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ABSTRACT

The information capacity of wireless communication sys-
tems may be increased dramatically by employing multiple
transmit and receive antennas. Often the optimal receiver
in Maximum likelihood sequence detector (MLSD), which
is considered to be practically infeasable due to high com-
putational complexity. Therefore, in practice one often set-
tles with less complex suboptimal receiver structure. In this
chapter, we propose a polynomial time algorithm for ex-
act maximum likelihood (ML) decoding for MIMO chan-
nels. The problem is posed as maximizing a quadratic form
in V binary variables (BPSK case) with the vertices of a
hypercube as constraint. We consider M receive antennas
and N transmit antennas. We assume that M < N, and
that M is fixed. The maximization of ML cost function
with vertices of hypercube, i.e., {—1,1}¥, as constraints,
translates to having a symmetric matrix in quadratic form
with fixed rank, M and with the hypercube constraint. With
singular value decomposition (SVD) of the symmetric ma-
trix and suitable affine transformation of the hypercube con-
straint one ends up with maximizing a quadratic function
(Euclidean distance) over extreme points (vertices) of zono-
tope (definition of zonotope will be given later). Using a
classical theorem of discrete geometry, it is shown that the
vertices search can be done in polynomial time, O(N ¥ ~1),
The overall complexity of the algorithm is the complexity
to find extreme point of zonotope plus the complexity of the
SVD operation plus the evaluation of the objective func-
tion at the vertices. To find the vertices of zonotopes, an
efficient algorithm called reverse search algorithm can be
employed [1,6,7]. Our approach has potential benefits over
currently popular sphere decoding scheme [3]. The aver-
age case complexity of sphere decoding scheme is O(N?)
plus the complexity to perform QR decomposition (%N?’)
of the channel, when radius, r, is correctly chosen (which
is NP-hard problem). Also at low SNRs the complexity
of the sphere decoder explodes. The other problem with
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sphere decoding is that some form of the heuristics is used
to choose the radius of hypersphere. On the contrary, the
proposed method has polynomial complexity independent
of SNR and also no heuristic is used in the algorithm.

1. INTRODUCTION

Multiple antenna wireless communication systems are capa-
ble of providing data rate at potentially very high rates. To
secure high reliability of the data transmission special atten-
tion has to be payed to the design of the receiver. In many
communications systems the optimal receiver structure is
maximum likelihood sequence detector (MLSD). However,
computational complexity of the traditional MLSD often
prohibits its practical implementation. Thus often one set-
tles with suboptimal receivers like, MIMO-DFE, BLAST,
are some of them. Recently, sphere decoding has gained
quite popularity due to its average polynomial complexity
(at high SNR) in the number of variables (antennas). The
sphere decoder has average complexity of O(~N3), when
the radius of the hypersphere is optimally chosen (which is
NP-hard). But it has exponential complexity for low SNRs.
The other problem with the sphere decoder is that at each
time instant it has average complexity, O(~N?3), which can
be computationally very complex for large tramsmitted data
blocks. In this paper, we focus on MLSD. It is assumed
that the receiver has perfect knowledge of the channel. We
propose a novel exact method for data detection using some
beautiful results in discrete geometry. The detection is based
on maximizing ML function subject to vertices of zonotope
(special polytope) constraint. We will show that optimal so-
lution to the problem is polynomially bounded in V.

2. SIGNAL MODEL

We assume a discrete time block fading multiple antenna
channel model with N transmitand M receive antennas, we
have assumed that the receiver has perfect channel knowl-



edge. The received signal at an instant is
zr=Hs+n (1)
where
H e RMXN 2)
is a known channel matrix,
ne RMx1 3)

is the i.i.d. zero mean white Gaussian noise with variance
o2, The fading coefficients are i.i.d. Gaussian with zero
mean and unit variance. Under the aforementioned assump-
tions the ML criterion requires us to find s € RV*!, where
s; € {—1,1}, which minimizes ||z — Hs||?>. The problem
can be written (after neglecting constant terms) as

f(s) = maw,gq_q 13w sTJs+2¢8 s, 4)
where
J=—HTH and ¢ = Hs. (5)
The above equation, i.e., f(s), is equivalent to

f(S) = maIyE{—l,l}N, YnN+1=1 yTEya (6)

= J ¢

i=(7¢) )

Since this cost function is symmetric, yn4+1 = 1 need
not been maintained explicitely.

where L is

3. RELATIONSHIP BETWEEN THE QUADRATIC
PROGRAM AND MLSD

In the following lines, we show the relationship between
quadratic (0 — 1) programming (QP) problem and MLSD.
The (0 — 1) quadratic problem can be written as

QP = mingeo,1}» &' Qu (8)

Where Q is real symmetric positive matrix. With the change
of variable,

9)
in eq (4),where

se{-1,1}"Y and e=[1,1...,1]F (10)
e is all ones vector, the objective function can be written as

U(y) = (2y—e)"J2y—e)+ 2" (2y—¢).  (11)

It is straight forward to see that the above objective function
can be written as

¥(y) = MaTye(o 1}~ y'Jy+2y7e, (12)

where

J=4J and ¢ =-2Je+ 2c. (13)
¥ (y) can be further written as

VU(y) = mazyeqo1}, ynsr=1 yij (14)

where

i=(a ) (15)

Since the cost function in eq (14) is symmetric. yny 41 need
not be maintained explicitely. Therefore the inclusion of the
linear term leads to the problem in eq (14) of size increased
by one. Hence we have shown that our detection problem
is equivalent to (0 — 1) quadratic problem. We will use eq
(6) for analysis because the constraint {—1, 1}V (i.e, hyper-
cube), has symmetry property which can later be exploited.

