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ABSTRACT

We consider a space time coding system. We propose to de-
tect symbols of the each user and estimate the channel iter-
atively. The channel gets estimated blindly via Expectation
Maximization (EM) algorithm by formulating the problem
as Gaussian mixture model (GMM). The estimated chan-
nel is then used to detect the symbols for each user, which
is also done in an iterative fashion, i.e., user-wise detec-
tion. We consider using finite alphabet for MAI, to simplify
and to reduce the complexity of the resulting EM algorithm,
we consider the introduction of Mean field methods for the
approximation of the posterior MAI symbol probabilities.
Simulations shows very useful behaviour of the proposed
receiver.

1. INTRODUCTION

Deploying multiple antennas at both the base station and
the mobile stations increase the capacity of wireless chan-
nels. The recently developed space-time coding (STC) tech-
niques [3] integrate the methods of transmitter diversity and
channel coding, and provide significant capacity gains over
the traditional communication sytems in fading wireless chan-
nels.
Recently, iterative processing has attracted vast attention
due to its successful applications in many areas of coding
and signal processing.
In this paper we iteratively detect symbols of the each user
and estimate the channel. The channel gets estimated blindly
via Expectation Maximization (EM) algorithm by formulat-
ing the problem as Gaussian mixture model. The estimated
channel is than used to detect the symbols for each user,
which is also done in iterative fashion, i.e., user-wise detec-
tion. We consider exploiting the finite alphabet for the MAI
symbols, leading to significant MAI reduction capability.
To simplify and to reduce the complexity of the resulting
EM algorithm, we consider the introduction of Mean field
methods for the approximation of the posterior MAI symbol
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probabilities. The paper is organized as follows: In section
2, we define the signal model. Section 3 describes Gaussian
mixture model based estimation of the channel and the ef-
fect of dimensionality reduction on Gaussian mixture prob-
lem. In section 4, we describe the detection procedure for
our problem. In section 5 conclusions are drawn.

2. SIGNAL MODEL

We consider the Space-time block coding (STBC) system
with

�
users. Each user is equiped with � transmit an-

tennas. The base station has � receiving antennas. The�����
user’s STBC is defined by a �
	��
�
� code matrix ��� ,

where 	 denotes the number of time slots for transmitting
an STBC codeword or the temporal transmitter diversity or-
der. A STBC encoder takes as input the code vector � � ,
and transmits each row of symbols in � � at 	 consecutive
time slots. At each time slot, the symbols contained in an
N-dimensional row vector of � � are transmitted through �
transmitter antennas simultaneously. For two antennas sys-
tem the code matrix is given by

����� ������� ���
���� � ���!���"� �#�����%$ (1)

where ��&'�(� denotes the transpose and ���!)
�+*-,.��/ � �10 . We
consider flat fading channel between each transmitter-receiver
pair. The coefficient 243!5 6 is the path gain from transmit an-
tenna ) to the receive antenna 7 at time

�
. The path gains283!5 6 are modeled as samples of independent complex Gaus-

sian random variables with mean zero and variance � . This
is equivalent to the assumption that signals transmitted from
different antennas undergo independent Rayleigh fades. It
is also assumed that the fading gain remains constant over
the entire signal frame and vary from one frame to another
(quasi-static fading).
The model for our problem is given by [2]
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In the above equation, �-, �.� �/, �(� � / �	, �
��� ��� � �	, �!	�� # � ,0 � ��/�� ��� � � , consist of the received signal from time
slots � to 	 , at the 0 ���

receiver antenna.
� � denotes the

channel response of the user
�

. �.� �1� ��� �(� �(��� �
��� ��� � ��� �
�
� # �
is the code vector of the

�.���
user, with � � �!)
� * , ��/ � �10 ;

and )�, �2� )�, ����� )�, �!��� � � � )�, �
	�� # % is the additive noise
vector at the 0 ���

receiver antenna. ��&'��� denotes transpose
operator.
For single user, the Alamouti scheme, (two transmit anten-
nas), STBC is given by� �/, �(����/, �
��� $ � � ���(� � ���
���� � ���!��� � �������%$ � 2 , 5 �2 , 5 � $ ( � )�, �(� �)�, �
��� $

