
1

THE SERVER ARRAY:
A SCALABLE VIDEO SERVER

ARCHITECTURE

Christoph Bernhardt, Ernst Biersack

Institut Eurécom, 2229 Route des Crêtes,
06904 Sophia-Antipolis — France

ABSTRACT

The server array is a novel video server architecture based on partitioning each video
over multiple server nodes, thereby achieving perfect load balancing for any demand
distribution. We discuss the main design issues, compute the buffer requirements at
the client, and compare the reliability of different video server architectures.

1. INTRODUCTION

Multimedia applications such as Video On-Demand, Tele-Shopping, or Dis-
tance Learning require a storage facility for audio and video data, called
video server. All these applications are very demanding in terms of storage
capacity, storage bandwidth, and transmission bandwidth. A video server
must also meet the requirements that stem from the continuous nature of
audio and video. It must guarantee the delivery of continuous media data in a
timely fashion.

Since a wide range of applications requires different size video servers, a
video server architecture should be scalable. For good scalability we propose
a new architecture, where individual server nodes are grouped into aserver
array. A single video is distributed over multiple server nodes, whereas each
server node only stores a part of the original video data. To retrieve a video,

Chapter 5 in “High-Speed Networking for Multimedia
Applications,” O. Spaniol, W. Effelsberg,A. Danthine,
D. Ferrari,eds., Kluwer, Publ., March 1996

2

all server nodes storing parts of the original video must send their data in a
coordinated fashion to the client.

The rest of this paper is organized as follows: the next section describes the
scenario in which a video server will be used. Scalability is discussed in sec-
tion 3. The following section addresses reliability issues of our architecture.
In section 4 we talk about the design criteria for our video server prototype
and section 5 discusses different striping block sizes and their impact on buff-
ering requirements. In section 6, we investigate reliability issues. The follow-
ing section describes related work and in section 8, we conclude.

2. SCENARIO

A networked video application employing stored video information, such as
Video On-Demand, resembles a client-server application [1]. A video server
stores video data that can be requested by clients connected to it via a data
network. To preserve the continuous property of the stored video material, the
data path from server to client must guarantee a certain Quality of Service
(QoS):

• The server has to guarantee the necessary storage bandwidth as
well as the timely delivery of the video data to the network.

• The network also must provide the required bandwidth. Further-
more, it has to limit the transmission delay variance (jitter) and the
delay of the transmitted data.

• The client must guarantee the bandwidth from the network adapter
to the display hardware. Its operating system should be able to
meet the realtime requirements for the video data on their way
from the network adapter to the display.

These requirements are not always met in today’s computing environments.
Bottlenecks in the hardware architecture (e.g. data movement) and in the
operating systems of PCs and workstations (e.g. monotask or non-realtime
OS) make their use as clients difficult. Modern networks start to evolve that
offer the necessary bandwidth as well as the required resource reservation
schemes, but there are still many questions left as to how they can be used to
efficiently carry video traffic that is essentially variable bit rate. Conventional
network file servers are not suited for storing and retrieving video data for
real time play back.

3

Some applications require a video server to store several up to thousands of
different video streams. Further, it must be able to service a large number of
concurrent requests for the stored streams. Thus, such a large scale video
server requires a huge amount of storage that is optimized for the concurrent
retrieval of large continuous data files, i.e. video information [2].

To be able to guarantee the timely retrieval of concurrent streams, the server
utilizes admission control and scheduling algorithms that are not found in tra-
ditional file servers.

The following sections focus on the architecture, design, and implementation
of such a video server. We only consider hard disks as storage medium. A
complete design could also incorporate solid state memory as cache for “hot
data” and magnetic tape or optical disks as tertiary storage. However, it is
expected that hard disks will still have the lion’s share in the storage and
retrieval of continuous data.

3. VIDEO SERVER ARCHITECTURE AND SCALA-
BILITY

A video server architecture must be scalable with respect to the number of
videos that can be serviced concurrently and with respect to the amount of
material stored. An increasing demand for bandwidth cannot be met by add-
ing more disks. New disks provide more raw disk bandwidth, but there are
design limits that impose an upper limit on the maximum, concurrently usa-
ble disk bandwidth. One of these limiting factors is the system bus of the
server node; another could be the CPU.

