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Abstract. In this work we study the achievable rates of memoryless signaling
strategies adapted to UltraWideBand (UWB) multipath fading channels. We
focus on strategies which do not have explicit knowledge of the instantaneous
channel realization, but may have knowledge of the channel statistics. We

evaluate the average mutual information of general binary flash-signaling and
achievable rates for m-PPM as a function of the channel statistics. Finally,
we briefly examine the robustness of flash-signaling for interference-limited
systems.

Notations

Throughout the paper, small letters ′a′ will be used for scalars, capital letters
′A′ for vectors, and bold capital letters ′A′ for matrices.

1. Introduction

In this work, we consider achievable rates for transmission strategies suited to
Ultra-wideband (UWB) systems and focus non-coherent receivers (i.e. those which
do not perform channel estimation, but may have prior knowledge of the second-
order channel statistics). Here we take a UWB system to be loosely defined as any
wireless transmission scheme that occupies a bandwidth between 1 and 10 GHz and
more than 25% of it’s carrier frequency in the case of a passband system.

The most common UWB transmission scheme is based on transmitting infor-
mation through the use of short-term impulses, whose positions are modulated by
a binary information source [1]. This can be seen as a special case of flash signaling
coined by Verdu in [2]. Similar to direct-sequence spread-spectrum, the positions
can further be modulated by a non-binary sequence (known as a time-hopping se-
quence) for mitigating inter-user interference in a multiuser setting [3]. This type
of UWB signaling is a promising candidate for military imaging systems as well
as other non-commercial sensor network applications because of its robustness to
interference from signals (potentially from other non-UWB systems) occupying the
same bandwidth. Based on recent documentation from the FCC it is also being
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considered for commercial adhoc networking applications based on peer-to-peer
communications, with the goal being to provide low-cost high-bandwidth connec-
tions to the internet from small handheld terminals in both indoor and outdoor
settings. Proposals for indoor wireless personal area networks (WPAN) in the 3-5
GHz band (802.15.3) are also considering this type of transmission scheme.

In this work, we focus on the case of non-coherent detection since it is well
known [7][8] that coherent detection is not required to achieve the wideband AWGN
channel capacity, C∞ = PR

N0 ln 2 bits/s, where PR is the received signal power in
watts, and N0 is the noise power spectral density. In [8] Telatar and Tse showed
this to be the case for arbitrary channel statistics in the limit of infinite bandwidth
and infinite carrier frequency. Their transmission model was based on frequency-
shift keying (FSK) and it was shown that channel capacity is achieved using very
impulsive signals.

In [2] Verdu addresses the spectral efficiency of signaling strategies in the wide-
band regime under different assumptions regarding channel knowledge at the trans-
mitter and receiver. The characterization is in terms of the minimum energy-per-bit
to noise spectral density ratio (Eb/N0)min and the wideband slope S0. The latter
quantity is measured in bits/s/Hz/3dB and represents growth of spectral efficiency
at the origin as a function of Eb/N0. Verdu’s work is fundamental to our problem
since is shows that approaching C∞ with non-coherent detection is impossible for
practical data rates (>100 kbit/s) even for the vanishing spectral efficiency of UWB
systems. This is due to the fact that S0 is zero at the origin for non-coherent detec-
tion. To get an idea of the loss incurred, consider a system with a 2GHz bandwidth
and data rate of 20 Mbit/s (this would correspond to a memoryless transmission
strategy for channels with a 50ns delay-spread) yielding a spectral-efficiency of .01
bits/s/Hz. For Rayleigh statistics the loss in energy efficiency is on the order of
3dB, which translates into a factor 2 loss in data rate compared to a system with
perfect channel state information at the receiver. The loss becomes less significant
for lower data rates and/or higher bandwidths.

The main goal of this work is to examine under what conditions different non-
coherent signaling strategies can approach the wideband channel capacity with
perfect channel knowledge at the receiver subject to a large but finite bandwidth
constraint and different propagation conditions. Section II deals with the underly-
ing system model for transmission and reception as well as the channel model. In
section III we evaluate expressions for the achievable information rates of different
signaling schemes based on reasonably simple analog filter receivers. In section IV
we present some numerical evaluations of the expressions from section III. Finally
in section V we examine some issues related to multiple-access interference.

