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ABSTRACT

Many signal processing applications reduce to solving inte-
ger least square problems, e.g., Maximum Likelihood (ML)
detection, which is NP-hard. Recently semidefinite pro-
gramming (SDP) approach has been shown to be promising
approach to combinatorial problems. SDP methods have
been applied to the communications problem, e.g., [1], [2],
[3]. But so far no theoretical analysis of the algorithm is
shown and the evaluation of the SDP approach for detection
is based only on simulation results. In this paper, we theo-
retically evaluate bounds for the SDP approach. We also es-
tablish relationship between the exact maximum/minimum
value of the objective function to the SDP relaxed (approx-
imate) maximum/minimum value of the objective function.

1. INTRODUCTION

In many communications systems the optimal receiver struc-
ture is maximum likelihoodsequence detector (MLSD). How-
ever the complexity of the MLSD is exponential in the num-
ber of antennas. This led to find low complexity (approxi-
mate) solution of the MLSD problem, e.g., MIMO-DFE and
V-BLAST are some of them. Recently, the SDP approach
has become popular in solving combinatorial optimization
problems. In [1,8], a CDMA detection problem is solved
by the SDP approach using interior point method and they
obtained very close approximation to the ML performance.
Similarly [2,3], also describe the SDP method to solve the
detection problem for the CDMA case. In [2], the authors
shows the relationship of the SDP to LMMSE and SAGE
detectors. In this paper using the analysis of [4,5], we are
able to give bounds on the SDP method. Furthermore, fol-
lowing the analysis of [6] we also show the relationship
between exact maximum/minimum value of the objective
function to the relaxed problem’s maximum/minimum value
of the objective function.
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2. SIGNAL MODEL

We consider a typical flat fading MIMO transmission model���������	� (1)

where usually the vectors ��
��
�� and the matrix � are given
in the equivalent baseband, and hence are complex valued.� is the channel matrix, � is the vector of transmitted sym-
bols, each chosen from same finite alphabet � and � is an
additive white Gaussian noise vector. � is of dimension�����

. � matrix contains complex transfer coefficients
between transmit and receive antennas. Eq (1) can equiva-
lently be written as��� �� ��� � ��� � � � �� � � � � ��� �� ��� � ��� �� ��� 
 (2)

where
�

and
�

denotes real and imaginary parts respec-
tively, which gives an equivalent � � dimensional real model
of the form �! "���# $�% &�'�( )
 (3)

For the sake of simplicity we consider BPSK case and as-
sume that �* is known at the receiver. The ML detection
problem reduces to+,-��.0/1��232 �  �	�  �  232 4

5$6(798):$;9<0<�=	�> -?A@B��C)
!CED 49F (4)

which can be further written as+,-�G.0HI�J�IK ML �"�0K �# $NO�> &� � ;9K  �> 
5$6(798):$;9<0<�=	�> -?A@B��C)
!CED 49F (5)

where ; K  �J� K �# . Let

+�P�Q�R� K �# , and including a re-
dundant dummy variable, 6 49FTS�U , we can express the above
equation as,



� ��� 
 6��49FTS�U�� ��. HI���	��
 �	������ � � K  6 4OF S�U � �
+� ;; K � �

� � �  6 49FTS�U �
5$6(798):$;�< <�= � �> 6 49F S�U � ? @)��CB
$C D 49FTS�U 
 6 49FTS�U �QC (6)

Since the cost function is symmetric, 6 49FTS�U ��C need not
to be maintained explicitly. We reformulate the above equa-
tion as � � ��H���� .0HI�J�IK����

5!6(798 :!;9< <�=	�0? @)��CB
$C D 49FTS�U (7)

where

��� � +� ;; K � � H ��� � � � � K  6 K 49F S�U �
The above problem is NP-hard. To present semidefinite re-
laxation, we consider a reformulation of the Boolean quadratic
program. Since � K ���J����� L ���(� K N , Tr(.) is trace op-
erator. The above problem is equivalent to the following
Quadratic program (QP).. HI����� L �! N

5!6 798):!;9< <�=" P���(�IKA���EHI��# L C!N 
 �0? � 49FTS�U
�I/1H$� L  N ��:B
%��� L  N � � � ��C ��7E
 (8)

where : is all ones vector and �I/ H&� L  N is vector composed
of diagonal elements of matrix  . Due to the constraint � �(� K , the above problem is non-convex optimization
problem. If the rank(1) constraint is removed from the above
equation, we obtain the following relaxed problem:.0H ����� L �' N&��(*) 
 + ; ) + � ) � +

5$6(798):$;9<0<�=" -, �
�I/1H$� L  N ��:B
%��� L  N � � � ��C ��7E
 (9)

where  -, � means that X is symmetric and positive semidef-
inite (PSD). The above problem is known as the primal
semidefinite programming relaxation of the Boolean prob-
lem.