4. DISCRETE GEOMETRIC APPROACH TO MLSD

A basic problem in discrete optimization consists in opti-
mizing a quadratic over some hypercube. This type of prob-
lem is NP-hard, and it is still considered a computational
challenge to solve general modest size problems of this type
to optimality. Quadratic programming (QP) over vertices of
cube appears in various equivalent formulations in the liter-
ature. Our problem (MLSD) is maximization of a quadratic
function over vertices of hypercube. Before delving into the
solution of this problem we define some geometrical ob-
jects.

Polytope:

A polytope (convex polytope) is a convex hull of finite set
of points in R (which are always bounded) or as bounded
intersection of finite set of half spaces. Polytope can also be
defined as a finite region of d-dimensional space enclosed
by a finite number of hyperplanes.

Zonotope [2, pp. 198-199]:

Zonotopes are special polytopes that can be viewed in vari-
ousways : for example, as projections of cubes, as Minkowski
sums of line segments, and set of bounded linear combi-
nations of vector configurations. Each of these description
gives different insight into the combinatorics of zonotopes.
A zonotope is the image of a cube under an affine projec-
tion, Z C R? of the form [2],

Z=Z(V)=VCr+z={Vy+z:y€C,} (16)



Z:Z(V):{xERd:m:z—i—zp:mivi, —1<z; <1}
= 17
for some matrix (vector configuration),
V =[v1,...,v] € R™P. (18)

Equivalently, since every d-cube Cj, is a product of line
segments
C’d:C’lx...xCl, (19)

we get that every zonotope is the Minkowski sum of a set of
line segments. Infact, if « is linear we get

Z(V) :7r(C'1 X ... X Cl)
=m(C1) + -+ 7(C1)
=[—vi,v1] + ... [—vp, vp) (20)

and thus
Z(V)=[~vi,n] + -+ [~vp, vp] + 2, (21)
for an affine map given by

m(y) =Vy+z (22)

Fig. 1. 3 dimentional zonotope with 5 generators.

Having defined polytope/zonotope, we can proceed with
our problem. First, we begin by spectral factorization of

L=UU"T, (23)

Fig. 2. 3 dimensional zonotope with 10 generators.

where U € RM*N js the matrix composed of suitably
scaled eigenvectors. We can write eq (6) as

U(y) =y Ly = [|UTy|)?
subject to y € {—1, 1}N+1 (24)

Consider affine map [2 pp. 199],
RN — RM . ,=U"y. (25)

This linear transformation maps a {—1, 1}V+! (hypercube)
into a symmetric zonotope. For every extreme point z of
zonotope there exists an extreme point y € {—1,1}V+!
such that z = /Ty and thus eq (6) can be written in the
following form

\I’(y) = maxzezemtreme”znz (26)

From the above equation it is clear that our objective func-
tion and constraint both are symmetric and some of the ex-
treme points of hypercube will correspond to some points
lying inside or on the facets of zonotope. Observe that ex-
treme points which lie inside or on the facets of the zonotope
cannot be candidate for the maximization of our objective
function. Therefore the maximum is attained at some ver-
tex z of Z. Thus MLSD is thus reduced to the enumeration
of vertices of zonotope 7. Now the problem is to calculate
the number of facets and vertices of a M dimensional zono-
tope given by N + 1 generators. Let fo(7Z) and far—1(7)
denote the number of vertices (extreme points) and facets
of Z, repectively. The answer to the above question is given
by the following classical theorem in discrete geometry:



Theorem:
Let Z be M dimensional zonotope given by N + 1 genera-
tors (N > M). Then

fo(2) s2MZ_1< V) s yE ) en

. 2
1=0

where

(%) = @

Furthermore, the equalities are attained by certain zono-
topes and therefore the bounds are best possible. From the
above theorem it is clear that the upper bound of fas_; is
O((N + 1)M-1) ~ O(NM~1), for large N. The bound on
the number of vertices is the expression

fol2) < QMZ ( N ) (29)

and the dominating one is the last term

()

which is of O(N*~1) for large N. Thus the number of
vertices are polynomially bounded and there exists efficient
algorithm to generate extreme points of Z as given by the
following theorem.

Theorem[5] :

Given N + 1 generators of a zonotope there is O((N +
M) ~ O(NM), for large N, time algorithm to generate
extreme points of zonotope for M > 2.

Uptil now we know the bound on the vertices but we do not
know an algorithm to generate them. In order to explain
it, we need a relationship between arrangements of hyper-
planes and zonotopes.

