic approach.

Chapter 6 will introduce the concept of symbolic speaker adaptation applied to the
problem of modeling multiple dialects and foreign accents.

Chapter 7 will describe the basic experiments related to symbolic speaker adaptation.
These experiments will then be extended to include additional features and more thor-
ough tests will be made.

Chapter 8 will conclude this dissertation by a global summary, the list of contributions
and some directions for future work.



Chapter 2

Basics of automatic speech
recognition (ASR)

In this chapter, we will review the basics of automatic speech recognition systems necessary to
understand the content of this dissertation. This chapter is organized in the following manner:

e Section 2.1 will give a general overview of a speech recognition system.

e Section 2.2 will explain how the most relevant characteristics of an input speech utterance
can be extracted for speech recognition.

e Section 2.3 is dedicated to the description of Hidden Markov Models, which are the most
popular technique applied to speech recognition.

Some remarks and notations found in this chapter are inspired from several references
([114], [145], [158], [2], [55])).

2.1 General overview

In a conversation between two humans, three phases are needed to correctly manage the flow
of the dialogue. First, given an utterance of the speaker, the listener must be able to identify
the correct sequence of words that he/she has just heard. Second, he/she must be able to
understand the meaning of the sequence. Third, he/she must speak in turn to respond to the
first speaker in a way that fits well with the dialogue context. Similarly, the same three phases
are needed when we would like to establish a conversation between a human and a machine. In
the research field, speech identification, understanding and generation are respectively called
automatic speech recognition (ASR), automatic speech understanding (ASU) and automatic
speech synthesis (ASS). Although all these phases are required, ASU and ASS are beyond
the scope of this dissertation and will therefore not be considered. An overview of automatic
speech understanding and a study about how ASR and ASU can be integrated can be found
in [113]. Readers interested in automatic speech synthesis can refer for example to [37].

The objective of an ASR system is to get the correct sequence of words given a speech
utterance. Although it is an easy task for a human, things are more complex for a machine.
Humans have the capacity of integrating several types of knowledge (e.g., topic of the conver-
sation) to reliably identify what a speaker said, even in fairly noisy conditions. A standard
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ASR system does not have this capacity and must be able to find the correct sequence only
from the input speech. In order to facilitate this task, some intermediate procedures are
needed.

Let us first consider the speech utterance. It contains of course all information required
to correctly identify the underlying sequence, but also some non-relevant information. For
example, the pitch, which is responsible for speech tone and tells for instance whether the
speaker is male or female, is generally not necessary for recognition and is often removed®.
Another reason to preprocess the input speech is because the data needs to be compressed for
better management by the ASR system. The speech preprocessing step will be described in
detail in section 2.2.

Let us now consider the system’s output and let us for the moment simplify the problem
by assuming that only a single word must be recognized (e.g., a digit between 0 and 9);
recognition of sequences of words will be treated later (section 2.3.7). In order to determine
what the best word is, the ASR system must represent each word by a model with some
characteristics that are different from the other word models. Several types of models exist,
but the most popular system is the Hidden Markov Model (HMM). Description of HMMs will
be given in section 2.3.

To summarize, the task of an ASR system is to identify the correct word from the input
speech by extracting some relevant features from the utterance and by matching them against
some models representing the possible words, as shown in Figure 2.1.

‘Model 1] 4= "0ne"

Speech Speech o

' ”») T processing " characteristics ./ ” two
Model 3| 4= "three"

Figure 2.1: General overview of an ASR system

2.2 Extraction of speech characteristics

In order to extract the most relevant characteristics of an input speech, several intermediate
steps need to be respected as described below:

Speech acquisition : the speaker talks to the ASR system through a microphone that
converts the utterance into an electric signal.

Analog-numeric conversion : since a computer cannot handle continuous values, the ana-
log signal needs to be converted into a digital signal. In the first step, the signal is
sampled. However, in order to respect the sampling theorem, which requires that the
sampling frequency must be at least twice the highest frequency component present in
the signal, the latter must be band limited beforehand by a low-pass filter. The sampling
frequency is in practice chosen between 8 and 16 kHz (a sampling at 8 kHz is compatible

!The pitch is nevertheless relevant for some specific languages as well as for speaker identification and speech
understanding.
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with standard telephonic frequency bands). Then, samples are quantized and coded in
order to be representable with a limited number of bits (generally between 8 and 16).

Windowing : although it should theoretically be possible to extract the speech characteris-
tics in the time domain, more useful information for recognition can be brought to the
fore in the frequency domain, so the Fourier transform is applied to the digitalized signal.
However, the shape of the vocal tract constantly changes during speech and hence the
corresponding signal cannot be considered stationary (its statistical values such as mean
and variance change with time). Since the Fourier transform requires the stationarity of
the analyzed signal, the latter is segmented in short intervals during which the hypoth-
esis of quasi-stationarity is assumed (even though it is not true for all sounds such as
plosives) and the Fourier transform is applied separately on each of these intervals. In
practice, each interval is obtained by multiplying the signal in time by a window. A point
to determine is the shape of the window to apply, keeping in mind that a multiplication
between two signals in time corresponds to a convolution of their spectra in frequency.
A rectangular window is not an appropriate choice because its spectrum is a cardinal
sinus with important side lobes that substantially transform the spectrum of the signal
to analyze. In practice, a Hamming window is generally applied because it allies good

N—1
is the number of samples in the window and n = 0,..., N — 1. This windowing process
reduces the effective interval of the analysis and therefore successive windows must par-
tially overlap each other to insure a smooth analysis of the whole signal. Typically, a
window of about 30ms shifted by about 10ms is generally chosen. The effective analysis
interval per window is called a frame.

frequency resolution and reduced side lobes: wpy(n) = 0.54 — 0.46 cos ( nm ), where N

Feature extraction : each frame needs to be transformed in order to get the most rele-
vant characteristics. From this point, different choices of features were proposed in the
literature, but the most commonly applied are the Mel-frequency cepstral coefficients
(MFCC)2. To obtain them, the Fourier transform is first applied to the windowed sam-
ples to obtain the corresponding magnitude coefficients in the frequency domain. Then,
a bank of partially overlapping triangular filters that are equally spaced in the Mel scale
(so different in the linear scale) is applied: each magnitude coefficient is multiplied by
the corresponding filter gain and the results are accumulated to yield a filterbank am-
plitude in each band. These amplitudes are highly correlated, so further transformation
to the cepstral domain is necessary to reduce the cross-correlation effects (and to reduce
the number of parameters to take account for acoustic modeling, cf. section 2.3.2): the
logarithm is taken to get the log filterbank amplitudes m;, then the cosine transform is

applied to yield the MFCC coefficients ¢;: ¢; = 1/1\% Zj\f:cl M COS (;{,—Ze(j — 0.5)), where
N, is the number of filterbank channels.

Between 12 and 16 coefficients are generally kept to remove the pitch information located
at higher coefficient orders. The 0! coefficient is often not included because it is sensitive
to the acquisition channel gain. The selected coefficients are also often augmented with the
energy of the signal as well as their first and second order time-derivatives, which were shown
to be useful. All these coefficients are calculated for each window and are put together in a

2The Mel-frequency characterizes how a sound with a certain frequency is perceived by a human auditory
system. For example, when a 3000 Hz sound is emitted, it is generally perceived by a human as 1800-2000 Hz
approximately. The relationship between real and perceived frequencies has been approximated by the following
formula: Mel(f) = 2595log,q(1 + 7&). It has empirically been shown that a system incorporating this non-
linear behavior of the human ear improves recognition performance.
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so-called acoustic vector, also called acoustic observation. Theses vectors represent the basic
speech features used for speech recognition.

2.3 Hidden Markov Models (HMM)

2.3.1 Overview

As mentioned previously, the most popular model used in speech recognition is the Hidden
Markov Model (HMM), first introduced by Baker [9] and Jelinek [73]. An HMM is a graph with
states and oriented arcs that can in principle be configured in any way, but the most common
topology in speech recognition is called a left-to-right HMM, that is, states are connected in
a linear fashion with arcs oriented from left to right. Besides, each state generally contains
a self-loop arc to model duration variability of speech. A left-to-right HMM with five states
and self-loops is shown in Figure 2.2. Arcs to skip states may also be added.

Figure 2.2: Example of a left-to-right HMM

Let us reconsider now the simple word recognition task that was illustrated in Figure 2.1
and let us assume for the moment that each word is associated with a specific HMM (we
will see later in section 2.3.3 that it is not always the case). For a given speech utterance,
the extracted sequence of acoustic vectors must be matched against the competing HMMs to
determine the best model and equivalently the best word. For this purpose, all HMM states
and transitions have a certain number of parameters based on statistics that differentiate them
from each other. Given these parameters, acoustic vectors are matched against the models by
finding an association between the sequence of vectors and the sequences of HMM states. It
is said that a state emits an acoustic vector when a correspondence is established between a
vector and a state. The strength of a vector-to-state association is given by a probability of
emission given by an observation probability distribution of the state, bj(0;) = p(o¢|q; = j),
where o; is the acoustic observation at time ¢ and ¢; is the state variable at time ¢. Such
association represents a time slot corresponding to a frame. In the next time slot, the next
acoustic vector is emitted by one of the following states connected to the available transitions
(it can be the same state if a self-loop arc is chosen). The transition from one state to another
(or the same) is characterized by a probability of transition a;; = P(qi41 = jlgt = 9)>. The
best word is given by the HMM with the highest cumulated probability calculated from the
probabilities of emissions and transitions resulting from the best associations. An example of
vector-to-state associations is shown in Figure 2.3, in which nine acoustic vectors, o; to o9,
have been emitted by five states, s to s5.

It should be noticed that due to multiple transitions from or to an HMM state, several
alternative associations are possible. So even if the best model is known, the best sequence
of associations is hidden among the possible choices. This is why Markov Models are called
Hidden Markov Models. They are also called acoustic models since they are directly linked to
acoustic observations.

3In ASR, a first order Markov model is assumed, that is, the transition probability depends only on the
previous state.
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Figure 2.3: Example of associations between acoustic vectors and HMM states

The next section describes how probabilities of emissions and transitions are calculated
and how the parameters they depend on are estimated.

2.3.2 Probabilities of emission/transition and training

A point to determine is how to calculate the probabilities of emission and transition. Prob-
abilities of emission can be discrete, semi-continuous or continuous. In the discrete case, a
codebook of acoustic vector centroids is defined. All acoustic vectors resulting from an asso-
ciation are replaced by the nearest centroid and the associated probability in the codebook is
used as emission probability:

bj(oi) = Pjle(oy)] (2.1)

where c¢(o;) is the nearest centroid to the observation (acoustic vector) o; and P; is the
probability of state j to emit the centroid.

In the continuous case, codebooks are replaced by a multi-dimensional probability density
function, typically a Gaussian characterized by its mean and its covariance matrix. It is
common to extend the modeling accuracy by using a Gaussian mizture, that is, a weighted
sum of Gaussians. The probability of an observation o, to be emitted by the mixture k of a
state j at time ¢ is:

bjk(or) = 47} Y e 300 ) B3 (0 ) (2.2)
(2m)% (20}

where pj, and X, are the mean and covariance matrix of the mixture k in state j re-
spectively, and n is the dimension of the covariance matrix (nxn). In practice, the covariance
matrix is often assumed to be diagonal because MFCCs are not highly correlated, which
reduces the number of parameters. The corresponding state-level probability is given by:

K
bj(or) = chkbjk(ot) (2.3)
k=1

where ¢, is a positive weight associated with the mixture & in state j (25:1 cjr = 1) and
K is the number of mixtures in state j.
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In the semi-continuous case, a pool of density functions is shared by all states. Discrim-
ination between states is still possible by using different mixture weights. For a pool of M
Gaussians, the emission probability distribution for state j is therefore:

M

bj(or) = 3 cimN (01: ftyn: i) (2.4)

m=1

where cj,, is a positive weight associated with the m-th mixture of the pool in state j
(an/le ¢jm = 1), and p,,, and X%, are the mean and covariance matrix of the m-th mixture
of the pool respectively.

Parameters of probability density functions and probabilities of transitions must be esti-
mated based on some training data; the more parameters to estimate and the more training
data is required. Training is performed by mapping the extracted acoustic vectors to the
sequence of HMMs corresponding to the sequence of correct words in the utterance, then by
estimating the HMM parameters from the associations so that the likelihood of the training
data given these parameters is maximized. Namely, let us assume a set of unknown parameters
to estimate 6 = (A, B, ), where A = {a;;} is the set of transition probabilities, B = {b;(o;)}
is the set of observation probability distributions and 7 = {m;} = {P(¢: = %)} is the initial
state distribution. The objective is to estimate the parameters that maximize the likelihood
of an observation sequence O:

~

0 = argmax p(0|0) (2.5)
0

As mentioned previously, the sequence of acoustic observations must be mapped to the
sequence of HMM states. We can therefore express the above likelihood as a sum over all
possible state sequences q:

p(016) = > p(Olq,0)P(q|0) (2.6)
allq

As shown above, two stochastic processes are given by the probabilities in the sum expres-
sion. The first probability p(O|q,0) is the cumulated probability of emissions that depends
on the observation probability distributions b;(o;), while P(q|f) is the cumulated probability
of transitions given as a function of the a;;’s and m;. Assuming that acoustic observations are
independent, we can write:

p(0|q,0) = by, (01) - by, (02)..b47 (07) (2.7)

P(ql0) =7, - Gq1qs * Ogogs--Cqr_1qr (2.8)

A logarithmic form is used in practice to avoid the too small numbers resulting from
successive multiplications. Some popular training algorithms exist, such as the Baum- Welch
algorithm that iteratively re-estimates the parameters given the training data and the corre-
sponding sequence of word or sub-word labels that refer to the HMMs to train. The algorithm
will be described in section 2.3.6.
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2.3.3 Phoneme and lexicon

Up to this point, it was assumed that a specific HMM was designed for each distinct word.
Although such level of modeling is possible when the number of words to recognize is small
(e.g., digit recognition), it becomes impractical when this amount is substantially bigger due
to the consequently high number of model parameters to train and estimate. So in practice,
each word is decomposed into more elementary units. Several different units have been ex-
perimented (e.g., syllables), but the most popular unit is the phoneme. A phoneme is the
most elementary unit that distinguishes the meaning of a word from another, that is, a change
of a phoneme implies a change of the meaning of the word as well. For example, the words
“cat” and “hat”, respectively transcribed as /k ae t/ and /hh ae t/, are only different by
a single phoneme, /k/ vs. /hh/, thus the two words have different meanings. Any word
can be transcribed as a sequence of phonemes. The great benefit of this approach is that
the number of possible phonemes per language is limited, between 30 and 50 in most cases.
Each phoneme can therefore be modeled conveniently by a separate HMM. Although different
topologies have been experimented (e.g., [97]), the most popular phoneme-level topology is a
left-to-right HMM with three states and self-loop transitions. All words can be modeled by
concatenating the appropriate sequence of phoneme HMMs. An example is given in Figure 2.4
for the word “zero”, acoustically modeled by concatenating the HMMs of /z/, /iy/, /r/ and

Jow/.

Figure 2.4: Acoustic model of the word “zero” by concatenating phoneme HMMs

When a single HMM is built per phoneme, their representing units are called monophones.
In practice, even if two words contain the same phoneme, they may be pronounced differently.
One of the reasons is because phonemes are highly coarticulated, that is, their pronunciations
are influenced a lot by their left and right contexts. This is why, in practice, several HMMs
are built for a same phoneme to account for the different possible contexts. For example, the
word “zero” can be transcribed as /z iy r ow/, but also as /z+iy z-iy+r iy-r4+ow r-ow/ (-’ to
indicate a left context and '+’ for a right context) when the neighbor contexts are explicitly
taken into account. Units with a single context (e.g., /z+iy/, /r-ow/) are called biphones and
those with both left and right contexts included (e.g., z-iy+r, iy-r+ow) are called triphones.
Performance of an ASR system can be substantially increased if context-dependent models
are used, under the condition however that enough data is available to train the increased
number of models. Although not all contexts exist in a given language, the number of possible
triphones is still substantially high. This is why a clustering procedure is often applied to
gather acoustically similar states or models during the training phase.

In this phoneme-level HMM approach, the ASR system needs to know how a word is
mapped to a sequence of phoneme models and needs therefore to keep a list of word-to-

phoneme correspondences. Such list is called a lezicon. A part of a lexicon is shown in
Table 2.1%.

4A word-level HMM approach can also use a lexicon in which each word and corresponding transcription
are identical.
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Word ‘ Transcription ‘

cab /k ael b/

cabinets | /k ael bixnix t s/
cable /k eyl bel/

cafe /k ae feyl/

cafeteria | /k ae2 f ax t ihl r iy ax/
close /k 1lowl s/

close /k lowl z/
to /t uwl/
too /t uwl/
two /t uwl/

Table 2.1: Example of an ASR lexicon

The “1” and “2” next to some of the phonemes are stress marks. In state-of-the-art speech
recognition systems, many entries have only one standard transcription (also called canonical
transcription) per word (e.g., entries from “cab” to “cafeteria”), which is a limitation for speech
recognition (we will come back to this problem in the next chapter). ASR lexicons may also
include some ambiguities. For example, the two entries for “close” are two homographs: the
two entries have different meanings (e.g., “close to the post office” (adj.) vs. “to close the
door” (verb)) and phonemic transcriptions, but the same orthographic spelling. In practice,
some additional marks can be appended to the original spellings to distinguish them from
each other (e.g., “close_adj” vs. “close_v”). Another example of ambiguity is the homophone,
illustrated by the words “to”, “too” and “two”: they have different meanings and spellings, but
the same phonemic transcription. If a specific HMM were built for each word, their acoustic
models would be different and homophones could be distinguished from each other, but with a
phoneme-level approach their acoustic models are identical, which makes the task of the ASR
system more difficult. The problem can partially be solved by the use of a language model,
which is the subject of the next section.

2.3.4 Language model

Let us now shift from the recognition of a single word to the recognition of a sequence of words.
In the speech community, such task is commonly called continuous speech recognition (CSR).
If nothing is specified, it is assumed that at any time any word may follow another. Although
an ASR system with such assumption may work for small vocabulary recognition tasks, (e.g.,
digit recognition), it becomes impractical for medium and large vocabulary tasks, not only in
terms of recognition accuracy, because leaving any word to follow another would yield more
sequences that are not well-formed with respect to the given language, but also in terms of
recognition speed since all possible word sequences must be tested during recognition (if no
explicit pruning is applied). The set of possible successors for a given word must therefore
be limited by applying some syntactic constraints. If the number of words is not too big,
it is possible to use a finite-state grammar, which is basically a graph that represents the
possible sequences of words that the ASR system may output. When the number of words
is much bigger, it becomes too difficult to design such a network, so a statistical grammar is
used instead, where the possible word sequences and associated probabilities are automatically
determined from the training material. The component of an ASR system that controls these
sequences of words and probabilities is called a language model. The probability that a word
w; occurs given N — 1 previous words is called an N-gram and is estimated by counting the
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number of times the word w; follows the N — 1 previous word sequence over the total number
of times the sequence occurs in the training data:

COUNE(Wi— N1y vy Wi—1, W;)

P(wi|wi_N+1, ceey wi_l) = (29)

COUNE(Wi— N1y -y Wi—1)

The most common language model orders used in ASR are with N = 2 or N = 3, respec-
tively called bigrams and trigrams. In case a sequence of words did not occur often enough to
make a reliable probability estimation, a back-off procedure is used. Typically for trigrams,
when the number of occurrences of the word sequence “wy,ws, ws” is below a certain thresh-
old, the trigram probability P(ws|w;,ws) is replaced (backed-off) by the bigram probability
P(ws|ws). If even the sequence “wsq,w3” occurred too infrequently in the training database,
then the bigram is backed-off in turn to the unigram probability P(ws3).

The predictability of a sequence of words in a language model is given by its perplezity,
which is a measure related to the entropy of the grammar. It corresponds approximately to
the average number of words that can follow a given word. So the higher the perplexity, the
more difficult is the recognition task.

2.3.5 Overall ASR system and recognition

Now that the basic components of an ASR system have been described, let us summarize by
putting them together. A standard speech recognition system includes three main compo-
nents, as shown in Figure 2.5: some acoustic models, a lexicon and a language model. Each
component has a specific task. The acoustic models map the input speech utterance to the
most likely word or sub-word units via some acoustic feature vectors generated from speech.
In case sub-word units are used (e.g., phone), the lexicon governs how they must be combined
to form words. The language model tells which sequences of words are allowed to form the
output sentence.

, ”))))4’ AR — "Call Steve at office"

system
acoustic
vectors sentence
%8 sub-words m words
T e
Acoustic models Lexicon Language model

Figure 2.5: Components of an ASR system

Let us see now how these components influence the recognition process. To simplify the
problem, let us first consider the isolated word recognition. The basic objective of an ASR
system is then to find the correct word given an input speech utterance. In practice, it is
implemented by searching for the word w; among all possible words w; that maximizes the
a posteriori (MAP) probability given a sequence of acoustic observations O generated from
the input speech:
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w; = argmax P(w;|0) (2.10)

)

This probability is difficult to be estimated directly and is transformed using the Bayes rule:

p(O|w;) P(w;)

>0 (2.11)

argmax P(w;|0) = argmax
7 7

where p(O|w;) is the likelihood of the sequence of observations O given the word w; and
is provided by the acoustic models. P(w;) is the a priori probability of the word w; and
is provided by the language model. p(O) is the probability of the observation and can be
omitted since it is the same for all words w;. Therefore, the objective is to find the word w;
that maximizes p(O|w;)P(w;).

Let us see how the acoustic likelihood p(O|w;) can be calculated. Each word w; is repre-
sented by an acoustic model M; (which is eventually obtained by concatenation of sub-word
models) characterized by its set of parameters §; = (A;, By, w;), where A; is the set of tran-
sition probabilities, B; is the set of observation probability distributions and =; is the initial
state distribution for the model M;, respectively. We can therefore establish the following
equivalence:

p(Olw;) = p(0|6;) (2.12)

We already mentioned that acoustic observations are matched against an HMM by asso-
ciating the sequence of observations to a sequence of the model states. Since several state
sequences are possible, the acoustic likelihood is calculated by summing over all possible se-
quences q:

p(Ol6:;) = Y P(p(Olq,0,)P(q.6;) (2.13)
allq

which is identical to equation (2.6), but the objective is different since the previous goal
was to estimate the acoustic parameters 8; whereas in the current situation they are supposed
to be known and are used to find the best word. We already mentioned that the two stochastic
processes found in the sum expression correspond to probabilities of emissions b;(0;) and tran-
sitions a;;, so the acoustic likelihood can be expressed as follows for an observation sequence
O = {01, 092, ..., OT}:

p(016;) = Z Tg,0q1(01) * gy 5045 (02)--- g1, g1 bgr (OT) (2.14)
allq

The above likelihood is difficult to be calculated directly. On the other hand, it can be
determined using an iterative procedure described in the next section.

2.3.6 The Baum-Welch algorithm

The iterative procedure to estimate the likelihood in (2.14) is called forward recursion. Tt is
actually a part of the Baum- Welch algorithm, also called forward-backward algorithm. Let us
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define the forward probability o(t) as the joint probability of observing the acoustic vectors
01,...,0; and of being in state j at time ¢, given a set of parameters § = (A, B, ) of a model:

a](t) = P(017 <y Ot, Gt = ]|0) (215)

The values of « for different times ¢ and states j can be obtained through an iterative
procedure. For the first acoustic observation, we have:

Oéi(l) = mbi(ol) (2.16)

with 1 < 4 < N and N is the number of states. The probability of observing the ¢ first
acoustic vectors and of emitting the last vector o, in state j can be obtained by considering all
possible paths that could have emitted the previous acoustic vector o;_1 in a previous state
i, weighted by the transition probability a;; to move from state 7 to state j:

=1

N
aj(t) = [Z o (t — 1)%-] b;(or) (2.17)

with 1 <t <T and 1 < j < N. It is required that the last observation is emitted in the
last state of the model, hence we have for the likelihood of the whole observation:

P(O]0) = an(T) =

N
> (T - 1)%‘] bn(or) (2.18)
i=1

It is therefore possible to evaluate the likelihood of the total observation O given the model
parameters 6 with the forward recursion.

For the sake of completeness, let us define also the backward probability (;(t) as the con-
ditional probability of observing the sequence 0441, ..., o7 given that we are in state 5 at time
t and given the model parameters 6:

Bj(t) :P(Ot+1a"'7oT|qt :j; 0) (219)

The values for 8 can be obtained through the following iterative procedure. The iteration
begins with:

Bi(T)=1, 1<i<N (2.20)

The conditional probability of observing 0441, ..., 01 given that we are in state ¢ at time ¢
is obtained by considering all possible paths that could emit the next acoustic vector o441 in
a following state j, weighted by the transition probability a;; to move from state 7 to state j:

N
Bi(t) =Y aibj(0p1)Bi(t +1) (2.21)

J=1

As mentioned in section 2.3.2, the Baum-Welch algorithm is the method of choice to
iteratively re-estimate parameters of HMMs through a training procedure. This is done with
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the use of the forward and backward probabilities o and . The re-estimation procedure is
quite complex and is not the focus of this dissertation, it will therefore not be described here.
Interested readers can find more information in e.g., [114]. The re-estimation formulae for
means and covariance matrixes are shown below (without proof):

;= M (2.22)

D DARw 107

T !
. _1 L;j(t)(0f — ps;)(0s —
5, - T L))o~ 1) 023
Zt:l L (t)
where fi and 3 are the re-estimated mean and covariance matrix respectively and L;(t) is a
function of the forward and backward probabilities a and f:

PO, q: = 410) _ o;()B;(t)

Lj(t) = P(q: = j|O.0) = P(0Ol6) — P(O|9)

(2.24)

2.3.7 The Viterbi algorithm

The previous section showed that the likelihood of the observation given the model parameters,
P(010), could be obtained through the forward procedure of the Baum-Welch algorithm.
However, this procedure does not generalize easily to the recognition of a sequence of words,
because it does not look for a single optimal path, but for all possible paths. In practice, the
Viterbi algorithm is used instead. The difference compared to the Baum-Welch algorithm is
that the sum expression over all possible paths is replaced by the maximum operator. Namely,
we are looking for the sequence of states g¢i, ..., ¢;—1 that yields the maximum likelihood 4, (%)
of observing the sequence 01, ..., 04 and of being in state j at time #:

0;(t) = max P(o1,...,0¢,q1,....,q: = j|0) (2.25)
q1;--+5qt—1

The iterative procedure begins with the following initialization:

5Z(1) = wibi(ol), 1 S ) S N (2.26)

With the sum symbol of equation (2.17) replaced by the maximum operator, the partial
likelihoods can be obtained through the following recursive expression:

0;(t) = max [6;(t — 1)ai;] bj(or) (2:27)

It is common to take the logarithm of the above expression because multiplications of
probabilities yield too small numbers. The log-likelihood expression is therefore:

log(9;(t)) = max [log(0; (¢ — 1)) + log(ai;)] + log(b; () (2.28)
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The Viterbi algorithm is implemented by using a trellis. Let us first consider the case
of isolated word recognition. An example of trellis is shown in Figure 2.6. Each unit of
the horizontal axis corresponds to an acoustic vector representing a time frame, and each
unit of the vertical axis represents an HMM state. The objective is to find the best path
through the trellis by associating the sequence of acoustic vectors to a sequence of HMM
states. The search for the best path is done from left to right, column-by-column, based on
emission log-probabilities log(b;(o;)) for each vector-state pair, represented by the big dots in
the trellis, and on transition log-probabilities log(a;;) associated with the links shown in the
figure. At each frame, the partial cumulated log-likelihoods are calculated for all elements of
the corresponding column, based on the cumulated log-likelihoods of the previous column and
on the transition probabilities connecting the different elements of the previous and current
columns. Namely, the cumulated log-likelihood of an element j, log(d;(t)), of the current
column is obtained, as shown in equation (2.28), by selecting the element of the previous
column with the highest sum of cumulated log-likelihood, log(d;(t — 1)), and log-probability of
transition, log(a;;), and by adding to it the log-probability of emission, log(b;(o¢)). Once this
is done for all elements in the column, the path is extended by one time frame and another
iteration begins with the next column. At the end of all iterations, the final cumulated score
gives the global likelihood of seeing the entire observation given the word considered.

States
A

5

¥

. IV / log(b,(0,)
: : V/a ‘ ‘ log(a,;)
3
2 77777777777777777
1
7 Time

Figure 2.6: Implementation of the Viterbi algorithm using a trellis

In standard recognition, only the best word is required and so only the global likelihood
matters, but if the best path through the trellis is also needed, the predecessors selected by the
algorithm can also be stored at each iteration so that the best path can be traced back, starting
from the upper-right element of the trellis. This process is commonly called backtracking and
provides segmentation information, that is, it tells which acoustic observations are associated
with which states. It also gives the best start and end times of the corresponding sub-word
units according to the maximum likelihood criterion. A typical application of this procedure
is when the sub-word units underlying a speech utterance are known, but not their time
boundaries. Determination of the “best” time interval for each unit through this method is
called a Viterbi alignment, also called forced alignment.
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Viterbi algorithm for continuous speech

Representation of the Viterbi algorithm using a trellis is also extensible to continuous speech.
In this case, acoustic models representing all recognizable words are stacked to form a single
column of HMM states (the vertical axis). The sequence of acoustic vectors forms the hori-
zontal axis like with the isolated word case. The trellis can therefore be built using the same
procedure as before. However, some additional aspects need to be taken into account:

1. Several words can start a sentence. Therefore, the trellis can also start at different
points.

2. Several words can end a sentence. Therefore, the trellis can also end at different points.

3. During the construction of the trellis, the best predecessor of the first HMM state of a
word can be itself (through a self-loop transition), but also the last state of any word
that can precede the current word. A path can therefore “jump” to transit from one
word to another.

The three remarks mentioned above are schematically represented in the left part of Fig-
ure 2.7 for three words wq, wo and ws. It was assumed here that all words can start and end
a sentence and any word can follow a given word (including itself). The trellis must therefore
be initialized simultaneously at each first state of a possible beginning word and when the last
column is reached, the cumulated log-likelihoods of all possible ending words must be com-
pared to determine the best path. Then, the best output sequence of words can be determined
through backtracking. The right part of Figure 2.7 shows an example of best path with the
sequence “ws — wy”.

|
w, \\ W,
\\ - End 4
\\ - points

W, \\ Wa :
Start . ./gi‘ E
points o H »

Wl Wl :

Figure 2.7: Application of the Viterbi algorithm to continuous speech recognition and example
of best path

It is sometimes desirable to get not only the best output sequence, but also some al-
ternatives. In this case, the standard Viterbi algorithm must be extended to keep track of
more than one predecessor at each word (and eventually state) transition during the decoding
process. Since the number of possibilities can be huge, it is common to keep only a subset
of N-best alternative hypotheses, represented by either a lattice or a ranked list. This dis-
sertation will partly rely on the token passing algorithm to generate N-best alternatives; it
formulates the Viterbi algorithm as a process of passing tokens through a recognition network.
More information about this algorithm can be found in [159].
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In practice of course, not all words can start or end a sentence and not all words can
follow a given word. This is why the language model (LM) is important in continuous speech,
because it limits the number of possibilities by telling which words can follow which other
words. The LM can be taken into account in the trellis by adding an LM log-probability to
the cumulated log-likelihood each time that a path enters a new word. Besides, two additional
factors can influence the overall score. The first factor is the language model scale, which
modifies the relative importance of the LM relative to acoustic log-likelihoods by multiplying
the LM log-probability by this factor. The second factor is the word penalty, which is a fixed
value subtracted from the overall log-likelihood each time that a path enters a new word; the
objective is to avoid insertions of too many words in the output sentence. For instance, if
both factors are taken into account and a path went through words w; and wy and enters a
word w3, the new cumulated log-likelihood log(d;()) of state j at time ¢ would be:

log(d;(1)) = log(d(t — 1)) + log(aij) + log(bj(0r)) + 5 - log(P(ws|wi, w2)) — P (2.29)

where 7 is the index of the best previous state, P(ws|wy,ws) is the LM probability for the
sequence “wi; —w9o —w3” and S and P are the applied LM scale and word penalty respectively.

When only the best sequence of words is required, it is not necessary to keep the list of
best predecessors at all iterations. Only transitions from the end of a word to the beginning
of the next word are important, namely at which column the best path entered a new word
and which was the best predecessor of this word. The best sequence can be retrieved by a
recursive process:

1. Beginning from the last element of the best path, get the column where the best path
entered the last word.

2. Go to the given column and find which was the best predecessor of the last word.

3. Get the column where the best path entered the best predecessor, and so on.

By this method, word-level segmentation information can also be retrieved at the same
place since the columns where the words start are also given.

2.4 Evaluation of ASR systems

In order to measure the performance of an ASR system, we must compare the hypothesized
sequences of units (e.g., words) returned by the recognizer with the corresponding reference
sequences. This is done by aligning each pair of reference-hypothesized sequences using a
dynamic programming algorithm (e.g., [142]) to find the best mappings between their com-
posing units. If a hypothesized sequence does not perfectly match a reference sequence, three
types of error can be defined from the alignment made: a substitution error when a reference
unit is mapped to a different unit, a deletion error when a reference unit is not mapped to
any hypothesized unit and an insertion error when a hypothesized unit is not mapped to any
reference unit. These errors are used to compute a metric that evaluates the performance of
an ASR system. For word recognition, the two most popular metrics are the Word Accuracy
(WA) (WA) and the Word Error Rate (WER). Given N, S, D and I the number of reference
words to recognize, substitutions, deletions and insertions respectively, the WA is defined by:
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N-S-D-1
= *

WA N

100 (2.30)
and the WER by:

S+D+T
WER =100 - WA = +T+ £ 100 (2.31)

The WA and WER can be respectively negative and above 100% because the number of
insertion errors is not bounded. Another frequently used metric that does not include insertion
errors is the word correct rate (WCR):

N-S-D
WA= + %100 (2.32)

This dissertation will use the WER as the evaluation metric. Additionally, the Phone
Error Rate (PER) will also be used, which is calculated in the same way as the WER, but
applied to phones instead of words; it will measure how accurately the ASR system targets
the true pronunciations of utterances.

When a certain method is applied to modify the characteristics of an ASR system, the
performance of the latter can be modified and yield another performance value. However,
this difference in performance before vs. after the application of the method is subject to
some uncertainty, because the number of samples is finite so that evaluation on another set of
samples would generally lead to another performance. To determine if the increase or decrease
of ASR performance obtained through the application of a method is statistically significant,
a confidence interval must be determined around each metric. Size of confidence intervals
depends both on the associated metric value and on the size of the test set. The statistical
significance test used in this dissertation is described in appendix E.

2.5 Summary

In this chapter, we described the basics of state-of-the-art speech recognition systems. It was
first explained how the most relevant speech characteristics for recognition could be extracted
from the input speech utterance to form a sequence of acoustic vectors, in particular the Mel-
frequency cepstral coefficients, which are the most popular features. Then, Hidden Markov
Models (HMM) were introduced as they are the method of choice for speech recognition. The
three main components of an HMM-based system were also described: acoustic models, lexicon
and language model. These components successively map a sequence of units to another
higher-level sequence of units: from acoustic vectors to phones by the acoustic models, from
phones to words by the lexicon and from words to sentences by the language model. The
two most popular methods for training and decoding with HMMs are the Baum-Welch and
Viterbi algorithms.

As it could be expected, standard ASR systems are not without limitations. One of the
issues involves the presence of pronunciation variations, especially in spontaneous speech, that
state-of-the-art ASR systems do not handle properly. The next chapter will review some of
the problems associated with this field and how they were addressed in the literature.



Chapter 3

Basics of pronunciation variation
modeling

This chapter will review some basic notions in pronunciation variation modeling for speech
recognition. We will describe the limitations of standard ASR systems due to pronunciation
variation as well as some methods proposed in the literature to address these issues. The
presentation is structured in the following way:

e Section 3.1 will define some terms commonly used in pronunciation modeling (phoneme,
allophone, phone).

e Sections 3.2 and 3.3 will explain why pronunciation variation is an important factor to
take account and how it can affect ASR systems if it is not properly modeled.

e Sections 3.4 to 3.7 constitute the core part of this chapter and will describe the types of
methods proposed in the literature to model pronunciation variation.

e Section 3.8 will explain how the performance of a pronunciation modeling method can
be evaluated.

e Section 3.9 will give an insight into some of the current trends in pronunciation modeling.

e Section 3.10 will summarize the chapter.

The content of this chapter is partly inspired from the survey in pronunciation modeling
published by Strik and Cucchiarini [135]. Some additions are included and some points will

be described in more detail, especially when they are useful to understand the next chapters
of this dissertation.

3.1 Phoneme, allophone, phone

Before continuing further, it is useful to define some terms commonly used in the speech
community and particularly in pronunciation modeling:

A phoneme (reminder) is the most elementary unit that distinguishes the meaning of a word
from another, that is, a change of a phoneme implies a change of the meaning of the
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word as well. For example, the words “hat” and “cat”, phonemically transcribed as
/hh ae t/ and /k ae t/ respectively, are only different by a single phoneme, /k/ vs.
/hh/, and the two words have different meanings. A phoneme is an abstract unit that
can be pronounced in different ways (see below).

An allophone is a variant of a phoneme that does not change the meaning of a word. A
phoneme may be realized as one of several distinct allophones. To better understand
the difference between these two terms, a phoneme can be compared to an object (e.g.,
a table) that can have different colors and shapes (e.g., blue or green, round or square
table), but whatever the possible variations, it does not modify the notion of the object
itself (i.e., a table is not a chair). For example, the canonical transcription of “hat” is
/hh ae t/, but it can be pronounced as [hh eh t] without changing the meaning of the
word, hence [eh] is an allophone of /ae/.

A phone is the smallest identifiable speech unit as it is pronounced. This is a more generic
term than “allophone”, because its meaning in context does not necessarily imply a
dependency to a certain phoneme. In other words, the term “phone” can be used to
mean either a realization of a phoneme or a simple speech unit (regardless of the phoneme
which realized it), while the term “allophone” is more commonly used in the former case.

In the literature, we commonly say that a phoneme may be realized as one or more different
phones. When several phones are the realizations of the same phoneme, they are called the
allophones of this phoneme.

Similar to the distinction between phonemes and phones, a transcription based on phonemes
is called a phonemic transcription or a baseform, conventionally surrounded by “/.../” delim-
iters, while a transcription based on phones is called a phonetic transcription or a surface
form and is surrounded by “[...]” delimiters.

In the literature however, the terms “phoneme” and “phone” are often used interchange-
ably because both are frequently used as modeling units of ASR systems. This dissertation will
employ both terms, although “phone” will be used as a more generic term than “phoneme”;
the latter will generally be used to mark the difference between an abstract unit and its
realization.

3.2 Importance of pronunciation variation

State-of-the-art ASR systems perform well when the characteristics and conditions under
which the recognition is performed are favorable. On the other hand, recognition performance
can drop substantially as soon as the situation gets more difficult. This chapter is dedicated
to the analysis of one of its major factors: pronunciation variation.

There are many sources of pronunciation variation. They can be categorized in two types,
inter-speaker and intra-speaker variation. It is indeed intuitive to understand that different
speakers do not pronounce words in the same way due to differences in gender, age or social
background for instance, but also that a same speaker does not pronounce words in the same
manner across utterances either, due to the state of the person (e.g., health, emotional state)
and the influence of the environment (e.g., hyper-articulation under noisy conditions). Peters
and Stubley [112] projected acoustic trajectories of phone utterances from several speakers
on a two dimensional plane and showed that variation can be as high for a single speaker as
across speakers.
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Early works in ASR were focused on simple tasks like isolated word recognition. But as
substantial progress was made and due to the availability of more realistic speech databases
to work with, research shifted from the identification of isolated words to the recognition of
continuous speech, which comprises carefully read speech, but also more natural (also called
spontaneous) speech. The amount of pronunciation variation is substantially higher in the
latter case, because people tend to minimize the effort required to transmit a message as long as
the listener can get the meaning of it using higher-level knowledge. An analysis made by Fosler-
Lussier and Morgan [44] on the development test set of Switchboard (a spontaneous speech
database) showed that only 33% of words were canonically pronounced. Their experiments also
showed that deviation from canonical pronunciation was greatly influenced by speaking rate
and word predictability (frequency). Greenberg [56] phonetically transcribed a portion of the
Switchboard corpus and found a lot of possible pronunciations for frequent words, for example
more than 80 variants for the single word “and”. These analyses show how pronunciation
variation has become an important factor to account for. The next section will describe the
influence of such variation on ASR systems.