2. System Models

We restrict our study to strictly time-limited memoryless real-valued signals,
both at the transmitter and receiver. The time-limited and memoryless assump-
tions are made possible due to the virtually unlimited bandwidth of UWB signals.
The transmitted pulse, of duration Tp, is passed through a linear channel, h(t, u),
representing the response of the channel at time t to an impulse at time u. We as-
sume that the impulse response of the channel is of duration Td � Tp. The channel
is further assumed to be a zero-mean process.
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The received signal bandwidth W is roughly 1/Tp, in the sense that the majority
of the signal energy is contained in this finite bandwidth. The received signal is
given by

(2.1) r(t) =
∫ Tp

0

x(u)h(t, u)du + z(t)

where z(t) is white Gaussian noise with power spectral density N0/2. The channel
is further assumed to satisfy∫ Td+Tp

0

∫ Tp

0

h2(t, u)dtdu < ∞

which rules out impulsive channels and reflects the bandlimiting nature of ana-
log transmit and receive chains (antennas and radio-frequency components.) The
transmitted signal is written as

(2.2) x(t) =
N∑

k=0

s(uk)
√

Esp (t− kTs)

where k is the symbol index, Ts the symbol duration, Es = PTs the transmitted
symbol energy, uk ∈ {1, . . . ,m} is the transmitted symbol at time k, p(t) and s(uk)
are the assigned pulse and amplitude for symbol uk. For all k, p(t) is a unit-energy
pulse of duration Tp. The considered model encompasses modulation schemes such
as flash signaling, m-ary PPM, amplitude, and differential modulations. A guard
interval of length Td is left at the end of each symbol (from our memoryless as-
sumption) so that Ts ≥ Tp + Td. From the point of view of spectral efficiency, we
have that Eb

N0
= P

N0C(P/N0)
, where C(P/N0) is the average mutual information of

the underlying signaling scheme as a function of the SNR.
The large bandwidths considered here (>1GHz) provide a high temporal reso-

lution and enable the receiver to resolve a large number of paths of the impinging
wavefront. Providing that the channel has a high diversity order (i.e. in rich
multipath environments), the total channel gain is slowly varying compared to its
constituent components. It has been shown [4, 5, 6] through measurements that
in indoor environments, the UWB channel can contain hundreds of paths of signif-
icant strength. We may assume, therefore, that for all practical purposes, the total
received energy should remain constant at its average path strength, irrespective
of the particular channel realization. Variations in the received signal power will
typically be caused by shadowing rather than fast fading.

The finite-energy random channel may be decomposed as

h(t, u) =
∞∑

i=1

∞∑
j=1

hi,jθj(u)φi(t)

where hi,j are the projections of the channel on the the input and output eigenspaces,
{θj(u)} is the set of eigenfunctions (for L2(0, Tp)) of the transmit pulse and {φi(t)}
is the set of eigenfunctions (for L2(0, Tp + Td)) of the received signal. Since the
input in (2.2) is one-dimensional, the most appropriate choice for p(t) is the one
which maximizes the expected energy of the channel output

p(t) = argmax
f(t)

E

(∫ Tp

0

h(t, u)f(u)du

)2

= θ1(t)
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where θ1(t) is the eigenfunction corresponding to the maximum eigenvalue, µ1, of
the input cross-correlation function

Ri(u, u′) = E
∫ Ts

0

h(t, u)h(t, u′)dt =
∫ Ts

0

Rh(t, t;u, u′)dt

and Rh(t, t′;u, u′) = Eh(t, u)h(t′, u′). The use of this input filter is conditioned on
the emission requirements of UWB systems, and thus it may not be possible to
satisfy the maximal energy solution in practice.