It can be further written as

� �	, �(����/, �!��� % $� � � ��43
� � 2 , 5 � 2 , 5 �2 %, 5 � � 2 %, 5 � $� � � �% 35

� ���(� ����
���%$� � � �6 5
(

� )�, �����)�, �
��� % $� ��� �7 3 (3)

where �(&'� % is the Hermitian transpose. From the above
equation we can see the analogy between multiuser STBC
signal model and synchronous CDMA signal model [5,6].
By stacking all �/, , we get the following equation for two
transmit antenna system.�����

�+��-�
...� �


����
� � � ��8� � �9� �
� �����

� ��� ��
...� ��


����
� � � �% 5 � � �9� �
� ���(� ����
��� $� � � �6 5 � � � �

( �����
)*�)+�
...) �


����
� � � �7'� � �9� �
(4)

3. GAUSSIAN MIXTURE MODEL BASED
CHANNEL ESTIMATION

The Gaussian mixture model was considered for the syn-
chronous CDMA system in [5,6]. Due to analogy between
synchronous CDMA and Space time multiuser system, we
can use the method used for the synchronous CDMA to the
problem at hand. In ML estimation problem we have den-
sity function 	 � �;: < � that is governed by the set of parame-
ters < (e.g. 	 might be set of Gaussians and < could be the

means and covariances). The data is of size = , supposedly
drawn from this distribution, i.e., > �?� � � /�& & & & & & �A@ # . That
is, we assume that these data vectors are independent iden-
tically distributed (i.i.d) with distribution 	 . Therefore the
resulting density for the samples isB �C> : < � � @D6 � � 	 � � 6 : < � �FE � <	: > � &

This function
E � <	: >
� is called the likelihood of the pa-

rameters given the data, or just the likelihood function. In
the ML problem, our goal is to find < that maximizes

E
.

That is, we wish to find < � where< � �FGIHKJMLNG�OP E � <	: >
� & (5)

Assuming that the channel output, i.e., � can be approxi-
mated by Gaussian distributions, i.e., 	 � �;: < � can be mod-
eled as MP-dimensional mixture of Gaussians. We can write

	 � �;: < � �RQS6 � � 2�6#	 � �;: 0 6 /�T 6#� / (6)

where U � � & !
and 	 � ��: 0 6 /�T 6 � ���!�WV ��X ���ZY ��[ : T 6 : � Y �]\ O_^
� � �� � � � 0 6 � % T$` �6 � � � 0 6 � $ / (7)

2�6badc , and e Q6 � � 2�6 � � . The parameter vector < consists
of mixing proportions 2 6 , the means vectors 0 6 , and the
covariance matrices T 6 . Given W and given T independent,
i.i.d samples , �-f 0 @ � , we obtain the following likelihoodg � < � � @S f � ��hji JkQS6 � � 2 6 	 � � f : 0 6 /�T 6 � (8)

which is difficult to optimize because it contains logarithm
of a sum. If we consider X as incomplete, since we do not
know which index j, within the mixture probability density
function resulted for a specific output. The complete ”data
set” in this case is,

� � � / &�& &�/ � @ /�) � /�& &�& /�) @ # , where ) 7 de-
notes the component of the pdf from which � 7 is drawn.
Using complete data set we can optimize our problem using
EM algorithm.

The update for means is given by the following equa-
tion. 0 X �8l �K[6 � e @ f � � � X � [6 � � � �/fe @ f � � � X � [6 � � � / (9)

where the posteriori probabilities
� X � [6 � � � is defined as fol-

lows: � X � [6 � � � � 2 X � [6 	nm �	fo: 0 X � [6 /pT X � [62qe Q3 � � 2 X � [3 	 m �	f�: 0 X � [6 /�T X � [6 q & (10)



The mixing proportions ( 2 6 ) and Covariance matrices in our
case are of constant values and are given by � ` ! & and � ���
respectively.

The EM algorithm for GMM works as follows, first pos-
teriori probabilities are calculated using initial estimates of
means. The posteriori probabilities tells us the likelihood
that a point belongs to each of the separate component den-
sities. These posteriori estimates are used to find the update
means of the mixture. These two steps are repeated until
convergence. The convergence of the EM algorithm to a so-
lution and the number of iterations depends on the tolerance,
the initial parameters, the data set, etc. After convergence
of the algorithm the estimate of

�
is given by

�� � QS6 � � 0 6�� �6 �� QS6 � � � 6�� �6


 ` � & (11)

where ,�� 6�0 Q � , is the set of all possible transmitted symbol
sequences.