3.3 Limitations of standard ASR systems

3.3.1 Effects of pronunciation variation to ASR systems

At this point, a question to be asked is: what are the possible effects of pronunciation variation
to ASR systems 7 In fact, these variations are harmful both to the training and recognition
phases of a system if they are not modeled properly.

Let us first consider the training phase. As seen in the previous chapter, it consists of
iteratively aligning some acoustic models to acoustic observations and of re-estimating the
model parameters from the alignments. Choices of models to use are guided by the sequence
of correct words found in the utterance. However, if phones are the basic units of the system,
it is also desirable to know how these words were pronounced in order to use the correct
sequence of phone models to align with. The most reliable way is to ask a human expert to
phonetically transcribe each speech utterance, but such method requires too much time and
expertise. An alternative method is to rely on the ASR lexicon to automatically map the
words to a sequence of phone models. However, most state-of-the-art ASR systems contain
either a single or only a few alternative pronunciations per word. As a consequence, it is
possible that a wrong sequence of acoustic models is used for training. For instance, suppose
that an utterance contains the word “had”, whose canonical transcription is /hh ae d/, but
was actually pronounced [hh eh d]. If the lexicon contains only the canonical transcription
/hh ae d/, the latter will nevertheless be used for training. Consequently, the /ae/ model will
be contaminated because it will be trained using a wrong ([eh]) speech segment.

Let us consider now another example to understand the potential problem during the
recognition phase. Suppose that a speaker uttered the word “command” and pronounced it
[k aa m eh n d]. Let us assume that the lexicon only contains the canonical transcription
/k ax m ae n d/ for this word, but also the transcription /k aa m eh n t/ for another word
“comment”. Given these two similar baseforms, the speaker’s pronunciation is ambiguous and
the ASR system could recognize “comment” whereas the speaker uttered “command”. Such
ambiguity could be alleviated if, for instance, an additional transcription /k aa m eh n d/ (i.e.,
that exactly matches the speaker’s pronunciation) were associated with the word “command”!.

1As it will be described later in this chapter, addition of such entry does not necessarily mean that the
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The effects of pronunciation variation can be detrimental to ASR systems, especially in
spontaneous speech. For example, Fosler-Lussier and Morgan [44] reported that an increase
of pronunciation variation provoked by a shift in speaking rate yielded a 14% absolute drop
in performance on Switchboard. On the other hand, a good match between pronunciations
and acoustics can significantly increase the recognition rate. McAllaster et al. [104] simulated
some speech data with their acoustic models and found that when all pronunciations of their
data exactly matched the transcriptions found in their lexicon, ASR performance increased
between 5 and 10 times, depending on the acoustic models they used in their experiments.

3.3.2 Triphones vs. pronunciation variation modeling

Despite the limitations mentioned in the previous subsection, ASR systems are nevertheless
able to compensate the effects of pronunciation variation to a certain extent with context-
dependent models. Indeed, triphones consider left and right phonetic contexts to account
for possible realizations of a phoneme due to coarticulation. The use of multiple Gaussian
mixtures per HMM state further increases the modeling capacity.

However, for all that the negative effects of pronunciation variation are not completely elim-
inated. During training, wrong alignments between models and data will increase the variances
of acoustic distributions in HMMs and will consequently require more mixture components
to accurately model them. Therefore, complexity of models would be increased unnecessarily.
Furthermore, there are some kinds of pronunciation variation that context-dependent models
cannot capture very well. Jurafsky et al. [76] showed that while triphones are well-suited for
phoneme substitutions and vowel reductions, they do not model accurately complete syllable
deletions. Adda-Decker and Lamel [1] found that missing phonemes in transcriptions such as
“liaisons” or final schwas in French are particularly prone to errors if they are not properly
accounted for in lexicons. The potential effects of triphones with and without pronuncia-
tion variation modeling in ASR performance have been brought to the fore by McAllaster
et al. [104]. On one hand, they evaluated some triphones trained on Switchboard data and
obtained a baseline performance. On the other hand, they generated some simulated data
that exactly matched their acoustic models, but using hand-labeled phonetic transcriptions
that were significantly different from the canonical transcriptions found in the ASR lexicon.
They only obtained a slight increase in performance compared to their baseline. It is only
when the pronunciations also matched the transcriptions in the lexicon that the recognition
accuracy increased by a factor between 5 and 10 times.

It is therefore important to take account of pronunciation variation in ASR despite the
presence of context-dependent models. The next sections will give an insight into some meth-
ods reported in the literature.

3.4 Levels and phases of pronunciation modeling

Pronunciation variation can be modeled at all levels of an ASR system: lexicon, acoustic
models and language model. The most common approach is however to model it at the
lexicon level, since it is convenient to control the variations by modifying or adding new
transcriptions. Hereafter, it will be assumed that all methods described are applied to the

overall performance will be improved (risks of lexical confusability), but it would at least avoid a potential
error in this particular situation.
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lexicon level. Section 3.7 will then give more description about the application of these methods
to the other levels (acoustic, language model).

In order to properly model pronunciation variation, two phases are generally required: a
generation phase and a selection phase. The generation phase consists of discovering a set
of alternative phonetic transcriptions that represent the possible pronunciations of a word as
accurately as possible, while the selection phase consists of keeping only a subset of these
transcriptions based on a certain criterion. The two phases will be described in sections 3.5
and 3.6 respectively.

3.5 Generation of pronunciation variants

3.5.1 Knowledge-based vs. data-driven methods

There are basically two ways to obtain pronunciation variants, either knowledge-based or
data-driven. Knowledge-based methods rely on a priori knowledge on pronunciation variation.
Typically, one could refer to some existing pronunciation dictionaries (e.g., [121]) that contain
a large set of pronunciation variants per word (although it is not straightforward to use these
dictionaries for ASR since they are coded in compact form, see Roach and Arnfield [120]
for more details). An alternative practice is to define some general rules based on linguistic
studies on pronunciation variation that transform a canonical transcription to obtain the list of
possible pronunciation variants or a network of allophones per word (e.g., Wester et al. [149],
Cohen [28]). The great benefit of knowledge-based methods is they are general enough to be
applicable to any situation. On the other hand, there is always a risk that these techniques
do not match well the real pronunciations found in a given speech task and generate either
not enough or too many variants. Besides, some knowledge about pronunciation variation
of a given language is of course required; such approach becomes difficult when dealing with
pronunciation variants of multiple dialects and foreign accents since knowledge of all the
corresponding source languages is then needed.

Alternatively, data-driven methods can be used, which consist of inferring pronuncia-
tion variants directly from speech data. The benefit of data-driven methods compared to
knowledge-based approaches is that pronunciation variants will better match the underlying
pronunciations of a speech database, but they may lack a certain generality and may not be
portable to another ASR system or speech database. Furthermore, when modeling pronunci-
ation variation of multiple dialects and foreign accents, sufficient amount of speech database
of each targeted dialect and accent is a priori required, which is difficult to get. Recently
however, Goronzy [55] (chapter 8) proposed a new method to automatically derive non-native
pronunciation variants using only data from the source and target languages, so without the
need of any accented data.

A common starting point of all data-driven methods is to phonetically transcribe the
acoustic signal in order to infer the pronunciation variants. This process can be done manually
by a phonetician, but it requires a lot of time and expertise and is therefore not feasible for
large speech corpora. An alternative method is to retrieve a sequence of phones from the
signal using a phone recognizer. The great benefit of this approach is that this procedure
is automatic and can be applied to a large speech database. On the other hand, it is much
prone to errors: while phone recognition accuracy can achieve acceptable performance for
some read continuous speech databases (e.g., above 70% with TIMIT), it can easily drop for
more complicated tasks (e.g., Humphries [67] obtained only around 50% on the WSJCAMO
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database), especially with spontaneous speech databases. This is why some research is focused
on improving the quality of phonetic transcriptions (e.g., Cucchiarini and Binnenpoorte [31]).

In the literature, some papers directly use phonetic transcriptions despite their errors,
because they can partially be smoothed and pruned through a formalization procedure (de-
scribed in section 3.5.2) and the selection phase (described in section 3.6). Nevertheless, some
other papers try to enhance the simple phone recognition approach. Humphries [67] used
confidence measures (e.g., number of competing phone hypotheses over a period of time) to
ignore the portions of the recognizer with low confidence scores. The most common approach
is however by means of forced recognition: it consists of constraining the recognition with a
pronunciation network that tells which sequences of phones are allowed to constitute a valid
pronunciation variant. This procedure is actually the Viterbi (forced) alignment described in
section 2.3.7, although the objective is different: in the previous case, we were looking for the
start and end times of each phone given a single sequence of these subword units, whereas in
the current situation several distinct phone paths are possible for a given word or sentence
and the goal is to find the best subword sequence, often regardless of their time boundaries
(although it is still possible to get them as well through this procedure). Since the basic
algorithm to find the best path remains the same, this dissertation will use the general term
“Viterbi alignment” to refer to both kinds of procedures.

There are several ways to build a pronunciation network. For example, Yang et al. [156]
built first a linear network topology containing the canonical transcription of a sentence,
but then supplemented it with arcs to account for optional deletions and substitutions of
each phoneme and insertions between two successive phonemes. The network also contained
transition probabilities and acoustic penalties to control the amount of deviation from the
canonical version. Other networks with similar optional modification principle can be found
in the literature (e.g., Adda-Decker and Lamel [1], Kessens et al. [79]). Another possibility is to
generate the network using knowledge-based phonological rules (e.g., Finke and Waibel [42]);
rules should however be designed so that they do not restrict too much the generation of
possible variants.

Once a sequence of phones has been obtained from the speech signal, pronunciation vari-
ants for each word can be deduced, either directly if each utterance is a single word, or by
mapping each word to the appropriate sequence of phones (e.g., by alignment with the canon-
ical transcriptions of words using dynamic programming) if each utterance is a sentence.

3.5.2 Direct vs. indirect pronunciation modeling

Regardless of the type of generation method (knowledge-based and/or data-driven) adopted,
pronunciation variation can be represented directly or indirectly. A direct representation
consists of simply enumerating the possible pronunciation variants per word. This is typically
how they are represented in knowledge-based pronunciation dictionaries or obtained in a data-
driven manner from the acoustic signal, as described in the previous subsection. The advantage
of enumeration is that it is straightforward and variants can be obtained easily. On the other
hand, it is difficult to see how some variations occur across words and hence to control them.

An indirect representation consists of formalizing the possible pronunciation variants, i.e.,
to build a pronunciation model that represents the variations in a more compact form. A
typical example is the construction of pronunciation rules used to transform the canonical
transcription of a word to generate a set of pronunciation variants. Such pronunciation models
can be designed manually based on relevant linguistic studies, or automatically through a
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data-driven method from the available speech database. A common practice in the latter case
respects the following points for each training utterance of the database (an example is shown
in Figure 3.1):

The meeting is adjourned

Y

m iy [t]ix—»dx

Dy o

d Ly toixi

dh ax miy t ix ng ih z ax jher nd 7 iy 11X
@ v v vy v vy vy vy vy
dh miy dx iyng ihs ixjhern

2

Figure 3.1: Procedure to indirectly model pronunciation variation

1. Given the sequence of words uttered, retrieve the canonical transcription of each word
from the ASR lexicon and concatenate them to obtain a sequence of phonemes for the
utterance.

2. Phonetically transcribe the acoustic signal (e.g., using a phone recognizer, cf. sec-
tion 3.5.1) to get a sequence of phones for the same utterance.

3. Align the sequence of phonemes to the sequence of phones to get a list of phoneme-to-
phone maps using a dynamic programming algorithm.

4. Use the phoneme-to-phone maps to build a pronunciation model.

Different pronunciation models were proposed in the literature, such as pronunciation rules
(e.g., Cremelie and Martens [29]), decision trees (e.g., Riley et al. [118]), neural networks (e.g.,
Fukada et al. [48]) and confusion matrices (e.g., Torre et al. [139]). The most popular methods
(and also used in this dissertation) are pronunciation rules and decision trees, which will be
described in the next subsections.

3.5.3 Pronunciation rules

(Note: most notations and terms used in this section are borrowed from Cremelie and Martens [29].)

A general formulation of a pronunciation rule r is given by the following expression:

r: LFR—F' (3.1)

This expression means that the focus F' is realized as the output F’, but only if F is
surrounded by the left context L and the right context R. LER is called the condition of the
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rule. The focus F' must contain at least one phoneme, while the contexts L and R and the
output F’ can contain zero or more phone(me)s. It is also possible to include a special symbol
to represent a word boundary in the rule condition.

A rule is eligible if its condition is satisfied, which does not necessarily mean that the rule
will be applied. Therefore, whenever a rule is eligible, two outputs are generated, one with the
rule applied and the other with the rule not applied. To quantify how likely is each output,
each rule r is associated with a probability that measures how likely a speaker would realize
the focus F as the output F’ if the condition of the rule, LF R, is satisfied:

P(r) = P(F'|LER) (3.2)

Each rule probability is typically estimated by counting the number of times the rule is
applied over the number of times it is eligible:

Count(LFR — F')

P(r) Count(LFR)

1

(3.3)

These counts can be obtained from the phoneme-to-phone maps obtained in the previous
subsection.

Although different methods exist, a simple way of transforming a sequence of phonemes
given a set of rules is to verify and apply each rule individually, one after another. Figure 3.2
illustrates an example of process with the canonical transcription of the word “forecast” and
three rules (the '#’ symbol denotes a word boundary). The leftmost rule in the figure is not
eligible and cannot transform the sequence, while the remaining rules are eligible and option-
ally applied. This is actually the method adopted for the rule-based experiments described in
chapter 6; the reader can refer to section 6.4.3 for more detail.
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Figure 3.2: Example of generation of pronunciation variants using rules
Besides the rules described above, negative rules (also called exception rules) can also be

defined in order to prevent transformations by the previous rules in some specific contexts.
The general form for a negative rule not_r is given by:

notr: LFR — not(F') (3.4)

which means that when a focus F' is surrounded by the left context L and the right context
R, it cannot be realized as F'.
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3.5.4 Decision trees

A decision tree is a statistical tool that predicts the value of a certain variable given a set of
predefined features. In the domain of pronunciation modeling, we are interested in predicting
how a certain phoneme in a canonical transcription would be realized under some given con-
texts. The predicted values are therefore the set of realizable phones given the phoneme. The
phoneme and its contexts constitute the set of features provided to the tree. The prediction is
carried out by exploring the tree from the root to the leaves and by answering some questions
associated with the nodes of the tree and concerning the provided features. Contexts used as
features are variable, but the most often used ones are information about the left and right
neighbors of the phoneme in the canonical transcription, expressed in terms of their phonetic
features. It is also common in practice to use a separate tree per phoneme for a more reliable
prediction. Decision trees are well-suited when the number of possible contexts is big, because
the classification paradigm into their different branches based on the set of input features lets
them also account for contexts not seen in the database used to build the trees.

Training of decision trees consists of providing them with the input features and cor-
responding predicted value. For pronunciation modeling, they can be obtained from the
phoneme-to-phone maps obtained in section 3.5.2. Several algorithms to build decision trees
exist in the literature, like CART (Classification And Regression Trees, Breiman et al. [16])
and GRD (abbreviations from the authors, Gelfand, Ravishankar and Delp [53]). The deci-
sion trees used in this dissertation will use the CART algorithm, which has been reported to
be more effective with limited amount of training data than GRD ([67]). CART consists of
building binary decision trees, which means that each node of the tree (if not a leaf node)
has exactly two children. The two branches connecting a parent to its children answer by a
“yes” and a “no” respectively to a question associated with the parent node and concerning
one of the input features. More detail about the CART algorithm will be described later in
this dissertation during the relevant experiments (section 5.6.1).

yes no
2
yes no
Qs
yes no
d 0.73
t 0.27

Figure 3.3: Example of generation of pronunciation variants using decision trees

An example of small decision tree with three questions (Q;, i = 1,2,3) and using the
CART algorithm is illustrated in Figure 3.3. Suppose that we would like to predict the
possible realizations of the phoneme /t/ of the proper name “Watson”, given the phonetic
features of its immediate left and right contexts, /aa/ and /s/ respectively. The decision
tree built for the phoneme /t/ will then be explored by asking questions like “Is the right
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context phoneme a fricative 7”7 at each node and by following the branch associated with the
corresponding answer. The prediction is given by the leaf found at the end of the exploration,
which generally contains a probability distribution of the possible surface form phones, in
this example [d] with a probability of 0.73 and [t] with 0.27. Pronunciation variants can be
obtained by simply concatenating all possible combinations of successive phones.

3.5.5 Within-word vs. cross-word pronunciation modeling

Pronunciation variation can occur inside a word (within-word variation), but also at the junc-
tion of two words (cross-word variation) in continuous speech. Typically, the “liaison” in
French is an example of cross-word variation, since a [z] is added after a word that ends with
a [s] or [x] when the next word starts with a vowel?. When only within-word variations are
modeled, it is sufficient to simply add pronunciation variants to the lexicon. On the other
hand, more elaborate method is required to take account of cross-word variations as well, since
neighbor words of lexical entries are a priori unknown.

A simple method to take account of cross-word variations is through the use of multi-
words: it simply consists of adding pairs or even triplets of words as separate entries to the
lexicon and of generating their pronunciation variants like with any other word. This method
has been successful in some cases (e.g., Finke and Waibel [42]), but not always (e.g., Riley et
al. [118], Wester et al. [149]). An alternative approach is to integrate cross-word variations
into the recognition network of HMM systems. For instance, Cremelie and Martens [29] built
a pronunciation network per word with conditional entries and exits labeled with the index
of the rule applied. During the generation of the recognition network - guided by the allowed
sequences of words found in the language model - only pronunciation networks of words with
compatible entries and exits (i.e., with the same rule index) could be connected to each other.
Saraglar et al. [124] applied a decision tree-based pronunciation model to their phoneme-level
recognition network (obtained from the combination of a lexicon and a language model, or
from a first recognition pass) to yield a network of surface forms.

3.6 Selection of pronunciation variants

3.6.1 Lexical confusability

A well-known problem in pronunciation modeling is that it is not enough to just generate
all possible pronunciation variants and to add them to the lexicon, because lexical confus-
ability increases due to an augmentation of similar pronunciation variants across different
words, which often leads to a drop in recognition performance. An example is shown in Fig-
ure 3.4 for the words “command” and “comment”: whereas their canonical transcriptions,
/k ax m ae n d/ and /k aa m eh n t/, are distinct by three phonemes, their pronunciation
variants, [k ax m eh n d] and [k ax m eh n t], are much closer to each other and add the risk
of recognizing “command” as “comment” or vice-versa.

The language and acoustic models can help to avoid some errors to a certain extent, but it
is often not enough. It is therefore necessary to reduce the number of possible pronunciation
variants or transformations (e.g., number of rules) in order to avoid too much confusability.
This is a priori not an easy task, because a variant or transformation that causes many

2This is a general rule that contains exceptions, see Adda-Decker and Lamel [1]).
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command
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Figure 3.4: Example of lexical confusability between the words “command” and “comment”

recognition errors in some cases can also contribute to considerable improvements in some
other cases (Kessens et al. [79]). Some criteria of selection proposed in the literature are listed
in the next subsection.

3.6.2 Selection criteria

Maximum frequency : an intuitive choice is to keep only the most frequent variants (e.g.,
Mokbel and Jouvet [105]) or the most applied transformations (e.g., rules in Wester et
al. [149]), based on either a priori knowledge or from occurrences observed in the training
data.

Maximum likelihood : since parameters of acoustic models are estimated so that they
maximize the likelihood (ML) of the training data, some researchers prefer to select
variants or transformations based on the same criterion. Holter and Svendsen [65] and
Mokbel and Jouvet [105] grouped tokens of words into clusters based on the ML criterion
and represented each cluster by the most likely phonetic transcription (the two papers
differ in the clustering algorithm). Amdal [2] selected rules that most increased the total
likelihood of word tokens. Variation of likelihood given a word token was measured by
the ratio of the log-likelihood of the token after applying a rule to the word baseform
over the log-likelihood before its application.

Confusability measures : some papers proposed methods to eliminate words or phonetic
transcriptions that were too confusable. Torre et al. [139] first built a confusion ma-
trix using their unrestricted phone recognizer, then estimated a confusion probability
between two transcriptions and between two words based on the matrix. These esti-
mations were used both to select the least confusable words and to generate alternative
transcriptions that were as distinct as possible across words. Sloboda [129] also used
a confusion matrix to reject pronunciation variants that differed only in highly con-
fusable phonemes. The remaining variants were used to retrain acoustic models with
more accurate transcriptions. Roe and Riley [122] measured confusability between pairs
of words by taking the intersection of their respective pronunciation networks and by
measuring their confusions using the Bhattacharyya distance. Good correlation was ob-
tained between the predictions made by the system and the actual confusions observed.
Wester and Fosler-Lussier [147] built a lattice of words that competed each other when
their pronunciations matched a same substring of the reference transcription of the data.
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Based on the number of competing words in the lattice, they defined two metric bounds
that respectively over- and underestimated the number of possible confusions. Recently,
Fosler-Lussier et al. [43] extended this work by also taking account of acoustic model
confusions and language model and by integrating them into a sequence of weighted
finite state transducers (WFSTs, cf. section 3.9).

Confidence measures : alternatively, confidence scores can be used to measure the quality
of phonetic transcriptions. Williams and Renals [151] evaluated several metrics and
found that frame normalized a posteriori phone probabilities gave the best estimation.
They added new pronunciations when their confidence scores were higher than the score
of the corresponding canonical transcription of the word.

Entropy : this measure can estimate the uncertainty of a pronunciation given a word. Tsai
et al. [140] used it to limit the number of pronunciations per word proportionally to the
associated entropy. Following a similar line of thought, entropy can also be related to
the uncertainty of applying a transformation to model a pronunciation variation. For
instance, Yang and Martens [155] organized their set of pronunciation rules in a hierarchy
and iteratively pruned a child rule when its replacement by a parent rule (similar to the
child rule, but with shorter rule context) implied only a small change of this uncertainty
(measured by the difference of entropy before vs. after pruning)?.

3.6.3 Dynamic pronunciation modeling

Although reduction in the number of variants or transformations limits the risks of lexical con-
fusability, it also limits pronunciation coverage. This may be a handicap when the amount of
pronunciation variation is considerably high, typically when dealing with dialects and foreign
accents. An alternative solution in such situation is to let more variants or transformations
coexist, but to modify their relative importance or to activate them at different times during
recognition depending on one or more factors. This is the basic concept of dynamic pronun-
ciation modeling, which constitutes one of the major topics of this dissertation.

Examples of dynamic techniques are not frequent, but still exist in the literature. For
instance, Fosler-Lussier [45] adopted an N-best list rescoring paradigm: each recognized hy-
pothetic sequence of the list was expanded to a pronunciation network using syllable- and
word-level decision trees and based on various measurements (e.g., phonetic features, but also
syllable and word-level features, word predictability, speaking rate). Then, a Viterbi alignment
on each network defined new acoustic scores, which were used in combination with language
model scores to re-rank the hypotheses. Similar idea was applied to lattice rescoring as well,
by dynamically determining the pronunciations of words during decoding and by assigning
new acoustic scores using decision trees and based on the neighbor words in the lattice and
other features. Slight improvement over the static approach was observed. Another example
is given by Ostendorf et al. [109] that dynamically selected pronunciation variants or modi-
fied their associated probabilities by estimating a “hidden speaking mode” for each utterance,
using cues such as speaking rate, normalized energy, etc. They were also intended for rescor-
ing n-best lists or lattices. Finke and Waibel [42] incorporated these cues as questions into
decision trees and obtained significant performance improvement on Switchboard. Recently,
Ward et al. [144] presented a preliminary work towards dynamic pronunciation modeling.
Their experiments suggested that more than two pronunciations per word are necessary for

3In a more recent paper [156], they further weighted this metric by an expression containing the application
frequency of the child rule in order to prune rules that were not often eligible.
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a dynamic approach to be effective, and that prosodic factors like stress and pitch-accent are
important cues to model heavy-accented speech. The methods presented in this dissertation
also fit in with this framework. However, they are different from the above techniques because
they are focused on the extraction of articulatory positions from speech to predict the possible
pronunciation variations. Furthermore, we will not only investigate the dynamic approach at
the lexicon level (chapter 4), but also at the acoustic (HMM) level (chapter 5).

One of the reasons why dynamic approaches have not often been proposed in the literature
is because it unavoidably increases the computation time, since extraction of dynamic cues
(e.g., speaking rate) and reduction of pronunciation variants or transformations must be done
during recognition. To address this issue to a certain extent, chapter 6 will present an alterna-
tive method that builds speaker-dependent lexicons based on a symbolic speaker adaptation
technique. Although the technique cannot be considered fully dynamic, it nevertheless allows
an adaptation of pronunciation variants to a change of speaker. It will also address the issue
of handling multiple dialects and foreign accents.

3.7 Pronunciation modeling at the acoustic and language model
levels

Once a set of pronunciation variants or transformations has been obtained, they can be used
to augment the lexicon with additional pronunciation transcriptions per word. Additionally,
they can update the acoustic models and the language model so that they also account for
the possible pronunciation changes.

To update the acoustic models, a common practice is to phonetically retranscribe the
training data with Viterbi alignment (forced recognition) that selects among the new added
and competing pronunciation variants. These new labels hopefully better match the pronun-
ciations of spoken utterances and are used to retrain the acoustic models (e.g., Sloboda [129]).
Iteratively, these new acoustic models can be used to update the pronunciation variants or set
of transformations, which in turn can generate another set of phonetic transcriptions, and so
on (e.g., Wester et al. [149]). Strik et al. [135] experimentally found however that successive
iterations were of limited benefit and a single iteration was enough.

Retraining the acoustic models is not the only way to model pronunciation variation at
the acoustic level. Other papers proposed new HMM topologies, new types of units or more
explicit acoustic-level pronunciation modeling. Some examples of these techniques will be
described later in section 5.2.2 (as they better fit in with a method proposed in chapter 5).

In word recognition, language models (LM) are expressed at the word level, so without any
further specification, all pronunciation variants of a word following another word are considered
equiprobable. A possible solution to take account of the relative importance between variants
is to incorporate the latter into the LM. Wester et al. [149] did this by counting the number of
occurrences of each variant in the training data. These counts were then used to build variant-
level LMs. Alternatively, probabilities can be associated with pronunciations (while keeping
the word-level language model), so that during decoding, a separate pronunciation score can be
combined with acoustic and language model scores to influence recognition decisions. Although
early experiments reported in this dissertation did not address the LM issue, pronunciation
probabilities were then taken into account in later experiments (chapters 6 and 7). In line with
Yang et al. [156] who reported that simply adding pronunciation probabilities were not very
useful, the latter were also scaled during recognition to emphasize their importance relative
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to acoustic and LM scores.

3.8 Evaluation of pronunciation modeling methods

The measure most often used to evaluate the performance of a pronunciation modeling method
is the change of word error rate (WER). Namely, given the WER of a baseline ASR system,
say W ERpqse, and the new WER of the same system after application of the method, say
W E Ry, e, performance is evaluated by measuring the difference between the two WERs. This
difference can be expressed in absolute terms (AW ERy,) or in relative terms (AW ER,.;):

AW ER s = W ERpase — W ERpew (3.5)

WERbase —WERpew
WERbase

AW ER,. = (3.6)

Although both values are commonly reported in the literature, AW ER,.; is generally
preferred because it measures the amount of improvement with respect to the baseline: given
a reduction in WER measured with the application of a method, it is more difficult to get this
improvement when starting from a high baseline (i.e., with low W ERy4s.) than from a low
baseline (i.e., with high W ERy,s.). AW ER,¢ will reflect this difficulty, but not AW ER ;.
Besides this global evaluation method, some researchers (e.g., Kessens et al. [79]) also carry
out error analyses to get a better insight into the processes underlying pronunciation variation
that improve or deteriorate the performance of their baseline system, but such analyses are
less common in the literature.

Although a lot of research has been dedicated to improve ASR performance by modeling
pronunciation variations, results reported in the literature so far have been of limited success:
around 10% relative reduction in WER and even less most of the time. These results suggest
that the right solutions have not been found yet. But as already mentioned in section 3.3.2,
several studies (e.g., Adda-Decker and Lamel [1], Jurafsky et al. [76], McAllaster et al. [104])
clearly showed that not only pronunciation modeling is necessary to model certain pronun-
ciation characteristics, but it has also the potential of bringing substantial improvements in
spontaneous speech. Besides, some researchers did obtain occasionally larger improvements
(e.g., 35% relative reduction of WER in Yang et al. [156]), which encourages more research to
target the optimal solutions in the future.

3.9 Some current trends in pronunciation modeling

Although certainly not exhaustive, some noticed trends in pronunciation modeling are listed
below:

Dialects and foreign accents : in the past, pronunciation variation was often modeled
without considering the speech background of speakers. It is however known that pro-
nunciation variants due to dialects and foreign accents can be detrimental to ASR sys-
tems. To the author’s knowledge, one of the first works on pronunciation modeling of
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dialects and foreign accents? was reported by Humphries [67] in 1997. From then, sev-
eral other papers on this topic were also published (e.g., Amdal et al. [3], Goronzy [55],
Huang et al. [66], Kat and Fung [77], Ward et al. [144]). Some examples of works found
in the literature on non-native speech will be presented in chapter 6 (section 6.3).

Multilingual ASR : a natural extension of pronunciation modeling of foreign accents is
its incorporation into multilingual ASR, which has recently become a popular topic.
Korkmazskiy [91] proposed a method to automatically learn letter-to-phoneme mapping
rules of any context sensitive language from its pronunciation dictionary or a phonetically
transcribed database. Tian et al. [138] compensated the errors of language identifica-
tion of their multilingual ASR system by getting the N-best identified languages and by
applying the corresponding letter-to-phoneme conversion scheme designed for each lan-
guage to get N pronunciation variants. A pruned set of these variants was then used for
speech recognition. Results were comparable to those obtained with a cheating system
in which an expert identified the language manually.

Hierarchical structures : they are naturally present in decision trees, which are extensively
used for pronunciation modeling. Other types of hierarchies were also proposed in the
literature, for example rules (e.g., Cremelie and Martens [29], Korkmazskiy [91]) as well
as words and their composing units (e.g., Koval et al. [92], Seneff and Wang [126]),
with the objective of modeling pronunciations at different representation levels and/or
of pruning some less useful components of the hierarchy.

Weighted Finite State Transducers (WFSTs) : a WFST is an automaton of finite size
that maps pairs of strings, possibly expressed with different alphabets, to weights. For
example, words and phones can be mapped to a conditional probability distribution
of a phone given a word (and its possible pronunciations). Although WFSTs are not
new, they were used in several papers of the last workshop in pronunciation modeling
(ITRW-PMLA 2002), cf. Caseiro et al. [21], Fosler-Lussier et al. [43], Hazen et al. [63] and
Seneff and Wang [126]. One of the tutorials given during the ICSLP 2002 conference also
concerned the use of WFSTSs in speech recognition. Their properties (e.g., composition
of transducers) make them more suitable to handle some phenomena not easily handled
by standard ASR systems (e.g., context-dependent modeling at word boundaries). More
information about WFSTs can be found for instance in Pereira and Riley [111].

Articulatory information : since it was not proposed in any paper (except in Koval et
al. [92]) during the last workshop in pronunciation modeling (ITRW-PMLA 2002), it was
considered as a lacking point. Nevertheless, incorporation of articulatory knowledge into
ASR has gained much interest, as proved by a special session dedicated to it during the
Eurospeech 2001 conference. Although more time is required to acquire better knowledge
in this field, there is a good hope that incorporation of articulatory information will
greatly help ASR systems in the future. This dissertation follows this line of interest
and constitutes a small contribution towards this goal (cf. chapters 4 and 5). Section 4.3
in the next chapter will dedicate a small survey of the literature concerning this topic.

Speaker-dependent pronunciation modeling : since pronunciation variants introduced
in a speaker-independent system generally led to only marginal improvements, one cur-
rent trend is to model pronunciation at the speaker level instead (e.g., Lee et al. [98],
Willett et al. [150]). With this approach, higher improvements can be expected, espe-
cially if pronunciations are highly variable across speakers. Chapters 6 and 7 of this

* Acoustic modeling of dialects and foreign accents can be found in earlier works, e.g., in [10].
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dissertation will be dedicated to the creation of speaker-dependent lexicons in order to
model speakers with different dialects and foreign accents.

3.10 Summary

This chapter presented the basic concepts of pronunciation modeling. This topic has become
important, especially since research in ASR started to focus on spontaneous speech that con-
tains a lot more pronunciation variations than carefully read speech. Pronunciation modeling
is necessary to both build more accurate models during training and avoid a significant drop
in recognition performance. It is also better suited to handle some phenomena (e.g., syllable
deletions) that are not well modeled by triphones. Pronunciation variation modeling can be
applied to all the basic ASR components (lexicon, acoustic models, language model), although
application to the lexicon is the most frequent. T'wo phases are generally required, a generation
phase that consists of discovering new pronunciation variants or transformations to apply, and
a selection phase that consists of reducing this initial set in order to limit lexical confusability.
Some categories and characteristics of each phase were reviewed. The metric generally used
to measure the performance of a pronunciation modeling method is the absolute or relative
change of word error rate observed when the method is applied to a baseline system. Finally,
some current trends in pronunciation modeling were also described.

The next chapters will describe the methods adopted in this dissertation and experiments
carried out to model pronunciation variation. The motivations relative to each method will
also be explained in the corresponding chapters.



Chapter 4

Dynamic Lexicon Using Phonetic
Features

This chapter will describe a method that dynamically selects a set of pronunciation variants
in the lexicon based on the detection of phonetic features [100]. The methodology and some
related experiments and results will be presented through the following sections:

e Section 4.1 will expose the key ideas and motivations of the method.
e Section 4.2 will define the notion of phonetic features illustrated by some examples.

e Section 4.3 will present some examples of applications of phonetic features through a
literature survey.

e Sections 4.4, 4.5 and 4.6 will describe the methodology in detail.
e Section 4.7 will empirically evaluate the method and report the basic results obtained.

e Section 4.8 will analyze some intermediate results and errors made and will point out
the components of the system that could be improved.

e Section 4.9 will expose some ideas on how the issues mentioned in 4.8 could be addressed.

e Section 4.10 will give a summary of the chapter.

4.1 General overview

Two objectives motivated the elaboration of the method described in the next sections:

1. System with both high pronunciation coverage and small lexical confusion.

2. Introduction of articulatory knowledge to the ASR system.

For the first objective, a dynamic concept was adopted. It consists of adapting during
recognition the pronunciation model to the pronunciation characteristics of a given speech.
Considered at the lexicon level, it consists of selecting the lexical entries that best match the
way a sentence has been phonetically uttered and of discarding the remaining entries. This
approach can not only consider as many pronunciation variants as needed to insure a high
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pronunciation coverage, but can also avoid too much lexical confusability by dynamically re-
ducing its content during recognition. The example in Figure 4.1 compares a standard (static)
lexicon to dynamic lexicons. Let us assume that each lexicon originally contains two words,
“command” and “comment”, with two phonetic transcriptions for each of them as shown in
the figure. It is clear that these words are highly confusable each other, especially because
their pronunciation variants (“command” —[k ax m eh n d] vs. “comment” —[k ax m eh n t])
differ by only a single phone. A standard way to reduce this confusability is to keep only one
of these transcriptions, let us say [k ax m eh n d], for all sentences. However, this approach
could penalize the system’s performance with speakers who tend to pronounce “comment”
as [k ax m eh n t]. The dynamic approach is different in that both variants are originally
kept, but may be activated or discarded at different times during recognition, depending on
the input utterance. For instance, assuming that “command” was uttered in a sentence A,
[k ax m eh n d] may remain active and [k ax m eh n t] discarded, while the inverse case may
happen with a sentence B if “comment” was uttered instead.

kaxmaend
/
It
klaxmehnt
_— I
T kaamehnt

AL

Static lexicon

command

comment

kaxmaend kaxmaend
command — command —
T kaxmehnd T eaermrehhe-
el kaxmehnt
comment — comment —

s kaamehnt s kaamehnt

AL\ AL\

Dynamic lexicon A Dynamic lexicon B
Figure 4.1: Comparative example between static and dynamic lexicons

The second objective (introduction of articulatory knowledge) was originally raised because
state-of-the-art speech recognizers (mainly HMMs) are solely based on statistics and do not
include any linguistic knowledge at any point. Especially because pronunciation variation
modeling was concerned, it seemed desirable to take account of the production mechanism
responsible for these variations. For this purpose, our pronunciation modeling approach was
based on the detection of phonetic features: they are descriptive parameters that differentiate
a phonetic unit from another. Phonetic features are of three types: articulatory features,
which characterize how a speech segment is produced by the human articulatory system (e.g.,
tongue, lips), auditory features, which characterize the physical properties of a speech sound
(e.g., grave, acute), and perceptual features, which characterize how a sound is perceived by
the human auditory system and the brain. Our approach will mainly rely on articulatory
features, which are the most well-known and applied in the literature. However, the general
term “phonetic features” will generally be employed as most but not all features used in this
thesis are based on articulations; the term “articulatory” will nevertheless be used with other
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expressions (e.g., articulatory approach, articulatory level,...).

These features helped to decide which lexical entries were retained or rejected to build the
final lexicon for a given utterance. The next sections will give a deeper insight into the concept
of phonetic features, including their potential benefits and some examples of their utilization.

4.2 Definitions and examples of phonetic features

Phonetic (articulatory) features describe how a speech segment is produced by the human ar-
ticulatory system. A typical example (commonly called “multi-valued” or “IPA-like” features;
IPA stands for “International Phonetic Alphabet” [70]) is given in Table 4.1.

‘ Feature class H Values ‘

Voicing voiced, voiceless

Place bilabial, labio-dental, dental, alveolar, postalveolar,
retroflex, palatal, velar, glottal

Manner stop, fricative, approximant, nasal, lateral

Height high, mid, low

Front-back front, center, back

Rounding rounded, unrounded

Table 4.1: Example of phonetic features

In this example, features are grouped in different feature classes, each class representing a
different articulatory dimension. Feature classes and their values are chosen so that they are
generally independent of each other. The following feature classes have been defined in this
table:

e Voicing describes the state of the glottis and tells whether the vocal chords vibrate or
not during a sound production. Some examples of voiced sounds include [b], [g], [z].
This distinction is usually made for consonants only because vowels are always voiced
(except when they are whispered).

e Place of articulation tells which articulators of the vocal tract are activated when pro-
ducing a consonant. Such sound is emitted by approaching an articulator to another
one, thus making a constriction (narrowing) and cutting the airflow to a certain extent.
Two articulators are defined: an active articulator that usually moves to make the con-
striction and a passive articulator that usually does not move. For instance, “alveolar”
means that the tongue tip or the tongue blade (usually the tip) approaches the alveolar
ridge, producing sounds like [d], [n] or [t].

e Manner of articulation describes how the articulators are involved when producing a
consonant sound. “Stop”, “fricative” and “approximant” describe the degree of con-
striction, that is, how close the active articulator gets close to the passive articulator to
make the constriction. For example, “fricative” means that the active articulator does
not touch the passive articulator, but is close enough to make the air lowing out through
the constriction turbulent (e.g., [f], [s], [z]). “Nasal” tells if the soft palate is lowered
to let the air to flow out through the nose (e.g., [m], [n]). “Lateral” tells whether the
side(s) of the tongue are lowered so that the air can flow out along the side even though
active and passive articulators touch each other (e.g., [1]).
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e Height describes the relative position of the tongue body on the “vertical” axis when
producing a vowel sound. Examples of high vowels include [i] and [u]; low vowels include
[a] and [ae]. For classification purposes, it is not uncommon to see this category merged
with place of articulation in the literature, in which case the term “place” refers to both
consonants and vowels.

e Front-back describes the relative position of the tongue body on the “horizontal” axis
when producing a vowel sound. Examples of front vowels include [ae] and [i]; back vowels
include [o] and [u].

e Rounding tells whether the lips are rounded during a vowel sound. Examples of
rounded vowels include [o] and [u].

