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ABSTRACT

The information capacity of wireless communication sys-
tems may be increased dramatically by employing multi-
ple transmit and receive antennas. In this chapter, we con-
sider multiuser wireless communication system, employing
multiple transmit and receive antennas. We estimate jointly
channel and symbols user-wise by Maximum Likelihood
approach (ML) approach. Two models are considered for
the symbols of the interferers, corresponding to Gaussian
and discrete priors. In the latter case, in which the finite
alphabet gets exploited for the MAI symbols, a simplifi-
cation for the posterior MAI symbol probabilities is intro-
duced based on Mean Field Theory.

1. INTRODUCTION

Multiple Input Multiple Output (MIMO) system has gained
much interest recently [6]. Deploying multiple antennas at
both, the base station and the remote stations increase ca-
pacity of the wireless channels. The gain in capacity is be-
cause of diversity, spatial multiplexing, interference rejec-
tion and array gain. In order to fully exploit the advantages
of an antenna array, one must know the channel that will
distort the signal as well as well as interfering noise. In this
paper, we consider the problem of estimation of channel-
symbols user-wise (i.e.,considering other users as interfer-
ers). We use two approaches for the parameter estimation.
In the Gaussian prior case [4], only the Multiple Access
Interference (MAI) are modeled as stationary (white) se-
quences. We use ML formulation that gets implemented
via Expectation Maximization (EM) algorithm to alternate
between channel and the User of Interest (UoI) symbols es-
timates. Alternatively, we consider exploiting the finite al-
phabet for the MAI symbols, leading to significant MAI re-
duction capability. To simplify and to reduce the complexity
of the resulting EM algorithm, we consider the introduction
of Mean Field methods for the approximation of the poste-
rior MAI symbol probabilities. The paper is organized as
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follows: In section 2, we define the communication model.
Section 3 is devoted to the general principle of the EM al-
gorithm for Maximum Likelihood (ML) estimation. Sec-
tion 4 describes user-wise channel-symbol estimation with
Gaussian prior on MAI. In section 5, we describe user-wise
channel-symbol estimation procedure using discrete prior
on MAI symbols. Conclusions are drawn in section 6.

2. COMMUNICATION MODEL

We model a wireless communication system with K users.
Each user is equiped with N transmit antennas. The base
station has M receive antennas. We assume flat fading be-
twen each transmit-receive pair. We denote ����� � as com-
plex fading gain from the � �	� transmitter antenna to the
 �	� receive antenna, where ����� ��
�������������� is assumed
to be zero mean circularly symetric complex Gaussian ran-
dom variable with unit variance. This is equivalent to the
assumption that signals transmitted from different antennas
undergo independent Rayleigh fades. It is also assumed
that the fading gains remain constant over the entire signal
frame, but they may vary from one frame to another. The
received discrete time signal at instant t can be written as

� ��� �"!#�%$ � � (1)

Where ! � ��&'!)( * � !)( + �-,�,�, !)(. ��/ ( , is the symbol vector. � � �& � * � � + � ,�,�, �10 � / ( , is the received signal, � � �2& � * � � + � ,�,�, � 0 � / (
and !#3 � �4&'! *3 � ! +3 �-,�,�, !#53 � / ( , where !�6 3 �87:9�; �����=< , � �?>@� is
white Gaussian noise. �BA'� ( is the transpose operator. Chan-
nel matrix � is given by

���C&'� * � + ,�,�, � . / (2)

where � 3 is as follows
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3. EM FRAMEWORK FOR MAXIMUM
LIKELIHOOD ESTIMATION

First of all, we briefly describe EM algorithm. EM algo-
rithm [5] is an iterative approach to Maximum Likelihood
Estimation (MLE), originally formalized in ( Demster, Laird
and Rubin ). Each iteration is composed of two steps: an ex-
pectation (E) step and a maximization (M) step. The aim
is to maximize the loglikelihood � �������8� � ���
	�� �����
�8� ,
where � are parameters of the model and D are the data.
Suppose that this optimization problem would be simplified
by the knowledge of the additional variable � , known as
missing or hidden data. The set � � � ��� � is refered to
as the complete data set (in the same context D is refered
to as incomplete data set). Correspondingly, the loglikeli-
hood function � � ������� � � is refered to as complete data like-
lihood. � is chosen such that the function � � �����
� � � would
be easily maximized if � were known. However, since � is
not obsevable, � � is a random variable and cannot be maxi-
mized directly. Thus, the EM algorithm relies on integrat-
ing over the distribution of � , with the auxiliary function� ��� ������ �����E& � �=�����
� ��� � ���� / , which is the expected value
of the complete data likelihood, given the observed data
D and the parameter �� computed at the previous iteration.
Intuitively, computing

�
corresponds to filling the missing

data using the knowledge of the observed data and previous
parameters. The auxiliary function is deterministic and can
be maximized. An EM algorithm iterates the following two
steps, for k=1,2,...., until local or global maximum of the
likelihood is found.