3.1. Effect of dimensionality reduction on the Gaussian
mixture problem

In the following lines we will consider the effect of random
projections (to reduce the dimensionality of the problem) on
the Gaussian mixture problem.

Consider � identically distributed independent (i.i.d) ran-
dom variables which are components of the mean vector � .
The goal is to calculate the probability distribution of the
sum of the squares of the difference of the two mean vec-
tors > and 	 , each of which is a vector with � components
which are i.i.d random variables, i.e., > � � > � / > � / ��� � > 6 �
and 	 � �
	 � /�	 � / ��� � 	 6 � . Let � be the components of the
difference of the means, i.e., � � 	 � > � �
� � /�� � / � ��� � 6 � .
The probability density function of � is follows

� �
� � ������ 	 �
� ( >
��� �C>
�(�4> (12)

The joint probability density function, � �
� � /�� � / � ��� � 6 � is

� �
� � /�� � / � ��� � 6 � ��� �
� � � � �
� � � � � � � ��� 6 � (13)

Considering Gaussian probability density function for each
component, the joint probability density function for means
is:

� �
� � /�� � / � � � � 6 � � ��
�4V ��� � ������ �4B � �
6S 3 � � � �3� � � � (14)

where we have assumed that the Gaussian is zero mean with
variance � � . This density function is spherically symmetric

hence it cal be written in the form of

� � � ��� � ! ��"#�(�4> 6 � � �# ! �
"#�%$ 6 " 6 ` � �&" (15)

where $ 6 denotes the surface area of d-dimsional sphere.
Let ' 3 �)(+*, ��- . The criterion for the separation of two Gaus-
sian is that the distance between two means is greater than
twice the standard deviation. We are interested to find the
probability that

� 6S 3 � � � �3 � 5�/. ��� (16)

i.e.,

� 6S 3 � � ' �3 � 5� .10 ���� (17)

The solution to this problem takes the form of the stan-
dard distribution of the sum of the squares of � normally
distributed random variables, 	 �
2 �W: �.� . 2 � distribution is
one of the classic distribution of statistics. We can calculate
the probability that

� 6S 3 � � ' �3 � 5� .43 2 � (18)

as

$ �
� � � 	 �
2 � : �.� � � 0 5 �# � ��4V � � � �76&8 �� $ 6 " 6 ` � �9" (19)

which can be written as

$ �
� � � �� � ��: � 6� � � 5
�
# � � 6 �� �;6�<� � � (20)

where : �(&'� is Gamma function. After bit of algebra, (not
shown due to lack of space), the minimum dimension for
which the probability that the separation between two means
is less than ��� given a small number = , is given by

	 � ��� �� � : > , 3 7 � � �
�;?�� �A@ Y �� @ Y � : � > ?�� ( ��� (21)

Fig (3) shows that when the data is projected into a space
of smaller dimension, > . � , the probability of overlap be-
tween the means increases rapidly as > decreases and the
EM algorithm fails to converge to true means when there is
a substantial amount of overlap between Gaussians, leading
to wrong channel estimates.



4. USER-WISE SYMBOL ESTIMATION USING
DISCRETE MAI PRIOR

The discrete time received signal is given by equation (2),
i.e., � � � � ( ) . This equation can be further written as� �1� � � � � � �� # � . Where �(&'�(� denotes the transpose operator,� � , is the information bits of user 1 and � � are the informa-
tion bits of the rest of the users. Without loss of generality,
we detect symbols for user 1 first and user

�
in the last, i.e.,

in the ascending order of the users.
Given the above model we are now ready to define com-

plete data set. We choose complete data set as � � , � / � � 0 .
The derivation of the algorithm is as follows: The pdf of the
complete data set can be written as

! � � /�� ��� � / � � � � ! � ��: � /�� � ! �!� ��� � /�� � � (22)

where
! � ��: � / �.� and

! �
� ��� � / � � � is given by

! � ��: � /�� � �-� � � �WB � � �� � � � � � �.� % � � � � � �(� (23)

where
� � is constant not depending on parameters to be

estimated. Having the above equations we are now ready
to evaluate the E-step of the algorithm. Since we are con-
ditioning on the received data, we take expectations with
respect to � � (interfering users’ symbols).