Any phone can be expressed by a set of these feature values. For example, the phone [b]
is realized when the vocal chords vibrate (voiced), the articulators are the lips' (bilabial) that
touch each other so that no air flows out (stop), so the phone [b] can be called a “voiced
bilabial stop”. Not all feature classes are relevant for a given phone. For the example given in
Table 4.1, voicing, place and manner are only relevant to consonants, while height, front-back
and rounding only refer to vowels. Phones and their features are often presented in matrix
form, each row of the matrix typically showing a distinct phone and its corresponding set of
feature values. Some examples can be found in appendix B.

Although these feature classes and values are one of the most popular, there is no real
agreement about exactly which ones should be used, hence several variants of this feature
system exist in the literature (see for example Chang et al. [23], King et al. [81], Kirchhoff [83]).
Another example is given in Table 4.2 (from Deng and Sun [33]). Feature classes are in this
case the articulators of the human speech production system with different quantization levels.

‘ Articulators H Values ‘

Lips 0tob
Tongue blade 0to 7
Tongue dorsum || 0 to 20
Velum 1to 2
Larynx 1to2

Table 4.2: Another example of phonetic (articulatory) features

As seen above, different feature systems exist. Their notion is also far from being new.
Roman Jakobson was the first who introduced in 1941 the notion of distinctive features. In
[71], Jakobson et al. proposed a set of such features based on auditory properties. Later in
1968, another breakthrough in this topic occurred with the articulatory approach published by
Chomsky and Halle in The Sound Pattern of English (SPE) [25]. SPE features are similar to
those found in Table 4.1, although they are different in two points: 1) features are not grouped
in feature classes, 2) features have binary values (e.g., '+’ if the feature is detected, -’ if not).
Chomsky and Halle defined in total twenty-two features applicable to any language, although
not all features are relevant for all languages; only thirteen of them are used for English, as
shown in Table 4.3. In the literature, some variants of these features also exist in order to
adapt them to a specific corpus and its phone inventory (e.g., Brondsted [17]). Among them,
a ternary version can be used to mark non-relevant features (e.g., voice for vowels) by another
distinct symbol.

1t is said that the lower lip is the active articulator and the upper lip is the passive one, although it is less
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‘ Features H Values ‘
Vocalic + or -
Consonantal || + or -
High + or -
Back + or -
Low + or -
Anterior + or -
Coronal + or -
Round + or -
Voice + or -
Tense + or -
Continuant + or -
Nasal + or -
Strident + or -

Table 4.3: SPE features
4.3 Literature survey on phonetic features

This section will give a small survey of the literature about phonetic features. From the
theories and experiments reported, some benefits of using these features will be brought to
the fore.

A question one could ask indeed is: why a feature-based approach could be useful ? First
of all, features are more fundamental units than phones and certain phenomena that seem
complex at the phone level may be much simpler to describe at the articulatory level. King
and Taylor [82] compares the phone-features relationship with atoms in physics: “If elements
are described individually, they seem to exhibit idiosyncratic and somewhat arbitrary behavior.
However, by describing them in terms of their sub-atomic makeup, the picture becomes much
clearer (cf. the periodic table). The important point is that a small number of relatively simple
sub-atomic particles can be used to describe the complex behavior of a much larger set of units
from which they are made.”. An example they give concerns phonotactics (well-formed phone
sequences) in English. At the phonetic level, it is rather arduous to list all initial valid “CCC”
(C = consonant) sequences of syllables (e.g., spl,spr,str,skr, sk w..) while at the
feature level, simpler rules could be defined (e.g., only voiceless stops can follow the initial [s]
and only some laterals and approximants may follow the stops).

The same observation can be extended to pronunciation variation modeling. Stevens [132]
gives an example with the word “ten”: although its canonical pronunciation is [t eh n], some
people with non-standard American English dialect tend to pronounce it [t ih n]. Although
at the phone level a substitution occurred and the sound [eh] seems quite distinct from an
[ih], there is actually not so much difference at the articulatory level: between the two sounds,
only the tongue body has been raised to pronounce [ih] which corresponds to change only the
feature high from -’ to '+’ (in the SPE system). Eide [39] gives another example with the
sequence “did you”: in spontaneous speech, people tend to pronounce it [d ih jh uh] instead
of [d ih d y uw]. Although substantial changes occurred at the phonetic level, only small
variations are observed at the articulatory level: relative to the SPE system, only the features
anterior and strident are modified in the collapsing of [d y] to [jh] and the feature “tense” for

clear here which one is which since both lips usually move.
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the vowel substitution [uh] to [uw]. Because of its smaller variations, a feature-based approach
may therefore provide an easier interface to capture pronunciation variations in spontaneous
speech than a phone-based approach.

Another motivation to focus on phonetic features is due to an analysis made by Greenberg
et al. [59] on Switchboard, a spontaneous telephone speech database [54]. They compared
recognition and forced alignment outputs provided by eight speech recognition systems and
analyzed them in order to point out which factors are the most important to take account
in order to get a lower WER in spontaneous speech. About forty parameters pertaining to
speaker, utterance, linguistic and acoustic domains were used for this purpose. Results show
that performance improvement depends the most on accurate classification at both phonetic
and articulatory levels. A more thorough analysis on phonetic features ([58]) revealed that
there are three times more errors at the articulatory level when a word is misrecognized,
suggesting again that taking account of phonetic features is important to deal with spontaneous
speech. Another independent experiment made by Shinozaki and Furui [128] on some Japanese
databases also revealed that accurate articulatory level classification was an important factor.

When a feature-based approach is adopted, the two following points need to be considered:

1. How can we obtain phonetic features ?

2. How can we incorporate features in ASR systems ?

Each question will be treated in detail in the next subsections.

4.3.1 How to obtain phonetic features

There are several ways to obtain phonetic (articulatory) features. The most reliable method is
to directly measure trajectories from articulatory movements. Two equipments are commonly
used for this purpose: the Electro-Magnetic Articulograph (EMA) [125] and the X-Ray Mi-
croBeam (XRMB) [47]. An EMA measures movements of small sensors placed on the subject’s
speech production mechanism. Position and alignment of each sensor can be calculated from
the currents induced by some transmitter coils positioned around the sensors and that generate
an electro-magnetic field (a description of a 3D-EMA can be found in [162]). An XRMB-based
system consists of sticking small gold pellets to human articulators and of tracking their tra-
jectories using high energy x-ray microbeams directed towards the pellets. If one does not
have any of these equipments, there is still the possibility to use some databases that already
contain both speech and corresponding articulatory trajectories (e.g., [146], [154]).

However, in practice, the databases with articulatory trajectories may not be suitable for
the type of experiments one would like to carry out. Another alternative in this case is to
infer the features from the acoustic data we are interested in. Methods for this purpose can be
divided in two categories, either knowledge-based or data-driven. Knowledge-based methods
consist of finding acoustic correlates of phonetic features in the speech signal, that is, of
detecting and measuring some acoustic cues in the speech signal that give an indication about
its articulatory properties. Stevens [132] proposed two types of acoustic cues: first for the
articulator-free features, which indicate that some articulatory movements are noticed but do
not specify which articulators are involved (e.g. “+consonantal” indicates that a constriction
is formed in the oral cavity, but does not specify which articulators made the constriction), and
second for the articulator-bound features, which specify the articulators (e.g., “bilabial” implies
that the lips made the constriction). The strategy adopted is first to find some landmarks
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(e.g., abrupt changes of amplitude) in the signal that approximately tell where to look in
time to determine the articulator-free features, then to look more thoroughly around these
landmarks (e.g., formant movements) to determine the articulator-bound features. It was
reported that combining several acoustic cues like this led to good discrimination between
labial and alveolar stop consonants.

Bitar and Espy-Wilson [12] also defined a set of acoustic correlates of phonetic features.
Types of acoustic correlates depend on the feature considered, they involve energy and au-
tocorrelation coefficients of the signal, among others. A particularity of their method is that
their parameters are relative in time and/or in frequency (e.g., energy in a frequency band di-
vided by the maximum energy in the same frequency band across the utterance) to implement
the fact that the human auditory system relies on relative cues to phonetically identify speech
segments, according to some psychoacoustic studies [64]. In [14], they used the Fisher criterion
[36] to determine the parameters of their acoustic correlates (e.g., frequency boundaries for an
energy measure), then used a classification tree to prune redundant parameters. An average
feature classification rate of 90.6% was obtained on their test set.

Although knowledge-based methods showed their usefulness, there are some requirements
or drawbacks. First, some linguistic knowledge is required to define the acoustic correlates and
to understand well their relationships with phonetic features. Second, knowledge about these
relationships is so far incomplete: although related research is in progress, acoustic correlates
are not yet fully accurate to detect all phonetic features reliably and we especially don’t know
much about their efficiency in spontaneous speech.

These reasons explain why data-driven methods have become popular. They consist in us-
ing pattern recognition tools that map acoustic parameters to phonetic feature values, trained
with either real articulatory data (e.g., using an EMA) or reference phone labels mapped to
theoretical feature values (using phone-features conversion tables like those in appendix B)
as targets. Several tools are available for this purpose, either deterministic or statistical.
Suzuki et al. [137] built a codebook containing pairs of spectral segments and corresponding
articulatory positions, trained from a database with speech and actually observed articulatory
trajectories using an EMA. Articulatory parameters are then estimated by simply matching
an input spectrum to those contained in the codebook and by extracting the corresponding
articulatory parameters from the best pairs. A minimum square distance technique is finally
applied to smooth the articulatory trajectories in time. They showed that estimated param-
eters using this technique are close to real ones (although with a same and single speaker
enrolled for both training and testing). Kirchhoff [83] defined six feature classes (phonation,
manner, place, front-back, roundness and centrality) and trained a left-to-right HMM with
three to five states and single Gaussian per state for each feature value of each class. Data used
to train the HMMs were standard MFCC acoustic vectors and training targets were obtained
from manually labeled phones converted to phonetic features using a phone-features mapping
table. For evaluation, HMMs of different classes were executed in parallel in order to define
the feature value of each class. An average of 91.8% feature recognition rate was achieved.
Koreman et al. [90] used Kohonen networks? to map acoustic vectors to phonetic features
for each frame. The final features for a given frame are obtained by using a weighted aver-
age of the output values associated with the K winning neurons closest to the input acoustic
vector. No accuracy result of the acoustic-to-feature mapping was reported. Stephenson et

2Kohonen networks consist of neurons distributed in two or three dimensions representing a certain source
domain (e.g., cepstral domain in our context). These neurons have the particularity of being ordered in space.
After stimulation and calibration of the networks, each neuron is associated to both the location of a distinct
centroid in the source domain and a vector that maps the source to an (averaged) destination value. More
detailed information can be found in Kohonen [88] and Dalsgaard [32].
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al. [130] trained dynamic Bayesian networks® (DBNs) from real articulatory data to infer the
articulatory positions from the acoustics. Although accuracy of the acoustic-to-articulatory
mapping was not reported, the small difference in WER obtained between two systems with
real articulatory data on one hand and inferred by the DBNs on the other hand suggests that
the mapping was fairly accurate.

The most popular pattern recognition tool to map acoustic data to phonetic features
is probably neural networks (e.g., Chang et al. [22], King and Taylor [82], Kirchhoff [86],
Papcun et al. [110], Zacks and Thomas [161]). For example, King and Taylor [82] trained
neural networks with single hidden layer to map MFCC parameters to phonetic features.
Training targets were manually labeled phones mapped to phonetic features using a phone-
features conversion table. Three feature systems were compared: the Multi-Valued system (cf.
Table 4.1 for an example), the SPE system (cf. Table 4.3) and the Government Phonology
(system based on combinations of primes, cf. [62]). All three systems led to high percentages
of frames correct for each feature considered separately (average percentages were between
86% and 93%).

4.3.2 How to incorporate phonetic features in ASR systems

There are several ways to incorporate phonetic (articulatory) features in ASR systems. The
most common and simplest way is to use the feature values (e.g., activation values of output
neurons when using neural networks to map acoustic vectors to phonetic features) instead of
the usual acoustic parameters (e.g., MFCC) to train HMMs. King and Taylor [82] used their
phonetic features to train cross-word triphone models and evaluated them with phone recog-
nition; similar performance to MFCCs were obtained. Koreman et al. [90] did similarly with
phonetic feature strengths obtained from their Kohonen networks. They obtained substantial
improvement in identifying consonants and their places of articulation using this method, al-
though from a low baseline since they did not use any language model or lexicon. Extension of
the recognition to all phones [89] with two different feature systems led to similar results with
single Gaussian per HMM state; however, phonetic features performed less well than MFCCs
when the number of Gaussian mixtures per state was increased to eight. It was also reported
that confusions between phones were less severe with phonetic features than with acoustic
parameters when using a single Gaussian per HMM state, but again this benefit disappeared
when the number of Gaussian mixtures was increased. Bitar and Espy-Wilson [13] defined
some acoustic correlates of phonetic features and used them instead of MFCCs to train and
evaluate HMMs for broad phonetic class recognition. Comparable results to MFCCs were
obtained with 8 Gaussian mixtures per state. Furthermore, they experimentally showed that
their new parameters were more robust to gender variability because they are based on rela-
tive measures (e.g., division of two energy measures). The approach of Dalsgaard [32] is a bit
different from the previous authors in that feature strengths obtained from Kohonen networks
were used to build separate histograms for each feature of each phoneme. Then, a Gaussian
probability density function was approximated for each histogram. Finally, phoneme models
were built from mixtures of these approximating Gaussians. A Viterbi alignment process to
define phoneme label alignment resulted in 85% correct with Danish, however only 43% correct
with British English (due to insufficient training data according to the author).

3Bayesian networks consist of oriented and acyclic graphs where each node is associated with a specific
variable (e.g., state, acoustic observation) and a conditional probability for the variable (e.g., transition or
emission probabilities when compared to HMMs). The dynamic version extends the initial possibilities by
including dynamic processes like time. Bayesian networks are sometimes used as alternatives to HMMs for
ASR. More information can be found in Zweig [163].
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Some papers reported that acoustic and articulatory information are partially comple-
mentary and they often do not generate the same types of errors in recognition (e.g., [84]),
hence they advocate that they should be combined. A question relative to this is whether
all acoustic and phonetic feature parameters should be combined, and if not, how to select
an optimal subset. Retaining more feature parameters would a priori help to improve the
accuracy of the resulting acoustic models, but provided there is enough training data to es-
timate the parameters and with the cost of increasing the model complexity. Kirchhoff [86]
designed a backward discriminative feature selection algorithm: starting with 65 combined
acoustic and phonetic feature parameters, each feature was hypothetically removed and the
one that led, with the remaining features, to the biggest average difference in log-likelihood
between the correct model and incorrect models (correct model was given by reference labels
and segmentations) was eliminated. Another iteration was then applied with the remaining
features, and so on until the number of desired features was obtained. Experiments showed
that the combination scheme led to higher improvement compared to the replacement scheme
with spontaneous speech, although this improvement was still rather marginal compared to
the baseline system with only MFCCs. Eide [39] started to concatenate all SPE features
to acoustic parameters, but then computed mutual information between the estimated and
true feature values. Only four features with the highest mutual information values were re-
tained and appended to MFCCs. Substantial improvement was obtained in three different car
noise conditions (contribution of phonetic features in robustness to noise was also noticed by
Kirchhoff [85] with two different types of noise at multiple signal-to-noise ratios).

Acoustic and articulatory information can also be combined at other levels of an ASR
system. Kirchhoff [85] evaluated combination schemes also at the state and word levels.
At the state level, outputs of two neural networks - one that maps MFCCs to phones and
the other that maps phonetic feature strengths to phones - were combined using a weighted
sum or product rule to obtain the posterior probability of a phone given the two types of
parameters. These probabilities were then fed into a hybrid ANN/HMM system for word
recognition. Significant improvements relative to the MFCC baseline were obtained. At the
word level, the best output word sequences of two ASR systems respectively based on acoustic
and articulatory parameters were combined in an N-best list rescoring scheme. Frequencies of
word hypotheses and word confidence values were used to rescore the lattices of hypotheses.
Again, substantial improvement over the MFCC baseline was obtained. Other examples of
combination of acoustic and articulatory information will be mentioned in the remainder of
this section.

Phonetic features can also govern acoustic model topologies. Several reasons generally
motivate the design of such techniques:

1. Current standard models like HMMs model speech, but without taking account of the
speech production mechanism; many researchers think that incorporation of articulatory
knowledge might be beneficiary for speech recognition (this is a reason also valid for the
previous seen techniques).

2. Since parts of the vocal tract are mostly independent of each other, they do not generally
move simultaneously during speech production and transitions are not instantaneous.
A more sophisticated topology than the well-known three left-to-right HMM states is
therefore desirable to model these asynchronous transitions more accurately.

3. Current HMM-based ASR systems generally model coarticulations by simply model-
ing all phonetic contexts of all phones (at least those seen in the database). This is a
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rather blind method and may lead to data scarcity problems, especially in large vocab-
ulary speech recognition where the number of possible contexts is substantially higher.
Clustering techniques are generally used to overcome this situation. It is known how-
ever that coarticulation phenomena are associated with the movements of articulators
([61]). Modeling of coarticulations could therefore be guided by the theories of speech
production and data could be shared more intelligibly and parsimoniously.

The most thorough work in this topic has probably been done by Deng and his col-
leagues [33]. They chose five articulators (represented in Table 4.2) and associated each
context-independent phone with a specific combination of articulatory positions. To model
coarticulations, articulatory features of two successive phones were allowed to owverlap each
other. Consequently, each context-dependent phone was modeled by a different HMM topol-
ogy, with states representing the transitions of articulators influenced by the neighbor phones.
Asynchronous transitions were modeled by parallel paths in the topology, in which one ar-
ticulator moved before another. Experiment results showed that phonetic classification using
this method outperformed standard context-independent phonemic HMMs. They were com-
parable in performance to context-dependent models, however with much less training data.
In [136], a data-driven version based on regression trees is proposed to construct the initially
rule-based HMM topologies. A 7.2% relative improvement in phone recognition accuracy was
observed on the TIMIT database. Richardson et al. [116] followed a similar line of thought
and defined a specific articulator-based HMM (so-called Hidden Articulator Markov Model,
HAMM) topology for each diphone, with static and dynamic constraints to limit the number
of possible articulatory configurations and movements. Although the HAMMs alone did not
improve performance over their baseline HMMs, a weighted combination of log-likelihoods
from both systems led to significant improvement. Furthermore, they showed in [117] that
the same combination was also more robust to noise than their baseline system alone. Frankel
and King [46] modeled articulatory trajectories using linear dynamic models (LDM) instead
of HMMs, described by two equations: (1) z; = Fzy—1 + 1 (1;: Gaussian distribution noise)
describes how the state variable x; varies from frame to frame and (2) y; = Hxz; + € (€4
Gaussian distribution noise) associates the state with an observation vector y;. This repre-
sentation has the benefit of modeling states (interpreted again as articulatory positions) in a
continuous space. Although use of articulatory data alone was not successful, LDMs trained
with both acoustic and real articulatory data yielded higher phonetic classification accuracy.
Stephenson et al. [130] added new nodes and arcs in their Bayesian networks to represent ar-
ticulatory positions, which correspond to take account of an articulator variable a; in emission
and transition probabilities: P(z|as, q;) and P(a¢|a;—1,q;), respectively (z;: acoustic vector,
qi: state). Related experiments led to about 10% relative reduction in WER compared to
their baseline without articulatory information.

Finally, phonetic features can also be used to access the lexicon. Kirchhoff [83] stored
syllables in lexicon as parallel sequences of phonetic features (one sequence per feature class).
Syllable recognition was performed by comparing the same type of sequences automatically
extracted from speech data to the corresponding sequences of each syllable template in the
lexicon using dynamic programming. Although syllable-level recognition performance was
not compared to any baseline, recognition accuracy of phonemes derived from top syllable
sequences outperformed a standard triphone-based recognition system. Lahiri [95] created a
lexicon with word entries represented by sequences of underspecified phonetic features, that
is, some features were not specified because their values could vary due to pronunciation vari-
ations. For example, the word “green” is basically pronounced [g r iy n], but can also be
pronounced [g r iy m| before a bilabial consonant (like in “gree[m] bag”) due to the coar-



4.3. Literature survey on phonetic features 47

ticulation involved by the spread of the bilabial feature of [b] to [n]. Since [n] and [m] have
different places of articulation, the corresponding feature is voluntarily not specified. Lexicon
access was performed by matching phonetic features extracted from the input speech to those
stored in the lexicon, with three possible results, “match”, “no mismatch” and “mismatch”
(“no mismatch” typically referred to underspecified features). Word candidates with “match”
or “no mismatch” were retained for further process by a phonological and syntactic parser.
No experiment result was reported.

4.3.3 Survey summary, benefits and issues

In the previous subsections, some examples of applications and benefits of phonetic features
were presented. For the sake of bringing to the fore the essential ideas, the most important
points will be listed below with the relevant references.

In order to build an ASR system based on phonetic features, two points need to be con-
sidered: how to obtain the features and how to incorporate them into ASR systems. Features
can be obtained using one of the following methods:

e Usage of an electro-magnetic articulograph [125] or an X-ray microbeam [47] to measure
articulatory trajectories during speech production, or alternatively usage of a database
that already contains such trajectories (Westbury et al. [146], Wrench [154])

e Detection and measurement of some acoustic cues in the speech signal that give an
indication about its articulatory properties (Bitar and Espy-Wilson [12], Stevens [132])

e Usage of deterministic or statistical tools to infer the features from the acoustics:

— codebooks (Suzuki et al. [137])

HMMs (Kirchhoff [83])

— Kohonen networks (Dalsgaard [32], Koreman et al. [90])
— Bayesian networks (Stephenson et al. [130])

— neural networks (e.g., King and Taylor [82])

Methods to incorporate phonetic features into ASR systems include the following tech-
niques:

e Replacement of acoustic parameters (e.g., MFCCs) by feature values to train and rec-
ognize with HMMs (Bitar and Espy-Wilson [13], King and Taylor [82], Koreman and
Andreeva [89])

e Combination of acoustic and articulatory information at feature (Eide [39], Kirchhoff [86]),
state or word levels (Kirchhoff [85])

e Design of acoustic model topologies to reflect articulatory positions and movements
(Deng and Sun [33], Frankel and King [46], Richardson et al. [116], Stephenson et
al. [130])

e Usage of features to access the recognition lexicon (Kirchhoff [83], Lahiri [95])

Some motivations and benefits (real or potential) of using phonetic features are as follows:
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e Convenient interface to describe complex rules and pronunciation variations (Eide [39],
King and Taylor [82], Stevens [132])

e Important factor for better recognition performance in spontaneous speech (Greenberg
et al. [58] [59], Shinozaki and Furui [128])

e More acceptable phonetic confusions (Koreman et al. [90])
e Better management of coarticulations (Deng and Sun [33], Richardson et al. [116])
e Less training data required (Deng and Sun [33])

e More robust to noise when combined with acoustic parameters (Kirchhoff [85], Richard-
son et al. [117])

The last but not the least benefit associated with phonetic features is that they are not
bound to any language; a feature-based approach is therefore suitable for any language (at
least in theory). An example towards this concept is given by Chang et al. [22] and Wester et
al. [148] who mapped acoustic parameters to phonetic features using an American English and
Dutch database, respectively. Because the symbol sets of both languages were described by the
same set of features, a cross-linguistic classification could easily be performed: neural networks
were trained with the American English database, but evaluated with the Dutch database.
Although some feature classes (place of articulation) suffered a substantial degradation, some
other classes (voicing and manner of articulation) transferred fairly well. Furthermore, im-
provements obtained in one language were also observed in the other language.

Despite the firm conviction by many authors that use of phonetic features can be beneficial
for speech recognition, there is still a major issue that needs to be addressed: most experiments
reported in published papers concerned isolated word recognition or read speech recognition
(e.g., TIMIT). Such experiments are surely useful as an initial step, but it still needs to be
shown that the same methods would be as successful under more difficult conditions (e.g.,
spontaneous speech, large vocabulary). Some authors reported some small improvement in
spontaneous speech (e.g., Wester et al. [148]), but concerned phone-level and not word-level
recognition. Kirchhoff [86] did compare word error rates using phonetic features with both
spontaneous and large vocabulary speech recognition, but no gain could be obtained compared
to MFCC-based systems. Other authors (e.g., [60]) also expressed their difficulty to apply their
methods to spontaneous speech. More time and study are therefore needed to address this
issue, but all the successful attempts achieved on simpler tasks predict some encouraging
results in the future.

4.4 Introduction to the applied methodology

The method applied in this chapter is inspired from some of the techniques seen in the literature
survey, but adapted for pronunciation variation modeling. Recalling what was mentioned in
the general overview of section 4.1, the idea put forward was to build a dynamic lexicon, that
is, a lexicon who is able to adapt its content to the pronunciation characteristics of an input
speech. For this purpose, the two following parts were considered:

1. A static augmented lexicon building part: it consists of discovering new pronunciation
variants for each word and of adding them to the basic lexicon.
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2. A dynamic lexicon building part: it consists, during recognition, of selecting among the
entries available in the static augmented lexicon the phonetic transcriptions that best
match the pronunciation characteristics of an utterance. A smaller lexicon with only
these transcriptions is consequently generated.

Each step will be described in detail in the following sections.

4.5 Static augmented lexicon building

The objective of this first part is to automatically discover possible relevant transcriptions
for each word, in order to generate a lexicon with new pronunciation variants. A first step
consists of generating all possible transcriptions given an utterance, followed by a selection
step that chooses the most likely variants among the ones proposed.

Let us first consider the generation step. We already expressed our interest to include
articulatory knowledge to our ASR system. Recalling some of the benefits already mentioned,
a feature-based approach could be an easier interface to capture pronunciation variations
and it could generate more acceptable phonetic confusions. Relative to the generation of
pronunciation variants, the latter means that even if detection of features does not accurately
target true pronunciations, the resulting errors may be more acceptable phonetically to be
considered as alternative pronunciations. A feature-based approach could therefore be more
convenient to generate pronunciation networks than a phone-based approach.

A feature-based technique was therefore adopted for the generation step. Several decisions
relative to this choice had then to be made:

1. Which features to use ?
2. How to extract the features from the input speech ?

3. How to generate new pronunciation variants from the features ?

Exactly which feature system to use did not matter much a priori since several systems
were said to yield similar performance (King and Taylor [82]). Our choice was simply based
on popularity of the system and its simplicity of implementation. The SPE system (Chomsky
and Halle [25], features are listed in Table 4.3) is popular and is convenient to use because
all its features are binary and organized in a single class, hence it was the set chosen for our
experiments.

Concerning the extraction of features, it was already mentioned that knowledge-based
methods based on acoustic correlates of phonetic features were so far incomplete. Furthermore,
several experiments showed that phonetic features could automatically be extracted from
speech using pattern recognition tools with fairly good results (e.g., Chang et al. [22]), which
naturally influenced our choice in favor of data-driven methods. It remained to decide for a
system to map acoustic to articulatory parameters. According to several studies in this topic
(e.g., Atal et al. [6], Bailly et al. [8]), extraction of articulatory information from acoustics
is commonly known as an inverse mapping or many-to-one problem, in that many different
articulatory configurations may produce the same acoustic patterns. Stevens wrote indeed in
[131] that the acoustic-articulatory relationships are quantal, as shown by the schematization
in Figure 4.2: three zones are defined, and while the articulatory parameter smoothly changes
from zomne I to III, the acoustic parameter value almost jumps from one state to another in
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zone 1I and remains relatively stable in the other zones, so similar acoustic state for different
articulatory configurations.

I II IIT

Acoustic parameter

I

Articulatory parameter

Figure 4.2: Schematization of a quantal relationship between acoustic and articulatory pa-
rameters (from Stevens [131])

Although it was not certified that this type of relation was valid for all features, an ex-
periment carried out by Gay et al. [52] also showed that people were able to utter vowels
with similar acoustic patterns even though their articulatory system was disturbed by some
obstructions. Acoustic-to-articulatory mapping is therefore not unique and highly non-linear
and cannot be reliably estimated by deterministic methods. Among the available choices of
statistical-based techniques, neural networks were reported by certain authors as an appro-
priate tool (e.g., King et al. [81], Kirchhoff [85]) - which also influenced our choice - for the
following reasons:

e Neural networks are flexible to model any non-linear mapping, provided that enough free
parameters and data to reliably estimate them are available. In particular, they do not
assume any distribution like HMMs. It is true however that rather complex distributions
can also be modeled by mixtures of Gaussians. The best choice depends therefore on
the complexity of the model required to accurately approximate the target distribution.

e Acoustic-to-articulatory inversion mapping will be more robust if a longer time interval
is considered, since articulatory properties are often not restricted to a single phonetic
unit but tend to be spread to neighbor phonetic contexts. Neural networks easily provide
this possibility and can accept any number of time frames as input.

e Training of neural networks is discriminative, that is, it tends to mark the differences and
boundaries between the possible output classes rather than tries to best characterize the
distribution of the speech signal by maximizing its likelihood. Standard training algo-
rithms for HMMs (e.g., Baum-Welch) do not have this property, although discriminative
training methods also exist (e.g., Chesta et al. [24], Juang et al. [74]).

e [t was reported that neural networks are more accurate than HMMs to perform acoustic-
to-articulatory mapping (see King et al. [81]).

e Neural networks are the most often used in the literature to extract phonetic features
from speech and are freely available in the Internet (e.g., [107]).

Based on the choices above, the following general procedure was applied to discover new
pronunciation variants for each training utterance (Figure 4.3):
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Figure 4.3: Steps to build a static augmented lexicon

1. Some phonetic features were first extracted from the input speech on a frame-by-frame
basis using an artificial neural network (ANN). A paradigm based on output activation
values was adopted to search also for alternative combinations of features per frame.

2. Each combination of detected features for a given frame was mapped to a phone using
a phone-features conversion table.

3. Successive frames mapped to a same phone were grouped to form hypotheses, which
were then connected to each other to build a pronunciation network.

4. All possible phonetic transcriptions were generated from the network and the most likely
ones were selected by means of a two-pass Viterbi alignment and a pruning process.

The static augmented lexicon was obtained by adding all the selected transcriptions to the
basic lexicon. The following subsections will describe each step in detail.

4.5.1 From speech to phonetic features
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Figure 4.4: Acoustic-to-articulatory mapping

An artificial neural network (ANN) mapped a set of acoustic parameters to phonetic
features (Figure 4.4). The net had the three basic layers: one input, one hidden and one
output. Each node of the input layer accepted an acoustic parameter (Mel-frequency cepstral
coefficient or normalized log energy in our experiments) and each node of the output layer gave
the strength of a particular feature (SPE features in our experiments). Inclusion of context
frames as inputs of an ANN is known to be important for significantly better detection of
phonetic features (see e.g., Kirchhoff [85], chapter 3). Between 5 and 9 frames are generally
used as inputs for phonetic feature recognition in the literature. Our own experiments used 7
context frames. Time derivatives of acoustic parameters were also taken into account by the
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ANN architecture. Let us consider the network as a black box for the moment, more detail
will be given in the experiments section (4.7.3).

The acoustic-to-articulatory mapping was done on a frame-by-frame basis. For training
simplicity, features were considered as independent; the ANN performed therefore an N-to-M
classification, that is, several output nodes could be activated simultaneously. The tangent
hyperbolic was used as the activation function, so each feature for which the corresponding
output neuron displayed a positive activation value was considered as detected, although under
some additional conditions (see the next subsection).

4.5.2 From phonetic features to alternative feature combinations

+1 +1
/— } reliable /_ } reliable
Tmax Tmax
T=0 / } unreliable T=0 76 }unreliable

T, Yl T, /
N / ‘} reliable . /

"High" activation "Anterior" activation

Combinations

® © )

~high -high +high +high
—an_ter. +anter -anter. +anter

reliable

Figure 4.5: Process to generate alternative feature combinations

From the previous step, phonetic feature strengths were estimated from speech and the
threshold applied to the activation values of output neurons decided whether the feature was
present or not in the signal at the given frame. The combination of these features corresponded
to a unique sound. However, with the objective of discovering pronunciation variants, it was
desirable to consider also some feature alternatives, so the following paradigm was adopted.
Assuming that the acoustic-to-articulatory mapping performed by the ANN was fairly but not
fully reliable, an incertitude interval was set around the activation threshold of each output
neuron. Any feature value who fell inside this interval was classified as unreliable, and both
presence and absence of this feature were considered. An example is given in Figure 4.5. The
curves in the figure represent the activation functions of the output neurons associated with
the features “high” and “anterior”. Around the activation threshold T' of each function, an
incertitude interval given by T;n and Tp,q, was defined. In this example and for a given frame,
both feature values fell in this interval. Consequently, all possible values of these two features
were considered for this frame while the other features remained unchanged (assuming they
were outside the incertitude interval). This resulted in four possible combinations as shown
in the figure.

It is clear that the number of possible combinations rapidly increased with the number of
unreliable features. To prevent an explosion of possibilities, combinations were ranked so that
only a subset of them could be kept in case of too many alternatives. Two ranking criteria were
adopted. First and foremost, combinations with original feature values were favored. In the
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example of Figure 4.5, “high” and “anterior” were originally set as “-high” and “+anterior”
respectively by the ANN. Hence, the combination “B” was the most preferred, since both
features kept the original values. The second criterion was the distance of the original feature
value from the activation threshold 7T': the closer was a feature value from this threshold, the
more uncertain we were about the feature presence or absence, hence the more plausible it was
to test both possibilities. In the example mentioned previously, combination “D” was favored
to “A” because the “high” feature value was originally closer to the activation threshold T
(hence more likely to be modified) than “anterior”. An explicit penalty score was associated
with each combination to quantify these preferences and was given by the sum of activation
distances to T' of phonetic features modified from their original states. For example, supposing
that “high” had an activation value of -0.1 (feature absent) and “anterior” had +0.4 (feature
present), any combination that required “high” to be active underwent a penalty of 0.1, and
0.4 if it considered “anterior” as absent. According to the two criteria and penalty scores
mentioned, the four combinations were ranked in the following order with the corresponding
penalty scores (in parentheses): B (0.0), D (0.1), A (0.4), C (0.5). This ranking process was
used during the generation of pronunciation variants (building of pronunciation network),
but did not influence the selection of the best variants (see section 4.5.6). Besides, penalty
scores were also used to evaluate the accuracy of pronunciation networks generated with the
procedure being explained (see section 4.8.2).

4.5.3 From feature combinations to phones

Alternative combinations of phonetic features listed some articulatory configurations that
could produce the acoustics presented at the input. As advocated by linguists, phonetic
features should normally be used directly to format entries of the ASR lexicon and to express
pronunciation variations directly from the articulatory point of view. However, for practical
reasons, we still decided to map feature combinations to phones. The main reason was that
a direct utilization of feature combinations in the ASR lexicon would have implied estimation
of a separate acoustic model (HMM) for each combination (recalling that our initial objective
was to improve performance by modifying the lexicon, but while still using HMMs). However,
the number of possible feature combinations was fairly high (more than 16000 possibilities
with SPE features), which would have led to data scarcity problems and required some model
clustering techniques. As long as HMM topology, training algorithm and clustering techniques
were standard, resulting models would a priori not have been much different from context-
dependent phone-based models (triphones referring to a same monophone may correspond to
similar articulatory configurations, but with slight feature differences between them). For the
sake of a fairer comparison with our baseline system (not based on phonetic features), we
preferred to keep the phone-based models. A more interesting approach in our context would
have been to keep using a phone-based representation in the lexicon, but to adapt their HMM
topologies based on the phonetic feature combinations extracted from speech; in other words,
to adopt a strategy similar to the idea of Deng and Sun [33]. But this technique goes beyond
the scope of lexicon level pronunciation modeling initiated in this chapter and therefore will
not be considered. Nevertheless, another data-driven method that modifies HMM topologies
in pronunciation variation modeling perspective will be presented in the next chapter.

Therefore, each group of phonetic features was directly mapped to a phone using a phone-
features conversion table (see appendix B.1). By doing this for all combinations of all frames,
each frame was associated with one or more phones. However, some combinations could not
be matched to any phone listed in the table. These cases are explained by the asynchronism
of articulatory movements: parts of the vocal tract do not move simultaneously and instan-
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taneously, but often move from one state to another at different time intervals and speeds.
Coarticulation also contributes to this asynchronism, so that features of neighbor phonetic
units overlap each other. A feature value located in the incertitude zone by the ANN could
therefore be seen as a transition state in the vicinity of two adjacent phonetic segments with
opposite values for this feature. Following this point of view, frames for which such case
occurred were called transitional frames and the corresponding combination of features were
mapped to a so-called transitional phone (i.e., a virtual phone not listed in the phone inven-
tory and not modeled with HMMs). An example following the case illustrated in the previous
step (Figure 4.5) is shown in Figure 4.6. Among the four possible combinations generated by
changing the values of “high” and “anterior” features, two of them were successfully mapped
to valid phones [s] and [sh], while the remaining two could not be found in the phone-features
conversion table and hence were simply mapped to a transitional phone [?]. All mapped phones
conserved the same preference order as with feature combinations, except if there were more
than one transitional phone in the list, in which case only the best transitional phone was kept
and the others were discarded. The concept of transitional phones and frames were used in
two ways: first, they helped decide whether a phone segment hypothesis built from mapped
phones was reliable or not (see section 4.5.4); second, they helped to score pronunciations
during the construction of dynamic lexicons (see section 4.6.3).
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Figure 4.6: Mapping of feature combinations to phones

4.5.4 From phones to phone segment hypotheses

At the end of the previous step, each frame was associated with a ranked list of phonetic feature
combinations mapped in turn to a ranked list of non-transitional (called valid hereafter) or
transitional phones. In order to build a pronunciation network, we first built the nodes of
the network: a phone segment hypothesis was created whenever F;, (Fpin = 3 in our
experiments) or more successive frames referred to a same phone in their respective lists.
Moreover, a hypothesis was considered as reliable if at least Ryin (Rmin < Fmin, Rmin = 2 in
our experiments) of its frames respected the following conditions:

1. Only one valid phone was associated with the frame.

2. No transitional phone was ranked better than the valid phone.

Reliability of hypotheses intervened during the pronunciation network building (see sec-
tion 4.5.5). As a frame could be associated with more than a single phone, hypotheses could
overlap partially or even totally in time, as shown by the example in Figure 4.7 for the sequence
of words “he needs to go”.
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Figure 4.7: Example of phone segment hypotheses built from phones

4.5.5 From phone segment hypotheses to pronunciation network

Since phone segment hypotheses represented the nodes of a pronunciation network, it remained
to link them to each other. Some constraints checked whether two hypotheses were not too
far away to be connected, and then tested for possible succession or substitution relationships
between them based on how much they overlapped. The general algorithm is given below:

Initialization: sort hypotheses in increasing order of their starting time
Loop A: for each hypothesis A in the ordered list
Loop B: for each hypothesis B ordered after hypothesis A in the list
If A and B are too distant from each other, go to ‘‘End Loop B’’

If B can follow A
Create a link from A to B

Else if A can follow B
Create a link from B to A

End Loop B

If A is not the last node and has no successor
Create a link from A to the nearest hypothesis starting after end of A

End Loop A

Creation of a link between two hypotheses implies a succession relationship between them,
so the algorithm simply tests whether a hypothesis can directly follow another. If it is the
case, a connection is created to join the hypotheses. Otherwise, nothing is done because either
the hypotheses are too far away from each other or they represent alternative paths in the
pronunciation network. Hypotheses were considered too distant from each other when the
number of frames separating the hypotheses was equal or bigger than F,;,. defined previously
as the minimum number of frames required to create a valid hypothesis; it means that a gap
equal or bigger than this value may allow insertion of one or more hypotheses in between,
hence the connection should not be made. The following points define the conditions required
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for a hypothesis B to follow a hypothesis A . These conditions were only based on relative
positions of hypotheses in time; they were heuristically defined and certainly leave some room
for improvement, but still provided some reasonable results. Each point is illustrated in
Figure 4.8:
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Figure 4.8: Conditions to connect two hypotheses A and B

1. Length(AU B) > 2F,;n: even if A and B overlap each other, the length resulting from
their union must be long enough to hold at least two hypotheses.

2. Overlap(A, B) < Opqz: A and B must not overlap more than a certain ratio Opy,q, (fixed
to 50% in our experiments). An overlap rate was simply defined by %, that
is, the number of frames associated to both A and B divided by the number of frames

resulting from their union.

3. Start(A) < Start(B) 4+ Fpin: A must start before B or at least not too late after B.
If A starts F),;, or more frames after B, A cannot precede B. A tolerance interval of
Fiin — 1 frames was left at the right of B to take account of uncertainties to locate the
exact starting points of hypotheses due to transitional frames.