Expectation: Compute

� �����
������� � � � � & � � �����
� � � � ��������� / (4)

Maximization: Update the parameters as

������! * � �#"%$ 	 ��&
')( � �����
�����*� � � (5)

In some cases, it is difficult to analytically maximize
� �����
� ����� � ,

as required by the M-step of the above algorithm, and we
are only able to compute a new value � ����!

* � that produces
an increase of Q at each iteration. In this case we have so
called generalized EM (GEM) algorithm.

4. USER-WISE CHANNEL-SYMBOLS
ESTIMATION WITH GAUSSIAN MAI PRIOR

The received signal is given by equation (1). Each user
channel is modeled as Gaussian vector which might be cor-
related in space, i.e., between antennas, but assumed inde-
pendent between users. The channel vector for user + can be
written as , 36 7 � �	���
- �/.B�
. � . In the first approach we as-
sume that the interfering symbols as Gaussian i.i.d random

variables with known variance 0
+1 . Given 2 snapshot, i.e.,9 � � < ( * , we are now ready to define the complete data set.

The complete data set is chosen as 9 � � ! 1 � � 1 < , where ! 1 is
the group of the interfering users’ information bits transmit-
ted at all time instants and � 1 is their channel matrix and� is composed of the received vector from time instant � to
time instant 2 . Without loss of generality, we will detect
user 1 first. The pdf of the complete data set is given by

3 ���E� ! 1 � � 1 � � * � ! * � �3 ���4� � � ! � 3 � ! 1 �)� � * � ! * � 3 � � 1 � � * � ! * � (6)

! * vector is composed of user 1 transmitted data at all time
instants,

3 �	�5� � � ! � , 3 � ! 1 � � * � ! * � and
3 � � 1 � � * � ! * � are

given by

3 �	�5� � � ! � �#6 */7 ��8E� ; �
0 + �	� ; �"! �:9D�	� ; �"! �B� (7)

where 6 * is constant not depending on parameters to be
estimated, �BA'� 9 is the Hermitian transpose and

3 � ! 1 � � * � ! * � � 6 + 7 ��8 � ; �; 0 +1 ! ( 1 ! 1 � (8)

where 6 + is another constant. In the above equation we
have assumed without loss of generality that the prior mean
for the interfering users’ symbols is zero and the variance
0 +1 of the symbols is known.

3 � � 1 � � * � ! * � �#6=< 7 ��8 � ; ( .> 3@? + , 93 -BA *��C?��C , 3 � (9)

Having the above equations we are now ready to evalu-
ate the E-step of the algorithm. Since we are conditioning
on the received data, we take expectations with respect to! 1 (interfering users’ symbols) and their channel, � 1 .
� � � * � ! * � � �����* ! �����* � �
� 9 ���
	 3 �	� � ! 1 � � 1 � � * � ! * � �D� � ���*�* � ! �����* �L< (10)

where � A'� �E�*� is the iteration index and � is the expectation
operator.

Evaluating the expectations and dropping the terms that
do not depend on the parameters the above equation can be
written as

� � � * � ! * � � �E�*�* � ! �����* � �#F ( 3G? * � 9 �	� 3 ; � * ! * 3 ; � 1 ! 1 3 � 9��� 3 ; � * ! * 3 ; � 1 ! 1 3 �)� �D� � �����* � ! �����* <
(11)

! 1 3 are the symbols transmitted by interfering users (with �
transmit antennas each) at time instant + , � 3 is the received
signal at instant + , ! * 3 is the transmitted data vector of user
1 at instant + , � * is the channel matrix for user 1 and � 1 is



the channel matrix for the interfering users. � �:&'� * � � 1 / .
The above equation can be further written as

� � � * � ! * � � �E�*�* � ! �����* � � F ( 3@? * � 9 �	� 3 ; � * 3 , * ; � 1 3 , 1 � 9��� 3 ; � * 3 , * ; � 1 3 , 1 � � �D� � �E�*�* ! �����* <
(12)

where � * 3 � ! * 3 ���
and , * ��� 7�� � � * � and

�
is identity

matrix. Similarly, we can define � 1 3 � ! 1 3 ���
and , 1 �� 7�� � � 1 � . We have used the property that � 7�� �
	���
 � ���
 ( � 	 � � 7�� ��� � , � is Kronecker product. Differentiating

the E-step equation with respect to , * yields

, * � (> 3@? * ��� ( * 3 � * 3 � A *
(> 3@? * ��� ( * 3 � 3 ; � ( * 3 �� 1 �! 1 � (13)

where

�! 1 3 � � 9 ! 1 3 � �D� � � ! �����* < (14)

and �� 1 is

�� 1 � � 9 � 1 � � � � �����* � ! ���*�* < (15)