To further increase the amount of concurrent video retrievals new server
nodes have to be added. Traditionally, in a video server consisting of multiple
nodes all these nodes are autonomous and independent. This architecture is
referred to asautonomous server. In an autonomous server, the load will be
unequally distributed over all the individual nodes. Server nodes storing very
popular videos can becomehot spots.

We propose a new architecture where the server nodes are configured into a
server array. Such an array works similar to a disk array. As opposed to the
autonomous video server, a server node is not storing entire videos. Instead, a
single video is partitioned and its different partitions are distributed over sev-
eral server nodes of the server array. Each server node only stores asub-
stream of the original video. The clients are responsible for splitting a video

4

into substreams for storage and to re-combine the substreams during the
retrieval of a video. Analogous to disk array terminology we refer to the dis-
tribution process asstriping.

The next section compares how both server types, the autonomous and our
server array, perform when a new server node is added to account for an
increased demand for bandwidth.

3.1 Growing Demand for Storage Bandwidth

To overcome the limited bandwidth in a traditional video server configura-
tion, additional autonomous server nodes must be added. The simple replica-
tion of resources creates problems. Since each autonomous node stores entire
videos, it must be decided which videos are to be stored on which server.
Whenever a new server is added, a new distribution across all autonomous
servers must be found. The distribution must be such as to avoid load balanc-
ing problems resulting inhot spot servers. A hot spot server is a server that
stores videos that are more frequently requested than others. It will be higher
utilized than other servers that store less popular videos. Eventually, a hot
spot server will be overloaded and unable to accept new requests for service
while other servers are not fully utilized. The only escape from this situation
is to duplicate popular videos on more than one server, or to redistribute all
videos taking the request pattern into account. With duplication precious stor-
age volume is wasted, redistribution incurs a high overhead.

The situation is further complicated due to the fact that the popularity of a
stream is not known a priori or might change over time. A complex monitor-
ing system is needed that re-organizes the stream distribution whenever the
popularity of stored streams changes [3].

The server array scales naturally by adding a server node. The distribution of
the substreams must be re-organized once after adding the node to take
advantage of the added bandwidth and capacity. During operation of the
server, load balancing is provided automatically analogous to disk striping in
disk arrays. Each stream is distributed over several server nodes. During stor-
age or retrieval of a stream all server nodes involved are equally utilized. The
load balancing is optimal if each stream is distributed over all server nodes.
In reality, for ease of maintaining the server array, it might be necessary to
store streams only on subsets of server nodes. However, to achieve optimal
conditions again, it is still possible to do a complete re-organization off-line.
The heuristic for determining subsets of server nodes is still open and for fur-

5

ther research.

Fig. 1 and Fig. 2 give an example for a situation where two videos are
retrieved from a video server. In Fig. 1 the traditional video server architec-
ture is used. The two videos happen to be stored on the same server. It is clear
that this server and also its net connection are hot spots in the overall server
configuration. In Fig. 2 our new architecture is depicted. The two videos are
distributed over all nodes of the server array. All servers contribute an equal
share to the overall effort of retrieving the videos. The load is balanced uni-
formly.

Besides load balancing, striping offers further advantages for VBR videos
produced by compression like for instance MPEG. The data rate of such a
video changes continuously generating bursty network traffic. For an efficient
resource reservation in a network, it is important to keep the burstiness of a
data connection as small as possible, the optimal being a constant bit rate
stream. With striping, the individual substreams are less bursty than the origi-
nal video. The reduction in burstiness is proportional to the number of sub-
streams. For underlying networks that use arate renegotiation technique [4],

Client

Client

Client

Client

autonomous
server node

autonomous
server node

autonomous
server node

disk-
array

...

...

...

Figure 1 Autonomous Server

6

the absolute rate changes between different reservation intervals are smaller,
which increases the probability that the renegotiation is successful.

In [5], we first introduced the concept of a video server array. The architec-
ture and the implementation of a first prototype is presented in [6].

4. THE DESIGN OF A VIDEO SERVER ARRAY FOR
VIDEO ON-DEMAND

Since our video server is organized as a server array consisting of several
server nodes, each video consists of a sequence of frames that are striped over
all or a large subset of all server nodes. The video data that are stored on the
disks or transmitted over the network are organized in blocks.