� �
� � � � X � [� � ��� , g
	�� ! � � / � � � � /�� � : � � � X � [� � 0 (24)

where �(&'� � is the iteration index. In the above equation, we
will use the estimated value of the channel which is esti-
mated by GMM approach and has fixed value. Evaluating
the expectations and dropping the terms that do not depend
on the parameters the above equation can be written as

� �!� � � � X � [� � �� , � � � � � � � � � � � � � % � � � � � � � � � � � � � : � � � X � [� 0
(25)

where
� �.��� � : � � # . The above equation can be further

written as

� �!� � � � X � [� � �� , � � ��
 � � � ��
 � � � � % � � ��
 � � � ��
 � � � � : � � � X � [� 0
(26)

where 
 � � � ��� � and
� � ���

� � � � � � and � is identity
matrix. Similarly, we can define 
 � � � � � � and

� � �
�
� � � � � � . We have used the property that

�
� � ������� � ��
� @ � � � � � � ����� . The symbols, � � , can be detected by

maximizing the above expectation equation over finite al-
phabet. From the above equation it is clear that�� � ��� , � � : � � � /�� X � [� 0 & (27)

As the expectation equation depends on the conditionalmean
of � � , therefore now the problem is to find expressions for
conditional mean of � � .

The conditional mean for � � is given by

�� � ��� , � � : � � � / � X � [� 0 � S 6
8
� � ! �!� � : � � � / � X � [� � (28)

From now for the sake of simplicity we will omit the EM
iteration index, i.e., k. In order to calculate the conditional
mean we have to evaluate the above expression, which is
summation of all interfering users’ symbols multiplied by
their corresponding pdfs, which is computationally very ex-
pensive. Mean field (MF) methods [1], provide tractable ap-
proximations for the computation of high dimensional sums
and integrals in the probabalistic models. By neglecting cer-
tain dependencies between the random variables, a closed
set of equations for the expected values of these variables
are derived which often can be solved in a time that grows
polynomially in the number of variables [1, chapter.2]. The
MF approximation is obtained by taking the approximating
family of probability distributionby all product distribution,
i.e.,

� �
� � � ��� 6 � 6.�!� � 6#� . We now choose a distribution
which is close to the true distribution, i.e.,

! �!� � : � � � / � � � .
The parameter of the distribution is chosen so as to mini-
mize Kullback-Leibler (KL) distance, i.e.,� E � �! ! �
� � : � � � / � � � � S 6

8
� �!� � � g ) � �
� � �! �
� � : � � � /�� � �

(29)

where
� �!� � � �"� X ! ` �K[ &6 � � � 6 �!� � 6 � and � � 6 * , � ��/ �#0 .

! �
� � : � � � / � � � � ! � ��: � /�� �e 6
8
! � ��: � / �.� � � �4B � � � �!� �(�� (30)

where Z is independent of � � and
! � �;: � / � � has Gaussian

distribution. After some simplification
� �
� � can be written

as � �
� � � �� � � � � % � � � � % � % � ( � % � % � � � (31)

The above equation has the form� �
� � � S 3!5 6 � � 3���3'6#� � 6 � � S 3 � � 3 < 3 ( � (32)

where � is a term independent of � � , � 3'6 � �# � � � % � � 3'6
and < 3 � " � $ g � �# � � � % � � 3 � , is the ) f�% element of the vector� % � . The KL distance between

�
and
! �
� � : � � � /�� � � can

be written as� E � �! �! �!� � : � � � /�� � � � g ) � ("& � � # � $ � � # (33)



where

$ � � # � � S 6
8
� �
� � � g ) � �
� � � (34)

is the entropy and

& � � # � S 6
8
� �
� � � � �
� � (35)

is the variational energy. The most general form of proba-
bility distribution for our problem is

� 6 �
� � 6 � 0 6 � � � ( � � 6 0 6� (36)

where 0 6 is the variational parameter which corresponds to
the mean, i.e., 0 6 � � , � � 6 0 . The entropy can be written
as