Now the problem is to derive the expressions for �! 1 3 and�� 1 , i.e., the conditional mean of the interfering users bit
and the conditional mean of the interfering users channel.
In order to accomplish this, we first write the pdf for the
observed data

3 ��� � � � ! * � � 6 < 7 ��8 � ; � 9 - A *' ' �-� (16)

where 6 < is another constant and - ' ' is given by

- ')' � � * ! * ! 9 * � 9* $ � 1 ! 1 ! 91 � 91 $ 0 + � (17)

where ! * and ! 1 are the data vector composed of transmit-
ted symbols at all time instants of user 1 and the rest of the
users respectively. In deriving the above equation we used
the fact that � 9 ! 1 < � � . From now we will omit the EM
iteration index, i.e., � . The conditional pdf of ! 1 3 as a func-
tion of known pdfs is follows (using the fact that transmitted
symbols at instant + results in received vector at the same in-
stant)
3 � ! 1 3 � � � � � ! * � � 3 ��� 3 � � � !#3 � 3 � ! 1 3 ��� 3 �	� 3 � � � ! * 3 � (18)

where ! 3 is the vector of symbols of all users at instant + ,� 3 is the received vector at instant + , ! 1 3 are the interfering
users data vector transmitted at instant + and � is the chan-
nel matrix. Substituting the corresponding expressions and
rearranging gives
3 � ! 1 3 � � � � � ! * � � .���.��.��
7 ��8E� ; *� � ��� 3 ; �"!#3 � 9 ��� 3 ; � !�3 � ; *+ � � � !=( 1 3 ! 1 3-$ � 9 - A *')' � �

(19)

Since the conditional pdf of �! 1 will be Gaussian, it is easy
to show that

�! 1 3 � -����0 + � � 91 � 3 ; � 91 � * ! * 3 � (20)

where

-BA *��� � �
0 + � 91 � 1 $

�
; 0 +1 � (21)

where
�

is identity matrix. Similarly the expression for �� 1
is as follows

�, 1 ��� 7�� � �� 1 � � - ��� (> 3@? *
�
0 + ��� (1 3 � 3 ; � (1 3 � * ! * 3 � (22)

where - A
*��� is given by

-BA *��� � �0 +
(> 3G? * � (1 3 � 1 3 $ -BA *� � � � (23)

and � 1 3�� ! 1 3 ��� .
The algorithm detects user-wise channel- symbols. First,

user 1 channel-symbols are estimated from the above proce-
dure. Then the contribution of that user is subtracted from
the received signal to get more clean signal. Then user sec-
ond is detected. The same procedure is repeated for the
other users. After convergence of the EM algorithm, so-
lution of ! * 3 from equation (12) is projected on finite al-
phabet to get symbols estimate. The same process is done
for the other users too. The overall algorithm works as
follows: first we initialize � * and ! * , 2) We evaluate �! 1 3
from equation (20) and �, 1 from equation (22). These val-
ues are plugged in equation (12) and equation (13) to get
the channel-symbol update. These steps are repeated until
convergence.

5. USER-WISE SYMBOL ESTIMATION USING
DISCRETE MAI PRIOR

The steps for deriving the algorithm are essentially the same
except that the conditional mean of ! 1 3 will be different than
previously discussed, i.e., Gaussian random variable for the
priors, which will result in different channel-symbols esti-
mates. The conditional mean for ! 1 3 is given by

�! 1 3 �#� 9 ! 1 3 � � � � � ! �����* < � > � � C ! 1 3 3 � ! 1 3 � �D� � � ! �����* � (24)

From now for the sake of simplicity we will omit the EM
iteration index, i.e., k. In order to calculate the conditional
mean we have to evaluate the above expression, which is
summation of all interfering users’ symbols at instant + mul-
tiplied by their corresponding pdfs, which is computation-
ally very expensive. Mean Field (MF) methods [1,7], pro-
vide tractable approximations for the computation of high



dimensional sums and integrals in the probabalistic mod-
els. By neglecting certain dependencies between the ran-
dom variables, a closed set of equations for the expected val-
ues of these variables are derived which often can be solved
in a time that grows polynomially in the number of variables
[1, chapter.2]. The MF approximation is obtained by taking
the approximating family of probability distribution by all
product distribution, i.e.,