4. End(A) < End(B) + Fpin: A must end before B or at least not F,;, frames or more
after B. The same tolerance interval as for the previous condition applies.

5. BC | Creliable, Start(A) < Start(C) < Start(B): if there is a reliable hypothesis C
(notion of reliability was defined in section 4.5.4) between A and B, it cannot be skipped.

Once the pronunciation network was built, each single path through the network repre-
sented a possible transcription. To get pronunciation variants on a per word basis, the whole
network was finally segmented into subnetworks (one per word) according to some manually
defined word-level time boundaries. An example of possible pronunciation network and corre-
sponding word-level segmentation is shown in Figure 4.9. At this stage of process, some words
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needs to go

Figure 4.9: Example of pronunciation network built from phone segment hypotheses

did not have the baseform transcription available (e.g., “needs” with canonical transcription
/n iy d z/ in this figure). To insure that pronunciation variants always competed with the
corresponding canonical pronunciation during the selection process (cf. section 4.5.6), the
baseform transcription of each word was added to the network whenever it was not available.
Hence for the word “needs” in the example, a separate path representing /n iy d z/ would be
added.

4.5.6 Selection of pronunciation variants

All the previous steps described how to generate a pronunciation network from the input speech
through the detection of phonetic features. The networks yielded too many transcriptions to
be added to the basic lexicon without a substantial increase in lexical confusability, so a
selection process was necessary to keep only those that best matched the input data. For this
purpose, Viterbi alignment was applied to select the best paths (according to the maximum
likelihood criterion) in the networks. Actually, two passes of Viterbi alignment were performed
on the training data. The first pass consisted in selecting the best transcriptions among those
provided by the pronunciation networks. Then, all transcriptions selected at least once by the
first pass were made available during the second pass that further restricted the number of
available variants: for each word of a training utterance, all phonetic transcriptions referring
to this word and selected during any utterance of the first pass competed with each other.
Only phonetic transcriptions selected at least once by each of these two passes were added to
the basic lexicon.

An example is illustrated in Figure 4.10. To simplify the illustration, let us assume that the
training database contains only two utterances (sentences) with the word “needs”. The gener-
ation process described previously creates a specific pronunciation network for each utterance.
During the first pass, a Viterbi alignment is applied on each network. In this example, the
pronunciation variants [n ih d s] and [n ih t z] were selected for utterances 1 and 2, respectively.
Next, these two transcriptions compete with each other in the second pass using the same two
utterances. According to the example, only [n ih d s] was preferred for both utterances and
hence is the only pronunciation variant finally added to the basic lexicon.

Furthermore, the most frequent words (typically function words such as 7and”) still led to
too many pronunciation variants despite the two Viterbi alignment passes. Selected transcrip-
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First pass:
"needs", utterance 1 : | Canonicall /niydz/ Selected :
® (S [nihds] |=[nihds]
Q.@ [nihdsh]
™ Ssh New | nixds]
[nixdsh]
"needs", utterance 2 : | canonicall /n iydz/ Selected :

[nihtz] = [Nnihtz]

@"W@ New | rnihz]

Second pass:

"needs", utterance 1 : | Canonical| /niydz/ Selected :
New [nihds] |=[nihds]

[nNihtz]
“needs”, utterance 2 : | cgnonicall /n iydz/ Selected :
New [nihds] |=[nihds]

[nihtz]

Figure 4.10: Selection of pronunciation variants using two passes of Viterbi alignment

tions were therefore subject to further pruning depending on their frequencies of occurrence.
Namely, pronunciation variants whose probability of occurrence was lower than a minimum
value P,,;, were rejected. Probabilities were estimated by simply dividing the number of
times a phonetic transcription of a word was chosen by the number of word tokens in the
training material. The final remaining pronunciation variants and all canonical transcriptions
constituted the final static augmented lexicon.

4.6 Dynamic lexicon building

4.6.1 Overview

The objectives in this second part was to check during recognition whether a word was likely
uttered, and if so to use only phonetic transcriptions of the word that best matched the
pronunciation characteristics of the input utterance. For this purpose, the static augmented
lexicon described in the previous subsection was accessed and filtered through the following
steps and for each testing utterance (Figure 4.11):

1. A pronunciation network was created following the same method used to build the static
augmented lexicon. This involved again the automatic detection of phonetic features
from speech and the successive steps described in section 4.5 to generate the possible
alternatives.

2. For each word in the static augmented lexicon, the network was scanned to find a match
with one of the available phonetic transcriptions of the word. If the match was good
enough, the best matching transcription according to some criteria was selected and
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dynamic
lexicon

o aword = S G
T no

= .
static augmented CI-/O\;\O:-zO (reject)
lexicon _\O/ AO

pron. network
of a sentence

Figure 4.11: Steps to build a dynamic lexicon

added to the basic lexicon, otherwise only the canonical transcription was kept and all
pronunciation variants of the word were rejected.

The resulting lexicon at the end of the process was used instead of the basic and static
augmented lexicons in a standard HMM recognition. It was called dynamic because its content
was adapted to each distinct utterance, that is, different entries were selected or eliminated
depending on the utterance. The lexicon filtering idea follows a similar line of thought as
in Kirchhoff [83] and Lahiri [95], but is different in its objective and method. First, their
objective was to select word or syllable candidates in the lexicon while this method selected
pronunciation candidates of words, but without necessarily eliminating any word (no word
was actually rejected in our experiments). Second, they accessed the lexicon at the feature
level while this method detected phonetic features from the input speech, but accessed the
lexicon at the phone level (due to the practical reasons mentioned in section 4.5.3).

The next subsection will explain how to access and filter the static augmented lexicon to
build dynamic lexicons.

4.6.2 Pronunciation match search

The static augmented lexicon was filtered by searching the phonetic transcription of each
lexical entry in the pronunciation network. The search method described in this subsection
was inspired from James and Young [72] who presented a wordspotting technique that searches
phonetic transcriptions of words to spot in a phone-level lattice. Dynamic programming was
used to perform the search based on likelihood scores associated with phone hypotheses of
the lattice and some empirically defined penalties to account for phone insertions, deletions
and substitutions. They reported that the search was much faster than more conventional
wordspotting techniques with still reasonable performance. To further speed up the search
process, the method adopted here was also inspired by the work of Dharanipragada and
Roukos [34] who experimented a two-level match strategy: first, a coarse acoustic score located
possible time intervals where the word to spot could have been uttered, then a more detailed
acoustic match was performed at these intervals to reduce the number of false alarms. They
reported a high detection rate given their experiment conditions (words to spot not used
in training their acoustic models, no language model used) and especially a high speed of
execution (much faster than real-time). The method presented here will however be a bit
different from the above techniques in that phone-level and feature-level scores will be used
instead of acoustic likelihoods (cf. section 4.6.3). The method is described by the following
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steps

(1) -

(4)

for each lexical transcription (Figure 4.12):

Lexical transcription: krihtihk €

OO
N OEOEOECEOEOEHOS

O OR O DEORD=ORCRON
k riht ih k el
Ll L1 11 l
k rihdihk ax €

Figure 4.12: Steps to search for a lexical transcription in a pronunciation network

|
1:

. Nodes in the network representing any phone of the lexical transcription were marked,

regardless of their relative positions.

. The network was scanned to locate accumulation of marked phones. For this purpose, a

window of size equal to the number of phones of the lexical transcription was set around
each marked phone in the network®. A coarse matching ratio was calculated by dividing
the number of marked phones by the total number of phones in the window (if a phone
was marked several times in the window, it was not counted more than the number of
times it appeared in the lexical transcription). If the resulting ratio was equal or above
a certain threshold M R,,;, (“MR” stands for “Matching Ratio”), it was considered as
a putative hit and the window was kept for further process, otherwise the window was
rejected. If no window satisfied this criterion, the lexical transcription was rejected.

. Each window accepted in the previous step was progressively extended on both sides to

try to find other distinct marked phones in the area. The extensions continued as long
as the corresponding coarse matching ratio increased (as mentioned in the previous step,
a given marked phone was not counted more than the number of times it appeared in
the lexical transcription) or a single phone insertion was detected. Only windows with
the highest matching ratio were kept, the others were discarded.

. A detailed match score was finally evaluated through dynamic programming (DP) be-

tween the lexical transcription and each sequence of phones found in the selected win-
dows. Distances between phones were calculated by comparing their SPE features (num-
ber of different features divided by the total number of features), with the highest penalty
when a consonant was mapped to a vowel. Similar matching ratio as in step 2 was calcu-
lated for each window (number of correctly matching phones / total number of phones),
but was this time more precise because a correct ordering of phones was required by the
DP alignment. If at least one window had a ratio above the threshold M R,,;, and the

4Position(s) of the window relative to the marked phone reflected the relative position(s) of the phone in

lexical

transcription. A window position was never checked more than once for a given lexical transcription

and pronunciation network.
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corresponding alignment was realistic (e.g., no two consecutive insertions), the match
was considered as valid.

An example is given in Figure 4.12 for a transcription of the word “critical”. After marking
all phones of the lexical transcription [k r ih t ih k el] in the pronunciation network (step 1),
a valid window was located with a coarse matching ratio of 5/7 (step 2). After the window
was extended (step 3), the ratio increased to 6/8. The final DP match (step 4) confirmed this
ratio, although it could have been different if the phones in the network were not ordered in
the same way as in the lexical transcription.

4.6.3 Detailed-level matching scores

The matching ratio previously described was too approximate to accurately identify the most
appropriate pronunciation of a word given an utterance, so it was frequent that several phonetic
transcriptions of the same word found a match in the pronunciation network. In order to keep
only the most suitable pronunciation per word, two more detailed matching scores were used.
The first one, Sppy,, was evaluated at the phone level. It concerned only phones that were
correctly mapped according to the DP alignment mentioned in the previous subsection (i.e.,
substitutions, deletions and insertions were ignored). It was evaluated from the conditional
probabilities of appearance of these phones given the word W :

Npron

Sphn =Y _ Y _ P(philpr;) - P(prj|W) (4.1)

i€l j=1

I' is the set of all lexical phones that were correctly matched, Np.q, is the number of
distinct pronunciations for the word W, ph; is the i-th lexical phone correctly matched and
pr; is the j-th pronunciation of the word W. The probabilities were estimated by evaluating
frequencies of occurrence of phones and pronunciations for each word during the generation
and selection of new pronunciation variants in section 4.5.

Although this phone-level score was sufficient to select the best matching transcription in
many cases, there were still some situations where two candidate pronunciations led to the
same score. In this case, a second score, Sy.q, Was evaluated at the feature level: it consisted
of comparing phonetic features of each pair of aligned phones and of estimating a global
similarity measure. This new score was more precise than the phone-level score Sy, because
it also took account of all mapping errors (i.e., substitutions, deletions and insertions), but
was on the other hand more computationally expensive (hence the two-level detailed scores
were adopted). Let us first consider self-aligned phones and phone substitutions only. In case
a phone A was mapped to a phone B (A could be identical to B), the theoretical feature vector
(combination) of A (i.e., as given by a phone-features conversion table) was compared to the
sequence of feature vectors detected by the ANN frame-by-frame and associated with B. Since
B spanned several time frames, the feature vector of A was copied to cover the same time
interval. Assuming that feature vectors of A and B were respectively noted {d,d,...} (N

times to cover N frames) and {bl, b2, . bN} and moreover supposing that successive frames
were independent, a measure of similarity (MoS) between A and B was defined as follows:

log MoS(A, B) Z log MoS(@, by) (4.2)
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Assuming that phonetic features of a given frame were also independent and Supgosing
there were M features per vector, the MoS of each pair of feature vectors d and b, was
obtained by the following expression:

MoS(@, b, Z [1 — [targ(a™) — act(b™)]] (4.3)

This MoS is simply based on the average of differences between features of both vectors.
targ(a™) is the m-th target (theoretical) feature value of vector @ (0 if the feature is absent,

1 if the feature is present), and act(b!") is the m-th activation value of vector by, as returned
by the ANN for the m-th feature (values originally ranged from -1 to +1, but were rescaled
to fit in the interval [0, 1]). The final feature level score, Syt.qt, was the average MoS over all
phone pairs given by the DP alignment:

K
1
Steat = 7 glog MoS(Ag, By) (4.4)

where K is the number of aligned phone pairs. The final expression for Sy.,; can be found
by including the expressions of equations (4.2) and (4.3) in (4.4).

Phone insertions were handled like substitutions by including the notion of transitional
phone introduced in section 4.5.3. We recall that a transitional phone represented any com-
bination of phonetic features that could not be matched to any phone in the phone-features
conversion table, and was mainly due to asynchronism of articulatory movements. A possible
adequate phone-level representation of such movements at phone boundaries could be a se-
quence comprised of two valid phones A; and Ay in between which one or more transitional
phones could be inserted to represent the sequence of transitional articulatory configurations;
several parallel sequences of transitional phones would even be necessary to model the move-
ment of an articulator before another and vice-versa. However, to simplify the problem and
for the purpose of modeling phone insertions in the same way as substitutions, this hypothet-
ically complex representation was simplified by assuming only one single transitional phone T'
between the phones A; and As, with the following target feature values:

0 iftarg(al") =targ(ay’) =0
targ(t™) =< 1 iftarg(al’) = targ(ay’) =1
0.5 otherwise

(4.5)

This expression simply means that the transitional phone takes the same m-th target
feature value as its surrounding valid phones if their m-th features are identical, or takes an
intermediate value (0.5) if they are different. This is in accordance with the results of King and
Taylor [82], who observed that their network output feature values tended to be intermediate
at phone boundaries. In the context of our lexical transcription match in a pronunciation
network and resulting DP alignment with the best match (as shown in Figure 4.12), insertion
of a phone B (from the best network match) between two lexical phones A; and Ay was
evaluated by measuring the resemblance of B to the target transitional phone T

11 M N
log MoS(0, B) ~ log MoS(T, B) _Mﬁzz [1 — [targ(t™) — act(b™)]]  (4.6)

m=1n=1
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where M and N are respectively the number of features and the number of feature vectors
(frames) compared, just like in equations (4.2) and (4.3). The idea behind this equation is
to see how much the detected feature values of phone B are distinct from typical feature
values of a transitional phone. If comparisons show little differences, B can be assimilated
to a transitional phone that could be present between the lexical phones A; and A;. The
insertion of B is therefore plausible and probability of insertion is high. On the contrary, if
B is significantly different from a transitional phone, it is likely a valid phone and the fact
that B is not present in the lexical transcription must be penalized, hence a low insertion
probability expressed by a low MoS. An example is shown in Figure 4.13 that follows the case
given in Figure 4.12. Results of DP alignment showed an insertion of the phone [ax] between
two lexical phones [k] and [el]. To evaluate how much penalty the lexical transcription should
be accounted for this insertion, an idealistic transitional phone [k_el] is introduced between [k]
and [el], with phonetic features set according to the expression (4.5) and given in the figure.
Insertion of a phone [ax] is then made equivalent to a substitution of [k_el] into [ax] and the
MoS for this substitution is evaluated by comparing their phonetic features. If the resulting
MoS is high, features associated with [ax] represent well a transitional phone that naturally
stands between [k] and [el]; in other words, the insertion is not considered as a real valid phone
insertion and hence the penalty is low. On the other hand, if the MoS is low, detected features
likely represent a valid distinct phone [ax]| (or similar phone) and lack of such phone in the
lexical transcription is therefore penalized.

k rih tihk el Il K el k "k_el" el

H¢H¢¢¢ . =

h dih k |ax el ax

k=(01 1 1 0 0 0 00 O O 00O
el =(01 0 0 0O 1 1 00 1 1 000
kel =(010.50.500.50.5000.50.500 0)

Figure 4.13: Procedure to evaluate measures of similarity for phone insertions using the con-
cept of transitional phone

Phone deletions were handled similarly: deletion of a lexical phone A was interpreted as
a substitution of A into a transitional phone T' standing between two network phones By and
BQZ

M N
log MoS(A, () ~ log MoS(A,T) %% >3 [ - Jtarg(a™) — act(ty)]] (4.7)
m=1n=1

In contrast with insertions, phonetic features for T' were not artificially created, but di-
rectly taken from the outputs of the ANN. Namely, features of all frames located between the
end of phone By and start of By were used (start and end times of two successive phones did
not always coincide, see Figure 4.7 for an example). Alternatively, some boundary frames of
these phones were used instead if no such frames existed. These frames were not necessarily
transitional (“transitional” as defined in section 4.5.3) because they could be associated with
a valid phone hypothesis distinct from B; and Bs in the pronunciation network. The MoS
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between the lexical phone A and T' determined therefore if features associated with T repre-
sented a true transitional phase between By and Bs - in which case presence of the phone A
in the lexical transcription was penalized by a low MoS - or rather resembled to feature values
of the phone A or phonetically similar phone - in which case a low penalty by means of a high
MoS was applied.

The following sections will describe some experiments and results relative to the method-
ology presented.

4.7 Experiments and basic results

4.7.1 The TIMIT database, lexicon and phone inventory

All experiments were carried out on TIMIT [51]. This is a read speech database spoken by
630 speakers from eight major dialect regions of the United States. Each speaker uttered ten
sentences of three types:

1. Two “SA” sentences were uttered by all speakers and are convenient to compare pro-
nunciation variations between the different dialects.

2. Five “SX” sentences are phonetically compact: they are meant to insure a good range
of phone pairs, but without exhaustively covering all phonetic contexts either. Each
sentence was uttered by seven different speakers.

3. Three “SI” sentences are phonetically diverse: they were selected from existing text
sources and are meant to cover a maximum range of phonetic contexts. FEach sentence
was uttered by a unique speaker.

The database is divided in two sets, train and test, and contains 462 and 168 speakers
respectively. The proposed complete test set contains 1344 SX and SI sentences. A smaller core
test subset was created with 24 speakers (two male and one female speakers of each dialect),
with all SX and SI sentences per speaker. The database contains reference transcriptions and
segmentations at both word and phone levels, hence convenient for evaluation purposes.

The lexicon provided with TIMIT was used for the experiments. It contains a closed vocab-
ulary of 6229 words. Each word is associated with one baseform pronunciation in most cases.
62 phones (including silence and pause) composed the total phone inventory (cf. appendix A),
although it is common for training and evaluation purposes that this original set is reduced
(e.g., 48 symbols proposed by Lee and Hon [97]). However, a different 43 symbol set was
adopted in this chapter, in accordance with the SPE phone-features conversion table given by
King and Taylor [82], in which several phones were mapped to the same feature combination.
In order to establish a one-to-one relationship between feature combinations and phones, all
phones with the same feature combination were merged to build a single acoustic model. The
list of phones and feature combinations used can be found in appendix B.1.

4.7.2 The baseline system

The HTK speech recognition system [158], well-known and often used in the speech community,
was used to build HMM-based acoustic models. The original speech data was first converted
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into acoustic vectors using a Hamming window of 25ms and a 10ms frame interval. Each vector
contained 39 elements: 13 Mel-frequency cepstral coefficients (MFCC) including normalized
energy, plus the corresponding first and second derivatives. The 0-th order cepstral coefficient
(co) was not included.

Influenced by the tendency of using TIMIT by the speech community for phone recognition,
we decided to rely on a training scheme proposed by Young and Woodland [160] as a guide
to build our acoustic models, then to evaluate them in a word recognition task. Acoustic
parameters and reference phonetic transcriptions of all training sentences of TIMIT were used
to first build 43 monophones, then based on them to create and train 1304 right-context
biphones as well. All HMMs had the standard left-to-right topology with three states and no
skips. A data-driven clustering scheme was then applied to merge acoustically similar states,
then the number of Gaussian mixtures per state was progressively increased up to six. A
back-off bigram was built from all distinct sentences of TIMIT for evaluation®. The baseline
results are given in Table 4.4. The phone accuracy of 71.9% (28.1% PER) obtained with the
full test set of TIMIT is comparable to the result reported by Young and Woodland. The
same acoustic models evaluated for word recognition led to 25.1% of WER.

\ | PER / WER |
Phone recognition 28.1%
Word recognition 25.1%

Table 4.4: Baseline recognition results

4.7.3 The phonetic feature detection system

Similar experiments as in King and Taylor [82] were carried out to perform the feature detec-
tion. As mentioned earlier, an ANN (called NICO [107]) was used to map a set of acoustic
parameters to a vector of phonetic features on a frame-by-frame basis. The ANN created for
the experiments had the three standard layers: input, hidden and output. The input layer was
composed of 13 units to accept 12 MFCCs and normalized log energy (although more input
parameters were used in total, see below), the output layer had 14 units, one for each SPE
feature and a special unit for silence, and the hidden layer had 250 units. The tanhyp function
was used as the activation function for all these units. Besides this basic configuration, the
ANN architecture included the following characteristics:

e Two special additional layers with the same number of units as the input layer were
created. Each unit of the first additional layer was connected to a distinct unit of the
input layer with time-delay and look-ahead connections in such a way that the activity
of the new unit represented the first derivative of the corresponding input unit. The
second additional layer was similarly connected to the first additional layer to calculate
the second derivatives. All units of the input and additional layers were connected to
the units of the hidden layer.

e Several time-delay and look-ahead links connected pairs of units in successive layers to
take account of context frames. A window of -3 to +3 frames (so seven links in total)
fully connected all pairs of units in successive layers.

5Test sentences were voluntarily included so that the out-of-vocabulary problem would not influence the
results of our experiments.
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e Units in the hidden layer were also connected between each other (recurrent links), but
with only 50% connectivity. Units were ordered and probability of connection between
each pair was proportional to the proximity of units.

e The network contained about 150’000 links in total.

To train the ANN, reference phonetic labels and segmentations of all speakers found in
the TIMIT training database were used to set the target feature values according to the
phone-features conversion table they provided (0 if a feature was absent, 1 if it was present),
given the acoustic parameters generated with HTK and presented to the input layer at each
frame. 3596 sentences were used to train the network and 100 sentences were reserved for cross-
validation. Even though target features were set to change synchronously at phone boundaries
according to the given segmentations, the network was still able to learn the asynchronous
change behavior of phonetic features during recognition.

4.7.4 Phonetic feature recognition results

Frame-level phonetic feature classification experiment on the core test set of TIMIT led to the
results in Table 4.5. Values are comparable to those obtained by King and Taylor on their
cross-validation set, and show that each feature taken separately can be reliably recognized.
The “all correct” rate shows how frequently all features were simultaneously correct for a given
frame (“all correct” = number of frames with all features correct / total number of frames);
about one frame out of two was phonetically well-identified.

‘ Feature ‘ Frames correct (%) H Feature ‘ Frames correct (%) ‘
vocalic 88.2 round 93.9
consonantal 90.5 tense 90.7
high 88.0 voice 93.6
back 87.9 continuant 93.3
low 93.4 nasal 97.7
anterior 90.6 strident 97.0
coronal 89.9 silence 98.3

‘ Average ‘ 92.4 H All correct ‘ 53.5

Table 4.5: Frame-level classification results with SPE features

4.7.5 Word recognition results

The static augmented and dynamic lexicons generated following the methods described in
sections 4.5 and 4.6 were used instead of the basic lexicon for word recognition. The fol-
lowing parameter values were chosen for the experiments (values were not optimized for the
experiments, but chosen either arbitrarily or guided by common sense):

e Limits of the incertitude zone to generate multiple feature combinations (section 4.5.2):
Trin = —0.5 and Tjpe, = +0.5

e Minimum number of successive frames associated with a same phone to create a valid
hypothesis (section 4.5.4): Fp,ip, =3
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e Minimum number of frames for a reliable hypothesis (section 4.5.4): Ry = 2

e Pruning probability for frequent words (section 4.5.6): Py, = 0.05

The static augmented lexicon contained on average 2.4 pronunciations per word; it included
all canonical transcriptions and the pronunciation variants selected by two passes of Viterbi
alignment (cf. section 4.5.6). For dynamic lexicons, two cases were evaluated. In the first case,
only one pronunciation per word was accepted, regardless of whether the pronunciation was
canonical or not. In the second case, canonical transcriptions were mandatory and a single
pronunciation variant was added only if it found a better match in pronunciation networks
than the corresponding baseform. Word error rates using these lexicons on the full test set
of TIMIT are given in Table 4.6. The results show that the static augmented lexicon (line
“Static + canonical”) improved performance but not by much. The dynamic lexicons (line
“Dynamic”) were built using different values of matching ratio thresholds M R, (introduced
in section 4.6.2). These lexicons alone did not perform better than the baseline system (27.7%
WER). However, combination of dynamic lexicons and canonical transcriptions (line “Dynamic
+ canonical”) achieved a 21.7% WER, so a 13.5% relative reduction in WER compared to
the baseline and 10.0% compared to the static augmented lexicon (statistically significant
improvements). The corresponding M R,;, was around 30% for our system.

‘ Lexicon ‘ WER ‘
Basic (canonical) 25.1
Static + canonical 24.1
Dynamic 27.7
Dynamic + canonical | 21.7

Table 4.6: Recognition results with static and dynamic lexicons

4.7.6 Expected maximum performance

To have an idea about the best performance we could get from the concept of dynamic lexicons
using canonical and derived transcriptions, the following cheating word recognition experiment
was set up. Like in the basic experiment with dynamic lexicons, we used a different lexicon
for each test utterance during recognition. Lexical entries were identical to those in the
basic lexicon, except for the words pronounced in the utterance: if a phonetic transcription
of a word, derived from the pronunciation network built for the utterance, better matched
through DP alignment the reference phonetic transcription than the baseform, then the latter
was replaced by this pronunciation variant in the lexicon. Application of this method led to
the results in Table 4.7 (lines “Basic (canonical)” and “Pron. network”). We notice that
a significant improvement can potentially be achieved (more than 50% relative reduction in
WER). For the sake of information, the same experiment was carried out again, but this time
using directly the reference phonetic transcriptions instead of network-derived pronunciations.
As expected, relative improvements are even higher (line “Reference”). It is interesting to note
that when reference transcriptions are added to existing canonical transcriptions instead of
replacing them (line “Reference 4+ canonical”), further improvement can be obtained (13.8%
relative reduction in WER compared to reference transcriptions alone), suggesting that it is
a good idea to always keep canonical pronunciations even when lexicons are dynamic and
pronunciation variants are reliable.
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‘ Transcriptions ‘ WER ‘
Basic (canonical) 25.1
Pron. network 12.5
Reference 5.8
Reference + canonical 5.0

Table 4.7: Expected maximum word recognition performance with canonical, pronunciation
network-derived and reference transcriptions

4.8 Analysis of intermediate results and errors

Comparison of results in Tables 4.6 and 4.7 shows that there is still a lot of room for further
improvement. The objective of this section is to analyze some intermediate results and errors
to identify the components of the current system that could be improved.

4.8.1 Detection of phonetic features and comparison with phones

In order to see whether use of phonetic features is more useful and efficient than phones as
often stated in literature, a separate phone-based ANN was also trained. It was similar to the
feature-based system described in section 4.7.3, except that 43 units (one per phone) composed
the output layer instead of the previous 14 SPE units. Pairs of units in successive layers were
again fully connected, resulting in more links (200’000 instead of 150°000) due to the higher
number of output units. The training process respected a standard N-to-1 scheme (in contrast
with the N-to-M scheme used with SPE features), that is, only one output unit was activated
at each frame. Classification results on the core test set of TIMIT showed a 67.6% accuracy,
so much higher than the 53.5% obtained with the SPE-based system. However, this difference
in performance was partially due to the number of possible outputs : while there were merely
43 possibilities for the phone-based system at each frame, 2'4 = 16384 different SPE-feature
combinations were possible with only one correct for the feature-based system, hence a much
higher risk to make an error. This was especially the case at phone boundaries due to a higher
rate of transitional frames. King and Taylor [82] reported that forcing each feature combination
to be mapped to the closest phone of their inventory increased their frame recognition rate
from 52% to 59%. Moreover, phonetic features used as references during recognition were
simply deduced from reference phone-level information using a phone-features conversion table.
These reference feature values were not always correct. First, their configurations were set to
change synchronously at given phone segmentation points while they were supposed to change
asynchronously in reality. Second, since the evaluated speakers were from various dialectal
regions of the United States, substantial pronunciation variations were expected and some
phonemes could have been realized with particular articulatory configurations not found in
the phone-features conversion table. Real measured articulatory positions would have given
more accurate results. Nevertheless, the substantial difference in frame recognition rates
obtained between the feature- and phone-based ANNSs still suggests further study to improve
the feature detection system.

Given the higher accuracy achieved with a phone-based ANN, one could rightfully ask why
a feature-based ANN could be more beneficial. If the final goal is just to get the most accurate
phonetic identification of frames, then a feature-based ANN is probably not useful according
to the results above. However, our objective was to create pronunciation networks from the
outputs of an ANN. Such networks imply alternative paths to model pronunciation variations.
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Consequently and in this specific context, it is not important if the correct phone is not ranked
first for a given frame during ANN recognition, as long as it is among the N best alternatives.
On the other hand, it is more important that the N-best candidates are phonetically similar
to create acceptable pronunciation alternatives in networks. The following experiment was
therefore set up to measure the average phonetic confusion between alternatives: two phone
confusion matrixes were built (silence symbol excluded) by using both the phone- and feature-
based ANNs for recognition. However, in contrast with the standard way, not only the best
output but the N-best phone-level alternatives per frame were taken into account to build
each matrix. Then, a global average confusion distance was calculated for each matrix by
respecting the following steps:

1. For each matrix row (elements of a row corresponded to the list of confusable phones p;’s
given a reference phone p,.y), each confusion count, CCount(p,.y,p;), was normalized

by the total number of confusion counts found in the row to get a confusion ratio:
CCount(pyey,pi)

Zf-v:l CCount(pyef,pi)

CRatio(pyef,pi) = , where N is the number of distinct phones.

2. An average confusion distance for each reference phone, C'Dist(p,.f), was calculated
by summing the products of each confusion ratio C'Ratio(p,.r,p;) by the correspond-
ing number of phonetic feature (SPE) differences between the reference and confusable
phone, FDiffS(prefapi): CDiSt(pref) = Zz CRatiO(pTefapi) * FD/L.ffS(prefapi)' To
clearly mark the differences between consonants and vowels, the original SPE binary
features given by King and Taylor [82] were made ternary: all features theoretically not
relevant for a consonant or a vowel were marked as ’0’ for the concerned phones regardless
of their original values ("+’ or ’-’), unless the modification reduced too much discrim-
ination between consonants or between vowels themselves (phones and their ternary
features are listed in appendix B.1). These non-relevant features were therefore counted
as additional differences when a consonant was confused with a vowel or vice-versa.

3. A global confusion distance was finally calculated by taking the average over all confu-
sion distances calculated for each reference phone: CDistGlob = % Z;vzl CDist(pref,;)
where N is the number of reference phones (N is the same as in point 1).
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Figure 4.14: Average confusion distance with respect to the average number of phone outputs
per frame, using a phone-based vs. a feature-based ANN



70 Chapter 4. Dynamic Lexicon Using Phonetic Features

Results are given in Figure 4.14 for different average numbers of phone outputs per frame.
Partially due to its better frame recognition accuracy, the phone-based ANN shows a smaller
confusion distance than the feature-based ANN when only the best output per frame is con-
sidered. However, this distance increases also more rapidly when alternatives are also taken
into account, which means for instance that the second or third best outputs are phonetically
more distant on average to the reference phone when using a phone-based ANN. Choice of the
type of ANN to use should therefore depend on the objective aimed; according to the results,
feature-based ANNs seem more suitable to generate phonetically closer alternatives.

4.8.2 Accuracy of pronunciation networks

Pronunciation accuracy of networks built from phonetic features was measured. It was neces-
sary that transcriptions derived from these networks better modeled true pronunciations than
baseforms in order to expect good pronunciation variants in static augmented and dynamic
lexicons and hopefully an increase in speech recognition performance. For this purpose, a
representative portion of each word subnetwork was compared against its corresponding ref-
erence phonetic transcription. Namely, ten paths with the lowest feature-level penalty scores
(penalty scores were explained in section 4.5.2) were selected in each generated subnetwork;
the ten phonetic transcriptions were aligned against the reference transcription using DP and
the mapping errors (deletions, insertions and substitutions) were counted from the best align-
ment. As a matter of comparison, the canonical transcription was separately aligned against
the reference transcription for the same purpose. The resulting Phone Error Rates (PERs)
with the core test set of TIMIT are shown in Table 4.8. Pronunciation networks alone did not
on average target true pronunciations better than canonical pronunciations, suggesting that
more effort needs to be put on how to create and combine phone segment hypotheses more effi-
ciently to build the networks. However, another experiment that combined both canonical and
network-derived pronunciation variants and aligned them against reference transcriptions led
to statistically significant improvement over the use of canonical transcriptions alone (28.8%
relative reduction in PER). Pronunciation networks generated from phonetic features were
therefore still useful but needed at this stage to be combined with canonical transcriptions to
bring higher pronunciation accuracy.

| Transcriptions | PER |
Canonical 29.05
Pron. network 38.09

Can. + pron. network | 20.67

Table 4.8: Phone error rates with canonical and pronunciation network-derived transcriptions

4.8.3 Accuracy of lexicons

Pronunciation accuracy of dynamic lexicons was measured. In contrast to the case with pro-
nunciation networks seen in the previous subsection, possible phonetic transcriptions were
restricted to the lexical entries available in the static augmented lexicon (which was built
using the training set). Performance was therefore expected to be lower than with pronuncia-
tion networks if transcriptions did not model well the pronunciation variations of the test set.
Pronunciation accuracy was measured in a way similar to the previous subsection: for each
reference word of the test set, the phonetic transcription of the word in the dynamic lexicon
that best matched its corresponding true phonetic transcription through DP alignment was
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selected and the corresponding mapping errors were counted. In order to estimate the max-
imum achievable performance using all pronunciation variants generated from the training
set, the same experiment was set up but this time with the static augmented lexicon (which
contained all the available transcriptions).

‘ Transcriptions ‘ PER ‘
Can. + pron. network | 20.67
Static aug. lexicon 22.06
Dynamic lexicons 26.10

Table 4.9: Comparisons of phone error rates with network-derived pronunciations and with
transcriptions found in static augmented and dynamic lexicons

Corresponding PERs obtained with the core test set of TIMIT are shown in Table 4.9 and
are compared to the PERs obtained with canonical and network-derived transcriptions. The
table shows that a slight degradation is observed with the static augmented lexicon compared
to the network-derived transcriptions. This is due to the mismatch between transcriptions
built from the training set and pronunciations of the test set. Besides, this result represents
the case when the pronunciation search algorithm (explained in section 4.6.2) always selects
the phonetic transcriptions that best match the true pronunciations of the test set. This
algorithm was not without errors in practice: transcriptions selected for dynamic lexicons led
to a higher degradation in PER compared to the network-derived pronunciations. Therefore,
both a better generalization of pronunciation modeling to unseen data and more accurate
pronunciation search algorithm are required to reduce this degradation.

4.8.4 Accuracy of pronunciation search algorithm

Following the results of the previous subsection, we measured how frequently the pronunciation
search algorithm selected the best lexical transcription given the true pronunciation of a word:
experiments showed a 63.1% of correct identification rate. Errors in the remaining percentages
were of two types:

False alarm : the canonical transcription best matched the true pronunciation, but the
algorithm selected a pronunciation variant as the best match: 23.4%.

Bad variant match : a pronunciation variant best matched the true pronunciation, but the
algorithm selected either the canonical transcription or another pronunciation variant
instead: 13.5%.

These two rates were partially influenced by the pronunciation match threshold M R,
(mentioned in section 4.6.2): the lower this threshold and the more easily a pronunciation
variant was accepted and the false alarm rate was therefore increased. On the other hand, a
high threshold rejected most pronunciation variants among which some of them could better
model the true pronunciation than the canonical transcription, which increased the bad variant
match rate. Besides, these values were average rates. Efficiency of the pronunciation match
depended actually a lot on the word length. Figure 4.15 shows how the three rates mentioned
above (correct, false alarm, bad variant match) varied with respect to the word length (number
of letters): the longer the word and the more accurate was the match. As it could have been
expected, short words were more difficult to spot because their phonetic transcriptions were
often located at several places in pronunciation networks among which most of them were
misleading (e.g., longer words could include similar phonetic patterns).
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Figure 4.15: Variation of correct, false alarm and bad variant match rates with respect to
word length

4.9 Discussion and possible future directions

To summarize and according to the result analysis made, the following points need to be
improved to expect a better pronunciation modeling accuracy and word recognition rate:

e More reliable detection of phonetic features
e More accurate pronunciation networks
e Better generalization of dynamic lexicons to unseen data

e Better location of short word transcriptions in pronunciation networks

Let us consider each item separately. Concerning the feature detection system, it is known
from the literature (e.g., [46]) that training with real articulatory data lead to higher per-
formance than with phone-derived simulated feature data. But needless to say, such data is
not always available for the database we would like to use for evaluation. Perhaps that first
bootstrapping an ANN with real articulatory data of another database (preferably of similar
type) before further training with simulated articulatory data of the speech corpus we are
interested in could help to improve the detection. Also in the current system, all feature
targets had binary values and moved synchronously and instantaneously from one state to the
other at phone segmentation points. A better way to simulate smoothly changing articulatory
positions would be to use intermediate feature values (between 0 and 1) as targets in the
vicinity of phone boundaries. Asynchronous movements could also be taken into account by
setting each feature modification at different time intervals, but would require some a priori
knowledge or statistical models to predict which feature is modified first given the contexts.
Finally, to simplify the problem, all features were given the same importance regardless of
the phone considered. It is known however that some articulators are critical to realize a
phone (e.g., tongue tip for [d] or [t], lips for [b] or [p]) while others are often more variable as
a consequence or anticipation of realizing the previous/next phone. It was reported in [110]
that “critical articulators are less variable in their movements than non-critical articulators”.
A weighting scheme could therefore be applied to give more importance on critical phonetic
features and to help enhance the identification of some specific phones.
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Concerning the creation of pronunciation networks, our current system simply linked phone
hypotheses based on their relative positions in time, but without considering if a sequence of
phones was well-formed or not. Application of a phone-level language model was expected to
help in this context, but experiments with a phone-level bigram trained on all sentences of
TIMIT did not bring any significant improvement in PER. A language model with higher order
would perhaps bring some beneficial effects. A more appealing idea would be the application
of phonotactic constraints, which are knowledge-based lists or rules that govern the set of
permissible phone sequences in a given language. For example, consonant clusters of an initial
“CCCV” (C=consonant, V=vowel) word or syllable sequence in English must start with a [s]
followed by a voiceless stop ([p], [t] or [k]), then finally by one of [1], [r], [j] or [w] (with some
additional constraints). A list of phonotactic constraints for English can be found in [30]. An
example of approach with phonotactic constraints for speech recognition is given by Carson-
Berndsen and Walsh [19] with their so-called Time Map model. They represented the set of
phonotactic constraints as a finite-state automaton. An interesting aspect of their approach
is the use of co-occurrences of phonetic features (two by two) as constraints on the arcs of
the automaton. A data-oriented ranking procedure was used to relax some of the constraints
in case no given phonetic sequence could respect all of them. However, in order to apply
phonotactic constraints to continuous speech in English (and other languages), a syllable-level
segmentation (e.g., [40]) of recognized phone sequences is a priori necessary since phonotactic
constraints in English are syllable-dependent.

Regarding the content of dynamic lexicons, a formalization procedure (using for instance
rules or decision trees) would be more appropriate than addition of new phonetic transcrip-
tions to the lexicon in order to generalize pronunciation variation modeling to words that
did not occur in the training database. Moreover, since pronunciation networks built during
recognition are phonetically more accurate than phonetic transcriptions generated during the
training phase, entries of dynamic lexicons could be a mixture of the best phonetic entry found
in the static augmented lexicon given an utterance and its best matching phonetic sequence in
the pronunciation network. Transformation of the original phonetic entry could for example
depend on the reliability of a phone segment hypothesis in the pronunciation network or more
generally on some additional confidence metrics.

Better location of short word transcriptions in pronunciation networks is an open question.
A possible approach (e.g., Dharanipragada and Roukos [34]) is to build a network composed of
an acoustic model for the keyword transcription and surrounded by “filler” models, to apply a
Viterbi alignment in order to find the segmentation points and finally to rank the possible hits
by time normalized log-likelihood scores. Another possibility could be to artificially extend the
length of the initial phonetic transcription by adding one or more phones of possible neighbor
words on both left and right sides; this idea is similar to the concept of multi-words (e.g.,
Kessens et al. [80]), which are two or more words put together and considered as another
distinct word on its own. Phonetic transcriptions would be longer and would facilitate the
pronunciation search process and reduce the number of false alarms, but with the need of
testing each possible neighbor context.