3. FRAMEWORK FOR THE ANALYSIS OF SDP
APPROACH

Following seminal work of Goemans and Williamson [4],
see also [5,6], some very interesting relaxations can be de-
fined by allowing � ) to be multidimensional vector . ) of unit
Euclidean norm, i.e.,.0HI� (/) 
 + ; ) + . K) . +

5!6(798 :!;9<0<�= . K) . ) �JC)
 HI��� . ) ? � 49F S�U 
 (10)

the above resulting optimization problem is the relaxation
of the SDP because the objective function reduces to the
objective function of the SDP in case of vectors lying in a
1-dimensional space. Since  ��0 K 0 , . ) is the /21�3 column
of 0 , if  is symmetric PSD. Choosing a random vector �
uniformly from the unit sphere 4 49F and let the solution be
given as +� ) �QCA/65 . K) �', �+� ) � � C /�5 . K) �'7 � (11)

Choosing random � is same as choosing random hyperplane.
Let  8� and . �) denote the optimal solution to the relaxation
and obtain solution

+� as indicated above. Now we state a
lemma, which is result of nontrivial observation in [4].

Lemma 1[4]: 9 L +� ) +� + �J��C$N � C:�; ) +
� C: H��E;=<�=E5 L . ��>) . �+ N� C: H��E;=< =E5 L � �) + N (12)

i.e., the probability that the vector . ) and . + are on the
opposite sides of the hyperplane is exactly the proportion
of the angle between . ) and . + to : , i.e., H��E;=<�=E5 L . K) . +)N@?A: .
Now we are in position to derive the expected value of our
solution. In this respect we haveB L +� ) +� + N&� L CM� C: HC�E;�<�=E5 L � �) + NON�� C: H��E;=<�=E5 L � �) + N
where E(.) is the expectation operator.B L +� ) +�	+EN&� �: H��E; 4 /1� L � �) + N (13)

In deriving the above equation we have used the fact, H��E; 4 /1� L � N9�H��E;=<�=E5 L �(N��D:�? � . Let HC�E; 4 / � L  N0�PHC�E; 4 / � L � ) +)N , and
+ P� +� ) +�A+ . The expected value of our solution isB L ( ) 
 + ; ) + +� ) +� + N� �: ( ) 
 + ; ) + H��E; 4 /1� L � �) + N 
 (14)



Fig. 1. Two vectors on unit sphere.

which can be further written asB�� ��� L � + N�� � �: ��� L � � H��E; 4 /1� L  N � N (15)

B�� ��� L � + N�� , �: ��� L �' � N � (16)

In deriving the above inequality we used the fact thatH��E; 4 /1� L  NM�  � C�  ��
� � C � �� � ��� �  
	 � � � 
 (17)
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which implies that H��E; 4 / � L  N ,  . The value of the SDP
relaxation is( ) 
 + ; ) + � �) + � ��� L �' � N ,G=��I<�/ . H� . H�16(: (18)

(note that  is a matrix).B�� ��� L � + N�� , �: ��� L �' � N , �: � =�� <�/1.0H� . H� 6 : (19)

Inequality (19) shows a lower bound on the expected value
of the objective function for SDP relaxation.
The upper bound proceeds as follows:
Using eq (17) we have the following inequality,H��E; 4 /1� L  N��  � C� � � 49FTS�U(+�� U � �+�+ � � C � �� � ����� 49F S�U(+�� U � 	+@+ � � � � �

(20)

where
�

is identity matrix. Knowing that ��+�+ �PC , we can
write the above equation asH��E; 4 /1� L  N��  � L � � �GC!N L C� � � � C � �� � ����� � � � � N � (21)

where H��E; 4 /1� L C$NM� : � � C&� C� � � � C � �� � ����� � � � � (22)

Hence we can writeHC�E; 4 / � L  N��  � L � � �GC$N L : � �'C$N � (23)

putting the above inequality in eq (15) and rearranging, we
getB�� ��� L � + N���� �: ��� L �' � N � L � � � C$N L : � �GC!N ��� L � N

(24)

The above inequality is the upper bound on the expected
value of the SDP relaxation.