4.1 Block Types

In the video server array, the following three block types exist (c.f. Fig. 3):

• Disk blocks defining the unit of storage and retrieval of the data
from a disk

Client

Client

Client

Client

disk-
array

server node

server node

server node

...

...

...

server array

Figure 2 Server Array

7

• Network blocks defining the unit of network transfer

• Striping blocks defining the number of contiguous frames that is
entirely stored on a single server node.

The size for each of the three block types is a design parameter that is chosen
in trading-off various aspects:

The disk block size trades-off buffer requirements vs. available/achievable
disk bandwidth/throughput: each server needs to provide a buffer large
enough to hold at least one disk block per stream.

On the other hand, the retrieval time of a disk block is the sum of a (1) varia-
ble seek time, the (2) rotational latency and the time to (3) transfer the disk
block. (1) and (2) are independent of the amount of data transferred per
block-retrieval and constitute the incurred overhead when reading a block. To
reduce the overhead one would like to choose the disk block size as large as
possible.

The network block size is determined either by the (1) available transmission
rate or the (2) buffer space available at the client. There are different ways of
transmitting the data: (i) incontinuous mode, the data is sent continuously at
a rate equal to the rate at which they are consumed at the receiver, or (ii) in
bursty transfer mode the data are sent in periodic bursts, with the burst trans-

.

. .
.

. . .

. . .

. . .

. . .
Striping Block

Disk Block

Server

Figure 3 Striping Blocks and Disk Blocks

Node

Server
Node

Server
Node

8

mission rate being higher than the average consumption rate (c.f. Fig. 4).

The striping block size determines the synchronization required among the
server nodes and influences the buffer requirement at the client (see section
5).

4.2 Client

The client coordinates the playback of the video. All server nodes involved in
the playback of the video need to be synchronized (sub-stream synchroniza-
tion). This synchronization can be performed once at the start of the movie or
continuously during playback. Since the network can introduce jitter, the cli-
ent uses additional buffers to restore synchronisation. There is no need for the
server nodes to communicate among each other for synchronizing them-
selves. [7] provides a detailed analysis of synchronisation issues in the video
server array.

4.3 Metaserver

Any kind of file server keeps information about the data stored, such as file
name, location, size, and type. In the case of a video server there is additional

Server

Individual Frames

Individual Frames

CONTINUOUS TRANSFER MODE

BURSTY TRANSFER MODE

Frame Consumption
Period

Figure 4 Network Blocks and Transfer Modes

Frame Consumption
Period

Node

Server
Node

9

information such as frame rate, resolution and possibly some descriptive
information about the video. In our architecture, thismeta information is
stored in a two-level hierarchy. A dedicated centralized meta server keeps all
information associated with the complete video, such as name, frame rate,
and resolution as well as information about which nodes of the server array
store sub-streams of a given video. The individual server nodes only keep
meta information concerning sub-streams, such as their location on the disks
of the node.

The meta server provides clients with a directory service and mapping service
for the set of videos stored in the entirety of a server array. This frees the cli-
ent from knowing about the number of server nodes or the distribution of a
given video in a server array.

5. CHOICE OF A STRIPING BLOCK SIZE

We are interested in the effect of the striping block size on the buffering
requirements at the client. During the playback of a video, the server nodes
send their striping blocks to the client. To guarantee continuous playback
each frame has to be in the client’s buffer before its playout deadline. When
scheduling a striping block to be sent, the server node takes the deadline of
the frame into account that the striping block is part of.

To simplify the presentation, we assume that all server/client connections
have identical characteristics with respect to line speed and jitter and that all
video streams are constant bit rate. We define the following notation:

Sf : size of a single frame [bits]

rf : frame rate of a video in [frames/sec]

fi : denotes the framei of a video

D(fi) : playout deadline forfi [sec]

Tf : playout duration of a frame () [sec]

SSt : size of a striping block [bits]

TSV : server cycle time; time between successive send operations of
striping blocks from a server node that belong to the same video

Tf
1
r f
---=

10

stream1 [sec]

bl : link speed [bits/sec]

dl : average delay on server/client connections [sec]

n : number of server nodes in the server array

si : denotes the server nodei

∆ : amount of jitter on a server/client connection2 [sec]

5.1 Single Frame Striping

When the server performssingle frame striping, a striping block is indentical
to a frame. Each frame is stored in its entirety on one of the server nodes. The
whole stream is distributed in a round robin fashion across all nodes:

frame fi is stored on servers(i mod n)

Depending on the type of network transfer, the buffer requirements at the cli-
ent will vary.