� � ! 1 3 � ��� 6 � 6 � !�6 1 3 � . We now
choose a distribution which is close to the true distribution,
i.e.,
3 � ! 1 3 � �D� � � ! * � . The parameter of the distribution is

chosen so as to minimize Kullback-Leibler (KL) distance,
i.e.,

6 � � ��� 3 � ! 1 3 � �D� � � ! * � � > � � C � � ! 1 3 � �	�
� � ! 1 3 �3 � ! 1 3 � �D� � � ! * �

(25)

where
� � ! 1 3 � ��� � . A * � 56 ? * � 6 � ! 6 1 3 � and ! 6 1 3 7 9�; �����=< .

3 � ! 1 3 � � � � � ! * � � 3 ��� 3 � � � ! 3 �
F � � C 3 �	� 3 � � � ! 3 � � 7 ��8E� ; � � ! 3 �B��

(26)

where Z is independent of ! 1 3 , 3 �	� 3 � � � !�3 � has Gaussian
distribution and ! 3 is the vector of symbols of all users at
instant + . After some simplification � � ! 3 � can be written as

� � !#3 � � �
0 + � ; � 93 �"!#3 ; ! ( 3 � 9 � 3-$ ! ( 3 � 9 �"!#3 � (27)

The above equation has the form

� � ! 3 � � > 6 � � !�6 1 3�� 6
� ! �1 3 ; ; > 6 !�6 1 3

� 6 $ 
 (28)

where 
 is a term independent of ! 1 3 , � 6 � � *� � � � 9 � � 6 � �
and � 6 � $ 7 " � � *� � � � 9 � 3 � 6 � , � A'� 6 is the �

���
element of the

vector � 9 � 3 . The KL distance between
�

and
3 � ! 1 3 � �D� � � ! * �

can be written as

6 � � �	� 3 � ! 1 3 � �D� � � ! * � � �	� � $�
 & � /�;
� & � / (29)

where

� & � / � ; > � � C � � ! 1 3 � �	� � � ! 1 3 � (30)

is the entropy and


8& � / � > � � C � � ! 1 3 � � � !#3 � (31)

is the variational energy. The most general form of proba-
bility distribution for our problem is

� 6 � !�6 1 3 �@
 6 � � � $ !�6 1 3 
 6; (32)

where 
 6 is the variational parameter which corresponds to
the mean, i.e., 
 6 � � 9 !�6 1 3 < . The entropy can be written as

� & � / � ; > 6
� $ 
 6; �	� � $ 
 6; $ � ; 
 6; �	� � ; 
 6;

(33)

and similarly variational energy can be written as


 & � / � > 6 � � � 6
� 
 6 
 � ; ; > 6


 6 � 6 (34)

In order to evaluate 
 6 we have to minimize the variational
free energy, i.e.,

� & � / ��
D& � /�;�� & � / (35)

Differentiating this equation with respect to 
��6�� gives non-
linear fixed point equations, i.e.,
 6 � > " � , � ; > � � 6 � 
 � $�� 6 � � � � �#� ; ,�,�, � 6 ; ���B�

(36)

In the matrix form we can write the above equation as

� ��������� � ; � � $�� � (37)

where � 6 � ; � 6 . The huge computational task (complexity
grows exponentially with the number of interfering users
times the transmitted symbols per user) of exact averages
over
3 � ! 1 3 � � � � � ! * � has been replaced by solving the above

set of � 6 ; ��� � nonlinear equations, which often can be
done in time that grows only polynomially with number of
interfering users times their transmitted bits. As the above
equation is nonlinear there may be local minima or saddle
points. In order to avoid it, the solution must be compared
by their value of variational free energy

� & � / .
6. CONCLUSIONS

In this paper, we derived two receivers for user-wise joint
channel-symbols estimate. In the first approach, the Gaus-
sian prior on the interfering users’ symbols is assumed and
EM algorithm is used for user-wise channel- symbols esti-
mation. In the second proposed receiver a discrete prior is
assumed on the interfering users’ bits. In the later case, the
complexity of computing the posteriori probabilities grows
exponentially in the number of interfering users times the
symbols per user. We derived low complexity method to
circumvent this problem. The exact posteriori probabili-
ties are replaced by the approximate separable distributions.
The distributions are calculated by MFT (variational ap-
proach). Simulation results, using estimated channel, shows
very close performance in terms of BER to the exact ML
(i.e., when the channel is exactly known) approach.
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