The above decomposition allows us to write (2.1), for each symbol k, as the
equivalent channel

rk,i =
√

µ1his(uk) + zi, i = 1, ...,∞
where zi is N(0, N0/2). For notational convenience we have dropped the in-
dex corresponding to the input projection from hij since we are constrained one-
dimensional inputs. Furthermore, if we choose the output eigenfunctions to be the
solution to

λiφi(t) =
∫ Td+Tp

0

∫ Tp

0

∫ Tp

0

Rh(t, u; t′, u′)θ1(u)θ1(u′)φi(t′)dudu′dt′

we have that the hi are uncorrelated and have variance λi.
Because of the bandlimiting nature of the channels in this study, the channel

will be characterized by a finite number, D, of significant eigenvalues which for
rich environments will be roughly equal to 1 + 2WTd, in the sense that a certain
proportion of the total channel energy will be contained in these D components.
Under our rich scattering assumption D is limited by bandwidth and not insufficient
scattering and we may in some cases make the following approximation

µ1

D∑
i=1

h2
i ≈ 1

for all channel realizations. This assumption essentially says that the received signal
energy is not impaired by signal fading due to the rich scattering environment.

For notational convenience, we will assume that the eigenvalues are ordered by
decreasing amplitude. An example of an eigenvalue distribution is shown in Fig.
1. This corresponds to an exponentially decaying multipath intensity profile with
delay-spread 50ns filtered by a window function of width 1ns, resulting in a system
bandwidth of approximately 1 GHz.

3. Non-Coherent Detection

In this section we consider non-coherent receivers, that may or may not have
access to the second-order channel statistics. The motivation for such a study is
to derive receivers that are reasonable from an implementation point of view. We
particularly focus on solutions whose front-end can be implemented with analog
technology, as shown in Fig. 2. We assume that the transmitter does not have side
information about the instantaneous channel realization and that is constrained to
the use of flash-like signaling. We first numerically compute the average mutual
information for such a system, then we derive a lower bound on the achievable
rates for three receivers, based on energy-detection with m-ary PPM modulation,
using different front-end filters. This modulation can be seen as a specially-designed
channel code for flash-signaling.
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Figure 1. Example Eigenvalue Distribution: Td = 50 ns, W ≈ 1 GHz.

3.1. Average Mutual Information. From the results of Verdu in [2] we
have in our rich scattering case that (Eb/N0)min is ln 2

µ1E
∑D

i=1 h2
i

≈ ln 2. In the case
of vanishing spectral efficiency, binary flash-signaling is first-order optimal, and
achieves this minimal Eb/N0. Using the notation from the previous section, we
express the binary flash signaling scheme as

uk =
{

1 with probability η
0 with probability (1− η)

s(0) = 0, s(1) =
√

Es

η , and Ts = Td + Tp. We assume that the hi are Gaussian
ergodic sequences, which implies that the system’s temporal resolution is not fine
enough to resolve all the degrees of freedom of the considered channel and that
the projection of h(t, u), on each of the kernel’s directions, is the combination of
a relatively large number of independent multipath components. Measurements of
UWB channels[4] have shown that channel components can be considered to fade
according to Rayleigh statistics in non-line-of-sight conditions, indicating that this
assumption is quite reasonable. Conditioned on uk, Rk is a zero-mean Gaussian
vector with covariance matrix E

[
RkRT

k

]
= diag(s(uk)Esλi+ N0

2 ). It is easily shown
that

I(U ;R) = − 1
Ts

E
Y

[
η log

(
η + (1− η)

√
det(I + A−1) exp

(
− 1

2Y T A−1Y
))

+ (1− η) log
(

(1− η) + η√
det(I+A−1)

exp
(

1
2Y T (A + I))−1Y

))]
bits/s(3.1)

with Y a zero-mean gaussian random vector with covariance matrix I and A =
diag( N0η

2Esλi
)). This is easily computed numerically.