Burst Transfer

In the burst transfer mode a server sends its striping blocks with line speed.
To minimize the required buffer at the client, we assume that a server node
will schedule the send operations for its striping blocks so, that they arrive at
the client exactly at the playout deadlines of the corresponding frame. We
assume further that the time for a send or receive operation of a frame is
smaller than the playout period of the video stream, i.e.

. (1)

1more precisely the server cycle time is the time between the start time of two con-
secutive send operations at a server node for the same stream.

22∆ denotes the difference between the maximum and minimum packet delay of a
server/client connection.

Sf

bl
---- Tf<

11

Theorem 1: If the jitter ∆ is zero, then the buffer requirement isSf.

Proof: To meet playout deadlines it is sufficient that the server nodes
schedule their striping blocks (here frames) according to the following rule:
start of send operation for a framefi at time

(2)

Now we have to show that no other frame is buffered at the time framefi is
arriving at the client. We assume that a buffer is allocated as soon as the first
bit of a frame arrives at the client. If a frame is scheduled as given in (2), this
will happen at time

(3)

With denoting the time where the buffer for framefi is released it fol-

lows that

(4)

As (4) holds for anyi>0, there will never be more thanSf bits buffered at any
time.■

If any of the server/client connection experiences jitter, some data has to be
buffered at the client to guarantee smooth playout.

Theorem 2: If the maximum jitter on any of then server/client connection
is ∆, an additional buffer of size must be reserved.

Proof: If frames experience a smaller than average delay, they are arriving
before their playout deadline and have to be buffered to avoid frame loss. The

tstarti

tstarti
D fi() dl–

Sf

bl
----–=

tfill i

tfill i
D fi()

Sf

bl
----–=

tfreei

tfreei 1–
D fi 1–() D fi() Tf–= =

D fi()
Sf

bl
----–≤ tfill i

=
using assumption (1)

2 ∆r f Sf

12

maximum buffer required amounts to

(5)

since the maximum number of frames that can arrive during a period of∆
with minimum delay is . After a period of the buffer empties again

since the deadlines for the buffered frames come due.

For the case that frames experience maximum delay, up to frames can

miss their deadline. To avoid starvation enough frames have to be buffered in
advance, which requires an additional buffer of , resulting in a total

buffer of 3. (Note, that the proof does not depend on the network

transfer mode and the striping block size.)■

Continuous Transfer

In the continuous mode, a server node uses a whole server cycleTSVto send a
striping block. The result is a continuous stream of data from each server
node to the client. Each stream has a data rate of only 1/n-th of the video
stream’s bandwidth (for the case of constant bitrate video encoding).

Theorem 3: For the continuous transfer mode without jitter, the buffering
requirement at the client is:

(6)

Proof: Each server node will schedule its send operation so, that its strip-
ing block is ready in the client buffer just at the playout deadline of the corre-
sponding frame. We now compute the buffer requirement at the time where a
frame from server 0 is due for playout; i.e. timet0 with:

3To guarantee non-starvation, buffers must be primed during connection setup. This
requires that another buffer of size frames must be allocated that is

filled before playout can commence.

∆r f Sf

∆r f ∆

∆r f

∆r f Sf

2 ∆r f Sf

2 r f∆

n 1+
2

------------ Sf

13

 where (7)

At time t0, the client will have a complete frame buffered of the stream com-

ing from s0. We know that for alli, and we know

that all streams send at equal rate. Letbcj be the buffer occupancy level of the
client’s buffer for the stream fromsj, then bcj is inverse-proportional to

. Thus at timet0:

; (8)

resulting in a total buffer occupancy att0 of

(9)

Our choice forto is without loss of generality and thus, (9) holds for everyto

Server #0:
Server #1:
Server #2:
Server #3:

buffer occupancy/server stream

0 1 2 3 4 5 6 7

Figure 5 Example for client buffer occupancy for 4 servers, single frame striping, and
continuous transfer mode

Sf

D(fi)

t0 D fi()= i mod n() 0 i 0≠,=

D fi 1+() D fi() Tf+=

D next expected frame fromsj() t0–

bcj
n j–

n
----------Sf=

bcj
j 0=

n 1–

∑
Sf

n
---- n j–

j 0=

n 1–

∑ n 1+
2

------------Sf= =

14

that constitutes a frame deadline.