A last issue not yet mentioned is the speed factor. Although pronunciation search of
a single transcription was faster than real time, construction of a dynamic lexicon took a
considerable amount of time due to the high number of lexical entries to search for. At this
stage, the method is therefore not suitable for real-time large vocabulary speech recognition.
It is true however that current implementation of the method simply considered each lexical
entry independently, one by one. Since many entries have similar phonetic sequences, a more
efficient implementation (e.g., based on a tree-organized lexicon [106]) would considerably
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reduce the computation time. A recent paper by Koval et al. [92] also proposed a multi-level
hierarchical representation of lexical entries that contained not only allophones and phonemes
but also meta-phonemes at the highest levels of the hierarchy. Each node of the hierarchy
was associated with a binary digit string of phonetic features (string length was proportional
to the specificity of the node in the hierarchy) and a so-called hierarchical matching function
that measured the importance of keeping or rejecting a feature attributed to a phoneme of the
word. Such hierarchical representation could be appropriate to find a compromise between
speed of execution and accuracy of the pronunciation search.

4.10 Summary

In this chapter, we introduced a method to build a lexicon whose content was adapted for each
input speech utterance in order to better model pronunciation variations without increasing
too much lexical confusability. For this purpose, two steps were applied. In the first step, a
static augmented lexicon was created by adding new phonetic transcriptions to a basic lexicon.
These pronunciation variants were generated using phonetic features that were automatically
detected from speech and helped to create a pronunciation network. This process was followed
by two Viterbi alignment passes on the network to select the best variants. Then in the
second step, a distinct dynamic lexicon was created for each utterance during recognition
by only keeping entries in the static augmented lexicon that best matched the pronunciation
characteristics of the utterance. Decision of keeping or rejecting an entry was governed by a
search of its phonetic transcription in a pronunciation network built from each utterance and
based again on the detection of phonetic features. Although pronunciation networks alone did
not target true pronunciations as accurately as canonical transcriptions, addition of the latter
to the networks led to significant improvement of phone-level accuracy. Similarly, the system
based on dynamic lexicons alone did not perform better than the baseline system, but addition
of canonical transcriptions also led to significant reduction in WER. Analysis of intermediate
results and errors pointed out which components of the system could be improved to expect
a higher performance in the future.



Chapter 5

Dynamic Sharings of Gaussian
Densities Using Phonetic Features

In the previous chapter, we described a method to dynamically model pronunciation variations
using phonetic features at the lezicon level. This chapter will study the applicability of a
similar approach, but this time at the acoustic level [101], through the following sections:

e Section 5.1 will explain the reasons that motivated this acoustic-level study.
e Section 5.2 will present the concept of state-level pronunciation modeling (SLPM).

e Sections 5.3 and 5.4 will describe two approaches that implement the SLPM concept, a
static and dynamic approach respectively.

e Section 5.5 will describe the related experiments and some basic results.

e Section 5.6 will focus on modeling phone deletions and insertions in the dynamic SLPM
framework.

e Section 5.7 is an independent part of this chapter dedicated to the detection of phonetic
features in spontaneous speech.

e Section 5.8 will summarize the content of this chapter.

5.1 Motivations

Apart from the different points mentioned at the end of the last chapter (section 4.9), another
issue of the previous method that seemed important to be addressed was the inability of
acoustically modeling each phonetic feature configuration: they were constrained to be mapped
to a finite number of available phone models, which represented a limited amount of possible
articulatory configurations. Such limitation is an obstacle to correct pronunciation modeling
according to an experiment made by Saraclar and Khudanpur [123]: they showed that when a
phoneme /b/ is realized as a phone [s], its average acoustics are neither close to the acoustics
of a typical /b/ nor of a typical [s], but lie somewhere in between. Such instance is often a
case of pronunciation ambiguity, for which even human transcribers do not agree about the
identity of the surface form. Similarly in the domain of phonetic features, it is also likely that
articulatory configuration during a pronunciation change is also an intermediate state between
two “basic” configurations, and should therefore be modeled separately.
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In the previous chapter, we already mentioned as a possible solution the work of Deng and
Sun [33], who designed a specific state-transition network for each phone in order to model the
overlap of articulatory features between neighbor phones. However, this approach requires in
its basic form the definition of rules to decide when a feature can overlap a neighbor phone.
Moreover, it is not designed to model pronunciation variations: it certainly does take account
of pronunciation changes due to coarticulation effects, but not to other factors like dialects.
For example, when a word “ten” is realized as [t ih n] instead of the basic form /t eh n/, the
change from /eh/ to [ih] (or an intermediate form between /eh/ and [ih], as discussed above)
is not due to the spread of articulatory features from its neighbor phones, but rather to the
speech background of the speaker. Therefore, we were looking for a method more data-driven
and more explicitly designed for pronunciation variation modeling.

With the perspective of addressing the issue mentioned in their previous paper, Saraglar et
al. [124] introduced a new method called state-level pronunciation modeling (SLPM). The next
section will present its basic concept and section 5.3 will describe how it can be implemented.
The novel contribution of this dissertation resides in the introduction of dynamic SLPM, which
will be described in section 5.4.

5.2 Overview of state-level pronunciation modeling (SLPM)

5.2.1 Basic concept

The key idea of SLPM is to model pronunciation variations by sharing Gaussian densities
across acoustic models. Namely, if a phoneme /b/ may be realized as a distinct phone [s],
the phoneme shares the Gaussian densities of the phone to take account of this possible
pronunciation change. The resulting output is a hybrid phone that inherits the acoustical
properties of both the phoneme and phone. This is in contrast with the classical phone-
level pronunciation modeling which supposes that only one of the original acoustic models
may be used. The concept is illustrated in Figure 5.1 for the context-independent case,
where the word “had” may be pronounced canonically (/hh ae d/), but also differently as
[hh eh d]. Consequently, each state of the phoneme /ae/ may share the Gaussian densities of
the corresponding state of the phone [eh]. When using context-dependent phones, the neighbor
phones respect the same rule due to a change of their left and/or right phonetic context(s).

Phone-level PM

State-level PM

hh

ae+eh

Figure 5.1: Phone- vs. state-level pronunciation modeling (from Saraglar et al. [124])
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5.2.2 Previous works on acoustic-level pronunciation modeling

Pronunciation modeling is often applied at the lexicon level, but is less common at the acoustic
level. A standard approach to involve acoustic models in this context is to generate new
phonetic transcriptions (hopefully closer to true pronunciations than canonical transcriptions)
using a certain pronunciation modeling method, to retrain and refine the acoustic models
with these new transcriptions, and to iteratively generate improved transcriptions using the
acoustic models (e.g., Sloboda [129]). However, this approach does not model pronunciation
variations at the acoustic level as explicitly as SLPM.

Another type of method is to design acoustic models based on other topologies than the
well-known three left-to-right HMM states. We already mentioned the work of Deng and
Sun [33] who designed a specific topology for each context-dependent phone based on the
concept of overlapping articulatory features. Eide [38] also created distinct context-dependent
phone model topologies based on subphonemic units, each of which was modeled by a single
state with a self loop. Creation of acoustic models followed a similar procedure as in Stolcke
and Omohundro [134]: starting from a simple three state left-to-right configuration, a parallel
path was added to the network each time that a subphonemic sequence associated with the
considered context-dependent unit (associations were obtained from alignments of time seg-
mented canonical phoneme sequences with the outputs of a phoneme recognizer) could not be
explained by the network; states were then merged based on maximization of likelihood on
a separate held-out data. Some improvement was obtained on both the Wall Street Journal
and Broadcast News databases.

Several authors tried also other types of units than phones. Some researchers affirmed that
syllables are better units to deal with pronunciation changes than phones. Greenberg [56] ana-
lyzed the Switchboard database and showed that syllables offer more systematic pronunciation
variations than phones: a frequent case is when the onset is not modified, the nucleus is sub-
stituted and the coda is deleted!. A recent paper by Sethy et al. [127] applied a syllable-based
approach for recognition of spoken names and found that it led to a much better recognition
accuracy and speed than a phone-based system. Finke et al. [41] proposed another type of unit:
their basic units were also phonemes, but augmented with other attributes (e.g., articulatory
features, stress) that were predicted using a trained pronunciation model. A corresponding
acoustic model was determined using a decision tree technique and created for each augmented
phone unit. This approach is close in its basic principle to SLPM in that a phoneme is not
realized as another distinct phone, but only partial changes occur to the phoneme. Bacchiani
and Ostendorf [7] designed customized acoustic units directly derived from data. First, an
acoustic segmentation step divided all tokens of a given word into a fixed number of segments
(this number varied with the word considered). Then, all segments of these tokens at the same
i-th position were gathered to form an atomic (non-divisible) group of mean p, and covariance
Y. Next, all these groups were initially put in a global cluster that was iteratively divided
in two by selecting the cluster with the lowest average likelihood per frame at each iteration.
Finally, a K-means clustering algorithm was applied to remove clusters with too few obser-
vations. The final remaining clusters, retrained with the Viterbi or Baum-Welch algorithm,
represented the final acoustic units and each word could directly be transcribed as a sequence
of these units, thus allowing a joint design of acoustic unit inventory, acoustic models and
lexicon. Their approach outperformed phone-based systems on a read speech database. No
explicit pronunciation modeling was however taken into account since each word in the lexicon

' A syllable can be divided into three parts: the onset, the nucleus and the coda. The onset and coda
generally correspond to a consonant and the nucleus to the vowel in between. For example in the word “cat”
pronounced [k ae t], [k] is the onset, [ae] the nucleus and [t] the coda.
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had a single pronunciation.

One of the reasons why explicit acoustic-level pronunciation modeling is less common is due
to the existence of already efficient acoustic-level methods in the domain of speaker adaptation
(e.g., maximum likelihood linear regression (MLLR) [103]), which models to a certain extent
intra-speaker pronunciation variations as well. But since speaker adaptation and lexicon-level
pronunciation modeling may be complimentary, some works combined both types of methods
to get better performance (e.g., Humphries and Woodland [68], Willett et al. [150]). The
method of Venkataramani and Byrne [141] is different from this approach because they ex-
plicitly used adaptation techniques for pronunciation modeling. Based on alignments between
baseform and surface form sequences, they built a regression tree of MLLR transforms to
predict acoustic changes associated with pronunciation variations. Each class of the tree rep-
resented a phonetic feature category based on vowel height and front-back positions. The
phoneme-phone pair labeled on each link of their pronunciation lattices determined the tree
node it corresponded to and the MLLR transformation found at the node was applied to the
original phoneme acoustic model, instead of replacing the latter by the phone model in the
pronunciation lattice. Their experiments showed that with an increase of regression classes
added to the hierarchy, the PER was more and more reduced and got close to the performance
obtained with surface form trained acoustic models.

5.2.3 Benefits and limitations of SLPM

A benefit of SLPM is the possibility to model pronunciation variations with a higher granu-
larity through the creation of hybrid acoustic models than conventional phone-based methods
that are limited by the size of their phone inventory. Another benefit is that the lexicon need
not be expanded with new pronunciation variants, which not only eliminates extra computa-
tion time involved by the increased size of the lexicon and of the recognition network, but also
does not increase lexical confusion.

However, SLPM has also its limitations and drawbacks. First of all, even though the
number of parameters does not increase much since Gaussians are shared, hybrid phone models
have a higher number of Gaussians than the phoneme and phone models they originate from,
which still involves some extra computation time during decoding. Next, although lexical
confusion is reduced, acoustic confusion may be increased because several acoustic models
share the same Gaussians (even though their mixture weights are generally different). Since
SLPM provides higher modeling granularity and resulting hybrid models are still acoustically
different from original phoneme and phone models, acoustic confusion will hopefully not be
as high as lexical confusion.

5.2.4 Characteristics of a dynamic SLPM

This chapter will investigate whether a dynamic approach could help to decrease acoustic
confusion and the WER. Dynamic SLPM is different from the conventional (static) version
due to the following points:

1. Sharings of Gaussian densities are processed during recognition and they vary from one
utterance to another, while they are still governed by a pronunciation model.

2. Even if a phoneme /b/ may be realized as a phone [s], it does not necessarily create
a global hybrid [b_s] model applicable to all lexical entries containing /b/, but only to
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some of the entries.

3. Even if the phoneme /b/ of two lexical entries may share the Gaussian densities of [s],
a specific hybrid [b_s] model may be created for each entry.

In order to compare the static and dynamic approaches, both techniques will be described
in the next sections.

5.3 Static SLPM

Similar steps to those reported by Saraclar et al. [124] were followed to first build a static
SLPM-based system. It was assumed that Gaussian mixtures were used as emission densities,
and each density in the original system was supposed to belong only to a single state. The
following steps were applied during the training phase:

1. The phonemic transcription of a sentence built from the lexicon was aligned with the
manually labeled phonetic transcription of the same sentence. We used the same phoneme-
to-phone alignment based on the phonetic feature distances described in section 4.6.2.
State-to-state correspondences were directly deduced from the alignment results.

2. From the alignments above, the probability of a state b in the canonical transcription
to be aligned to a state s in the surface form transcription was estimated: P(s | b) ~
Count(s,b)

Count(b)

3. Any pair (s,b) with Count(s,b) less than a threshold Tioyn: or P(s | b) less than a

threshold T}, ., was pruned. Probabilities of the remaining pairs were renormalized.

4. The new output distribution of state b was estimated. This was a sum of all the mixtures
of states s remained after pruning. The probabilities P(s | b) were used to compute the
new mixture weights:

N
P'(olb) = P(s]b) Y wi,sN (03 i i) (5.1)
s:P(s]b)>0 i=1

P'(0 ] b) is the new output distribution of state b, and N, w; s and N (o; u;, X;) are the
number of mixtures, the i-th mixture weight and the i-th distribution of state s in the
original system, respectively. Note that as state-to-state alignments were inferred from
phoneme-to-phone alignments, P(s | b) was the same for all states of the same model.

5. Parameters of the new acoustic models and weights were re-estimated with the Baum-
Welch algorithm.

An example of output distribution (before the model re-estimation step) is shown in Fig-
ure 5.2 when starting with single Gaussian for both the phoneme /b/ and phone [s]. w; and
ws are the original mixture weights of /b/ and [s] respectively (both equal to 1 since there is
only one Gaussian in each original distribution), and P(b | b) - wp and P(s | b) - ws are the
weights of the output distribution after application of SLPM.

The steps above were applied to all training sentences and the modified phonetic models
were used for recognition.
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Figure 5.2: Example of output distribution using SLPM

5.4 Dynamic SLPM

5.4.1 Overview

In dynamic SLPM, decision of sharing Gaussian densities between two acoustic models relied
on the detection of phonetic features. The following steps depicted in Figure 5.3 were respected
for each utterance of the testing set:

QG Q
okl \ B S I
+son Yes<> <> <>

Figure 5.3: Overview of dynamic SLPM

1. Some phonetic features were first extracted from the input speech on a frame-by-frame
basis using an artificial neural network.

2. Independently, a baseline HMM system was used to apply a first recognition pass to the
same input speech and to generate a lattice of the most likely word hypotheses with
their time boundaries.

3. For each hypothesis, a procedure (explained in section 5.4.4) mapped the word to a
graph of phonetic features.

4. The graph in step 3 was compared to the phonetic features returned by the neural
network in step 1 over the given word’s time interval. Depending on how much the
features differed from each other (explained in section 5.4.5), some Gaussian mixtures
were eventually shared between HMMs.

5. The hybrid models were added to the original set of HMMs for a second pass recognition.

Each step will be explained thoroughly in the next subsections.
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5.4.2 Extraction of phonetic features from speech

sonorant (+/-)
syllabic (+/-)
consonantal (+/-)
high (+/-)

back (+/-)

/\ out rront( (7/)—)
N I / ow (+/-
W‘ WWWMM‘M“ ‘ ﬁi} I I . I round (+/-)

anterior (+/-)
coronal (+/-)
voice (+/-)
continuant (+/-)
nasal (+/-)
strident (+/-)
silence (+/-)

Figure 5.4: Detection of phonetic features from speech using an artificial neural network

As in the previous chapter, an artificial neural network (ANN) mapped a set of acoustic
parameters to phonetic features, frame-by-frame. Again, the SPE system [25] was selected
as the feature set. However, a different version of phone-features conversion table (proposed
by Brondsted [17]) was employed so that each phone was mapped to a unique combination
of phonetic features. The list of features used is shown in Figure 5.4. The complete list of
phones and their corresponding features can be found in appendix B.2.

5.4.3 First recognition pass

In Out

> dOPSEET

Figure 5.5: Generation of a lattice of word hypotheses from speech

An HMM-based ASR system applied a first recognition pass to the input speech and
generated a lattice of the most likely word hypotheses, as illustrated in Figure 5.5. Only
phoneme models associated with these words were eventually subject to Gaussian sharings.
Start and end times of each word were retained for later steps. To reduce processing time, if
a word was located at several places in the lattice, only the time interval of the hypothesis
with the highest acoustic likelihood was retained.

5.4.4 From word hypotheses to phonetic features

Each word hypothesis was mapped to a graph of phonetic features, which helped later to
decide whether models representing this word could be transformed or not, and if so which
ones. The graph was constructed thanks to the following steps (an example is given for the
word “had” in Figure 5.6) :

1. The word’s canonical transcription was extracted from the lexicon.
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lexicon Viterbi alignment from static SLPM phone-features
conversion table  t -t times t,-ttimes t,-t,times

Figure 5.6: Creation of a graph of phonetic features from a word hypothesis

2. A Viterbi alignment between the transcription and the speech waveform over the given
word’s time interval was applied in order to get segmentation points of its phoneme
constituents.

3. Each phoneme was mapped to a set of phones obtained by the procedure described for
the static SLPM in section 5.3. A graph of possible phones was therefore generated.
To simplify the process, phones were assumed to share the same segmentation points as
their corresponding phoneme.

4. Each phone in the graph was mapped to its corresponding vector of phonetic features
using a phone-features conversion table. The vector was duplicated as many times as
there were frames attributed to this phone.

5.4.5 Comparisons of phonetic features

The graph of feature vectors generated in the previous step was compared to the sequence of
feature vectors returned by the neural network (cf. section 5.4.2). Comparisons were done
separately for each sequence of feature vectors in the graph over the time intervals given
by their segmentation points. Each comparison consisted in evaluating the same measure of
similarity (MoS) described in the previous chapter (section 4.6.3) between two phones A and
B, represented here by two sequences of phonetic feature vectors:

N N M
1 11
log MoS(A, B) = N E log MoS(a,, z) = NU E E [1 — |targ(ay’) — act(b])|]] (5.2)
n=1

= n=1m=1

where:

A and B are the sequences of phonetic feature vectors (A is from the graph, B is from
the output of the ANN) compared over an interval of N frames

_>
e a, and b, are single feature vectors belonging to A and B respectively

targ(a™) is the target value for the m-th feature of the vector a,

%
act(b") is the activation value for the m-th feature of the vector b, returned by the
ANN for the n-th frame.

M 1is the number of features per feature vector
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Figure 5.7: Comparisons between a graph of phonetic feature vectors and a sequence of pho-
netic feature vectors extracted from speech

For each phoneme represented by a set of sequences of feature vectors in the graph (e.g.,
in Figure 5.7, sequences representing [ae], [aa] and [eh] are associated with the phoneme /ae/
of the word “had”), the sequence (or equivalently the represented phone) with the maximum
MoS was retained. Once this was done with all phonemes, a path going through each selection
represented the best path P. The MoS of the path is given by :

log MoS(P) % SN, log S(4, = By) (5.3)
peP

where Np (3_,cp Np = N) is the number of frames covering the selected phone p. Gaussian
sharings were allowed for a word only if MoS(P) was above a threshold T)qsc (fixed to 0.5
in our experiments). Moreover, a phoneme’s model could share Gaussians of an alternative
distinct phone only if the MoS of this phone was higher than both the threshold T;,4¢c, and
the self-MoS of the phoneme (i.e., the MoS of a phoneme being mapped to itself). By default,
a phoneme was at least always mapped to itself.

As an example, suppose that a phoneme /aa/ may be realized as the following phones with
their respective MoS in parentheses: [aa](0.26), [ah](0.13), [a0](0.40) and [ax](0.64). The phone
[ah] is not a candidate for sharing because its MoS (0.13) is both lower than the self MoS ([aa],
0.26) and Ty,qzen (0.50). [ao] is not a good candidate either because its value is still lower than
Tonaten- Only [ax] satisfies both conditions (0.64 > 0.26 and 0.64 > 0.50) and shares its Gaus-
sian mixtures with [aa]. Probabilities of associations P(s | b) used to compute the new mixture
weights in equation (5.1) were estimated from the selected MoS. In this example, we have:

P(aa | aa) = 0.26/(0.26 + 0.64) = 0.29
P(az | aa) = 0.64/(0.26 + 0.64) = 0.71

5.4.6 Second recognition pass

Once all hypotheses were processed and the appropriate transformations applied, the new
HMM models were added to the original set of models for a second recognition pass. The
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lexicon was also updated to take account of the changes. Note that two symbols found in
the new lexicon and associated with the same phoneme could refer to different models (for
example, “bar — [b aal r|” and “car — [k aa2 r|” referred to two different output distributions
of the phoneme /aa/) since their respective MoS were generally different.

5.5 Experiments and basic results

5.5.1 Database and recognition tools

The material used for the SLPM experiments was the same as presented in the previous
chapter: TIMIT [51] as the database, HTK [158] as the HMM-based ASR system and the
NICO toolkit [107] as the ANN to detect phonetic features from speech. More detail can be
found in section 4.7.

5.5.2 Baseline system

A baseline HMM system was built using the reduced set of 40 phones proposed by Brond-
sted [17] (shown in appendix B.2) in order to associate each phone to a unique set of SPE
features used in the experiments. A “silence” and “short pause” models were also added. All
models had the standard three left-to-right states with no skips, except for “short pause” that
had only one state tied to the center state of “silence” and for which skip of the model was
allowed. The system was trained using 39 MFCC coefficients (12 static + 1 normalized log
energy, 13 A, 13 AA) and the manually labeled transcriptions of TIMIT. More information
about the training procedure can be found in appendix C.1.

The monophone models after training had 10 Gaussian mixtures per state. A back-off
bigram (same as in the previous chapter) was built from all distinct sentences of TIMIT for
evaluation. Evaluated with the core test set of TIMIT, the system achieved a 14.8% Word
Error Rate (WER) (85.2% accuracy).

5.5.3 Phonetic feature recognition results

For compatibility with the trained HMM system, the ANN was also trained using the same set
of 40 phones found in [17] with their corresponding vectors of SPE features (cf. appendix B.2).
The original phone-features conversion table was a ternary version that included non-relevant
features, but training with ternary targets led to significantly lower results (around 40% “all
correct” rate), so we preferred to use a binary version for training purposes only (the binary
version can also be found in appendix B.2). The topology of the ANN was identical to the
description of section 4.7.3 in the previous chapter, except that one more unit (and related
links) was added to the output layer to represent the higher number of SPE features compared
to the previous version (14 SPE + 1 silence, instead of 13 SPE + 1 silence). The training
procedure was identical to the one reported in section 4.7.3. Since the original 62 phones
were reduced to a set of 40 phones, reference phone labels provided by TIMIT were modified
accordingly. When a diphthong was mapped to two monophthongs (e.g., [iy] mapped to [ih]
+ [y]), the time interval of the diphthong given by the original labels was equally divided by
two to associate them with each monophthong.

Comparisons between recognized features and those derived from the reference phone tran-
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scriptions of TIMIT led to the results in Table 5.1, given in percentage of frames correct on the
cross-validation set. As expected, performance was similar to the one reported in the previous
chapter (cf. Table 4.5).

‘ Feature ‘ Frames correct (%) H Feature Frames correct (%) ‘
sonorant 95.4 round 92.3
syllabic 89.5 anterior 90.0
consonantal 91.0 coronal 87.7
high 88.0 voice 89.4
back 92.3 continuant 91.4
front 93.0 nasal 97.7
low 91.8 strident 96.9
silence 98.3
Average 92.3 H All correct ‘ 52.8

Table 5.1: Frame-level classification results with SPE features

5.5.4 Results with static SLPM
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Figure 5.8: Evolution of the WER with respect to the number of Gaussian sharings when
using static SLPM

The sequence of steps described in section 5.3 was applied to all SX and SI training
sentences of TIMIT. At the end of the procedure, we obtained all possible pairs of states
(s,b) with their probabilities of alignments P(s | b). Instead of fixing the thresholds Teoun:
and Tprqp (used to prune unreliable pairs), we preferred to set Teoynt to zero (no “count”
threshold), and let the probability threshold T, be variable, in order to see the evolution
of WER with respect to the number of sharings. Namely, sharings were progressively added
one after another, starting with the pair with the highest probability of association (P(s | b)).
As a consequence, the average number of Gaussians per state increased from 10 to 14.8. The
graphic in Figure 5.8 shows the results obtained with the 20 first sharings. We notice that
the new WERSs vary around the baseline WER. Slight improvements were observed around 12
Gaussian sharings with the best result at 13.9% WER (86.1% accuracy), but they were not
statistically significant. It seems that any improvement brought by sharing Gaussian densities
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may have been counterbalanced by an increase of acoustic confusion between phonetic models.
We did not get any more improvement by further increasing the number of sharings.

5.5.5 Results with dynamic SLPM

HTK used the token passing algorithm [159] to perform an N-best recognition and to generate
a lattice of word hypotheses per utterance. Maximum three tokens were admitted in each
network node at each iteration of the algorithm. Thresholds Tiount, Tprop and Tipgien Were
fixed to 10, 0.01 and 0.5 respectively. Short words (such as “a”, “or”, ...) were excluded from
sharings because the corresponding time intervals returned by the HMM system at the first
pass were often wrong?. Results are given in Table 5.2. Performance of the dynamic approach
is close to the best result obtained with the static approach, but the corresponding improve-
ment is still not statistically significant: only a 5.4% relative reduction in WER compared to
the baseline system could be obtained.

‘ Method ‘ WER ‘
Baseline 14.8
Static SLPM 13.9 to 15.9
Dynamic SLPM 14.0

Table 5.2: Recognition results with static and dynamic SLPM

Several points may explain the lack of significant improvement with both the static and
dynamic SLPM. First, TIMIT, which is a carefully read speech database, does not contain as
much pronunciation variation as spontaneous speech databases; this may partly explain the
slightly better improvement obtained by Saraglar et al. [124] on Switchboard.

Second, several components of the dynamic SLPM were prone to errors that could have
been propagated to other parts of the system. Some of the components are:

Detection of phonetic features : we already mentioned in the previous chapter the need
to detect phonetic features more reliably. This is a general problem shared by many
researchers working in this field of interest.

First pass recognition : if a lattice of words output by the first recognition pass does not
contain the correct word(s), it (they) won’t be processed by dynamic SLPM and there is
little chance it (they) will be recognized successfully during the second pass. An increase
of the lattice size would of course insure a higher inclusion rate of correct words, but
also of wrong words and would increase processing time.

Time intervals of word hypotheses : when a word hypothesis was located at several
places of the lattice, the interval with the maximum time normalized likelihood was
selected. A more elaborate approach would be needed to more reliably estimate inter-
vals of correct (and especially short) words.

Graph of phonetic features : sequences of feature vectors referring to the same phoneme
shared the same time segmentation points. A more accurate approach with different
segmentation points could be helpful.

2This problem is similar to the difficulty of searching short word transcriptions using the pronunciation
search algorithm in the previous chapter (section 4.8.4).
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Finally, SLPM can only account for phoneme substitutions: when a phoneme is frequently
realized as a given phone, it shares the Gaussian densities of the latter to partially acquire its
acoustic properties. However, in the case of a deletion or an insertion, it is not possible to
establish any relationship between a valid phoneme and a valid phone, hence SLPM cannot
be applied.

This is the reason why the next section is dedicated to the incorporation of deletions
and insertions, based on decision trees. It will compare the performances between trees and
phonetic features when they are separately incorporated into the dynamic SLPM framework.
Furthermore, it will check whether both techniques (trees + features) are complimentary and
can further increase performance.

5.6 Modeling of deletions and insertions

In order to model deletions and insertions (and more generally pronunciation variations),
we decided to rely on a technique already applied in pronunciation modeling. Among the
techniques reported in the literature, decision trees kept our attention and our preference
because:

1. Hierarchical organization of decision trees makes them suitable to generalize prediction
of pronunciation variations to unseen contexts.

2. The set of features composing the trees is easily modifiable and expandable.

3. A set of powerful tree-based classification algorithms exist and were successfully applied
in pronunciation modeling (e.g., Riley and Ljolje [119]).

Among the possible choices of tree-based classification algorithms, we decided to use the
CART (classification and regression trees) [16] methodology, which is known to be effective
and well suited with limited amounts of data. The next subsection gives a general description
of the CART algorithm.

5.6.1 The CART algorithm

CART has become a commonly used method to build decision trees. We suppose that a set
of samples is available. Each sample is associated with a vector of features that characterizes
it, and it is supposed to belong to a certain class. The objective is to build a tree that “best”
(this term will be specified later) distributes the samples into their classes - represented by
the leaves of the tree. For this purpose, a list of rules that split the set of samples must be
available. In CART, splitting rules are questions about the sample features and always wait
a “yes” or “no” as an answer (e.g., “Is age < 18 7”). So the task of the CART algorithm is,
starting from all samples in the root node, to recursively split them in two subsets using one
of these rules and to distribute them to the nodes of the next hierarchy level.

Given this task, a first point to specify is to decide in which order the rules should be
applied. At each hierarchy level, CART conducts an exhaustive search by trying all available
rules in order to see how each of them splits the current set of samples. The rules are ranked
according to a certain quality-of-split criterion and the best rule from the list is used to split
the data in two sub-partitions. Several criteria exist, but the Gini rule is commonly used in
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CART. It quantifies the misclassifications resulting from the associations of a given sample of
a node to a class s; while it actually belongs to another class s;:

Gini= Y p(si)p(s;) = Y p(sidp(s) = Y plsip(si) =1=Y p(si)>  (5.4)
Vi Vi

Vi,V i) Vi,¥j

A purity measure @ is simply obtained by ® = 1 — Gini: the higher this value, the purer
a partition is. It was shown in [16] that this purity measure never decreases and most often
increases at each split. Other quality-of-split criteria exist, for example based on entropy (see
section 5.6.2).

A second point to specify is when to stop the algorithm. Early tree classifiers continued
to split samples until a stopping criterion was met, for instance when the number of samples
in a node fell below a certain threshold or when the purity measure did not increase more
than a certain value with a given split. CART does not stop in a middle point, because still
important information can be found by exploring further splits; so it continues until the tree
cannot be grown any further, that is, until the remaining rules cannot split any set of samples
in two. Once this maximal tree has been grown, a set of smaller trees is created from it
by pruning away some branches. These subtrees must be the smallest trees that minimize a
certain misclassification rate or complezity cost R, where « is a certain complexity coefficient.
It results a parameter family of subtrees, one for each given range of a. In order to define the
best subtree, CART determines which is the best range of « using a separate held-out data.

Alternatively when little data is available, CART applies an n-fold cross-validation scheme.
The training data is divided in NV parts roughly equal in size. N — 1 parts are used to generate
a maximal tree and corresponding set of subtrees, and the remaining part is used as a cross-
validation set to determine an estimate of misclassification rate R,. Then, another 1/N is
used for cross-validation and the remaining parts to grow another tree and set of subtrees.
The process is repeated until each part has been used once as a cross-validation set. Finally,
all estimates of misclassification error rates are combined to give an average value for each
range of the complexity coefficient o, which determines the best subtree derived from the
entire training set.

5.6.2 Building of decision trees

A tool called Wagon [143] developed by the Edinburgh university was used to build decision
trees using the CART algorithm. A separate tree was built per phoneme to predict a list of
realizable phones given phonetic features of its left and right phonemic contexts. The list of
features was based on the example provided with HTK for tree-based clustering, but adapted
for the phone inventory used in experiments; see appendix D for an exhaustive list of features
and associated phones. Data to build the trees was created from phoneme-to-phone alignments
between canonical and manually labeled transcriptions of all SX and SI training sentences of
TIMIT. A special symbol ’?’ was included in these alignments to account for deletions and
insertions. 90% of the training set were used to build the maximal tree according to the
CART algorithm and the remaining 10% were reserved as held-out data to prune back the
maximal tree and to determine the best subtree. At each step of the building process, the
Wagon program chose the question that led to the least impure sample sets. The impurity of
a sample set was defined as the entropy of the sample set times the number of samples:
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— " [p(si) log(p(s:))] - N (5.5)
Vi

where p(s;) is the probability distribution of a class s; and N is the number of samples in
a node. The number of samples was included in the expression to encourage the creation of
larger partitions.

5.6.3 Usage of decision trees

The created decision trees were incorporated into the dynamic SLPM framework. However,
for comparison purposes, a first preliminary version was designed that did not rely on the
detection of phonetic features, but solely on decision trees, as described by the following
steps:

1. A first recognition pass generated a lattice of word hypotheses from speech.

2. For each distinct word, the hypothesis with the highest time normalized acoustic likeli-
hood was selected. Decision trees were applied to expand the corresponding canonical
transcription to a graph of phones with associated probabilities (see comments below).

3. Based on comparisons of phone probabilities, some Gaussian mixtures were eventually
shared between HMMs (see comments below).

4. The hybrid HMMs were added to the original set of models for a second pass recognition.

Comments on step 2:

In the original configuration, a counting and pruning procedure was implemented in static
SLPM to map a phoneme /b/ to a set of phones [s] (see section 5.3); this procedure was
also applied in dynamic SLPM to create a graph of phones from the canonical transcription
of each distinct word hypothesis (see section 5.4.4). In the new configuration, this method
was replaced by the decision trees: for each phoneme, the associated tree was explored by
asking questions about phonetic features of the left and right contexts of the phoneme, then
the corresponding leaf of the tree contained the set of realizable phones with their associated
probabilities. A phoneme was considered as deleted if the [?] (= deletion) phone was ranked
first in this set. No phone insertion was considered at this stage. Probabilities associated with
phones were used to determine new mixture weights in the dynamic SLPM framework (see
comments for step 3).

Cross-word pronunciation modeling was also taken into account: for each boundary phoneme
of a word hypothesis, all last phonemes of predecessors or first phonemes of successors of the
hypothesis in the lattice were considered as possible contexts to generate a global set of re-
alizable phones. If a same phone was predicted for several contexts, the average value was
calculated from the probabilities found in the corresponding leaves.

Comments on step 3:

In the original configuration, measures of similarity (MoS) were calculated between se-
quences of phonetic features deduced from phones (using a phone-features conversion table)
and sequences of same features directly detected by an ANN from speech. Depending on
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their similarities, some phonetic models eventually shared their Gaussian densities (see sec-
tion 5.4.5). In the new configuration, the MoS were simply replaced by the probabilities
returned by the decision trees for each phone. Namely, if the probability of a phoneme /b/ to
be realized as a distinct phone [s] was higher than the probability of realizing it as itself ([b]),
the acoustic model of /b/ was allowed to share the Gaussian densities of [s].

5.6.4 Results with decision trees

A first evaluation was performed to insure that usage of decision trees led to higher phone
accuracy than canonical transcriptions. Their performance was directly evaluated in the up-
dated dynamic SLPM method described in the previous subsection by respecting the following
steps for each reference word of each test sentence.

1. The reference word was searched in the lattice of hypotheses generated by the first
recognition pass.

2. If the word was found in the lattice, decision trees had been applied, according to the
updated dynamic SLPM framework, to the phonemic transcription and contexts of its
best hypothesis to generate a graph of phones and associated probabilities. Only the best
sequence of phones given by the maximum probability path of the graph was considered.
If the word was not found, its canonical transcription was used instead.

3. The best sequence of phones was aligned to the corresponding reference phonetic tran-
scription and the number of alignment errors was counted.

The final result was compared to the baseline accuracy obtained by aligning canonical
transcriptions of correct words to the corresponding reference transcriptions. The result was
also compared to the accuracy obtained with the original dynamic SLPM configuration that
relied on phonetic features only. Evaluation of the original system followed the same steps as
above, except that:

e Any graph of phones given a phonemic transcription was obtained by the counting and
pruning procedure explained in section 5.3 and not by decision trees.

e Phoneme deletions were not modeled (the counting and pruning procedure was originally
designed for the static SLPM, which only handled substitutions).

e Probabilities associated with phones to find the best path in graphs were not given
by decision trees, but by measures of similarity (MoS) from comparisons of phonetic
features.

Decision trees were also evaluated for word recognition by following the procedure described
in the previous subsection and were compared to the baseline and original dynamic SLPM
performances. The resulting phone and word error rates are shown in Table 5.33. The system
based on phonetic features alone did not perform better than canonical transcriptions. The

number of insertions and deletions remained almost the same* since they were not modeled.

3The baseline PER is different from the result reported in the previous chapter (section 4.8.2), because
phone inventories and phone-features conversion tables used are also different.

4The slight differences of results between the two systems are apparently due to possible alternative align-
ments leading to the same number of errors but of different types for some sentences.



5.6. Modeling of deletions and insertions 91

The number of substitution errors was on the other hand much higher. This result was however
a bit expected since in the previous chapter (section 4.8.2), we had already noticed that
pronunciation networks built from phonetic features had not performed better than canonical
transcriptions in terms of phone accuracy. Nevertheless, we had also noticed in the previous
chapter that combination of feature-based pronunciation networks and canonical transcriptions
had led to significantly higher performance. The next section will also study a combination
scheme, this time with decision trees and phonetic features.

‘ Method ‘ PER ‘ Subst. ‘ Ins. ‘ Del. H WER ‘
Baseline 21.9 911 364 | 225 14.8
Phonetic features | 23.2 986 373 | 233 14.0
Decision trees 20.6 836 284 | 294 15.1

Table 5.3: Phone and word recognition results with phonetic features or decision trees incor-
porated into the dynamic SLPM framework

Application of decision trees did reduce the PER compared to the baseline system, al-
though not by much (only 5.9% relative reduction). A more detailed analysis of the errors
showed that the number of substitutions was reduced, but decision trees predicted substan-
tially much more deletions than it was necessary, so that the reduction of phone insertions
was almost counterbalanced by an increase of phone deletions. This nevertheless slight im-
provement in phone accuracy did not however influence the WER and even slightly degraded
the performance, suggesting perhaps that Gaussian sharings governed by decision trees were
too often applied and increased acoustic confusion. The next subsection will study how these
issues could be addressed.

5.6.5 Combination of decision trees and phonetic features

Decision trees and phonetic features could contain partially complementary information, hence
it was desirable to check whether their combination could yield additional improvement. The
general method with both components can be described by the following steps (replacements
and additions compared to the dynamic SLPM of section 5.6.3 are in bold):

1. Some phonetic features were extracted from the input speech on a frame-
by-frame basis using an artificial neural network (ANN).

2. Independently, a first HMM recognition pass generated a lattice of word hypotheses from
the same speech.

3. For each distinct word, the hypothesis with the highest time normalized acoustic likeli-
hood was selected. Decision trees were applied to expand the corresponding canonical
transcription to a graph of phones with associated probabilities. Phone deletions
were further restricted by comparisons of phonetic features deduced from
the graph with those returned by the ANN in step 1 (see comments below).

4. Based on comparisons of tree-based phone probabilities and of phonetic fea-
tures combined, and based on the presence of reliable feature-based hypothe-
ses (see comments below), some Gaussian mixtures were eventually shared between
HMMs.