3.1.1. m-ary PPM with Energy Detection. In this section we consider two ver-
sions of energy detectors, one involving a time-varying filter, and a second based on
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(a) Time-varying Filter Realization

(b) Time-invariant Filter with energy detection
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(c) Time-invariant Filter with Differential Detection

(d) Time-invariant Filter with Imperfect Coherent Detection

Figure 2. Receiver Structures

a simple time-invariant filter. We use base-band m-ary PPM signals to transmit the
information bits. Each PPM symbol corresponds to choosing one out of m symbol
times in which to emit the transmit pulse p(t), which is a special case of the flash
signaling system described above with η = 1/m. In practice, we would consider a
coded modulation scheme with a binary code mapped to m-PPM symbols. Here,
Ts = Tp + Td, so that the channel can be considered to be memoryless.

The data is encoded using a randomly generated codebook C = {C1, C2, . . . , CM}
of cardinality M and codeword length N . Each codeword Cl is a sequence Cl =
(c1,l, c2,l, . . . , cN,l) of m-PPM symbols. Let Cw be the transmitted codeword, using
the notations of model (2.2) we have uk = ck,w, and s(uk) = 1.

For all n ∈ [1, N ] and k ∈ [1,m] let

Rn,k = [i ∈ [0, D] , < r(t), φi,n(t− (k − cn,w)Ts) >]
= Sn,k + Zn,k
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where Sn,k and Zn,k are the signal and noise components of Rn,k, and w denotes
the index of the transmitted codeword.

Zn,k = [i ∈ [0, D] , < z(t), φi,n(t− (k − cn,w)Ts) >]

Zn,k is a Gaussian random vector with mean zero and covariance matrix Kz = N0
2 I.

Using the same reasoning as in the previous section, we will assume that Sn,k has
a Gaussian distribution.

3.1.2. Optimal Time-Variant Filter. Consider the weighted energy detector
used for all the possible pulse emission positions at each symbol,

qn,k = Rn,kQ−1RT
n,k

with Q = diag(N0
2 + Esµ1λi) This front-end is equivalent to passing the received

signal through the time-variant linear filter [11]

Q(t, u) =
D∑

i=1

1
N0
2 + Esµ1λi

φn,i(t)φn,i(u)

qn,k =
∫ tn,k+Td+Tp

tn,k

r(t)
∫ tn,k+Td+Tp

tn,k

Q(t, u)r(u) du dt

which is optimum for symbol-by-symbol detection. The decoder forms the decision
variables

qk =
1
N

N∑
n=1

qk,n

and uses the following threshold rule to decide on a message: if qk exceeds a certain
threshold ρ for exactly one value of k, say k̂, then it will declare that k̂ was trans-
mitted. Otherwise, it will declare a decoding error. This is the same sub-optimal
decoding scheme considered in [8].

An upper-bound on the decoding error probability is then given by the following
theorem

Theorem 3.1. The probability of codeword error is upper bounded by
(3.2)

Pr[error] ≤ M min
t>0

exp−N

tρ− ln

(1− η)(1− 2t)−
D
2 + η

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− 1
2


with ρ = (1− ε), and η = 1/m.

Proof: The decision variable for the transmitted codeword Cw is given by

1
N

N∑
n=1

(Sn,w + Zn,w)Q−1 (Sn,w + Nn,w)T

by the ergodicity of the noise process, this time-average will exceed the threshold
with probability arbitrarily close to 1 for any ε > 0 as N gets large. For all k 6= w
we bound the probability Pr [qk ≥ ρ] using a Chernoff bound

Pr [qk ≥ ρ] = Pr [Nqk ≥ Nρ]

≤ min
t>0

e−tNρ
N∏

n=1

E [exp(tqn,k)]
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We have that for all cn,k = cn,w

E [exp (tqn,k)] = (1− 2t)−
D
2

and for all cn,k 6= cn,w

E [exp (tqn,k)] =
D∏

i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− 1
2

Let l be the number of collisions between codewords Cw and Ck, then we have that

Pr [qk ≥ ρ] ≤ min
t>0

e−Ntρ

 D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− 1
2
l

(1− 2t)−
(N−l)D

2


Averaging over all the realizations of the randomly generated codebook we obtain

E
C

[Pr [qk ≥ ρ]] ≤ E
C

min
t>0

e−Ntρ(1− 2t)−
(N−l)D

2

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− l
2


≤ min
t>0

E
C

e−Ntρ(1− 2t)−
(N−l)D

2

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− l
2


= min
t>0

e−Ntρ

 N∑
l=0

(
l
N

)
ηl(1− η)N−l(1− 2t)−

(N−l)D
2

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− l
2


= min
t>0

e−Ntρ

(1− η)(1− 2t)−
D
2 + η

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− 1
2
N

.