Now, we have to show that (9) is also an upper bound on buffer occupancy
between frame deadlines. We prove this by contradiction. Assume the buffer
occupancy is larger than given in (9) at some timet’ that is not a frame dead-
line. Since, the only time that buffers are freed is at the playout of a frame,
thus at a deadline, and as all streams are continuously transmitting data, the
buffer occupancy will increase until the next playout is due. This implies that
the buffer occupancy would be larger at the time of playout than demon-
strated above, which contradicts the proof for the upper bound at playout
time. Thus, the buffer occupancy given in (9) is a global upper bound on
buffer requirements at the client.

If single frames are striped, then (6) is the minimum required buffer at the cli-
ent. Fig. 5 gives an example of continuous transfer mode withn = 4. ■

In case of jitter, the additional buffer requirements from Theorem 2 hold
unchanged, since the proof was independent of assumptions concerning the
network transfer mode.

A comparison of bursty and continuous network transfer shows, that the
buffer requirement at the client is higher for continuous mode where it
increases proportionally with the number of server nodes.

5.2 Sub-Frame Striping

To reduce the buffering requirements for the continuous network transfer
mode, we propose a new striping technique,sub-frame striping. Each frame
is partitioned inton equal-size sub-frames. Each of these sub-frames is stored

on a different server node. If denotes the set of sub-

frames for , then:

(10)

During playback, each server node is continuously transmitting its striping
blocks (sub-frames) to the client. The transfer is scheduled so, that all striping
blocks that are part of the same frame are completely received by the client at

Fi ςi 1, … ςi n,, ,{ }=

fi

fi ςi j,
j 1…n=

∪ and j k 1…n: ςi j,∈,∀ ςi k,= =

15

the deadline of the corresponding frame. The client reassembles the frame by
combining the sub-frames from all server nodes.

Theorem 4: Without jitter, the buffer requirement at the client isSf.

Proof: It is sufficient to show that from the time one frame is played until
the next deadline only data for the next frame arrives. But this follows
directly from the definition of sub-frame striping, since all the data that is sent
by the server nodes belongs to the same frame at any point in time. See Fig. 6

for an example of sub-frame striping combined with continuous transfer
mode.

Jitter requires the same amount of additional buffer as for single frame strip-
ing. Compared with single frame striping, sub-frame striping offers the low
buffering requirement of bursty single frame striping combined with smooth
network traffic.

Further advantages of sub-frame striping are:

• Perfect load balancing for VBR videos. If a compression method
like MPEG is used to encode a video, the individual frames have
different sizes depending on their frametype. If single frame strip-
ing is used care must be taken to insure that framesizes are equally
distributed over all server nodes to avoid hot spots at servers that
store a large share of bigger frames (e.g. I-Frames of a video).

D(fi)

buffer occupancy (all streams combined)

0 1 2 3 4 5 6 7

Figure 6 Example for client buffer occupancy for 4 servers, sub-frame striping, cont.
transfer mode

Sf

16

Since sub-frame striping splits every frame evenly over all server
nodes, it can guarantee perfect load balancing without special
measures.

• Easy error concealment if data from a sub-stream is missing. Since
the data delivered by a substream constitutes only a part of each
frame, interpolation can be used to reconstruct the missing data.

Fig. 7 shows the delivery of a video for a server array employing sub-frame
striping with continuous transfer mode. The nodes read the video information
from the disk into a disk buffer one disk block at a time. Depending on the
size of a disk block, the disk buffer will contain several sub-frames of the
video. These sub-frames are subsequently sent to the client, i. e. the network
block has the size of a striping block. To achieve a smooth network traffic,
each sub-frame is transmitted over a timeperiod identical to the consumption
period of a frame of the video. At the client, the different sub-frames for a full
frame arrive at the same time. They are reassembled and their contents is dis-
played as part of their full frame. In the figure, it becomes clear that a missing
sub-frame will degrade the quality of the whole frame, but depending on the
coding used the good sub-frames are still accounting for a largely intact dis-
play.