5. The hybrid HMMs were added to the original set of models for a second pass recognition.
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Comments on step 3:

In the previous configuration, a phoneme deletion occurred whenever it was considered
the most probable by the decision trees. We noticed that this decision resulted in too many
deletions. Therefore, the following approach was adopted to further restrict the number of
deletions using phonetic features:

e Even if a phoneme deletion was given as the most probable, it was ignored and the
remaining possibilities found in the corresponding tree leaf mapped the phoneme to a
set of realizable phones.

e For each phone candidate, its phonetic features were obtained using a phone-features
conversion table and were compared to the features returned by the ANN over the same
time interval® to give a measure of similarity (MoS) for each phone.

e If at least one phone had a MoS above a threshold T},qtcn (= 0.50 in our experiments),
the phoneme was considered as not deleted. A deletion was accepted only when both
a deletion was ranked first by decision trees and no MoS for the alternative realizable
phones was above Ty, qtch-

Comments on step 4:

In the original configuration, decision of sharing Gaussian densities between acoustic mod-
els was governed by the MoS obtained from comparisons of phonetic features. In the updated
configuration with decision trees, probabilities of predicted phones returned by the trees were
used instead for the same purpose. In this configuration, a combination scheme was adopted
by taking the average of MoS and tree-based probabilities. Namely, if a phoneme /b/ could
be realized as a phone [s], the final associated probability was:

MoS(b,s) + Pyree(s | b)
2

Pfinal(s | b) = (56)

This probability was also used to determine the initial new mixture weight of any Gaussian-
shared output distribution, following the method given by the example of section 5.4.5. More-
over, the concept of feature-based reliable hypotheses seen in the previous chapter was rein-
troduced to further restrict the number of Gaussian sharings. In contrast with the word
hypotheses mentioned in this chapter, feature-based hypotheses were built by binding several
successive frames whose associated phonetic features referred to a same phone (please refer
to section 4.5 for more details). Conditions for a hypothesis to be considered as reliable were
originally defined in section 4.5.4. The conditions applied here were slightly relaxed compared
to the previous version in order to encourage the creation of more reliable hypotheses (and
consequently to further restrict the number of Gaussian sharings, see below). A hypothesis
was considered as reliable if at least Ry, (= 2 in our experiments) of its frames respected
the following conditions:

e The phone associated with the hypothesis was ranked first, or at least second behind a
transitional phone.

e Difference of penalty score between this phone and the next ranked phone was equal or
above a certain threshold (= 0.75 in our experiments).

Segmentation points of phones were obtained by Viterbi alignment of the corresponding word to the speech
segment associated with its best hypothesis, see section 5.4.4.
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Ranking procedure and determination of penalty scores were explained in section 4.5.2,
and the notion of transitional phone was introduced in section 4.5.3.

Reliable feature-based hypotheses further restricted the number of Gaussian sharings in
the following way:

e For a given word hypothesis it was checked whether its time interval contained one or
more feature-based reliable hypotheses. At least 50% of its frames had to be in the
interval to accept the inclusion of a reliable hypothesis.

e The phoneme constituent of the word hypothesis whose time interval most overlapped
the interval of the reliable hypothesis was selected.

e If the phone represented by the reliable hypothesis was among the realizable phones
returned by the decision trees given the selected phoneme and its contexts, the reliable
hypothesis was considered as present, otherwise as absent.

e If all feature-based reliable hypotheses could find a match among the realizable phones,
the word hypothesis matched well the detected phonetic features and was retained for
possible Gaussian sharings. Otherwise, if at least one reliable hypothesis remained, the
word was considered as a bad match and its phonemes were not allowed to share any
Gaussian density with other models.

Alignment of reliable hypotheses relative to time intervals of word hypotheses and their
phonemes was rather rudimentary and certainly leaves some room for improvement. A further
restriction was applied to short word hypotheses, whose time intervals could still not be reliably
estimated: phonemes of a short word were allowed to eventually share Gaussian densities only
if the word was in the best sequence returned by the first Viterbi recognition pass. Any short
word satisfying this condition was then treated like any other word.

5.6.6 Results with combination of decision trees and phonetic features
Hypothesis identification accuracy

A first experiment measured how accurately dynamic SLPM was able to distinguish the correct
from the wrong hypotheses for Gaussian sharings. In this combined version of dynamic SLPM,
a word hypothesis was considered as a valid candidate for Gaussian sharings if:

1. At least half of its phonemes had at least one associated phone MoS above the fixed
threshold T),4¢cn, (= 0.5 in our experiments).

2. All feature-based reliable hypotheses contained in the word’s time interval found a match
(see section 5.6.5, step 4).

Two types of errors were used to evaluate the accuracy: a false alarm rate that measured
how frequently a wrong word hypothesis was considered as a valid candidate, and a miss
rate that measured how frequently a correct word hypothesis was considered as a non-valid
candidate. These errors were compared to the errors obtained with the previous configurations,

namely with decision trees alone and with phonetic features alone. Results are given in
Table 5.4.
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| Method | False alarms (%) | Misses (%) |
Decision trees 85.6 3.6
Phonetic features 9.9 50.3
Trees + features 27.1 17.5

Table 5.4: False alarm and miss rates with dynamic SLPM using decision trees only, phonetic
features only and combination of both trees and features

Results with decision trees can be considered as the baseline performance: since no phonetic
features to compare with were detected from the signal, all word hypotheses were considered as
potential candidates for Gaussian sharings, which generated of course a lot of false alarms. In
other words and according to the results, 85.6% of selected hypotheses in lattices represented
not uttered words. The 3.6% miss rate means that this percentage of correct words were
not in the lattices generated by the first HMM recognition pass and could not be selected
as potential candidates. These two values were therefore respectively the highest false alarm
rate and the lowest miss rate a system could achieve given the lattices. Results with the
original configuration with phonetic features show a reversed behavior: while the number of
false alarms is radically smaller, the percentage of misses also substantially increased with
more than one correct word out of two rejected on average. On the other hand, the combined
system with both decision trees and phonetic features led to a more acceptable compromise
between false alarm and miss rates.

Phone and word recognition accuracy

A second experiment evaluated how the combined system performed in terms of phone and
word accuracy. Experiment settings were basically similar to the description given in sec-
tion 5.6.4, however adapted to the new configuration to respect the modifications described in
the previous subsection. Results are given in Table 5.5. Performance of the combined system
was perceptibly better in terms of phone accuracy: the number of substitutions further de-
creased and although the number of deletions still increased a bit, it was better compensated
by the diminution of insertions (the decrease of insertions was approximately 2.8 times higher
than the increase of deletions for the combined system, vs. 1.2 times for the tree-based sys-
tem). The final relative reduction in PER compared to the baseline system (12.3%) was small
but statistically significant. But surprisingly, even this higher performance in phone accuracy
did not have any impact on the WER.

| Method | PER | Subst. [ Ins. | Del. | WER |
Baseline 21.9 911 364 | 225 14.8
Phonetic features | 23.2 986 373 | 233 14.0
Dec. trees 20.6 836 284 | 294 15.1
Trees + features 19.2 756 325 | 239 15.1

Table 5.5: Phone and word recognition results with phonetic features only, decision trees only
and combination of both trees and features incorporated into the dynamic SLPM framework

It is difficult to understand why a significantly lower PER did not yield better word
recognition performance. Saraglar et al. [124] also experienced such contradictory behavior
with their phone-level pronunciation modeling techniques. They believed that it was possibly
due to lexical confusion, thus rendering identification of words from phones more difficult.
Similarly, it is possible that acoustic confusion involved to a certain extent by dynamic SLPM
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had also an influence in a similar way. It is also hard to understand why the system with
the worse PER led to the best WER. It is in this sense interesting to note that Kessens
and Strik [78] observed similar trend: in their own experiments, context-dependent HMMs,
which had the lowest WER, did not generate better phonetic transcriptions than context-
independent HMMs with the highest WER. Saraclar et al. [124] argued that a too high number
of parameters may constitute a limitation and slightly improved their phonetic transcriptions
by using simpler acoustic models. We cannot however make a direct relationship between their
observations and our own experiments because all acoustic models used here were monophones.

Modeling of insertions

The system that combined both decision trees and phonetic features predicted phoneme sub-
stitutions and deletions, but not insertions. An additional test was therefore included to
model insertions as well. In the last configuration, if a reliable hypothesis (reminder: this is a
feature-based hypothesis that represents a phone) was included in a word’s time interval, but
its phone label matched neither the best time aligned phoneme of the word nor its realizable
phones, the word was considered as a bad match and no SLPM was allowed with its phonemes.
In the new configuration, a missing reliable hypothesis was interpreted as a possible insertion
of the phone either on the left or on the right of the considered phoneme of the word. If,
under this situation, the decision trees also predicted the missing phone as the best insertion
choice for at least one side (the side with the highest probability was chosen if both sides were
possible), then the insertion was accepted and the original phonemic transcription modified
accordingly. Results are given in Table 5.6. The new approach was not successful and pro-
voked a substantial increase of insertion errors. More accurate methods need therefore to be
experimented, for instance by modeling insertions separately for each phoneme (e.g., as done
by Humphries [67] and in the next chapters) instead of building a global insertion tree.

‘ Method ‘ PER ‘ Subst. ‘ Ins. ‘ Del. H WER ‘
Baseline 21.9 911 364 | 225 14.8
Deletions only 19.2 756 325 | 239 15.1
Deletions + insertions | 21.4 794 445 | 230 15.2

Table 5.6: Phone and word recognition results obtained with the tree-feature combined system,
after modeling deletions only and after modeling both deletions and insertions

5.7 Detection of phonetic features in spontaneous speech

All phonetic features used in the previous experiments were extracted from TIMIT, a read
speech database. For the sake of completeness, this independent section will be dedicated to
the detection of phonetic features in spontaneous speech.

5.7.1 The Myosphere database

All experiments were carried out on an English telephone speech database called Myosphere,
created by Motorola Labs. In this corpus, speakers with different dialects and foreign accents
gave a set of short but spontaneous commands to an ASR system (e.g., “call Steve at office”).
In total, more than 100’000 commands were uttered. A small subset (about 16000 utterances)
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of this database was phonetically labeled by an expert phonetician and was used for these
experiments. The original inventory contained 39 phones that were a subset of the TIMIT
phone inventory (cf. appendix A). However and for these experiments only, this inventory
was slightly modified in order to be compatible with the phone-features conversion tables on
which these experiments were based. The modifications and resulting phone lists and phonetic
features can be found in appendices B.2 and B.3.

More information about this database will be given in section 7.1.1 as it will be more
thoroughly used in the next chapters.
5.7.2 Phonetic feature systems

Two phonetic feature systems were evaluated:

1. The SPE system, based on the features given by Brondsted [17] (i.e., the same system
used with TIMIT). The list of features is reminded in Table 5.7 and the list of corre-
spondences between phones and their phonetic features can be found in appendix B.2.

‘ Feature system ‘ Features ‘

SPE sonorant, syllabic, consonantal, high, back,
front, low, round, anterior, coronal, voice,
continuant, nasal, strident, silence

Table 5.7: The SPE system

2. The multi-valued (or TPA-like) system (hereafter called “MV system”), partly based
on the features given by Kirshenbaum [87]. The list of feature classes and features is
shown in Table 5.8 and the list of correspondences between phones and their phonetic
features can be found in appendix B.3. The nil values in the table were used for non-
relevant features; for instance in the “Voicing” class, “nil” was used to distinguish voiced
consonants (marked as “voiced”) from voiced vowels (marked as “nil”, since voicing
information is not relevant for vowels).

Feature class | Features

Voicing voiced, voiceless, nil, silence

Place bilabial, labio-dental, dental, alveolar, palato-alveolar,
palatal, velar, labio-velar, glottal, nil, silence

Manner stop, fricative, nasal, approximant, lateral, nil, silence

Height high, semi-high, upper-mid, lower-mid, low, nil, silence

Front-back front, center, back, nil, silence

Rounding unrounded, rounded, nil, silence

Table 5.8: The multi-valued (IPA-like) system

Besides these two feature-based systems, a separate phone-based system with 34 symbols
(33 phones + 1 silence) was also evaluated for comparison purposes.
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5.7.3 ANN topologies

As in the previous experiments, an ANN-based system was trained for each feature system and
phone set using the NICO toolkit [107]. For the SPE system, the topology was similar to the
previous settings (cf. sections 4.7.3 and 5.5.3): 13 input units (12 MFCCs + 1 normalized log
energy), 250 hidden units, 15 output units (14 SPE + 1 silence) and approximately 155’000
links. The phone-based system contained the same number of input and hidden units in order
to obtain quite comparable results, although of course more output units (33 phones + 1
silence) and corresponding links (total: 188’000 links) were necessary. For the MV system,
a separate independent ANN was trained for each feature class, with different numbers of
hidden units, output units (one per feature) and connections as shown in Table 5.9. The
numbers of hidden units were arbitrarily chosen, but were in similar range to those reported
in the literature (e.g., [85]). All ANNs included the additional characteristics described in
section 4.7.3: special units for the first and second MFCC derivatives, time-delay and look-
ahead connections, full connectivity between successive layers, recurrent links in the hidden
layer with 50% connectivity. The number of total links in each ANN depended on these
characteristics and the different attributions of hidden and output units.

‘ Feature class ‘ Hidden units ‘ Output units ‘ Connections ‘

Voicing 50 4 21’000
Place 100 11 52000
Manner 75 7 35’000
Height 75 7 35000
Front-back 50 5 21°000
Rounding 50 4 21°000

Table 5.9: Number of hidden units, output units and connections in MV system-based ANNs

5.7.4 Phonetic feature targets

A difference to the experiment settings with TIMIT was that a subset of the Myosphere
database was phonetically labeled, but not segmented in time. Since training and evaluation
were processed on a frame-by-frame basis, time information was necessary. Therefore, a
baseline HMM system was first built using the original phone inventory and the complete
training set of the Myosphere database (details of the training procedure can be found in
appendix C.2), then a Viterbi alignment was applied on the phonetically labeled subset to
find the most likely segmentation points.

Furthermore, as mentioned previously, lists of phones used in the experiments were different
from the original set in order to be compatible with the given phone-features conversion tables.
All modifications were polyphonematic replacements, that is, replacements of diphthongs by
two corresponding monophthongs (e.g., Jow/ — /oh/ + /w/). They implied a reduction of the
phone inventory (from 39 to 33 phones for both SPE and MV systems). For each replacement,
instead of simply dividing the time interval of the diphthong in two equal parts, attribution of
the time interval to the two monophthongs was approximated in the following way: 1) a second
Viterbi alignment was applied to the same utterance, but with the diphthong replaced by its
corresponding monophthongs (if a monophthong was not acoustically modeled, the closest
phone model in terms of its phonetic features was used instead), 2) the relative proportions of
frames returned by the Viterbi alignment for the two monophthongs were used to divide the
time interval of the diphthong with the same proportions.
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5.7.5 Results

Training of the ANNs followed the procedures described in the experiments of the previous
chapter (cf. sections 4.7.4, 4.8.1 and King and Taylor [82]), reminded that the MV and phone-
based systems had only one possible target activated at each frame, whereas more than one
output unit could be activated simultaneously with the SPE system since it was an N-to-
M classification. About 8000 utterances were reserved for training and the other 8000 were
equally divided in two for cross-validation and evaluation purposes. For evaluation, there were
a lot more silence portions in the Myosphere database (more than 60% of frames, compared
to around 10% for TIMIT), which biased too much the results, so silence frames were not
included in the overall statistics. Tables 5.10 and 5.11 show the results obtained for the SPE
and MV systems respectively.

Concerning the SPE system (Table 5.10), performance degradation per single feature was
perceptible but generally small compared to the results obtained with TIMIT in Table 5.1,
and surprisingly even with some slight improvements for some of the features (“low” and
“round”). However, since single feature errors did not always occur simultaneously, they had
still a great impact on the “all correct” rate (= number of frames with all features correct /
total number of frames), which dropped down by more than 25% relative. Some care should
however be taken when comparing these results, since experiment conditions were slightly
different: first, as already mentioned, silence frames were not included in the Myosphere
statistics because they biased too much the results, and second, no time information was
available in the Myosphere database and was estimated through Viterbi alignment, so the
phone boundaries used for training and evaluation were not fully accurate. These results give
nevertheless an idea of performance degradation we could expect when switching from a read
speech to a spontaneous speech database.

Feature | Correct (%) Degradation (%) || Feature [ Correct (%) Degradation (%) |

sonorant 88.5 -7.2 round 94.1 +2.0
syllabic 84.1 -6.0 anterior 80.4 -10.7
consonantal 80.5 -11.5 coronal 78.4 -10.6
high 84.2 -4.3 voice 87.5 -2.1
back 83.9 -9.1 continuant 84.3 -7.8
front 83.0 -10.8 nasal 94.7 -3.1
low 93.1 +1.4 strident 92.7 -4.3
Average | 86.4 -6.4 | All correct |  39.3 -25.6 \

Table 5.10: Frame-level classification results with SPE features on the Myosphere database,
and relative degradation compared to the results with TIMIT in Table 5.1

As with the SPE system, silence frames were not included in the overall statistics of the
MV system in Table 5.11 (even though results for “silence” features alone are still shown).
Performance of the MV feature classes was lower than with the SPE features: their values
varied from 68% for place of articulation to 76.2% for rounding, hence their average was lower
by about 17.8% relative compared to the SPE system. However, these classes were multi-
valued whereas SPE features were binary, and corresponding chance levels were lower as well.
The results for each separate feature are much variable and reflect to a certain degree the
amount of data available for training the ANNs (Chang et al. [22] also reported that the
“dental” feature showed the lowest performance for the same reason). The most comparable
result between the SPE and MV systems is the “All correct” rate, showing that both systems
phonetically identified frames with similar performance (39.6% MV vs. 39.3% SPE).
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| Feature class Correct (%) | Feature Correct (%) Feature Correct (%) |

Voicing 71.8 voiced 69.6 voiceless 62.9
nil 78.6 silence 97.5
Place 68.0 bilabial 25.0 labio-dental 15.7
dental 3.3 alveolar 69.2
palato-alveolar 71.5 palatal 4.3
velar 54.3 labio-velar 24.2
glottal 18.2 nil 81.5

silence 97.6
Manner 68.8 stop 56.9 fricative 61.7
nasal 58.3 approximant 47.0
lateral 2.7 nil 80.7

silence 97.7
Height 68.8 high 58.8 semi-high 27.9
upper-mid 22.4 lower-mid 58.1
low 52.9 nil 80.1

silence 97.1
Front-back 72.5 front 74.2 center 31.2
back 61.4 nil 79.9

silence 97.0
Rounding 76.2 unrounded 73.9 rounded 60.6
nil 79.5 silence 97.1

Average 71.0 All correct 39.6

Table 5.11: Frame-level classification results with MV features on the Myosphere database

Both systems were compared to the ANN trained directly with phone labels. The phone-
based system led to a frame recognition accuracy of 55.7%, with the results per phone vary-
ing from 1.5% ([dh]) to 88.1% ([ao]), again partly influenced by the training data available.
The phone-based ANN outperformed therefore both feature-based systems. However, it is
reminded that:

1. Some combinations of phonetic features could not be mapped to any phone of the in-
ventory. Forcing a valid map in the MV system to the phone with the best matching
phonetic features at each frame led to a correct rate of 49.7%.

2. Feature classes and features were assumed to be completely independent. It was re-
ported in the literature that an explicit modeling of dependencies between them could
significantly improve performance (e.g., classification of place of articulation features
specific to each manner of articulation, see Chang et al. [22] and Wester et al. [148]).

3. Even if the best phone outputs are more accurate with a phone-based system, their
alternatives (e.g., 2nd, 3rd best outputs) may be phonetically farther to the reference
phone than with a feature-based system (cf. experiments in section 4.8.1). So depending
on the importance of alternatives (e.g., creation of pronunciation networks), a feature-
based system may still be a more appropriate choice.
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5.8 Summary

Following the dynamic pronunciation modeling method at the lexicon level introduced in
the previous chapter, we studied in this chapter a similar dynamic approach at the acoustic
level based on the SLPM technique introduced by Saraclar et al. [124]. The method can be
resumed by the following three steps. First, a HMM recognizer generated a lattice of the
most likely word hypotheses given an input utterance. Then, the canonical pronunciation
of each hypothesis was checked by comparing a corresponding graph of phonetic features to
those automatically extracted from speech using an ANN. If the comparisons showed that
a phoneme of a hypothesis was likely pronounced differently, its model was transformed by
sharing the Gaussian densities of its realizable phone model(s). Finally, the transformed
models were combined with the original HMMs for a second recognition pass. No substantial
improvement was observed on word recognition performance. However, it was shown that
combination of decision trees and phonetic features that modeled substitutions and deletions
led to significant reduction in phone error rate. An independent phonetic feature detection
experiment on a spontaneous speech database showed a small performance degradation per
single feature compared to a read speech database, but with a substantial bad impact on the
overall frame level performance. A phone-based system still yielded better frame recognition
accuracy than feature-based systems, but depending on some enhancements brought to the
initial system and its usage (importance of alternatives), a feature-based approach may still
be a more appropriate choice.

Although a dynamic pronunciation modeling approach may be appealing, one of its draw-
backs is the extra processing time it requires, since such techniques need to be applied during
the recognition phase. The methods proposed in the current and previous chapters are no
exceptions to this fact. Furthermore, requirement of a second recognition pass represents an
additional handicap. A dynamic pronunciation modeling technique incorporated into a single
recognition pass would of course be preferable. A question that could also be raised about
the proposed methods is the necessity of building a distinct lexicon or acoustic models per
utterance and thus increasing the computation time, when we can reasonably assume that
a speaker’s pronunciation does not change much from one utterance to the next. The next
chapter will propose a radically different method that will attempt to address these issues.



Chapter 6

Symbolic Speaker Adaptation:
methodology

This chapter will introduce a new technique called Symbolic Speaker Adaptation (SSA) [98].
While this method is significantly different from the previous techniques, it overcomes several
shortcomings mentioned at the end of the last chapter. The chapter is organized as follows:

e Section 6.1 will give the reasons that motivated the introduction of this new technique.

Section 6.2 will give an insight into the SSA concept.

Section 6.3 will compare SSA to some existing pronunciation modeling and speaker
adaptation methods to see the common points and differences between them.

Section 6.4 will present the SSA method in detail.

Section 6.5 will give a summary of this chapter.

6.1 Introduction

In order to address the issues mentioned in the previous chapter, we are looking for a method
with the following characteristics:

1. Recognition process should be done in a single pass in order to save computation time.

2. Dynamic lexicon or acoustic models should be updated based on a more general scope
than a per utterance basis.

The first problem (single pass recognition) is rather difficult to solve: in order for a system
to model pronunciation variations in a dynamic fashion, extra computation time is a priori
needed during runtime, which implies a pre- or a post-process step. The second remark
above however proposes a way to deal with the problem: it may not be necessary to build
systematically a distinct lexicon or acoustic models per utterance, that is, speed issue could
be addressed by considering a less dynamic system without degrading too much performance.

Given this observation, we must decide at which other level dynamic pronunciation mod-
eling should be applied. In this chapter, we are going to consider the speaker-level, namely a
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distinct lexicon or acoustic models per speaker; it is indeed reasonable to assume that tran-
scriptions describing the pronunciations of a speaker do not radically change over time!. Next,
we must decide how often these Speaker-Dependent (SD) lexicons or acoustic models should
be updated. Let us consider the extreme cases. An update after each speaker’s utterance is
equivalent to the study and experiments we carried out in the previous chapters. The other
situation consists of building a specific lexicon or acoustic models for a speaker who uses
the system for the first time, but without modifying them during his/her future sessions. In
contrast with our previous experiments and to address the speed issue mentioned earlier, we
decided to study the latter case. Even though in such case the system cannot be consid-
ered fully dynamic, it still has a pseudo-dynamic behavior since its pronunciation models are
modified with a change of speaker.

In such situation however, several utterances per speaker need to be analyzed in order to
build reliable SD lexicons or acoustic models. This is actually a typical speaker adaptation
problem. In speech community, the term “speaker adaptation” refers to the process that
builds SD acoustic models based on more general (speaker-independent) models and some
(adaptation) speech samples given by the speakers for which these SD models must be built
([152]). Since acoustic-level adaptation is already a well-known field, this chapter will only
address adaptation issues at the lexical (symbolic) level: it consists for each speaker of selecting
the phonetic transcriptions that best represent his/her pronunciation characteristics and of
building SD lexicons from them. In order to distinguish acoustic- and symbolic-level methods
in this chapter, we will call them Acoustic Speaker Adaptation (ASA) and Symbolic Speaker
Adaptation (SSA) respectively. A general overview of SSA will be presented in the next
section.

6.2 General overview of SSA

Let us consider a new speaker who wishes to use a speech recognition system for the first time.
The system initially has no information about this new user’s pronunciation characteristics,
but we make the assumption that the speaker is well modeled by a blend of typical pronunci-
ation characteristics for which the system has existing pronunciation models; let us call these
characteristics Speech Varieties (SV) for now. The system represents this combination of SVs
for each speaker by a Speech Variety Profile (SVP). Namely, the SVP is a definition of the
speaker’s pronunciation characteristics and consists of a list of speaker-associated speech va-
rieties and their corresponding probabilities. A spatial representation of the concept is shown
in Figure 6.1. A speaker is symbolized by a point in the pronunciation space, and we assume
that his/her pronunciation characteristics are adequately modeled by projection of his/her
representative point to a subspace spanned by a group of basis vectors. Each of these vectors
can be seen as a distinct speech variety and the coordinates of the projected point according
to this basis as their relative importance. A speech variety profile in this context is simply a
list of these vectors and coordinates.

The objective is to identify the coordinates of the projected point, in other words to
determine for the enrolled speaker the probability of each speech variety as accurately as
possible. This is done through the SSA process, where the person is asked to utter a set of
known (adaptation) sentences. The system builds then the SVP based on how the speaker’s

! Actually, pronunciation can be much variable acoustically even for a single speaker (Peters and Stub-
ley [112]). Introduction of speaker-dependent lexicons is based on two assumptions/facts: first, that inter-
speaker variation is still more acute than intra-speaker variation, and second, that such variation is less visible
at higher (phonetic) levels, since the number of available phones to model the acoustics is limited.
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Figure 6.1: Spatial representation of Symbolic Speaker Adaptation and Speech Variety Profile

pronunciation deviates from the canonical (baseform) pronunciations.

The adapted profile is then used to expand a baseform, canonical lexicon with new pro-
nunciation variants, the set of which is constrained by the SV probabilities contained in the

speaker’s SVP. Each speaker’s SVP is saved for future sessions’.

Let us now define more precisely the term speech variety. Each SV represents a typical
pronunciation style of a given language. A logical association is to consider each SV as a
dialect or a foreign-accented speech. This chapter will keep this association and will focus
on speech varieties of American English. Nevertheless, this method is applicable to other
languages as well.

An example of the SSA concept is shown in Figure 6.2: for a Spanish-accented English
speaker, the SVP resulting from the SSA process should be biased towards the Spanish-
accented English speech variety. Consequently, the SVP favors for the word “yes” the pro-
nunciation [jh ey s| over the canonical form /y eh s/ when expanding the baseform lexicon:
the “/y/ — [jh]” realization in word-initial position and “/eh/ — [ey]” are characteristics of

Spanish-accented English.
svP yehs 1.00 } m

Spanish 0.50 Canonical (baseform)
l

' ‘ Italian  0.30 lexicon
, m))) SSA Std Am. 0.13
Spanish-accented British  0.07

English speaker jheys 0.62
yehs 0.15

Speaker-dependent
lexicon

Figure 6.2: Example of SSA and SVP usage with a Spanish-accented English speaker

SSA incorporates both pronunciation modeling and speaker adaptation concepts. In order
to give an insight into the potential benefits of SSA, the next section will compare it with
some previous works done in both topics.

! A discussion of automatic speaker identification goes beyond the scope of this thesis and is not addressed
here, but current existing methods in this field could be suitable for this purpose (see for example [18]).
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6.3 Comparative study

6.3.1 Comparison of SSA to pronunciation modeling

As seen in the literature survey of chapter 3, most contributions in pronunciation modeling
focus on generating new surface form transcriptions to better match pronunciation variability.
At the same time, such methods select only the most representative variants in order to limit
the risks of lexical confusability.

However, in this general strategy, pronunciation variants reflecting potentially many dis-
tinct speech varieties are inevitably omitted, which may be detrimental to ASR systems:
several papers (e.g., [66]) show that a speech recognizer designed for a given speech variety
may sometimes double its WER, when it is evaluated with a different speech variety. It would
be therefore desirable to model these SVs more explicitly in order to increase pronunciation
coverage.

Let us see first how this problem has been addressed so far and then compare the existing
methods with SSA. Previous studies that dealt with multiple speech varieties can be divided
in two categories:

1. SV classification, which identifies towards which SV a segment of speech is mainly biased.

2. SV modeling, which helps the recognition system to better match the acoustics or pro-
nunciations of the targeted SVs.

The general method in classification consists of extracting relevant features like acoustic
(e.g., energy), prosodic (e.g., formant frequencies) and phonetic (e.g., stops, fricatives) in-
formation that help discriminate between the different speech varieties (e.g., [4]), which are
used as inputs to classification models such as neural networks ([15]) and LDA models ([94]).
Authors of this category do not however deal with the modeling issue in general and it is diffi-
cult to see for example if and how prosodic information can also help to model pronunciation
differences between speech varieties. The paper of Kat and Fung ([77]) is an exception and
visualizes phoneme substitutions between two SVs by mapping the means of the first (F1)
and second (F2) formant frequencies of each phoneme in the F1-F2 plane and by measuring
how the points mapped in this plane are distant from each other; however, there is no way to
detect any phonemic insertions or deletions with this method.

Speech variety modeling can be performed at acoustic or phonemic levels. In the former
case, acoustic models can be either trained separately for each SV ([10]) - which likely requires
sufficient training data - or adapted towards the targeted SV ([35]). A more interesting case
for comparison with SSA is the phonemic level modeling: acoustic models of the native SV
are not modified and only the lexicon is transformed, using either a knowledge-based ([77]) or
a data-driven method ([3], [66], [68]). However, authors of the lexical category do not address
classification issues because they typically target a single “non-standard” SV (i.e., another
dialect or foreign accent) or build a single joint lexicon to model several SVs.

A first benefit of SSA is that it integrates both classification (through an adaptation
process) and lexical modeling. It is true that another way of targeting multiple SVs would
be to combine the above classification and modeling methods in a serial fashion. However,
such methods would assume that only one single speech variety is activated at a time. It
would be better to have more flexibility and the freedom to activate more than one speech
variety whenever needed, so that pronunciation characteristics are not represented by a single
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SV-specific model, but rather a combination of them. This assumption is especially true
for speakers who are best characterized by several speech varieties of the same language
(e.g., speakers who have lived in several dialect regions, or had parents with different speech
backgrounds), but remains valid for any person who speaks with a predominate dialect or
accent but sometimes pronounces words in a way better described by some other speech
variety. Given this observation, it would, nonetheless, be ill-advised to merge all SV-specific
dictionaries since lexical confusability increases with the number of considered speech varieties.
One way to address this issue is to limit the number of pronunciations by a pruning method
designed for non-native speech ([3]) and to keep a single lexicon, but in this case several
pronunciation variants that best target some specific non-native speakers may still be lost.
An objective and potential benefit of SSA is to keep a higher pronunciation coverage and
accuracy by keeping more (if not all) variants available but by activating them at different
times, namely on a SD basis through the use of speaker adapted profiles.

In brief, the potential benefits of SSA compared to the existing pronunciation models are:

e Integration of both classification and lexical modeling methods.

e Optimization towards each speaker’s speech variety by the usage of a Speech Variety
Profile and the possibility to combine multiple SV-specific pronunciation models.

e Higher pronunciation coverage than with pronunciation pruning methods without an
excessive increase in confusability.

6.3.2 Comparison of SSA to speaker adaptation
Comparison of SSA to acoustic speaker adaptation

As mentioned in section 6.1, the objective of ASA is to build SD acoustic models from more
general (speaker-independent) models and some adaptation speech data. There are basically
three classes of methods applied:

1. Direct estimation: consists of adapting each SD model parameter separately using the
available data. The two commonly used estimation criteria are Maximum Likelihood
(ML), where the likelihood of the adaptation data x given the parameters A is maxi-
mized (P(z|)\)), and Maximum A Posteriori (MAP) which additionally includes a prior
distribution of the model parameters in the process (P(z|A\)P(\)). The MAP criterion
is preferred for adaptation purposes because less adaptation data is required thanks to
the use of prior information ([96]).

2. Linear transformation: assumes that SD parameters can be obtained by affine trans-
formation of the original model set. The most popular method is Maximum Likelihood
Linear Regression (MLLR, [103]). In most cases, only the original means p (i.e., vari-
ances remain unchanged) are linearly modified to obtain new means i, so that the
likelihood of the adaptation data is maximized: g = Ap+b. The objective is to evaluate
the values of A (n x n matrix, with n the mean vector size) and b (n x 1 vector).

3. Speaker clustering: represents a speaker by a point in space, but constrains the corre-
sponding model to be in a subspace spanned by a group of basis vectors. The objectives
are first to find the most representative basis vectors and second to determine the best
coordinates of the point according to this basis, in other words the weight of each vector.
Essentially two methods exist in this category: Cluster Adaptive Training (CAT, [50])
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and eigenvoices ([93]). CAT expresses the model mean of a particular speaker as a lin-
ear combination of “canonical” speaker clustered model means. The training scheme
is iterative and consists of first finding ML estimates of interpolation weights given a
set of initial clusters, then of re-estimating the cluster parameters from these weights,
and so on with the updated clusters until some convergence criterion is satisfied. In the
eigenvoice approach, all means of each of T' SD models are gathered in a single vector to
form T “supervectors”, which are in turn reduced to T eigenvectors through a Principal
Component Analysis (PCA); the K (K < T') most significant eigenvectors finally con-
stitute the required basis. The eigenvoice coefficients (interpolation weights) are found
using a maximum likelihood eigen-decomposition scheme that Kuhn et al. [93] described
in their paper.

SSA is conceptually similar to the speaker clustering category since speech varieties in-
cluded in speaker profiles represent a set of basis vectors. However, this procedure is still
significantly different from the above methods:

e Choice of the basis is governed by pronunciation modeling since each speech variety
represents a group of speakers with similar pronunciation characteristics.

e Choice of the basis is knowledge-based - the speech varieties we would like to target are
known beforehand.

e SSA does not alter the acoustic models, but rather only modifies the speaker’s SVP and
the canonical lexicon, leaving the acoustic models truly speaker-independent.

ASA techniques are further divided in different modes of application. An adaptation
process is called static when all adaptation data is available and is used before the actual
recognition process, or incremental if the process is performed progressively as more adapta-
tion data becomes available. Furthermore, ASA techniques are classified as supervised when
the correct word sequences of adaptation utterances are known, and unsupervised when they
are unknown. This thesis will only cover an offline mode of SSA - static and supervised. Nev-
ertheless, it could be amenable to online (incremental and unsupervised) utilization as well -
it does not face any more challenge than any other adaptation method that might be used
online.

Comparison of SSA to phonetic speaker adaptation

Most contributions in speaker adaptation are applied at the acoustic level, but fewer similar
experiments were carried out at phonetic level. Cohen et al. ([27]) first expanded baseform
pronunciations with knowledge-based rules to create a pronunciation network for each word,
then pruned these networks differently for each speaker based on SD data. An 11.5% relative
improvement in WER was achieved compared to a speaker-independent baseline with multiple
pronunciations. Imai et al. ([69]) derived SD phonological rules: they compared likelihoods
and durations of phonemes obtained from speaker adaptation sentences (using Viterbi align-
ment) to some average values of the same phonemes determined from the training database.
Tentative rules were generated when a phoneme had lower likelihood or duration different
from the average values, and were afterwards validated if the new phoneme sequence obtained
from the new rules led to a higher likelihood or a better discriminative ability between the
reference and wrongly recognized sentences. The improvement they obtained was particu-
larly significant for speakers with low baseline results (system with single pronunciation per
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word), which shows that speakers with radically different accents may greatly benefit from
such phonological speaker adaptation process.

SSA follows a similar line of thought, but extends the above studies by introducing the
concept of speaker profiles and by explicitly taking account of multiple speech varieties.
Humphries and Woodland ([68]) applied their work on SV-specific pronunciation modeling
to a SD framework. Two experiments were carried out: they first built SD pronunciation
models for native American English speakers from a British English recognizer using 40 adap-
tation sentences per speaker, then they applied the same technique to non-native speakers of
English. They obtained reduction in WER with American English speakers (11% relative)
and even bigger improvement with non-native speakers (19% relative), showing that phono-
logical speaker adaptation may be particularly effective for speech varieties with substantial
phonological variations compared to the native speech. This study however builds a separate
pronunciation model (set of decision trees) per speaker, which requires a priori a big amount of
adaptation sentences. SSA is different because pronunciation models are built per speech va-
riety and adaptation sentences are only used to determine the importance of each SV-specific
pronunciation model - only the lexicons resulting from the subsequent combination of models
are speaker-dependent. Therefore, less adaptation data is a priori required.

Now that we viewed some differences and potential benefits of SSA compared to other
existing methods, the following section will more thoroughly describe this method.

6.4 SSA in depth

This section will describe the SSA concept in detail. The whole adaptation process will first
be explained in 6.4.1, then each component of the system will be separately presented.
6.4.1 Adaptation overview

The adaptation process is depicted in Figure 6.3. The following steps are applied for each
enrolled speaker and his/her adaptation sentences:

’ ”)))) "Dial nine three zero..."
i—l
o)

1 Phone realizations Speaker SVP

All speech varieties
#-th+r =t Std Am. 0.10
Canonical‘ th ‘ r ‘ iy th-r+iy =sr N.Inland 0.07
— ‘ ‘ ‘ —— =) riy+# =iy m=)> | British 0.02
Viterbires.| t r iy . Indian 0.80
Asian  0.01

Figure 6.3: Overview of Symbolic Speaker Adaptation

1. Each word in the adaptation sentence is mapped to its baseform transcription(s) (canon-
ical pronunciation(s)).
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2. SV-specific transcriptions are derived from the baseform(s) using a pronunciation model
(built in a separate process) in order to generate a pronunciation network. For each
SV-specific form, a list of symbol transformations is kept.

3. A Viterbi alignment is performed using the network to return the most likely sequence
of phones actually uttered by the speaker.

4. The symbol transformations corresponding to the selected phone sequence are added to
a list.

5. Once all adaptation sentences are processed, probabilities for the speaker profile are
computed using all transformations found in the list.

An example of a profile after adaptation for an Indian English speaker might be something
like this:

Standard American English 0.10
Northern Inland English 0.07

British English 0.02
Indian English 0.80
Asian-accented English 0.01

There are four main tasks performed by the system: generation of pronunciation variants,
selection of the most likely transcription uttered by the speaker, calculation of SVP probabil-
ities and utilization of SVPs for recognition. The selection process is just a standard Viterbi
alignment, so only the pronunciation models (section 6.4.2), the variant generation process
(section 6.4.3), the SVP adaptation process (estimation of probabilities in SVPs, section 6.4.4)
and utilization of SVPs (section 6.4.5) will be described.

6.4.2 Pronunciation models

Two different methods were investigated to expand the canonical lexicon with new pronun-
ciation variants. The first method uses generally applicable knowledge-based rules, while the
second method uses decision trees derived from the data set of these experiments.

Rules

A distinct set of rules was defined per speech variety, with each rule tagged with an a priori
probability of being applied. Selection of rules and probabilities comes from several SV-specific
studies in phonetics and phonology as well as reports and pedagogical materials concerned
with English-language acquisition by speakers of other languages (e.g., [20], [108], [115]). The
following are some examples of SV-specific rules (formats of rules respect the description given
in section 3.5.3):

Northern Inland English /ao/ — [aa] (e.g., “call” — [k aa 1)
Indian English /th/ — [t] (e.g., “three” — [t r iy])
British English Jaar #/ — [] (e.g., “car” — [k aa])

(“4”: word boundary)

2The complete set of rules is property of Motorola Labs and has not been published in this dissertation.



6.4. SSA in depth 109

Decision trees

For each speech variety and phone combination a separate tree was trained to predict SV-
specific phone(s) from a canonical phone and its left and right contexts. The following steps
are applied for each training sentence:

1. On one hand, reference words are mapped using the Standard American English (SAE)
lexicon to a pronunciation string. When several canonical forms are available for a given
word, Viterbi alignment is applied to select the best transcription.

2. On the other hand, a pronunciation network from the baseform transcription(s) of the
same reference words is generated using all sets of rules mentioned above, and then the
best phone string from this network is selected using Viterbi alignment.

3. Both phone strings are aligned to each other using Dynamic Programming (DP) based
on differences of their phonetic features.

4. DP alignment results are used to train decision trees. Questions used to build the trees
concern phonetic features (e.g., front, back, round, ...) for the immediate left and right
contexts. The CART algorithm ([16]) was used to train the decision trees from the DP
alignment results.