Using a union bound we obtain the desired result.

The decoding error probability in equation (3.3) decays to zero exponentially
in N as long as the transmission rate R satisfies

R =
1

MNTs
log(M)

≤ max
t>0

1
Ts

tρ− ln

(1− η)(1− 2t)−
D
2 + η

D∏
i=1

(
1− 2t

1 + 2Esµ1λi

N0

)− 1
2


Due to the finite cardinality of the symbol alphabet our information rate is bounded
by

R ≤ 1
Ts

log2(m) bits/s

3.1.3. Sub-optimal time-invariant filter. We now consider the case where the
receiver does not have access to channel statistics and/or is constrained to use a
time-invariant front-end filter because of implementation considerations. This can
be considered as a mismatched receiver for the channel at hand. The received signal
is first filtered by the time-limited unit-energy filter q(t) of duration Tp/2, which
allows us to reduce the number of degrees of freedom of the received signal while
capturing the majority of its information bearing part. If we constrain the channel
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to be time-invariant, in order to maximize the signal energy at the output of the
filter we choose q(t) such that q(t) ∗ q(t) = θ1(t), and use q(t) in the transmitter as
well. The resulting output,

y(t) = (r ∗ q)(t) = ((s + z) ∗ q)(t)
= sq(t) + zq(t)

For each potential emission position tn,k = (n − 1)mTs + kTs we compute the
received energy on the interval from tn,k to tn,k + Td + Tp

qn,k =
∫ tn,k+Td+Tp

tn,k

y2(t) dt

This corresponds to a receiver structure commonly used in UWB radar applications.
Let {φn,i(t), i = 1, · · · ,∞} be the set of basis functions of the Karhunen-Loeve
expansion of the noise part of the signal zp(t) on the interval from tn to tn + Td +
Tp, then Zn,k(i) =< zq(t), φn,i(t) > with Zn,k is a Gaussian random vector with
mean zero and covariance matrix diag(νi). Let

√
Esλisn,i =< s(t), φn,i(t) > and

E
∑∞

i=1 λis
2
n,i = 1, an upper bound of the decoding error probability conditioned

on the channel response is

Pr[error|h(t)] ≤ M min
t>0

e
−N

[
tρ+ D

2 ln(1−N0t)−ln

(
(1−η)+ηe

t
1−N0t

αµ1Es
)]

with ρ = (1− ε)αEs + D N0
2 , α =

∑∞
i=1 λis

2
n,i, and η = 1/m. The derivation of this

upper-bound is similar to that of Theorem 1. Under the rich scattering assumption,
α will be very close to 1 and the probability of error will be independent of the
particular channel realization.

3.2. Quasi-Coherent Detection. We now consider the performance of two
receivers exploiting imperfect channel estimates.

3.2.1. Noisy Channel Estimation with m-PPM. Consider the case where a noisy
estimate of the channel h̃(t, u) = h(t, u) + n(t, u) is available at the receiver, where
n(t, u) is a white Gaussian zero-mean random process with variance σ2

h. Projecting
S̃ over the same set of basis functions as in (2) we obtain

S̃n = [i ∈ [0, D] , < s̃(t), φi,n(t)) >]
= Sn,w + Nn,w

The received signal is then correlated against the channel estimate for all the
possible pulse emission positions in each symbol period as

qn,k = Rn,kS̃n
T

= (Sn,k + Zn,k) (Sn,w + Nn,w)T
.