6. RELIABILITY ASPECTS

A VOD application imposes very stringent requirements on the reliability of

. . .

Server

Figure 7 Delivery Scheme for Sub-frame Striping

To Display

fi

fi-1

fi-2

fi+1 fi+2

Reassembly at Client
fi+3

fi+4

ζi+4,1

ζi+4,2

ζi+4,n

disk-
array

...

...

...

Node

Server
Node

Server
Node

17

the offered service. A paying user community will not accept service outages
or service degradations due to reliability problems of the video server or the
distribution network.

In the overall server architecture, there are several possible failure modes:

1. Disk failure; a disk failure renders all data stored on the failed disk unus-
able. For the autonomous server this implies that the data stored on the disk
can not be delivered anymore. Depending on the data layout in the server
node, this results in some videos being completely unavailable or in a
degraded image quality for some or all streams of the node.

In a server array, the failed disk might store information that is part of all vid-
eos stored on the entire array. The disk failure will thus not result in any vid-
eos completely unavailable, but it will degrade the image quality for many of
the stored videos.

2. Node failure; a node failure comprises failures of several components of a
video server node that result in a total loss of this node. Examples for this
kind of failure are, CPU failure and network adapter failure. In the autono-
mous server, the result is catastrophic for all videos stored on the server node.
They are made completely unavailable. For the server array, the statements
made in 1. are still valid. The quality degradation will be more severe,
because more data will be unavailable.

3. Data loss in the network; data loss can occur when the video data travers-
ing the distribution network is discarded by intermediate nodes of the net-
work due to congestion or transmission failures. For the autonomous server
this results in a major disruption in the presentation of a video proportional in
length to the amount of data lost.

In the server array, data loss occurs independently on the different network
paths connecting the server nodes with the client. Thus, if data loss happens it
is likely that it is restricted to only one or a small subset of all substreams for
a video, resulting in an image degradation, but not in a disruption of the serv-
ice.

4. Link failure; a link failure occurs when a whole network path from a
server to a client fails. The consequences for a video server are the same as
for point 2. above.

18

A standard technique used for making systems more reliable isError Control
Coding (ECC). In such a coding, redundancy is used to protect data against
errors, due to for instance failures like data loss, or also disk failures. In ECC,
a group ofn data blocks is fed to an ECC encoder that producesh redundant
blocks of data calledparity blocks. With an adequate coding scheme (e.g.
XOR for h=1, or a REED-SOLOMON code forh>1) the original data can be
reconstructed if anyn blocks out ofn+h blocks are intact.

Such ECC coding can be used at different levels in a video server architec-
ture. (i) it can be applied internally to a server node to protect it against disk
failures. Disk arrays that are grouped into a RAID [8] are used for this pur-
pose. (ii) ECC can be used to protect against data loss in the network. Such a
scheme is calledForward Error Correction (FEC). (iii) ECC is also possible
on the application level, where the striping blocks from different server nodes
are grouped into an ECC block. This provides protection against all of the
above failure modes, but is specific to our server array.

In the following we will show how ECC can be used for the failure modes 1-
4 to improve the reliability of a video server architecture. We will also show
the differences between the autonomous server architecture and the server
array with regard to ECC.

Ad 1. Disk failure; to protect a video server node against disk failures RAIDs
can be used. In a RAID, the disks of a video server are grouped into parity
groups that can tolerate the loss of one or several disks of the group depend-
ing on the RAID level used. Fig. 9 shows a RAID 3 disk array with 4 data
and 1 parity disk. This array survives any single disk failure without the loss
of service or data. A defect disk must be replaced as soon as possible and its
data reconstructed, since a RAID operating with a failed disk is less tolerant
against further disk failures. When a RAID is operating with a failed disk, the

n1n2n3

h2 h1

n1n2n3h2 h1

n1n2

h2 n3

n1n2n3

ECC
Encoder

ECC
Decoder

Loss

Figure 8 ECC Coding Example (n=3, h=2)

Source Sink

Potentially Lossy Channel

19

load for the surviving disks will increase. Depending on the RAID level used
every access to data on the failed disk can require an access to each of the
surviving disks, thus increasing the load for the surviving disks by up to
100% [9]. The process, that restores the data after a failed disk has been
replaced, introduces an additional load on the RAID. Therefore, even in a
RAID, a disk failure results in severe problems due to increased load for the
surviving disks making it difficult to maintain real time guarantees for the
videos in service.