Arrangements of hyperplanes [4, pp.4]:

A finite set of hyperplane in £¢ defines a dissection of £¢
into connected pieces of various dimensions. We call this
dissection the arrangement A(H) of H. For example, a fi-
nite set of lines in two dimensions dissects the plane into
connected pieces of dimensions two, one and zero. It has
been shown [4, pp. 20-26] that a zonotope in £¢ corre-
sponds to an arrangement in £4-1. For example a two
dimensional zonotope has corresponding one dimensional
arrangement. In [4,5] an algorithm is given to construct ar-
rangements. The overall structure of the algorithm is given
below.

The overall structure:

The construction of an arrangement proceeds incrementally,
that is, the arrangement is built by adding hyperplane one
at a time to the already existing arrangement. The order in

which the hyperplanes are added is irrelevant. Let A denote
the set of hyperplanes H = [hy, ..., h,] in £¢ and define
H;=A{hy,... hi} (31)
for 1 < i < n. D(H) denotes the data structure to be de-
scribed that represents the arrangement A(H). Itis assumed
that the normal-vector of hyperplanes in / span E¢. Let the
normal vectors of Ay, ... , hy span E<. Construct D(H ).
For i running from d+1 to n, construct D(H;) from D(H;_1)
by insertion of h;. Finally, D(H) = D(H,). Unfortu-
nately, this algorithm may not be very practical because it
has to store in memory the list of all vertices and faces gen-
erated before. This means that only the storage of vertices
is of size O(NM~1). In order to alleviate the complexity
there exits an efficient algorithm, known as reverse search
algorithm [1,6,7], for generating full dimensional regions.
The advantage of this algorithm is that it can be highly par-
allelized and is also space and time efficient. In order to ex-
plain the basic idea of reverse search, let G be a connected
graph and suppose we have some objective function to be
maximized over these vertices. A local search algorithm on
G is a deterministic procedure to move from any vertex to
some neighboring vertex which is larger with respect to ob-
jective function until there exists no better neighboring ver-
tex. A vertex without a better neighboring vertex is called
local optimal. The algorithm is finite for any starting vertex,
it terminates in finite number of steps. Simplex algorithm is
an example of local search algorithms.
Let us imagine the simple case that we have finite search
algorithm and there is only one local optimum vertex z* (
which is also optimal solution). Consider the directed graph
T with same vertex set as G and the edges which are all
ordered pair (z, ") of consecutive vertices z and =" gener-
ated by local search algorithm. It should be clear that 7" is a
tree spanning all vertices with the only sink z*. Thus if we
trace this graph 7" from z* systematically, say by depth first
search, we can enumerate all vertices. The major operation
here is tracing each edge against its orientation which corre-
sponds to reversing the local search, while the minor work
of backtracking is simply performing the search algorithm
itself. We do not have to store any information about visited
vertices for this search because 7' is itself a tree. Observe
that for each vertex z, every vertex y below z in 7" (those
y such that there is directed path from y to z) has no larger
objective value and whenever it detects a vertex with lower
objective value, then abandon going lower in the tree. The
advantage of the reverse search algorithm are:
1) Time complexity is proportional to the size of the out-
put times a polynomial in the size of input
2) Space complexity is polynomial in the size of input,
3) Parallel implementation is straight forward. We believe
that we can exploit the symmetry of our problem to further
reduce the complexity, i.e., time and memory, of the reverse



search algorithm. Having found the vertices with the help
of reverse search algorithm, the task remaining is to cal-
culate the value of the objective function at those vertices.
We need to evaluate the objective function only on half the
number of vertices (thanks to symmetry of our constraint)
resulting in overall complexity of O(N™) + 6 N3 for the
proposed method. 6 N3 is the complexity to calculate SVD
of a symmetric N x N matrix. Having found the vertex of
zonotope that maximizes our objective function, the corre-
sponding vertex of hypercube can be found by, z = UTy.

5. CONCLUSIONS

In this paper, we have shown theoretically a polynomial
time algorithm to decode exactly a MIMO system when
the number of receiving antennas is fixed. By posing the
problem as maximization of quadratic form over zonotope
and using some classical theorems of discrete geometry, we
were able to solve the problem in polynomial time. Com-
paring our method with the sphere decoding, we have the
following three advantages over the later:

1) The sphere decoder has exponential complexity at low
SNRs while there is no such problem in our method (it is
independent of SNR).

2) The sphere decoder has polynomial complexity (at high
SNRs) at each time instant (because the received signal point
moves from one point to another in lattice at each time in-
stant) for flat fading or for block fading channels, while no
such problem exists in our method.

3) No heuristic is employed in our algorithm, where as in
the sphere decoder radius of the sphere is chosen heuristi-
cally and choosing the optimum radius of the sphere is NP-
hard.

The disadvantage of our algorithm is that the degree of the
polynomial increases as the number of receive antennas,
M, increases. Although, we have assumed perfect channel
knowledge but the same analysis applies for noisy channel
estimates too.
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