$ � � # � � S 3 � ( 0 3� g ) � ( 0 3� ( � � 0 3� g ) � � 0 3�
(37)

and similarly variational energy can be written as

& � � # � S 3!5 6 ��3'6 0 3 0 6 � � S 3 0 3 < 3 (38)

In order to evaluate 0 3 we have to minimize the variational
free energy, i.e.,

� � � # � & � � # � $ � � # (39)

Differentiating this equation with respect to 0��3�� gives non-
linear fixed point equations, i.e.0 3 � � $') � � � S 6 ��3 6 0 6 (�� 3 � / ) � ��/ � ��� � � � � �����

(40)

In the matrix form we can write the above equation as

� �
	���
�� � ��� � (�� � (41)

where
� 3 � � < 3 .

4.1. Linear response theory

In approximating the posteriori probability
! �!� � : � � � / � � � ,

the correlations were neglected, when
� �!� � � is chosen to

factorize, i.e.,

��� ����� f , � � 3 � � 3 0�� ��� , � � 3 � � 3 0 ����� , � � 3 0 ��� ,#� � 3 0 /
(42)

where
��� , & 0 stands for expectation with respect to distri-

bution
�

. A correction to the estimate is found by differen-
tiating the following equation

� , � � 3(0 � � ` � S 6 � � 3 � % X 6 [ (43)

with respect to
� 3 to obtain linear response relation [4], i.e.,

� � , � � 3 0� � 6 ��� , � � 3 � � 6�0 � � , � � 3 0 � ,#� � 6�0.& (44)

The above relation is exact when expectation is taken ac-
cording to exact probability distribution. However, if

� ,#� � 3(0
is reasonably well approximated with the mean field method,
we can get the right hand side of the above equation by dif-
ferentiating the left side of the equation with respect to

� 6 .
In this way, we can improve the covariance and hence the
second moment of the interfering users’ bits which will re-
sult in improved symbol detection of the UoI as compared
to Naive Mean Field Theory (NMFT). NMFT does not take
into account correlations between random variables. This
improvement is gained at the expense of very little addi-
tional complexity.

The huge computational task (exponential complexity)
of exact averages over

! �
� � : � � � / � � � has been replaced by
solving the above set of � � � ����� nonlinear equations,
which often can be done in time that grows only polynomi-
ally. As the above equation is nonlinear there may be local
minima or saddle points. In order to avoid it, the solution
must be compared by their value of variational free energy��� � #

.
The overall algorithm works as follows: First, user 1

symbols are detected from the above procedure. Then the
contribution of that user is subtracted from the received sig-
nal to get more clean signal. Then the same procedure is
repeated for the other users. We can also vary the detec-
tion procedure by detecting user-wise bit by bit, resulting
in minimizing the complexity of the algorithm because the
expectation equation will be maximized for only one sym-
bol (not the whole block of the user). For the later case,
the algorithm will work as follows: First of all, bit number
one will be detected by maximizing the Expectation equa-
tion with respect to that bit. Secondly, the contribution of
this detected bit will be subtracted from the received sig-
nal. Then we estimate the second information symbol. We
continue in this fashion until the last symbol of the user to
be detected is estimated. By doing so the bit detection will
improve because at each step the Intersymbol Interference
(ISI) caused by the detected bit is subtracted from the re-
ceived signal. The improvement will result provided that
the bits are correctly detected and this also will improve de-
tection for the rest of the symbols because at each step more
clean signal will be processed.



5. CONCLUSIONS AND SIMULATIONS

In this paper, we proposed channel estimation and symbol
detection for the Space-time block coded multiuser system.
The channel is estimated blindly by formulating the STBC
systems as Gaussian mixture model. In this proposed re-
ceiver a discrete prior is assumed on the interfering users’
bits. In this case, the complexity of computing the posteriori
probabilities grows exponentially in the number of interfer-
ing users times the symbols per user. We derived low com-
plexity method to circumvent this problem. The exact pos-
teriori probabilities are replaced by the approximate separa-
ble distributions. The distributions are calculated by MFT
(variational approach). In simulations we consider the four
user case. We consider two transmit and two receive anten-
nas case. Fig (1) shows the mean square error (MSE) of the
channel estimation error. Fig (2) gives the performance in
terms of BER for the proposed receiver. Very close perfor-
mance to the exact ML is obtained using Linear response
theory (LRT).
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