The above applies equally to the nodes of an autonomous video server and to
the nodes of a server array. Using the appropriate organization and a suffi-
cient amount of redundancy a video server can be made arbitrarily robust
against disk failures.

Ad 2. Node failure; if an autonomous server node incurs a node failure, it
cannot continue to service any of its current clients or to service new requests
for the videos it stores until the server is repaired. To protect an autonomous
server architecture against such failures, videos stored on one node must be
duplicated on other nodes. Depending on the requirements specified by the
clients, complicated schemes have to be devised to make a node failure trans-
parent to clients.

Server Array: If a single node in a server array fails, all substreams stored on
this server become inaccessible, resulting in image degradation for the play-
back of videos. Depending on the striping method used, either full frames are
missing (single frame striping) or only parts of frames are missing (sub-frame
striping). Especially the latter lends itself to the application of error conceal-
ment schemes that interpolate missing data from neighbouring parts in the
image.

Apart from error concealment, a server array can be configured like a RAID
using additional server nodes and redundancy to make the whole array robust
against node failures. In such a scenario, redundant substreams of a video can

n1 n2 n3 n4 h1

Figure 9 RAID 3 Disk Array with n=4, h=1

20

be used to reconstruct data that is lost due to a node failure. This reconstruc-
tion takes place at the client’s site and does not introduce an additional load
for the server array. Fig. 10 shows a server array with one server node out of

four storing redundant data. In the shown configurationn2 has failed. Its data
is reconstructed in the client by using the redundant information provided by
h1. For this case with one redundant node, a simpleXOR function can be used
to generate the redundant data and to reconstruct the original data if one node
fails.

As for RAID, it must be guaranteed that a failed node is replaced as soon as
possible, since the server array operates at a lower reliability level with one or
several failed nodes. The reconstruction of a replaced node (if necessary due
to catastrophic failure with data loss) can be done in several ways: (i) it can
be done completely in the background, i.e. whenever a client displays a
video, the information for the failed server, that must be generated by the cli-
ent anyway, is sent back to the replacement server. This method does not
introduce any additional load on the server array, but it demands that the cli-
ents provide the functionality to send back the reconstructed data and it
delays the full reconstruction of the array. (ii) special clients can be set up
solely for the reconstruction. They operate similarly to normal clients without
actually displaying the video information. A special mode might be built into
the server nodes of the array to deliver substreams faster than real-time to
such restore-clients to accelerate the restore process.

ATM-
switch

Server Nodes

n1

h1

n3

n2

Figure 10 Server Array with n=3, h=1 and Reconstruction in the Client

Client

Failed Node

Redundant
Server Node

Reconstruction of

ζi,n2=ζi,n1⊕ζi,n3⊕ζi,h1

lost sub-frame ζi,n2:

21

Ad 3. Data loss in the network; to prevent image degradation in case of data
loss in the network, theautonomous server must apply FEC to the data sent
over the network. Other schemes like e.g. ARQ protocols that retransmit lost
information, incur high latency penalties that cannot be tolerated for continu-
ous media applications.

In a server array, FEC can also be applied to the data sent over a network
connection. Additionally the redundant information in form of redundant
substreams can be used to recover from losses in the network. If errors occur
in bursts, FEC normally performs quite poorly. Such error bursts are likely if
e.g. a network connection experiences congestion. In the server array, when
different substreams follow different paths in the network, a burst loss on one
substream does generally not result in a burst loss from the perspective of the
FEC mechanism that groups data from the different substreams into a data
group for error recovery.

Ad 4. Link failure; identical to 2. above.

7. RELATED WORK

Tewari [10] introduces aclustered multimedia server that is similar to our
architecture as it also partitions the video data over several server nodes. The
interaction between clients and the individual nodes of the cluster is request/
response driven. The authors use queuing analysis and simulation to derive
performance data for their architecture. However, the paper does not give
details about the way information is stored on the server nodes and on how
the resynchronisation of the video information at the client is performed.