It is shown in [5] (we state the result without proof) that
maximum and minimum value of the objective function is
given by+, L ��N&��. HI������� �: ��� L � � H��E; 4 /1� L  NON 
8�I/ H$� L  NM��:

(25)

, L � N ��. / � ���!� �: ��� L � � H��E; 4 /1� L  N9N 
8�I/ H&� L  NM��:
(26)

where : is all ones vector. Having stated the above the-
orem we are now in position to prove the following theo-
rem. Before proving it, we define the following terms: Let
+,�� +, L ��N 
 , �Q� +, L ����N be the maximal and minimal ob-
jective value of � K ��� in the feasible set of the Quadratic
program (QP). Let

+
� � +

� L ��N and � � � +� L ����N be the max-
imal and minimal value of the objective function, � K �! in
the feasible set of SDP.
The dual of our SDP (eq (9)), can be written as [7]. / �#" K :&�'�B7

5!6(798 :!;9< <�=%$	� � � � � 
&$�, � (27)

where
�

is identity matrix, Z (slack variable) is a diagonal
matrix with �I/1H$� L $"N#�'" . If the primal has the finite op-
timal value, so as its dual, with the same objective value,
i.e., there is no duality gap between the primal and the dual.
The minimal objective value of the dual SDP is denoted by



� ��: K " ��7 � , where " 
�� are minimal values of the vari-
ables " and � respectively.

Theorem 1:
1.

+, �
� , 4� L +�#��� N� � +�#�	, , 4� L +� �&� N
� � +�#�
� , +,R�	, , ��� �

� L +�#�
� N
Proof: We know that: � +,!, ��� L � � HC�E; 4 / � L  N9N � (28)

This can further be written as: �
+, , ��� L9L ���%$ � � � � $ �	� � N � H��E; 4 / � L  NON

: �
+, , ��� LOL ��� $ ��� � N �  N�� ��� L9L $ �	� � N � H��E; 4 / � L  NON 


where we have used the fact that 4 / � L  N',  . The above
inequality can further be written as (after bit of algebra)� ��� L �' N�%" K �I/1H$� L  N� � 7� " K : � �I/1H$� L  N �'� : � 7E


(29)

where we have used the fact that �I/1H$� L H��E; 4 /1� L  N9N �
� 4 �I/1H$� L  N and �I/ H$� L  N is the vector composed of diagonal
elements of  . Knowing that �I/ H$� L  NM��: , we have: � +,!, ��� L �' N � " K&: L : � � C!N � � 7 L : � �GC!N

: �
+, , ��� L �! N � L : � �GC$N L " K :M�	� 7 N (30)

: �
+,!, ��� L �' N � L : � � C!N � � (31)

Let  converge to

+ , then ��� L �' N�� +
� . Putting

+
� in the

above inequality and rearranging gives+, �&� , �: L +�#��� N 
 (32)

hence we have proved the first inequality. The second in-
equality can be proved by replacing � with ��� . The third
inequality can be proved by adding the first two inequalities.
Having proved Theorem1, we can quite straight forwardly
prove the following theorem.

Theorem 2: Let
�� be generated above from  � + .

Then +,R� B � , L �� N+, �	, � : � �GC (33)

Proof: In order to prove the above theorem we have corol-
lary [6], which is following

1/ . ���
	� B � , L � N&� 1/ . ����	� �: ��� L � � H��E; 4 /1� L  NON
, �: +��� L CM� �: N � (34)

Using the Theorem 1, we can write+,R� B �%, L �� N+, �	, �

+, � 4
�

+
�#� L CM� 4� N �+,R��,

�

+, � 4� +�#� L CM� 4� N �+, � L CM� 4� N +�#� 4� �
�

+
�#� 4� +� � L CM� 4� N �+
�#� L CM� 4� N +�#� 4� �
� L CM� 4� N L +� �&� N4� L +�#�&� N

� : � � CB
 (35)

hence proving the theorem.

4. CONCLUSIONS

There have been some works by some authors to apply SDP
approach to MLSD. The performance evaluation of the SDP
approach were based on simulations. In this paper, we have
shown the upper and lower bound for the SDP relaxation
method. We also showed relationship between the maxi-
mum/minimum of the exact objective function to the max-
imum/minimum of the relaxed problem. Besides the the-
oretical analysis, we also carried out simulations to evalu-
ate the performance of the SDP relaxation approach. The
simulations are performed for two transmit and two receive
antennas. Fig (2) shows the performance in terms of BER
of the SDP relaxation approach and second order cone pro-
gramming (SOCP) approach. It is clear from the figure that
the performance is very close to the exact ML.
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