The tree building technique is similar to the version described in section 5.6.2, except that
the SV-specific transcription candidate set is not obtained directly from a phone recognizer,
but constrained by the application of knowledge-based rules followed by a Viterbi alignment.
The reason is because a more difficult (spontaneous) database was used to carry out the
experiments and phone recognizers generated too many errors (even when using phone-level

bigrams)3.

Limitations

At this initial stage of study, several constraints were observed that precluded the building
of an optimal set of pronunciation models. Perhaps most crucially, only the SAE phone in-
ventory (consisting of 39 phones) was used to describe pronunciation variability of all speech
varieties. It was therefore not possible to account for non-SAE sound distinctions. For ex-
ample, retroflexion of alveolar consonants is a strong acoustic cue for Indian English, but is
not represented in the SAE phone inventory. This limitation prevented both the training of
more specific acoustic models and the definition of additional rules to account for these sound
differences (decision tree methods were also affected since their training was derived from rule
productions).

Next, the a priori probabilities assigned to rules derive from reports of general usage in the
targeted SV communities and were not re-estimated from the actual data used. Since these
values help to guess the probable speech variety(ies) of the enrolled speaker (as will be shown
in section 6.4.4), (likely) inaccuracies in their estimation would have (negative) repercussions
throughout the system.

Finally, an overwhelming majority of sentences used to train the decision trees was uttered
in SAE or in a phonologically similar SV. Although we considered the remaining sentences to

3An alternative method could be the use of confidence measures to filter the outputs of phone recognizers

([68])
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still be sufficient for training the other speech varieties, additional non-SAE data would have
been preferable in order to build more reliable pronunciation models.

6.4.3 Generation of SV-specific forms

Usage of pronunciation models occurs during two different processes: first during adaptation
in order to create a network of possible SV-specific pronunciations per sentence, and second
before recognition in order to output SD lexicons from the canonical (Standard American
English, SAE) lexicon. Generation of pronunciation variants is almost identical in both cases.
The only difference lies in the constraints applied on top of these processes:

e Creation of pronunciation network during adaptation is unconstrained (with rules) or
slightly constrained (with trees): all (or almost all) pronunciations of all speech varieties
are available and pronunciation probabilities are not used so that selections of SV-specific
forms used to create SVPs are solely driven by the acoustics (Viterbi alignments).

e Creation of SD lexicons is constrained and governed by the enrolled speaker’s SVP: only
the SV-specific forms that likely reflect the speaker’s pronunciation characteristics are
kept and the rest is discarded. Moreover, a probability of occurrence of each form S,
given the word W it transcribes (P(S,|W)) is used to reflect the relative importance of
the selected forms.

This section will describe the unconstrained version. Section 6.4.4 will describe how SVPs
are built and section 6.4.5 will explain how probabilities are calculated and influenced by the
SVPs.

Generation of SV-specific forms using rules

In this framework, a vector of rules is associated with each speech variety. In order to trans-
form a SAE baseform into an SV-specific form, we check the status of each rule defined for
the targeted speech variety in a predefined order. Each rule is eligible to transform a sequence
of phones only if the sequence matches the pre-conditions of the rule, that is, if the sequence
contains the focus phoneme along with any neighbor context(s) required by the rule. Addi-
tionally, all rules are considered optional, which means that even if a rule is eligible, it is not
necessarily applied.

The set of all SV-specific forms is obtained by all valid combinations of rules that succes-
sively transform a given baseform. Figure 6.4 illustrates the generation process through an
example. Let us assume we would like to know the SV-specific forms of the word “forecast”
(with baseform /f ow r k ae s t/) given a speech variety and its set of rules:

1. /# th/ — [t] (starting /th/ realized as [t]; '#’ means a boundary)
2. /st #/ — [d] (ending /t/ preceded by /s/ and realized as [d])

3. Jow/ — [ao] (/ow/ realized as [ao] given any phonemic context)

The first rule is not eligible since the baseform does not start with a /th/. On the other
hand, the second rule is eligible because the baseform matches both the focus phoneme and
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/,[fowrkaest]

fowrkaest
/[ ]A\[faorkaest]
/fowrkaest/T[fowrkaest]\
: Yffowrkaesd]

[fowrkaesd]

A
4<:[faorkaesd]
RS st# >[d] Jow/ ‘>[a]

e, GEEEE

Figure 6.4: Example of generation of SV-specific forms using rules

contexts of the rule. However, the rule is only optionally fired so that the original canonical
transcription is still kept. The third rule is also eligible and optional; if it is applied, all
transcription outputs from the second rule (regardless of whether it has been fired or not) are
used as inputs to this rule. As shown in Figure 6.4, four SV-specific forms were generated
after processing the baseform through all the rules.

All rules must be applied in the order they are defined. This process is simple, but has the
inconvenience of possibly causing some “feeding and bleeding” relationships between rules,
that is, a rule may become eligible or on the contrary non-eligible because a previous rule
in the list was fired and transformed the original transcription. For instance, if there was
an additional fourth rule “/ao/ — [aa]” in the above example, it should not be eligible with
respect to the baseform /f ow r k ae s t/, but may nevertheless be eligible and applicable if the
third rule is applied and generates an intermediate transcription such as [f ao r k ae s t] (which
contains [ao|, the phone required by the fourth rule). Rules used for the SSA experiments
were ordered in a way to avoid this side effect as much as possible.

Generation of SV-specific forms using trees

Given a speech variety and a baseform, phonetic features of the immediate left and right
phones are used as inputs to the corresponding set of trees. The leaf reached after answering
all questions found in tree branches gives the list of predicted phones along with the estimated
probabilities (conditional probability of observing a predicted phone given the baseform phone
and its neighbor contexts). In order to account for phone deletions and insertions as well, an

output may also be a null phone (deletion) or a group of phones®.

SV-specific forms are built from concatenation of successive outputs. Since this process
generated far more forms than with rules, any predicted phone or group of phones with a
probability lower than 0.1 was ignored.

4 At this point no special control on the number of phones inserted is necessary, because the SV-specific
forms used to train the decision trees are generated by rules (see section 6.4.2), in practice, that limited the
number of phone insertions to one.
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6.4.4 Adaptation of SVPs

The goal of SSA is to calculate the probabilities that a speaker’s pronunciation characteristics
match each of the speech varieties known by the recognition system. So given a speaker U
who uttered some adaptation sentences {o}, we compute P(V;|U, {o}) for all speech varieties
Vi. On the assumption that the adaptation sentences contain sufficient information for deter-
mining a speaker’s speech variety(ies), these probabilities were approximated by the sum of
the contributions of all words W; that the speaker uttered during the adaptation process:

N(Wj)
PV|U{o}) = Y PVi|W;)- P(W)) (6.1)
j=1

where N(W;) is the number of distinct words uttered. In related experiments (see next
chapter), the importance of each word was normalized by setting P(W;) equiprobable; it
did not seem indeed adequate to involve word frequencies when making a decision about a
speaker’s speech variety(ies), especially when some words appear much more frequently than
others. For example, if a word appears 90% of the time, it is not reasonable to say that a
person is an Indian English speaker only because he/she pronounces this particular word in an
Indian English manner; the way how he/she pronounces the other words is just as important
to make such decision.

Let us focus now on the conditional probability of a speech variety V; given a word Wj,
P(V;]W;). In recognition of the fact that lexical words may have multiple canonical (SAE)
pronunciations, P(V;|W;) is expressed in terms of its canonical pronunciations (baseforms)
B,:

P(Vi’Wj)
P = ety

_ Zr]\rz(:Blm)P(ViaWjﬂBm)

B P(W;)

_ SNE) P(V|W;, B) - P(B|W;) - P(W)

B P(W;)
N(Bm)

= 3 P(ViBu) - P(BulW;) (6.2)
m=1

where N(B,,) is the number of baseforms for the word W;. Let us further develop the
term P(V;|B;,) to model pronunciation variations at the canonical (baseform) level. By using
the Bayes rule and simplifying the problem with the assumption that phones of a baseform
are independent, we have:

P(Bn|Vi) - P(Vi)
P(Bp)

[T PV - P()
P(By)

P(Vi|Bn) =
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where py is a phone (in its left and right contexts) and N(pp) is the number of phones in
the baseform B,,. Each phone in the baseform may be realized as: 1) itself, 2) a different
phone (substitution), 3) a sequence of phones (insertion) or 4) a null phone (deletion). By
summing over all possible realizations of the baseform phone p,, we obtain:

P(py, V)
P(Vi)
> ser; P(Vispo, ps)
P(V;)
>ser; P(Vilpy, ps) - P(ps|ps) - P(ps)

- P(Vi) (64)

P(py|Vi)

where p; represents any phone or sequence of phones realized from the baseform phone py
and T'; is the set of all valid phone realizations for the speech variety V; (since P(V;|py, ps) =0
otherwise). After substituting the expression (6.4) into (6.3) and some simplifications, we
obtain:

2 Pl V)] - P(V)
- [N (py) Zsel“i P(Vilpy:ps) - P(ps|ps) - P(ps) ‘ P(V;)
- | PV P(Bn)
N(ps) ;
= % . H Z P(Vilpy, ps) - P(ps|ps) ;g::)

b=1 sel;

_ pr) > ser, P(Vilpo,ps) - P(pslpy) 65)
B P(V;)N(p)—-1 '

P(ps|py) is the speaker-dependent probability that measures how often the speaker realizes
a phone p, as pg; it is obtained by counting the number of times this transformation occurs
over all realizations of p, during the adaptation process: P(ps|py) = %. The first term
of the sum, P(V;|py,ps), is the SV-dependent probability and measures how accurately the
same phone transformation p, — ps targets the speech variety V;. Using the property of
independence between p, and V;, and assuming that the speech varieties V; are disjoint, we
show that:

P(py, ps)
P(W,pb,ps)

SN PV, i ps)
P(ps|py, Vi) - P(Vilps) - P(ps)
SN P(pslpy, Vi) - P(Vilpy) - P(p)

P(ps|py, Vi) - P(V;)

_ 6.6
SNV P(pylps, Vi) - P(V) (0:0)

P(‘/z|pbaps) =
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where N (V;) is the number of speech varieties known by the system. P(ps|py, V;) is given
by either the a priori probability of the corresponding rule in the V; rule set of being applied
(if it exists, otherwise the probability equals 0) or the estimation given by the decision tree
associated with the SV V; for the py — p, realization.

Finally, adaptation of speaker profiles is given by evaluating the expression seen in (6.1)
with the appropriate substitutions, for each speaker and each speech variety.

6.4.5 Estimation of SV-specific form probabilities

SVPs adapted as seen in the previous subsection influence the generation of SD lexicons to be
used during recognition. Namely, any speaker specific variant derived from a lexical baseform
(SAE pronunciation) is assigned a probability of occurrence, which partially depends on the
speaker’s SVP. This subsection describes how these probabilities are obtained.

Let us consider a word W phonologically transcribed by N(B,,) baseform pronunciations
in the lexicon. We would like to calculate the probability of occurrence of an SV-specific
pronunciation S, given that word, P(S,|W). Since a word is entirely represented by its
baseforms, we can write:

N(Bm)
P(Su[W) = Y P(Su|Bm) - P(Bn|W) (6.7)

m=1

Pronunciation characteristics of a speaker U (who utters the word W) are represented by
N (V;) speech varieties found in his/her SVP. Since several SVs may accept S,, as a possible
output form derived from a baseform B,,, the probability P(S,|B,) seen above must take all
N(V;) considered speech varieties V; into account:

N(Vi)
P(Sy|Bp) = Z P(Sy|Bm, Vi) 'Pl(Vi) (6.8)
i=1
where P'(V;) = P(V;|U,{c}) is the probability that the speech of the speaker U conforms to
the i-th speech variety (see section 6.4.4).

The process to evaluate P(Sy,|By,,V;) differs between the decision tree and rule methods.
These two processes are explained next.

SV-specific form probabilities using trees

Evaluation of P(S,|By,, Vi) using decision trees is quite straightforward. Each phone pj of the
baseform B,, is realized as ps that represents the same phone py, a distinct phone (substitution,
deletion) or a group of phones (insertion). The SV-specific form S,, is obtained by simply
concatenating the successive p, realized from each baseform phone p,. Assuming that the py’s
are independent, we can write:

N(ps)

P(Sn|BmaVi) = H P(ps|pbavi) (6.9)
b=1
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where N(pp) is the number of phones in the baseform B,,. Each term of the product is
estimated by the decision tree associated with the speech variety V; and baseform phone py.

SV-specific form probabilities using rules

Let us focus on the rules responsible for the transformation of a baseform B,, to an output
form sequence S,,, to see how they influence the probability P(S,|B,, V;). In this framework,
each speech variety V; is associated with a vector (ordered set) of rules r; = (r},r2,...). As
mentioned in section 6.4.3, each rule rf of the set may be eligible if the required pre-conditions
of the rule are met, but even so it is not necessarily applied. To represent these possible rule
states in a more compact form, we define a variable ¢; = (qil, q?, ...), where each q‘g represents

the state of a rule ], with three possible values:

1. ’0’: the rule is not eligible
2. '+’: the rule is eligible and applied
3. ’-7: the rule is eligible, but not applied

We come back now to the process of transformation of a baseform B,, to an SV-specific
form S, but this time bringing the rules and rule states to the fore. To find the probability
P(Sy|Bpn,,V;) of equation (6.8), we are looking for all combinations of rules that successively
transform the baseform B,, into the SV-specific form S,: B,, - X7 — X9 — ... = §S,.
Conditioned to a speech variety V; and its set of rules R;, it consists of finding those sequences
of rule states ¢; for the rule set r; that leads to S,,. Therefore, the probability becomes:

GEQ;

where (); is the set of valid sequences of rule states that transform the baseform B,, to the
SV-specific form S,, for the given speech variety V;, provided that at least one such sequence
exists (otherwise the probability becomes zero). If the set Q; is not empty, each term of the
sum in equation (6.10) can be expressed as a product of probabilities of rules being in the
required state to yield the output form Sy,:

L; ‘ 4
P(Bpn % S,) =[] P(d)) iff B S, (6.11)
j=1

where L; is the number of rules defined for the speech variety V;. Furthermore, each rule
state probability can be expressed as a function of the a priori rule probabilities (defined from
knowledge-based sources):

‘ 1 if qzj = state ’0’
P(q]) = P(r])  if ¢ = state '+’ (6.12)
1—P(r]) if ¢/ = state -’

i

Finally, the probability associated to each selected SV-specific form S, for a word W is
the value of P(S,|W) with the appropriate substitutions seen above.
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6.5 Summary

In this chapter, we introduced a method called Symbolic Speaker Adaptation (SSA) in order
to overcome several disadvantages seen with the methods based on phonetic features. The
method consists in building speaker-dependent lexicons based on an adaptation process that
help to capture the most relevant symbol transformations realized by each speaker. It incor-
porates both speech variety classification and modeling tasks, and is different from Acoustic
Speaker Adaptation (ASA) in that only the lexicon is altered, leaving the acoustic models
speaker-independent.

The next chapter will describe the related experiments and results.



Chapter 7

Symbolic Speaker Adaptation:
experiments and results

This chapter will describe all experiments and results obtained by applying the SSA method
seen in the previous chapter [98][99]. Sections are organized as follows:

e Section 7.1 will describe the basic settings (database, HMMSs, ...) and experiments
carried out.

e Section 7.2 will analyze the results obtained with the basic experiments.

e Sections 7.3, 7.4 and 7.5 will present some additional experiments pertaining to the
analyses and hypotheses made in section 7.2, in order to further improve recognition
performance.

e Section 7.6 will evaluate the robustness of SSA under some constraining situations (small
adaptation data, non-modeled speech varieties).

e Section 7.7 will give a summary of this chapter.

7.1 Basic experiments

7.1.1 Database

All experiments were carried out on an English telephone speech database called Myosphere,
developed by Motorola Labs. In this corpus, speakers from 12 speech varieties give a set of
commands to a real speech recognizer (e.g., “call Steve at office”). Most commands are short
(3.8 words per sentence on average), but spontaneous and often uttered with hesitations and
in different noisy conditions (e.g., cross-talk, line noise), so they represent fairly well a real life
situation. The original phone inventory contains 39 symbols, similar to those used in TIMIT
(cf. appendix A). Speech files include several annotations, including the speaker gender and
his/her dominant speech variety. The represented speech varieties are:

1. Standard American English
2. Northern Inland English (e.g., Chicago)
3. Southern English
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African-American English
New York English

British English

Indian English
Asian-accented English

© © N> U

Spanish-accented English

10. French-accented English

11. German-accented English

12. Other (unknown speech variety)

However, distribution of sentences is biased towards Standard American English and
Northern Inland English (a dialect close to Standard American English): around 80% of
sentences were uttered by speakers of these two speech varieties.

7.1.2 Baseline system

A baseline HMM system was trained using HTK [158]. Around 90000 sentences uttered by
about 440 speakers were used for training. All 12 speech varieties were included (although
biased towards SAE and Northern Inland English, as mentioned previously). Models consist
of 39 monophones with 5 Gaussian mixtures per state, trained from 39 MFCC coefficients (12
static + 1 energy, 13 A, 13 AA). Two additional models for silence and short pause were
also trained, giving a total of 41 models. As mentioned in section 6.4.2, no models specific to
non-SAE SVs were used. Details of the training process can be found in appendix C.2.

Five speech varieties were used for evaluation: Standard American English (SAE), North-
ern Inland English (NI), British English (Br), Indian English (In) and Asian-accented English
(As). Eight to ten speakers (4-5 male, and 4-5 female) with an average of 164 sentences per
speaker were used for each speech variety evaluation. A back-off bigram language model which
was generated from all sentences of the database helped constrain the search!. Two differ-
ent baseline lexicons created by Motorola Labs were used: the first lexicon (BLex1) contained
only one baseform pronunciation per word, while the second lexicon (BLex2) was an expanded
version of the first one with pronunciation variants created by phoneticians®. The closed vo-
cabulary size for both lexicons was 3815 words. Table 7.1 gives the baseline recognition results
in WER.

\ |SAE| NI | Br [ In | As |
Base (BLex1) | 18.92 | 21.60 | 36.95 | 24.37 [ 32.92
Base (BLex2) | 18.31 | 20.92 | 34.93 | 23.45 | 31.31

Table 7.1: Baseline recognition results (in WER)
The table shows that:
e As expected, the expanded lexicon (BLex2) leads to a lower WER than the basic version

(BLex1) for all SVs, although not by much (between 3.1% and 5.5% relative improve-
ment).

!Test sentences were voluntarily included so that the out-of-vocabulary problem would not influence the
results of our experiments.

2The average number of pronunciations per word in BLex2 is slightly higher than the CMU [26] and BEEP
[11] dictionaries.
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e The WER may substantially increase with the speech variety considered (e.g., the Br
WER is almost double the SAE WER). It is surprising to see that performance is the
worst with British English speakers when we know that English is their very native
language. Observation of results on a per speaker basis shows that WER was even
around 50% for some of the Br speakers. It is interesting to note that Humphries [67]
also reported high WER for one of the two British English speakers he evaluated with
SAE trained acoustic models, compared to WERSs of non-native speakers.

Results obtained with BLex2 were chosen as baseline results for the SSA experiments
reported in the next subsections.

7.1.3 Training of decision trees

A program (called wagon) from the speech tools of Edinburgh University [143] was used
to train the decision trees. As explained in section 6.4.2, a separate tree was trained for
each speech variety and phone. Sets of rules were applied to the BLex2 lexicon to generate
candidate transformations. Pronunciation variants found in BLex2 were also transformed in
this process because they reflected pronunciation variability implied by connected speech and
not by dialectal variations (like in “Barbara”: /b aa r b ah r ah/ — [b aa r b r ah]), so could
still be modified by SV-specific rules.

Please note that due to a lack of data, trees for the As SV had to be trained from the test
set as well, and therefore all tree-related results for the As SV reported in the next sections
are for indication only. However, the SSA process itself strictly uses the adaptation set for
all speech varieties. In other terms, the As case gives an idea how effective the SSA method
would be if the pronunciation models were “perfect” (i.e., if the pronunciation models well
matched the evaluation data).

7.1.4 Results with SSA

The SSA method was applied to the whole adaptation set (140 sentences on average per
speaker®). Each network created for Viterbi alignments had on average 7.5 pronunciation
variants per word with rules and 10 with decision trees. Before computing the SVP proba-
bilities, SV-specific phone realizations that occurred less than 5 times were pruned to keep
only reliable transformations. All speech varieties, words and baseforms used to compute
the SVP probabilities were considered equiprobable (P(V;) = 1/N(V;), P(W;) = 1/N(Wj)
and P(B,,) = 1/N(B,y,)) so that the final results were not biased towards any speech variety
without any knowledge about the speaker’s pronunciation characteristics. Some additional
pruning mechanisms — maximum 3 pronunciations per word, and stop when the sum of the
highest output form probabilities equals or exceeds 0.7 — were also applied to the generated
user lexicons to keep the lexicons small and to limit lexical confusability. Probabilities of pro-
nunciation variants were also scaled during decoding to emphasize their importance relative
to acoustic and language model scores. Table 7.2 shows the results obtained.

Implementation of the SVP concept at this stage showed very little improvement relative
to the BLex2 baseline results. Nevertheless, the following points can be noted:

3This seems a large dataset, but since sentences are short they are equivalent to 30-35 sentences of Wall
Street Journal (WSJ0) in terms of number of words.
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\ |SAE| NI | Br [ In | As |
| Base (BLex2) | 18.31 | 20.92 | 34.93 | 23.45 | 31.31 |

SVP rules 18.85 | 21.05 | 35.72 | 23.37 | 31.40
SVP trees 17.99 | 20.86 | 34.36 | 23.85 | 29.36

Table 7.2: First results with SSA (in WER)

e Decision trees are in general more effective than purely knowledge-based rules. This is
first because each SV-specific tree was trained based on all available SV-specific rules
(and not only the corresponding SV-specific rule set). This method offered more flex-
ibility by allowing rules to be shared across speech varieties (the rule method did not
allow it, unless a same rule was explicitly mentioned in each rule set). Secondly, sym-
bol transformation probabilities were data-driven, in comparison with the rule method
where probabilities were defined a priori and were not re-estimated from the data.

e The As SV (case when pronunciation models well match the evaluation data) with
decision trees still shows some small improvement (6.2% relative in WER).

Since results were rather disappointing, the following cheating experiment was run to get
an idea about the maximum improvement we can expect from SSA under current conditions:
since each speaker in the database was tagged with his/her dominant speech variety, the SVP
for each speaker was completely biased towards it before recognition. For example, if a person
was known to be an Indian English speaker, an SVP with a probability 1.0 for Indian English
and 0.0 for the other SVs was created for him/her and this SVP was used for recognition
instead of an SVP that would have normally been generated from the adaptation process.
Table 7.3 shows the results obtained.

\ [SAE| NI | Br [ In | As |
| Base (BLex2) | 18.31 | 20.92 | 34.93 | 23.45 | 31.31 |

SVP rules (cheat) | 18.31 | 20.92 | 35.41 | 24.65 | 32.49
SVP trees (cheat) | 17.35 | 20.53 | 34.68 | 23.66 | 28.74

Table 7.3: Cheating experiment results with SSA (in WER)

Surprisingly, even the cheating experiment did not bring any substantial improvement
either. Decision trees still perform better than rules, but even so results are not much better
— if not worse — than the basic SSA experiment results reported in Table 7.2. Section 7.2 will
try to understand the reasons.

7.1.5 Comparison with acoustic speaker adaptation (ASA)

The same experiments as mentioned in the previous subsection were carried out on ASA-
adapted HMMs. The ASA method used was Maximum Likelihood Linear Regression (MLLR)
with an 8-base regression class tree to cluster acoustically similar mixture components before
evaluating the transformations (see [49] or [158] for more details). The amount of adaptation
data was the same as for the SSA technique. Table 7.4 shows that application of ASA is much
more effective than SSA. However, we also notice that SSA performs better when combined
with the ASA technique (up to +7.8% relative improvement with decision trees over the ASA
baseline, +11.7% for the As SV). It seems that since lexicons generated by SSA are speaker-
dependent, they work better when the acoustic models are also speaker-dependent. SSA and
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ASA are applied at distinct levels of the system, and these results suggest that they are
complimentary.

\ |SAE| NI | Br [ In | As |
| ASA+BLex2 [ 11.74 | 12.96 | 20.59 [ 13.91 | 19.04 |

ASA+4SVP rules | 12.13 | 12.82 | 20.53 | 14.18 | 19.18
ASA+4SVP trees | 11.04 | 12.48 | 18.99 | 13.26 | 16.81

Table 7.4: Results of SSA techniques over ASA (in WER)

It is interesting to note that Willett et al. [150] carried out some similar but independent
experiments and also observed the same kind of result. Their method consists for each speaker
in running a first word recognition pass, then in applying some knowledge-based rules on the
resulting sequence of phoneme models in order to generate a pronunciation network. A Viterbi
alignment through the network selects the best model sequence and helps to weight the rules
involved for the specific speaker. Based on that, a speaker-dependent lexicon with multiple
pronunciations and probabilities is generated and is used instead of the original (speaker-
independent) lexicon for a second word recognition pass. Although improvement on their
Japanese database was small, they noticed that joint acoustic (using MLLR) and symbolic
adaptation applied between the first and second recognition pass were complimentary and that
the corresponding improvements were additive. Recently, Goronzy [55] (chapter 8) generated
non-native pronunciation variants from the data of source and target languages: some German
speech data was transcribed using an English trained phone recognizer to obtain an estimation
of English-accented pronunciation variations, and the correspondences between canonical pro-
nunciation and accented variants were captured through a decision tree. Experiments showed
that combination of MLLR and a lexicon enhanced with non-native variants generated with
the tree improved performance compared to MLLR alone, suggesting once again that acoustic
and pronunciation levels are additive (at least partially). Amdal [2] (chapter 7) on the other
hand obtained only small or no improvement by combining pronunciation variants and acous-
tic adaptation. It should however be noted that the variants used were of general purpose
(taken from the CMU lexicon) and already degraded performance without speaker adaptation
on spontaneous and non-native speech tasks.

7.2 Result analysis

In order to understand why the SSA experiments failed to bring more substantial improvement,
results of Viterbi alignments were analyzed on the adaptation data. They show that:

1. Many pronunciations selected by the Viterbi alignments were associated with more than
one speech variety: 78% with rules and 87% with trees (77% with rules and 64% with
trees were common to all 5 SVs).

2. Many selected pronunciations were baseforms found in the BLex1 lexicon: 71% with
rules and 54% with trees.

Given the first remark, the more speech varieties which accept a selected pronunciation
as a possible SV-specific form, the more difficult it is to decide which speech variety best
describes a speaker’s pronunciation, especially when the amount of preference for a selected
transcription is similar across SVs. The following lines give an example of Viterbi alignment
result for the word “change” when using rules :
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Selected pronunciation : [ch ey n jh]
Winners : sae(1.00) ni(1.00) rp(0.93) in(0.80) as(0.81)

The value next to each speech variety is the probability that a speaker realizes the base-
form of the word “change” as the form [ch ey n jh] (in this example, phonetic transcription
matches the baseform) assuming that his/her dominant speech variety is each of the consid-
ered SVs. As seen above, not only all SVs are possible, but also none of them is much more
preferred than another. When such case happens frequently (as it is the case), final SVP
probabilities are influenced in the same way.

The second remark tells us that since baseforms are often preferred, the SVPs should be
biased towards those speech varieties that most resemble SAE, namely SAE and NI. It is
indeed the case with the knowledge-based method (rules). Figure 7.1 shows the average SVP
probabilities obtained for each of the modeled SVs (for example, the five leftmost columns
show the average SVP values for SAE speakers). It shows that SAE and NI (sometimes Br?)
have the highest values for all speakers, although not by much as noted in the first observation
above (all SVP probabilities range between 0.15 and 0.24).
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Speaker’s dominant speech variety

Figure 7.1: Average SVP probabilities using rules for each modeled SV

Decision trees (Figure 7.2) do not completely follow this assumption since preference for
baseforms by a given SV is data-driven. They bias the SVPs slightly more towards the targeted
SVs, but again the preference for one SV over another is not great.

Since baseforms are often preferred, SV-specific variants added to the lexicon can increase
lexical confusability more than they help with modeling pronunciation variation, which may
explain the lack of substantial improvement.

Following these remarks, a question we could ask ourselves is: why this preference for
baseforms 7 Some possible answers are:

1. Speakers really pronounce words in a rather canonical fashion.

2. Something lacks and prevents the ASR system from modeling pronunciation variations
more accurately.

4Compared to In and As, fewer pronunciation variants distinguished Br from SAE and NI.
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Figure 7.2: Average SVP probabilities using trees for each modeled SV

Let us consider the first hypothesis. It is true that speakers in this database were know-
ingly interacting with an ASR system and voluntarily spoke carefully so that their requests
could be understood. It is possible that pronunciations resulting from hyperarticulations are
often best described by baseform pronunciations. One way to verify it would be to run the
same experiments on another database in which speakers of different speech varieties spoke
more naturally, and check if preference for baseforms is reduced in favor of SV-specific pro-
nunciation variants. However, at the time the experiments were carried out, a spontaneous
speech database with multiple speech varieties and besides annotated with the dominant SV
for each speaker was not easy to find, so such experiment will not be reported in this thesis.
But regardless of the possible results of this experiment, it is obvious when listening to various
non-SAE speakers that pronunciations across speech varieties are fundamentally different —
otherwise it would be difficult to reliably annotate the dominant SV of each speaker in the
first place.

This naturally leads to the second hypothesis (lack of accuracy of the ASR system). If a
baseform is often selected by Viterbi alignments even if it is not the true pronunciation, it is
because:

1. Acoustic models are not accurate enough to choose the true pronunciation.

2. The true pronunciation is not among the possible choices and the baseform is chosen for
lack of better phonetic transcription.

Let us study each of the reasons (and we will recall some of the limitations already seen
in section 6.4.2). Concerning the first reason, the acoustic models used for the reported
experiments were monophones, so maybe more accurate models (like triphones) could help to
decrease the amount of selected baseforms in favor of other pronunciation variants (assuming
they better reflect true pronunciations than the baseforms). Another possible explanation is
due to the database used to train the models: since the database was heavily biased towards
the SAE and NI speech varieties (which both favor baseforms), it is possible that Viterbi
alignment results were consequently biased in the same way. A training with a database
equally balanced in SVs may help to decrease the amount of baseforms selected.

If the second reason (i.e., true pronunciation not present) is correct, current pronunciation
models need to be improved to generate the right transcriptions. We need then to study
why the generation process is not accurate enough. A lack of pronunciation rules could be
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one of the factors. However, we recall that current rules and decision trees already made
available a reasonable number of transcriptions per word (7.5 transcriptions with rules on
average and 10 with decision trees) and since they are based on linguistic knowledge, they are
supposedly realistic; despite of this fact, Viterbi alignment decisions still gave baseforms as
winners in many cases. It is likely that just adding more rules will not help much. A better
explanation of the problem seems to be associated with a lack of non-SAE phones: non-SAE
speakers pronounce fairly differently from SAE speakers, but since typical new sounds (e.g.,
retroflexion of /t/ in Indian English) have not been taken into account, an alternative phonetic
transcription is chosen for lack of better one. Since baseforms are the most representative
transcriptions across SVs, they are generally preferred over the rest.

We propose to further study the various hypotheses mentioned in the next sections (some
of them were reported in [99]). To summarize, the following ASR components have been
pointed out for an update and their effects will be analyzed:

e Acoustic models - triphones (section 7.3)
e Acoustic models - training data (section 7.4)

e SV-inclusive phone inventory (section 7.5)

7.3 Experiments with triphones

5770 word-internal triphones were built by cloning the single Gaussian version of the 39 mono-
phones used in previous experiments and by re-estimating their parameters using the Baum-
Welch algorithm and triphone-labeled transcriptions. Then, the triphones were clustered with
a data-driven process, which reduced the number of models to 3673. Finally, the number
of mixtures was progressively increased to five, with four Baum-Welch re-estimations before
each mixture increase. The same SSA experiments as with monophones were carried out with
triphones. New decision trees were trained for triphone models following the same settings as
reported in sections 6.4.2 and 7.1.3. Table 7.5 compares between monophones and triphones
the percentage of selected pronunciations shared between SVs and preference for baseforms
when using decision trees. We see that the percentages are even higher with triphones.

‘ ‘ Shared prons ‘ Baseforms ‘

Monophones 87% 54%
Triphones 93% 79%

Table 7.5: Percentage of selected pronunciations shared between SVs and preference for base-
forms with monophones vs. triphones

Since preference for baseforms is even more accentuated, even less relative improvement
than with monophones was predicted with triphones. Table 7.6 confirms this expectation.
Decision trees were not at all effective with triphones because too few pronunciation variations
were observed: symbol transformations (in broad sense, that is substitutions, insertions and
deletions) occurred only 3.73% of the time in the training data (vs. 12.94% with monophones),
so that 77% of the resulting trees contained only a single node.
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\ |SAE| NI | Br [ In | As |
| Base (BLex2) | 11.69 | 12.49 | 23.07 | 20.66 | 20.72 |

SVP rules 11.70 | 12.84 | 23.26 | 20.56 | 20.90
SVP trees 11.55 | 12.30 | 23.02 | 20.75 | 20.82

Table 7.6: Comparison of baseline and SSA performance with triphones (in WER)

7.4 Influence of an SV-balanced training

In order to see to what extent availability of non-SAE training data influences the preference
for baseforms and recognition performance, two new different sets of HMMs were trained. The
first set (SAE-only) was trained using 14016 sentences of SAE data only, while the second set
(Multi-SV') was trained using 14016 sentences evenly balanced (3504 sentences each) between
Standard American English (SAE), Northern Inland English (NI), British English (Br) and
Indian English (In)®. The same training process as in section 7.1.2 was applied to build the
models, except that the number of Gaussian mixtures was increased to ten. Sentences used
for evaluation were uttered by nine to ten speakers of each of these four SVs.

Table 7.7 compares between SAE-only and Multi-SV HMMs the percentage of shared
pronunciations and preference for baseforms when modeling with decision trees. We notice that
Multi-SV HMMs have similar behavior to triphones: as acoustic models become more accurate,
preference for baseforms increases along with the percentage of shared pronunciations.

‘ ‘ Shared prons ‘ Baseforms ‘

SAE-only 85% 53%
Multi-SV 92% 68%

Table 7.7: Percentage of selected pronunciations shared between SVs and preference for base-
forms with single SV (SAE) training vs. Multi-SV training

Next, Table 7.8 shows the recognition results. It is not surprising that the Multi-SV
HMMs outperform the SAE-only HMMs with speech varieties significantly distinct from SAE,
namely Br and In. Also, as would be expected, using models trained with 75% of non-SAE
data (Multi-SV) rather than 100% SAE data (SAE-only) causes the WER for SAE test data
to rise, but only moderately. The last line shows the performance brought by application
of SSA on the Multi-SV HMMs. Since baseforms still constitute the majority of selected
pronunciations, again no particular improvement could be observed.

\ | SAE| NI [ Br | In |
SAE-only 17.12 | 19.21 | 36.65 | 26.18
Multi-SV 17.97 | 19.35 | 25.68 | 21.94
Multi-SV + SSA | 17.77 | 18.92 | 24.73 | 21.89

Table 7.8: Recognition results (WER) with single SV (SAE) training vs. Multi-SV training
without and with SSA

5 Asian-accented English could not be included because too few training sentences were available.
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7.5 Influence of an SV-inclusive phone inventory

According to the results in previous sections, preference for baseforms is not because models
are not accurate enough to target true pronunciations, but rather because true pronunciations
are not among the available choices. As previously suggested, a way to better incorporate
true pronunciations when multiple SVs are involved is by increasing the phone inventory size
in order to model non-SAE sounds. The following experiment was therefore set: instead of
training a single acoustic model per phoneme, two or more models were built to take account
of SV-specific phones referring to the same phoneme (like the way we would do with triphones
to take account of different phonetic contexts). For this purpose, four additional sets of HMMs
besides the initial 41 symbol set were trained, with 70, 100, 130 and 164 symbols respectively.
The HMM set with 164 symbols was obtained by training four subsets of 41 SV-specific
models using each corresponding subset of 3504 SV-specific training sentences from section
7.4. The symbols (appropriately tagged for SV) were then simply combined at the end of
training. The remaining sets (70, 100 and 130) were trained like the 164-set at the initial
stage, but their HMM states were then clustered with 3 different threshold levels (yielding
70, 100 and 130 models) before the number of Gaussian mixtures in each state was increased.
Separate pronunciation models using decision trees were also built for each set of HMMs.
Training process was similar to the method described in section 6.4.2, except that, in order
to take account of the new phones introduced, each original phonetic transcription found in
pronunciation networks created during the training of decision trees had four versions, each
referring to one of the four subsets of SV-specific phones.

Like in the previous experiments, the percentage of shared pronunciations and preference
for baseforms were measured and reported in Table 7.9 for each phone inventory size. In
contrast to the previous results, explicit modeling of non-SAFE sounds helped to substantially
decrease both values (down to 16% of shared pronunciations and 14% of baseforms for the
biggest inventory set). A closer look showed that the percentage of pronunciations shared by
all SVs dropped the most (less than 1% remaining with 130 and 164 symbols).

‘ ‘ Shared prons ‘ Baseforms ‘

41 symbols 92% 68%
70 symbols 85% 50%
100 symbols 2% 36%
130 symbols 50% 26%
164 symbols 16% 14%

Table 7.9: Percentage of selected pronunciations shared between SVs and preference for base-
forms with different sizes of phone inventory

Since phone inventory expansion was able to reduce the preference for baseforms, we
could reasonably expect that SSA would better be able to match each targeted speech variety
(instead of biasing the results towards SAE and NI). Figure 7.3 gives the average SVP prob-
abilities of each modeled SV using decision trees as pronunciation model and the 164 symbol
inventory. In contrast to the results shown in Figure 7.2, this adaptation method was better
able to hone in on speakers’ speech varieties, especially with British English speakers. As
previously mentioned, SAE and NI (e.g. Chicago) speakers have very similar pronunciation
styles and are easily confusable each other, which explains the lower probabilities obtained;
merging the two SVs would yield a probability close to the value obtained for Br. The Indian
SV is on the other hand more surprising, since its average probability is still biased towards
SAE and NI. Nevertheless, the “In” column for Indian speakers is the highest among the other
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“In” columns shown in the figure. We will come back to the issue with Indian SV at the end
of this section.
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Figure 7.3: Average SVP probabilities for each modeled SV using 164 symbols

Each set of models was then evaluated for baseline performance. At this stage, a decision
had to be made about the recognition lexicon: should it include the non-SAE symbols, and
if so, how should they be included ? Taking account of new symbols seemed a priori logical,
but its incorporation was not as easy: the more symbols were included and the more pho-
netic transcriptions per word were added to the lexicon, which increased lexical confusability.
Combination of symbols from distinct SVs to build even more pronunciation variants made of
course the situation worse. An optimal selection of phonetic transcriptions per word was not
straightforward. Moreover, it seemed more logical to keep as many components as possible
identical across the different sets of HMMs to make a fair comparison. So finally, it was de-
cided to keep the same recognition lexicon for all models and focus on the effects of increasing
the phone inventory without modifying anything else.

\ |SAE| NI [ Br | In |
Base 41 17.97 | 19.35 | 25.68 | 21.94
Base 70 17.41 | 19.23 | 26.47 | 21.95
Base 100 16.59 | 19.54 | 29.27 | 24.32
Base 130 16.57 | 18.78 | 33.52 | 26.26
Base 164 17.22 | 19.67 | 35.27 | 26.44
Base cheat | 17.22 | 18.59 | 23.39 | 24.40

Table 7.10: Baseline results (WER) with SV-inclusive (expanded) phone inventories

Table 7.10 shows the baseline WER test results for each of the included SVs (columns)
and for each of the trained HMM sets (rows). To get an idea of the expected upper bound on
performance, a “cheating experiment” was also run for each SV, recognizing the test utterances
for each SV with the 41 models trained exclusively on the 3504 training utterances for that SV.
Those results are included as the last line in Table 7.10, labeled as “Base cheat” results. Given
the choice of keeping the SAE lexicon across all HMM sets for recognition, SVs noticeably
different from SAE (that is, Br and In) show a significant performance degradation when
phone inventory is expanded, because the SAE models used for recognition were trained with
less non-SAE data. It should be noted that for the maximum inventory size (Base 164), the
SAE models were trained solely from SAE data and results are therefore similar to the “SAE-
only” results reported in Table 7.8 (remaining differences reside in the amount of training
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sentences, 3504 in this case vs. four times this amount in the previous case). Moreover, again
due to the use of SAE symbols only for recognition, the Base 164 and cheating experiments
for SAE become one and the same and therefore end up with the same result (17.22% WER).
Finally, we surprisingly notice that for the Indian SV, cross-SV collapsed models yield even
better performance (10% lower WER) than specific Indian SV models used for the cheating
experiment.