In [11], different levels of striping in a video server are investigated. The
paper gives performance results for a scheme calledapplication level strip-
ing, where video data is striped over multiple server nodes. The description
and analysis is done on a very abstract level without investigating detailed
issues of how to implement such a server.

The authors of [12] present a video server where multiple server nodes are
very tightly coupled by a special purpose ATM backplane that implements
and intelligent disk array. This configuration achieves good load balancing
for disk requests, but lacks the advantages of a really distributed architecture
with respect to reliability or load balancing of network traffic.

In [13], Mourad presents a video server architecture that distributes video

22

data over several network nodes. To improve the reliability of the architec-
ture, data replication is used to make it robust against any single-point failure.
The architecture does not allow for the flexible use of redundancy as in our
server array to deal with multi-point failures if required.

8. CONCLUSION

We presented a novel video server architecture. It achieves balanced load
over all individual nodes of a video server by partitioning the video data and
storing each partition on a different node.

If sub-frame striping is used, the buffer requirement at the client does not
depend on the number of server nodes.

Compared to the autonomous video server architecture, the server array can
be made robust against node and network link failures if we apply redun-
dancy at the level of striping blocks.

9. ACKNOWLEDGEMENTS

The work described in this paper was supported by the Siemens Nixdorf AG,
Munich.

REFERENCES

[1] T. D. C. Little and D. Venkatesh. “Prospects for Interactive Video on-
Demand.”IEEE Multimedia, 1(3):14–24, 1994.

[2] C. Federighi and L. A. Rowe. “A Distributed Hierarchical Storage Man-
ager for a Video-on-Demand System.” InProceedings of IS&T/SPIE
Symposium on Electronical Imaging Science & Technology, Storage
and Retrieval for Image and Video Databases II, San Jose, CA, February
1994.

[3] P. Lougher, D. Shepherd, and D. Pegler. “The Impact of Digital Audio
and Video on High-Speed Storage.” InProceedings of the 13th IEEE
Symposium on Mass Storage Systems, pages 84–89, Annecy, France,
June 1994.

[4] M. Grossglauser, S. Keshav, and D. Tse. “RCBR: A Simple and Effi-
cient Service for Multiple Time-Scale Traffic.” InProceedings of SIG-

23

COMM’95, Boston, MA, 1995.

[5] C. Bernhardt and E. Biersack. “Video Server Architectures: Perform-
ance and Scalability.” InProceedings of the 4th Open Workshop on
High Speed Networks, pages 220–227, Brest, France, September 1994.

[6] C. Bernhardt and E. Biersack. “A Scalable Video Server: Architecture,
Design and Implementation.” InProceedings of the Realtime Systems
Conference, pages 63–72, Paris, France, January 1995.

[7] W. Geyer. “Stream Synchronisation in a Scalable Video Server Array.”
Master’s thesis, Institut Eurecom, Sophia Antipolis, France, September
1995.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
“RAID: High-Performance, Reliable Secondary Storage.”ACM Com-
puting Surveys, 26(2):145–185, June 1994.

[9] E. K. Lee. “Highly-Available, Scalable Network Storage.” InProceed-
ings of CompCon ’95, 1995.

[10] R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin. “Real-Time Is-
sues for Clustered Multimedia Services.” IBM Research Report RC
20020, IBM T. J. Watson Research Center, Yorktown Heights, NY, June
1995.

[11] J. Hsieh, M. Lin, J. C. L. Liu, D. H. C. Du, and T. M. Ruwart. “Perform-
ance of a Mass Storage System for Video-On-Demand.” InProceedings
of INFOCOM’95, pages 771–778, Boston, MA, April 1995.

[12] M. M. Buddhikot and G. M. Parulkar. “Design of a Large Scale Multi-
media Storage Server.” December 1994.

[13] A. Mourad. “Reliable Disk Striping in Video-On-Demand Servers.” In
Proceedings of the 2nd IASTED/ISMM International Conference Dis-
tributed Multimedia Systems and Applications, pages 113–118, Stan-
ford, CA, August 1995.