Examination of the SSA WER results in Table 7.11 leads us to note that, with the exception
of a few cases (mainly within SAE which was already well matched in the baseline), the SSA
process consistently leads to WER reductions relative to the corresponding baseline (non-SSA)
results. We also note that for all SVs except Indian, there is at least one expanded inventory
that produced better WER as that yielded by the SSA process with the original minimal
phone set (SSA 41). Compared to the Base 41 baseline, the improvement was best for the Br
SV with 9.9% relative reduction in WER (overall WER reduction over the SAE-only trained
HMMs was 36.9%). Unfortunately, the relationship between phone set size and best WER
is not consistent across SVs and therefore rather opaque. Once again, results for the In SV
are rather puzzling. Though SSA does generally yield WER reductions for In relative to the
corresponding non-SSA results, they are not nearly as dramatic as those for Br. And, rather
than following the pattern of improving SSA results with larger sets of (more precise) models
to recruit from, SSA performance decreases with model inventory size for In.

\ | SAE| NI [ Br | In |
SSA 41 | 17.77 | 18.92 | 24.73 | 21.89
SSA 70 | 17.60 | 18.78 | 24.73 | 21.91
SSA 100 | 16.27 | 19.26 | 24.53 | 22.84
SSA 130 | 17.70 | 18.64 | 23.89 | 25.83
SSA 164 | 17.70 | 19.00 | 23.13 | 26.73

Table 7.11: SSA results (WER) with SV-inclusive (expanded) phone inventories

Results observed in this section for Indian English (In) remain somewhat of an enigma.
First, it is strange that SSA did not target the Indian SV for Indian English speakers. Second,
larger gains in performance were obtained with multi-SV trained models than with models
trained exclusively on Indian English data. Some Viterbi alignment analyses showed that
even though Indian English trained models are acoustically more accurate on Indian English
training data than SAE models (higher average acoustic likelihood per phone), they are less
accurate with Indian English adaptation data. Consequently, nearly twice as many selected
pronunciations during the SSA process were in favor of SAE (39% of selected pronunciations
for SAE vs. 21% for In), hence the bias of Indian English speakers’ SVPs towards SAE.
A possible explanation of the problem could be associated with the training data: due to
a lack of availability, only a limited number of speakers was included in the Indian English
training data (16 speakers for In vs. for example 152 speakers for SAE and 69 for Br). This
was probably not enough to build speaker-independent HMMs and strong mismatch may have
occurred between acoustic models and speakers enrolled for adaptation. We guess that positive
effects could also be observed with Indian English if more data and speakers were available
for acoustic model training.
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7.6 Robustness of SSA under constraining situations

In the previous section, we experimentally verified that a more SV-inclusive phone inventory
helps to reduce the amount of shared pronunciations and selected baseforms and generally
yields additional performance improvement. In this section, we will analyze the robustness
of SSA under two constraining situations, first when the number of adaptation sentences is
limited and secondly when speakers do not belong to any of the speech varieties modeled by
the system.

7.6.1 Small adaptation data

All of the SSA results presented thus far have been based upon utilizing the full adaptation
data set for each test speaker (approx. 153 short utterances on average). Recall that in SSA the
adaptation data is used to calculate an estimate of the SVP (Speech Variety Profile) for that
speaker. The SVP characterizes the blend of the existing pronunciation models which will be
used to form speaker specific pronunciation expectations (i.e., the speaker adapted lexicon).
In these experiments, we examined the effect of reducing the available adaptation data on
SVP estimation by using only five sentences for adaptation instead of 153. Figure 7.4 gives
the average probabilities of each modeled SV using decision trees as pronunciation model and
the 164 phone inventory. We see that, on average, using only five short adaptation utterances
yields estimated SVPs which are similar to those estimated with the full (153 utterance)
adaptation sets. Tests across the different SVs and phone inventories led to similar results.
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Speaker’s dominant speech variety (5 sentences)

Figure 7.4: Average SVP probabilities for each modeled SV using 153 vs. 5 adaptation

sentences

If we are modeling the SV phone inventories well, then we would expect a strong positive
correlation between the accuracy of SVP identification and the accuracy of SSA-adapted
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ASR. Table 7.12 presents the average WERs obtained for the SVPs derived from the full set
of (153) adaptation sentences and from only five sentences. We have found that the SSA
method converges to a reasonable characterization of speakers of modeled SVs with very little
available data (with even some improvement for the In SV, probably because by chance SSA
targeted the In SV slightly better with 5 sentences than with 153 sentences, see Fig. 7.4).
Thus, it is suitable for tasks which require rapid adaptation. However, since SVP convergence
is solely based on the set of actually occurring phone transformations, results will naturally
be more reliable if larger quantities of adaptation data and/or phonetically balanced data are
available.

\ | SAE| NI | Br | In |
153 sents | 17.70 | 19.00 | 23.13 | 26.73
5 sents | 17.82 | 19.23 | 23.20 | 25.57

Table 7.12: SSA results (WER) with 153 vs. 5 adaptation sentences

7.6.2 Non-modeled speech varieties

In section 6.3.1, we claimed that one of the benefits of SSA over a classical SV classification
scheme is its flexibility to combine multiple speech varieties to model pronunciation variations
of a single speaker. One might rightfully wonder why a blending scheme would be more efficient
than a classification scheme. SSA is probably not more efficient than a simple classifier indeed
if each speaker’s pronunciation style is biased towards a single speech variety and all targeted
SVs are correctly modeled. For the sake of verifying it, let us review some of the results
of previous sections. We recall that the cheating experiments we described in sections 7.1.4
and 7.5 consisted in completely biasing each speaker’s SVP towards his/her dominant speech
variety (assuming that it is known in advance); this situation corresponds to the case of an
ideal classifier. Table 7.13 compares the SSA and classifier results, first with 41 symbols
(results found in Tables 7.2 and 7.3) and then with 164 symbols (results found in Tables 7.10
and 7.11)%. We notice that the classifier performs better than SSA, although generally not by
much (SSA even shows slightly lower WER with the Br SV). Besides, these results are with
an ideal classifier; in practice, classifiers are not without errors and hence some performance
degradation is expected. Classification and combination schemes are therefore comparable.

\ |SAE| NI | Br [ In | As |
Class. -41symb. | 17.35 | 20.53 | 34.68 | 23.66 | 28.74
SSA - 41 symb. | 17.99 | 20.86 | 34.36 | 23.85 | 29.36
Class. - 164 symb. | 17.22 | 18.59 | 23.39 | 24.40
SSA - 164 symb. | 17.70 | 19.00 | 23.13 | 26.73

Table 7.13: Comparative results (WER) for handling modeled SVs between ideal classification
and SSA’s SV blending methods

This section proposes to experimentally show the usefulness of the blending concept, but
in a situation where speech varieties of speakers are not modeled by the system. For this
purpose, the two schemes were again compared: the classification scheme that only selects
the best SV in adaptation derived SVPs, and the SSA SV blending scheme that keeps all SVs

SReminder: no results are available for the As SV with 164 symbols because there was not enough data to
train specific As acoustic models
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with their respective probabilities. To have a fair comparison, the number of pronunciation
variants used for each speaker was made to be approximately the same for both schemes.
Fourteen speakers of a diverse group of non-modeled SVs were evaluated. There were two
regional / dialectal varieties: African-American, one speaker, and two American speakers with
Southern accents. Additionally, three varieties of foreign accented English were represented:
Asian, seven speakers, German, two speakers and Spanish, two speakers. Results using the
full phone inventory set are given in Table 7.14 and are structured as follows:

Class. shows the results obtained with a classification scheme along with the selected SV in
parentheses.

Ideal shows the results obtained with an ideal classifier (or an oracle) that always selects the
SV that leads to the lowest WER, along with the corresponding SV in parentheses.

SSA shows the results obtained with the SV blending scheme.

‘ ‘ Class. ‘ Ideal ‘ SSA ‘
African-Amer. | 13.17 (NI) | 12.18 (SAE) | 12.82
Asian 1 9.78 (NI) | 9.06 (SAE) | 10.51
Asian 2 26.76  (NI) | 26.76 (NI) | 27.73
Asian 3 47.69 (Br) |30.00 (NI) |31.89
Asian 4 5142 (NI) | 5142 (NI) | 47.17 *
Asian 5 34.67 (SAE) | 34.67 (SAE) | 33.33 *
Asian 6 3214 (Br) | 3214 (Br) | 30.71 *
Asian 7 34.63 (SAE) | 34.63 (SAE) | 33.98 *
German 1 51.52  (Br) |51.52 (Br) |51.52 *
German 2 4096 (Br) | 38.55 (SAE) | 40.96

23
=

South-Amer. 1 | 35.98 35.98 (NI) | 35.15 *

South-Amer. 2 | 5.45 (SAE)| 3.96 (NI) 5.45
Spanish 1 34.15 (SAE) | 34.15 (SAE) | 29.27 *
Spanish 2 3833 (Br) | 26.67 (SAE) | 33.33
Average 32.62 30.12 30.27

Table 7.14: Comparative results (WER) for handling non-modeled SVs between SVP-based
classification, the ideal classifier, and SSA’s SV blending methods

In the last column, all WERSs equal to or lower than the matching classifier scheme counter-
parts are marked in bold, and those among them that are equal to or lower than the “ideal”
classifier WERs are further marked with a *’. We observe that SSA performs on average
better than a classification scheme method (7.2% relative improvement) and is comparable to
the “ideal” classifier. Similar behavior can be observed with lower phone inventory HMMs.
Therefore and according to the results, SSA is more appropriate to generalize its method to
unseen SVs than simple SV classifiers.

7.7 Summary

In this chapter, we experimentally studied the effects of Symbolic Speaker Adaptation (SSA)
on ASR using a database with speakers of different speech varieties. The following results
were obtained:
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Basic experiments with SSA did not lead to any substantial improvement.

Although Acoustic Speaker Adaptation (ASA) performed much better than SSA, SSA
also yielded bigger improvement when combined with ASA, suggesting that their effects
are complimentary.

Some Viterbi alignment results showed a high proportion of selected pronunciations
shared by more than one Speech Variety (SV), which rendered the task of targeting the
correct SV(s) more difficult. Especially, a high proportion of baseforms were among the
selected pronunciations even though pronunciation styles of Standard American English
(SAE) speakers and non-SAE speakers were clearly different. Consequently, addition of
new phonetic transcriptions rather added lexical confusability than modeled pronuncia-
tion variations.

More accurate acoustic models (triphones, SV-balanced models) increased the percent-
age of preference for baseforms during Viterbi alignments, suggesting that true pronunci-
ations were close to baseform transcriptions. However, the ASR system could not target
the correct transcriptions with the SAE phone inventory due to new sounds introduced
by non-SAE SVs.

Experiments with more SV-inclusive phone inventory helped to significantly decrease
the amount of shared pronunciations and baseforms. Additional improvements with
SSA could be observed, especially for the British English with 9.9% relative decrease in
WER over the multi-SV trained HMMs (36.9% overall improvement with SV-balanced
training). Lack of improvement observed for Indian English was possibly due to a lack
of appropriate training data.

SSA led to similar results with small adaptation data (5 instead of 153 sentences),
suggesting that it is suitable for tasks which require rapid adaptation.

The concept of blending multiple speech varieties was more efficient than classification
scheme with speech varieties not modeled by the ASR system. SSA seems therefore
more appropriate to generalize the method to speakers of any SV of the same language.



Chapter 8

Conclusion

8.1 Global summary

In this dissertation, we studied the effects of dynamically modeling pronunciation variation.
Two aspects were investigated. First, the dynamic approach was applied at two different levels
of modeling, lexicon and HMMs. For both levels, generation and/or selection of pronunciation
variants were based on the extraction of phonetic features from the input speech. Then,
two levels of dynamism were also considered: while the methods based on phonetic features
modified the lexicon or acoustic models on a per utterance basis, another method based on
symbolic speaker adaptation modified the lexicon on a per speaker basis. A brief description
of the different methods and results obtained are described below.

8.1.1 Dynamic lexicon using phonetic features

Chapter 4 proposed a method to generate a lexicon whose pronunciation variants were adapted
to each input speech utterance. The technique was based on phonetic features that were
extracted automatically from the input speech using a neural network. These features helped
to build through several steps a pronunciation network per utterance. These networks were
used in two ways: first, they helped to generate alternative pronunciations per word through
a two-pass Viterbi alignment in order to build a lexicon augmented with new pronunciation
entries; second, they helped to select only the pronunciation variants that were likely present
in test utterances by searching them in the corresponding networks, in order to build a specific
lexicon per utterance.

All experiments were carried out on the TIMIT database. Each phonetic feature consid-
ered separately could be reliably detected from speech and when they were combined, frames
were phonetically well identified about half of the time. Further analysis showed that even
though phone-based ANNs led to a higher accuracy than feature-based ANNs, the latter gen-
erated a smaller confusion distance between the best outputs and their alternatives, suggesting
that phonetic features are more suitable as a starting point to generate alternative transcrip-
tions. Pronunciation networks did not however lead to better phone recognition accuracy than
canonical transcriptions, but did when combined with the latter. Similarly at the word-level,
dynamic lexicons generated from networks did not improve the WER when used alone, but did
significantly improve performance once combined with canonical transcriptions. Performance
of dynamic lexicons could further be improved by a better generalization of pronunciation
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variation to unseen data and a more accurate search algorithm of variants in pronunciation
networks, especially with short transcriptions.

8.1.2 Dynamic sharings of Gaussian densities using phonetic features

Chapter 5 extended the dynamic approach to the HMM level. The state-level pronunciation
modeling (SLPM) technique introduced by Saraclar et al. [124] was used for this purpose:
when a phoneme could be realized as a distinct phone, the acoustic model of the phoneme
shared the Gaussian densities of the phone model to create a hybrid HMM. In chapter 5,
this concept was extended to the dynamic case: some phonetic features were extracted from
each input utterance during recognition and helped to decide whether a phoneme was likely
realized as an alternative phone or not. Gaussian densities were shared only when a phoneme
substitution was probable. Deletions and insertions were also modeled using decision trees.

All experiments were carried out again on the TIMIT database. The WER obtained
with the dynamic SLPM was comparable to the best result obtained with the traditional
SLPM by trying different amounts of Gaussian density sharings. However, the improvement
obtained over the baseline system was not statistically significant in any of the two cases.
Combination of decision trees and phonetic features helped to significantly decrease the PER,
but surprisingly increased the WER. An independent section was dedicated to the detection
of phonetic features in spontaneous speech. Two different feature systems (SPE and multi-
valued) were evaluated and led to similar overall results. Only small degradation per single
feature was generally observed compared to the results obtained with read speech, but which
led to a much higher frame-level degradation (from above 50% to below 40% correct rate)
once the features were combined.

8.1.3 Symbolic speaker adaptation

While the previous methods dynamically modified the lexicon or acoustic models on a per
utterance basis, chapter 6 presented a method called symbolic speaker adaptation (SSA) to
implement a pseudo-dynamic approach on a per speaker basis. The general idea was that
any speaker’s pronunciation could be represented by a combination of several pronunciation
styles (called “speech varieties”, SV) modeled by the ASR system. The objective of the
adaptation was to create a speech variety profile for each speaker with the relative importance
of each SV that best reflected his/her pronunciation characteristics. These profiles influenced
how the canonical lexicon was expanded with pronunciation variants, so that each speaker’s
pronunciation was modeled by a different lexicon.

The concept was experimented in chapter 7 with multiple dialects and foreign accents as
speech varieties. Basic experiments with SSA did not lead to any significant improvement.
However, SSA did perform better when combined with standard acoustic speaker adaptation
(ASA), suggesting that SSA and ASA are complimentary. Analysis of intermediate results
revealed that the majority of preferred pronunciations during the adaptation process were
baseforms, even though there were clearly pronunciation variations in the evaluated SVs.
Expansion of the initial phone inventory with more SV-inclusive phones helped to significantly
decrease this preference for baseforms and helped to gain additional improvement in most
cases. Furthermore, it was experimentally shown that SSA was able to hone in on a speaker’s
speech variety with small amounts of adaptation data and that the SV-blending scheme of
SSA better modeled unknown speech varieties than a standard SV-classification scheme.
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8.2 Contributions of this dissertation

Dynamic pronunciation modeling at phonetic level [100]: some contributions already
exist in this area, but consist of modifying pronunciation probabilities through N-best
list or lattice rescoring. This dissertation studied the effects of completely accepting or
rejecting pronunciation variants in the ASR lexicon.

Dynamic pronunciation modeling at acoustic level [101]: based on state-level pronun-
ciation modeling, a method was proposed to modify HMMs so that they dynamically
account for partial pronunciation changes.

Incorporation of articulatory knowledge into pronunciation modeling [100][101]: a
method was proposed to create pronunciation networks from a set of phonetic (articula-
tory) features extracted from the input speech utterance. Phonetic features served also
as cues to dynamically select the most likely phonetic transcriptions or create HMMs
during recognition.

Detection of phonetic features in read vs. spontaneous speech : several papers pub-
lished accuracy of phonetic feature detection in read speech, but applicability of their
method to spontaneous speech was not clearly reported. This dissertation applied a
same method to both read and spontaneous speech to directly measure the degrada-
tion implied. Furthermore, two phonetic feature systems (SPE and multi-valued) were
evaluated and compared to a more traditional phone-based system.

Symbolic speaker adaptation [98][99]: a new method to model pronunciation variation at
the speaker level was proposed. In particular, this technique is well-suited for modeling
multiple speech varieties (dialects and foreign accents) simultaneously.

8.3 Some directions for future work

Concerning the dynamic lexicon approach using phonetic features, some suggestions to ame-
liorate some specific parts of the system have already been listed in section 4.9. Apart from
these system-specific points, an aspect to be determined is how a dynamic approach would
perform in spontaneous speech. Since the latter includes a lot more variations than read
speech, a dynamic method could bring bigger improvement due to its better pronunciation
coverage than a standard (static) method. But first, the cues used to dynamically select the
set of pronunciation variants need to be estimated reliably, which was not the case of the
phonetic features once they were combined (cf. section 5.7). Furthermore, this dissertation
was centered on articulatory positions to predict the possible pronunciations, but additional
cues (e.g., speaking rate, prosody), could be helpful to get more reliable estimates.

The lack of WER improvement with dynamic acoustic models despite the better phone
accuracy achieved is rather puzzling. Recently, Yi and Fung [157] evaluated the state-level
pronunciation modeling (SLPM) technique on the Mandarin Broadcast News corpus and also
found that it was of little benefit. They proposed instead to align baseform and surface form
transcriptions and to create an additional partial change phone model (PCPM) each time a
phoneme was frequently mapped to a distinct phone. Then, to increase the robustness, they
created a “conventional” tree for the canonical model and an “auxiliary” tree for each related
PCPM to state-tie the different possible triphone contexts, and finally merged the leaves of
the conventional and auxiliary trees based on minimum Gaussian distance to allow canonical
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models to capture partial pronunciation changes. They obtained an additional 1.45% absolute
syllable error rate reduction compared to SLPM. It would be interesting to see if a dynamic
approach based on this method could further improve performance.

A possible extension of the symbolic speaker adaptation method would be to explore
the selection of an optimal speech variety (SV) set to model. For example, in chapter 7,
we had modeled Standard American English and Northern Inland (e.g., English spoken in
Chicago) as separate SVs; this is obviously not an appropriate choice since their acoustic and
phonetic properties are very similar. We believe that a data-driven approach to determine an
optimal set of “canonical bases” that are not necessarily bound to any particular SV could be
advantageous, for example using a concept similar to Kuhn et al. [93], but at the SV level.
It is interesting to note that Goronzy [55] (chapter 9) also recently proposed a similar idea
as future work and visualized a set of rules in an eigenpronunciation space. Furthermore,
the adaptation method presented in this dissertation worked under an offline mode, that is,
once a lexicon was created for a speaker after a separate adaptation process, its content did
not change any more later on. Ideally, adaptation should be done in an online (incremental
and unsupervised) fashion: if the system detects that a speaker’s pronunciation has changed
from a previous session, pronunciation variants in the lexicon should be updated accordingly.
However, an unsupervised mode implies a risk of using erroneous transcriptions for adaptation
that could worsen the ASR performance. Care must therefore be taken so as to insure a good
robustness in this regard.



Appendix A

Phone inventory

The following table shows the original phone set of the TIMIT database. Phones also belonging
to the Myosphere inventory have been marked in bold; they correspond to a reduced set of 39
phones. Please note that these symbols were slightly modified for the experiments in order to
be compatible with the phone-features conversion tables used. The relevant modifications are
described in appendix B.

Phone | Example Phone | Example Phone Example

aa Bob eng camping oy boy

ae bat er bird P potholder
ah but ey bait pcl stop ([p] closure)
ao bought f fat q (glottal stop)
aw down g game r rent

ax about gcl game ([g] closure) sat

ax-h | (voiceless [ax]) hh head sh shut

axr butter hv (voiced [hh]) t ten

ay buy ih bit tcl streetcar ([t] closure)
b boat ix animal (centralized [ih]) || th thing

bel bobtail ([b] closure) iy beat uh book

ch church jh judge uw boot

d dock k cot ux suit

del bloodclot ([d] closure) || kel clockwork ([k] closure) || v vat

dh that 1 let w wit

dx (flap or tap [t]) m met y you

eh bet n net z 700

el battle ng sing zh azure

em bottom nx (nasal flap) pau,epi (pause)

en button ow show sil.#h,h# | (silence)




Appendix B

Phone-features conversion tables

B.1 SPE feature system 1

The table in the next page lists the phones and corresponding SPE features given by King and
Taylor [82] (phones with same feature combinations have been merged in this version) and
used in chapter 4. The alternative ’0’ values in the table correspond to the ternary version used
in section 4.8.1; these features were considered as not relevant for the corresponding phones
(partly based on the ternary feature table given by Brondsted [17], cf. appendix B.2). Please
note that some non-relevant features according to phonological theories have not been marked
in order to limit the implied reduction in discrimination between consonants and between
vowels compared to the original binary version. The following abbreviations were used for the

phonetic features:

voc:
hgh:
low:
cor:
tns:
cnt:
str:

vocalic
high

low
coronal
tense
continuant
strident

cns:
bck:
ant:
rnd:
voi:
nas:
sil:

consonantal
back
anterior
round

voice

nasal
silence
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Phone voc cns hgh bck low ant cor rnd tns voi cnt nas str sil
aa + - + + -0 -/0 - 4+ +/0 +/0 -/0 -/0 -
ae + - - + -/0 -/0 - + +/0 +/0 -/0 -/0 -
ah_ax_axh | + - + - -/0 -/0 - - +/0 +/0 -/0 -/0 -
ao_aw + - + + -/0 -/0 + + +/0 +/0 -/0 -/0 -
axr_er_ih + - - - -/0 -/0 - - +/0 +/0 -/0 -/0 -
ay_oy - - + + -/0 -/0 - + +/0 +/0 -/0 -/0 -
b - + -0 -0 + - -/0 -/0 + - - ..
bel_pcl - + -/0 -/0  + - /0 -/0 - - - - -
ch - + +/0 -/0 - 4+ -/0 -/0 - - -+ -
d - + + -0 -/0 + 4+ -/0 -/0 + - - - -
dcl_t_tcl - + - -/0 -/0  + + -/0 -/0 - - - _
dh_el_th - + - -/0 -/0 + + -/0 -/0 + + . _
dx + + - -0 -/0 + + -/0 -/0 + - - - -
eh - - - - - -/0 -/0 - - +/0 +/0 -/0 -/0 -
em_m_n - + - -/0 -/0  + - -/0 -0 + - + - -
en - + - -0 -/0 + + -/0 -/0 + - + - -
eng.ng -+ - +/0 -0 - - -0 -0 + -  + - -
ey - - - - - -/0 -0 - + +/0 +/0 -/0 -/0 -
f - + - -/0 -/0  + - -/0 -/0 - + - + -
g - 4+ - +/0 -0 - - -/0 -0 + + - -
gcl - + - 4+/0 -/0 - - -/0 -/0 - - -
hh - + - - + - - -/0 -/0 - + -
hv +  + - + - - -/0 -0 + + - - -
ix + -+ - -0 -)0 - - +/0 +/0 -/0 -/0 -
iy - - + - - -/0 -/0 - + +/0 +/0 -/0 -/0 -
jh - 4+ 4+ -0 -0 - 4+ -0 -0 + - T
k kel -+ + +/0 -0 - - -0 -/0 - - - - -
1 - + + - -0+ 4+ -/0 -/0 + + - -
nx + + + -0 -/0 + 4+ -/0 -/0 + - + - -
ow + - - + - -0 -/0 + 4+ +/0 +/0 -/0 -/0 -
p + + -/0 -/0 4+ - -/0 -/0 - - - - -
q + - +/0 +/0 - - -/0 -/0 - - - -
r + + - - -/0 - + -/0 -/0 + + - -
s + - -0 -0+ + -/0 -/0 - + + -
sh + + -/0 -/0 - + -/0 -/0 - + - + -
uh + - + + - -/0 -/0 - - +/0 +/0 -/0 -/O0 -
uw_ux + - + + - -/0 -0 + + +/0 +/0 -/O -/0 -
v - 4+ - -0 -0 4+ - -0 -0 + + - 4+ -
W + o+ - - - - 4+ - /0 4+/0 -/0 -/0 -
y + + - - - - - - +/0 +/0 -/0 -/0 -
z + -0 -0+ + -/0 -/0 + + - + -
zh + + -/0 -/0 - + -/0 -/0 + + + -
Si] - - - - - - - - _ +
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B.2 SPE feature system 2

The table in the next page lists the phones and corresponding SPE features given by Brond-
sted [17] and used in chapter 5. The ’(+)’ and ’(-)’ values in the table correspond to the binary
version used in section 5.5.3 to train the ANN (partly based on the binary feature table given
by King and Taylor [82], cf. appendix B.1); they were considered as non-relevant features in
the original version. The following abbreviations were used for the phonetic features:

snr: sonorant

cns: consonantal

bck: back
fnt: front
cor: coronal
voi: voice
nas: nasal
sil:  silence

syl:
hgh:
low:
ant:
rnd:
cnt:
str:

syllabic
high

low
anterior
round
continuant
strident

Some modifications were brought to the original TIMIT phone inventory in compliance
with the replacements proposed by Brondsted and are listed below:

Polyphonematic replacements:

Monophonematic replacements:

Allophone-phoneme replacements:

aw — ahw
ay — ahy
ey — ehy
iy — ihy
ow — ohw
oy — aoy
uw — uhw
bclb — b
deld — d
gelg — g
kelk — k
pcp — p
tel t — ¢
ax-h — ax
dx - d
hv — hh
nx — n
q —
ux - uw
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B.3 Multi-valued feature system

The table in the next page lists the phones and corresponding multi-valued features partly
based on Kirshenbaum [87] and used in section 5.7. The following abbreviations were used for
the phonetic features:

Voicing:
ved: voiced vls: voiceless
Place:
blb: bilabial Ibd: labio-dental
dnt: dental alv: alveolar
pla: palato-alveolar pal:  palatal
vel: velar Ibv: labio-velar
glt: glottal
Manner:
stp: stop frc: fricative
nas: nasal apr: approximant
lat: lateral
Height:
hgh: high smh: semi-high
umd: upper-mid Imd: lower-mid
low: low
Front-back:
fnt: front cnt: center
bck: back
Rounding:
unr: unrounded rnd: rounded
Special:
nil: non-relevant sil: silence

The following polyphonematic replacements were also applied to the original Myosphere
phone inventory:

aw — auh
ay — aih
ey — ehiy
ow — ohuh
oy — aoliy
ch — tsh
jh — dzh
er — ahr
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Phone

Voicing Place Manner Height Fnt-bck Rnding

sil

nil nil nil low cnt unr
nil nil nil low bck unr
nil nil nil low int unr
nil nil nil Imd cnt unr
nil nil nil Imd bck rnd
ved blb stp nil nil nil
ved alv stp nil nil nil
ved dnt frc nil nil nil
nil nil nil Imd fnt unr
vls Ibd frc nil nil nil
ved vel stp nil nil nil
vls glt apr nil nil nil
nil nil nil smh fnt unr
nil nil nil hgh fuot unr
vls vel stp nil nil nil
ved alv lat nil nil nil
ved blb nas nil nil nil
ved alv nas nil nil nil
ved vel nas nil nil nil
nil nil nil umd bck rnd
vls blb stp nil nil nil
ved alv apr nil nil nil
vls alv frc nil nil nil
vls pla frc nil nil nil
vls alv stp nil nil nil
vls dnt frc nil nil nil
nil nil nil smh bck rnd
nil nil nil hgh bck rnd
ved Ibd frc nil nil nil
ved Ibv apr nil nil nil
ved pal apr nil nil nil
ved alv frc nil nil nil
ved pla frc nil nil nil

sil sil sil sil sil sil







Appendix C

HMM training procedures

The following sections detail the procedures applied to build HMM-based ASR systems used
as baselines with the TIMIT and Myosphere databases.

C.1 HMM training procedure for TIMIT

39 monophone models were trained using the TIMIT database and were used as the baseline
system for the experiments described in section 5.5. Each model had three left-to-right emit-
ting states and no skip of a state was allowed. All states were modeled with ten mixtures of
Gaussian means and diagonal covariance matrixes. They were trained with acoustic vectors
containing 39 Mel-frequency cepstral coefficients (MFCC): 12 static coefficients and 1 normal-
ized log energy, plus their corresponding delta and acceleration coefficients. These acoustic
vectors were obtained from the input speech using a Hamming window of 25ms and a 10ms
frame interval. The coding parameters used with HTK are provided below (many values are
the same as suggested in the tutorial example of the HTK book [158]):

SOURCEFORMAT = NIST

TARGETKIND = MFCC_ED_A
TARGETRATE = 100000.0
WINDOWSIZE = 250000.0
USEHAMMING = T

PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T

Besides the regular phone models, additional models for “silence” (sil) and “short pause”
(sp) were also added. The “sil” model had exactly the same topology than a regular phone
model. The “sp” model on the other hand had only one emitting state tied with the center
state of the “sil” model; the state could be skipped via an alternative short cut link. All
models were trained using the manually labeled and segmented transcriptions provided by
TIMIT.

The training procedure respected the following steps (the relevant HTK commands are
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between parentheses):

Initialization (HInit) : a first uniform segmentation of the training data initialized the
HMM parameters of the 39 phones + 1 sil (no “sp” model yet), followed by several
iterations of Viterbi alignments and parameter updates.

Isolated unit re-estimation (HRest) : the initialized parameters were re-estimated for
each HMM separately using the Baum-Welch algorithm, given the relevant speech seg-
ments extracted from the training data for the HMM.

Addition of short pause : the “sp” model was added to the set of HMMs following the
description above. Time boundary information at both word and phone levels to compare
in order to add an “sp” label after each word in phonetic transcriptions.

Embedded training (HERest), 4 iterations : parameters of all HMMs were re-estimated
simultaneously by applying the Baum-Welch algorithm over each training utterance
using the corresponding sequence of phone models.

Mixture splitting (HHEd), 1 — 10 : the number of Gaussian mixtures was progressively
increased, with 4 embedded Baum-Welch re-estimations between two consecutive splits.

Since the number of phones was reduced compared to the original TIMIT inventory, the
phone labels used for training were modified accordingly (the list of replacements can be found
in appendix B.2). Concerning the associated time intervals (required for the isolated unit re-
estimation, HRest), when two monophthongs were replaced by one diphthong, the correspond-
ing time intervals were concatenated; when a diphthong was replaced by two monophthongs,
the initial time interval was divided by two in the middle.

C.2 HMM training procedure for Myosphere

Like with TIMIT, 39 monophone models were trained using the Myosphere database and
were used as the baseline system for the experiments described in chapter 7. Each model
had three left-to-right emitting states and no skip of a state was allowed. All states were
modeled with five mixtures of Gaussian means and diagonal covariance matrixes. They were
trained with acoustic vectors containing 39 Mel-frequency cepstral coefficients (MFCC): 12
static coefficients and 1 normalized log energy, plus their corresponding delta and acceleration
coefficients. These acoustic vectors were obtained from the input speech using a Hamming
window of 25ms and a 10ms frame interval. In addition to that, a cepstral mean normal-
ization [5] was applied to the coefficients to remove channel distortion effects. The coding
parameters used with HTK are provided below (many values are the same as suggested in the
tutorial example of the HTK book [158]):

SOURCEFORMAT = NIST
TARGETKIND = MFCC_ED_A_Z

TARGETRATE = 100000.0
WINDOWSIZE = 250000.0
USEHAMMING = T

PREEMCOEF = 0.97
NUMCHANS = 20



C.2. HMM training procedure for Myosphere 147

CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = T

Besides the regular phone models, additional models for “silence” (sil) and “short pause”
(sp) were also added. The “sil” model had similar topology than a regular phone model (3
left-to-right HMMs), except that a bidirectional link between the first and the last emitting
state was added, with the objective of better absorbing impulsive noises in the training data.
The “sp” model had only one emitting state tied with the center state of the “sil” model; the
state could be skipped via an alternative short cut link.

In contrast with TIMIT, no manually labeled transcription was available in the Myosphere
database (a small subset was actually transcribed, but was too small). As an alternative,
the canonical transcriptions of reference words were used initially, but they were followed by
Viterbi alignments every 5 Baum-Welch iterations using a lexicon with multiple pronunciations
to re-estimate the labels during the training.

The training procedure respected the following steps (the relevant HTK commands are
between parentheses):

Flat start (HCompV) : a global mean and a global covariance were calculated from the
training data and were set as initial means and covariances of all models (“sp” model
not included yet).

Embedded training (HERest), 5 iterations : parameters of all HMMs were re-estimated
simultaneously by applying the Baum-Welch algorithm over each training utterance
using the canonical transcriptions of reference words (the transcriptions were taken from
the “BLex1” lexicon mentioned in section 7.1.2).

Addition of short pause : the “sp” model was added to the set of HMMs following the
description above. The lexicon was modified accordingly: each phonetic transcription
in the lexicon was expanded into two versions, one with the “sp” label (reminder: the
“sp” model could be skipped) and another with the “sil” label to account for longer
inter-word silences.

Label re-estimation (HVite) + embedded training (HERest), 5 iterations : the ini-
tial transcriptions were re-estimated using Viterbi alignment and a lexicon with multiple
pronunciations (BLex2, cf. section 7.1.2). Then, the acoustic models were re-estimated
using the new labels. These two processes were re-iterated until convergence of word
accuracy on a cross-validation data.

Mixture splitting (HHEd), 1 — 5 : the number of Gaussian mixtures was progressively
increased, with 4 embedded Baum-Welch re-estimations between two consecutive splits.






Appendix D

Splitting questions for decision trees

The following table shows the list of questions used to build the decision trees in section 5.6.2.
All questions await a “yes” or “no” answer and their associated phones correspond to the
“yes” answer. Questions were based on the example provided by HTK (version 2.2, file
“RMHTK_V2.2/lib/quests.hed”) for tree-based clustering, whereas their associated phones

were selected to fit with the phone-features conversion table shown in appendix B.2.

Question Phones

Silence 7 sil

Consonant ? b, ch, d, dh, el, em, en, eng, f, g, hh, jh, k, I, m, n, ng, p, 1, s,
sh, t, th, v, w, y, z, zh

Vowel ? aa, ae, ah, ao, ax, axr, eh, er, ih, ix, oh, uh

Stop ? b,d, g k, p, t

Nasal ? em, en, eng, m, n, ng

Fricative ? ch, dh, hh, f, jh, s, sh, th, v, z, zh

Affricate ? ch, jh

Liquid 7 e, Lr, w,y

Front 7 b, f, m, p, v, y, ae, eh, ih

Central ? d, dh, el, em, en, hh, jh, I, n, r, s, sh, t, th, z, zh, ax, axr, er, ix

Back ? ch, eng, g, k, ng, w, aa, ah, ao, oh, uh

C-Front ? b, f, m, p, v,y

C-Central 7 d, dh, el, em, en, hh, jh, I, n, r, s, sh, t, th, z, zh

C-Back 7 ch, eng, g, k, ng, w

V-Front ? ae, eh, ih

V-Central ? ax, axr, er, ix

V-Back ? aa, ah, ao, oh, uh

Fortis 7 ch, f, k, p, s, sh, t, th

Lenis ? b, d, dh, g, jh, sh, v, z, zh

UnFortLenis ? el, em, en, eng, hh, I, m, n, ng, r, w, y

Coronal ? ch, d, dh, el, en, jh, 1, n, r, s, sh, t, th, z, zh

NonCoronal ? b, em, eng, f, g, hh, k, m, ng, p, v, w, y

Anterior ? b, d, dh, el, em, en, f, I, m, n, p, s, t, th, z, v

NonAnterior ? ch, eng, g, hh, jh, k, ng, r, sh, w, y, zh

(continued next page)
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(continued)

Continuent 7 dh, el, f, hh, 1, 1, s, sh, th, v, w, y, z, zh
NonContinuent 7 | b, ch, d, em, en, eng, g, jh, k, m, n, ng, p, t
Strident ? ch, f, jh, s, sh, v, z, zh

NonStrident ? b, d, dh, el, em, en, eng, g, hh, k, I, m, n, ng, p, r, t, th, w, y
Glide ? el, hh, L r, w, y

Syllabic ? el, em, en, eng

Unvoiced-Cons ? | ch, f, hh, k, p, s, sh, t, th

Voiced-Cons ? b, d, dh, el, em, en, eng, g, jh, I, m, n, ng, r, v, w, y, z, zh
Unvoiced-All ? ch, f, hh, k, p, s, sh, t, th, sil

Long ? aa, ae, ao, er
g b ) b
Short ? ah, ax, axr, eh, ih, ix, oh, uh
High ? ih, ix, uh
g ) )
Medium ? ah, ax, eh, er, oh
Low ? aa, ae, a0, axr
b ) b
Rounded ? ao, er, oh, uh, w
Unrounded ? aa, ae, ah, ax, axr, eh, ih, ix, y
AVowel 7 aa, ae, ah, ao, ax, axr, er
b ) b ) ) b
EVowel 7 ae, eh
IVowel 7 ih, ix
OVowel 7 ao, oh
UVowel ? uh

Voiced-Stop ? b,d, g
Unvoiced-Stop 7 | k, p, t

Front-Stop 7 b, p

Central-Stop 7 d, t

Back-Stop ? g, k

Voiced-Fric 7 dh, jh, v, z, zh
Unvoiced-Fric 7 | ch, f, hh, s, sh, th
Front-Fric ? f,v

Central-Fric ? dh, hh, jh, s, sh, th, z, zh
Back-Fric ? ch

aa ? aa

ae 7 ae

z 7 Vi

zh 7 zh




Appendix E

Statistical significance test

The confidence intervals used in this dissertation for statistical significance tests were already
used previously in other works (e.g., [102], [153]). It is assumed that the probability to
recognize a unit correctly follows a binomial distribution. Supposing that n is the number
of units (e.g., words) in the test set and p is the probability of correctly recognizing an unit
(i.e., given by the accuracy estimate of the assessed ASR system), the probability of correctly
matching k& units is given by:

(Z) b (1= ) (E.1)

Under this assumption, the binomial distribution can be approximated by a Gaussian
distribution with mean np and variance np(l — p). A confidence interval with low and high
boundaries ¢in and ¢pee can then be defined so that the probability that the exact accuracy
p is inside this interval is 1 — «, where « is a value associated with the significance level:

(Cmm <p< Cma:c) =1l-« (EQ)

The boundaries of the confidence interval are determined by the following expression:

o 2np + za iza\/4np(1 _p) + Z?z

(Cma:ca Cmin) = 2(n T 2(21) (E3)

where z, = 1.96 for o = 0.05 (95% confidence). In case error rates are used instead of
accuracies, the corresponding boundaries of confidence intervals are obtained by simply taking
1—cmin and 1 — ¢caz-

In this dissertation, a change in performance due to the application of a method to an ASR
system was assumed to be statistically significant when the confidence intervals associated with
the word error rates before and after application of the method did not overlap.
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