An upper bound of the decoding error probability conditioned on the channel real-
ization is given by

Pr[error|h(t, u)] ≤ M min
t>0

e
−N

[
tρ+ D

2 ln(1−N0σ2
ht2

2 )−αµ1EsN0t2

4 −ln((1−η)+ηV )

]
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with

V = exp
αµ1Es

(
2t + σ2

h
N0
2 t4

) (
σ2

h + N0
2

)
2
(
1− N0σ2

ht2

2

)
and ρ = (1 − ε)αEs, α =

∑D
i=1 λis

2
n,i, and p = 1/m. The proof of this result

is similar to Theorem 1. Again, under the rich scattering assumption, α will be
close to 1 so that the error probability is independent of the particular channel
realization.

The above decoding error probability decays to zero exponentially in N as long
as the transmission rate R satisfies

R =
1

mNTs
log(M)

≤ max
t>0

1
Ts

(
tρ +

D

2
ln(1− N0σ

2
ht2

2
)− EsN0t

2

4
− ln ((1− p) + pV )

)
3.2.2. Differential Modulation. A practical way to obtain an estimate of the

channel at the receiver is to use differential antipodal modulation. Using the no-
tations of (2.2) we have that Ts = Td + Tp, and uk = s(uk)s(uk−1) ∈ {−1, 1}.
Providing the assumption that the channel does not vary between two consecutive
symbol times, we can use the received signal at symbol-time k − 1 as a channel
estimate for the following symbol-time k so that

qn,k = xn,kRn,kRT
n−1,k

= xn,k (Sn + Zn,k) (Sn + Zn−1,k)T

An upper bound on the decoding error probability conditioned on a particular
channel realization is given by

Pr[error|h(t, u)] ≤ M min
t>0

e
−N

[
tρ+ D

2 ln(1−N2
0 t2

4 )−
αµ1Est(1+

N0
2 )

1− t2N0
4

−ln( 1
2 (1+V )))

]

with

V = exp
tαµ1Es

(
t2N2

0
4 − 2

)
1− t2N0

4

and ρ = (1 − ε)αEs and α =
∑D

i=1 λis
2
n,i. The proof of this result is similar to

Theorem 1.

4. Numerical Results

We show the numerical evaluation of the bounds in the previous sections in Figs.
3,4, where the symbol alphabet size (i.e. m) has been optimized for each SNR. The
effective bandwidth of the system is 1 GHz and the channel is an exponentially
decaying multipath channel with a delay spread of 50ns (the example of section
II). We see that the typical information rate losses with respect to optimal flash
signaling are less than a factor 2 with m-PPM and reseasonably simple linear filter
analog receivers. We note, however, that significant performance degradation can
be expected with differential detection of antipodal modulation compared to flash
signaling.
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Figure 3. Achievable rates of energy detection based receivers:
Td = 50 ns, W = 1 GHz
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Figure 4. Achievable rates of quasi-coherent detection schemes:
Td = 50 ns, W = 1 GHz

5. Multi-access Interference

The networks which will likely employ UWB signaling, for example Wireless
Personal Area Networks(WPAN) and sensor networks, are characterized not only
by a rich scattering propagation environment but also by requirements for adhoc
and peer-to-peer communications. This latter requirement has a significant impact
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on systems design, since the signaling schemes must be robust to strong impulsive
interference (from nearby interferers) as shown in Fig. 5. Here we show a small
network consisting of 2 transmitter-receiver pairs. The receiving nodes are both far
from their respective transmitters and suffer from strong interference. In contrast
to CDMA networks with a basestation/mobile topology, UWB adhoc networks
will likely not benefit significantly from centralized or distributed power control
resulting in extreme near-far interference. Even the substantial processing gains
(with coherent detection) of these systems will do little in such an environment.
The purpose of this section is to analyze the robustness of flash-signaling with
respect to near-far interference.

Transmitting Node

Receiving Node

Desired Signal

Interference

Figure 5. Simple Peer-to-Peer Network Example

Generalizing the model of the previous sections by adding a single interferer we
have

r
(1)
k,i =

√
Es,1µ1

η
h

(1)
k,is

(1)(u(1)
k ) +

√
Es,2µ1

η
h

(2)
k,is

(2)(u(2)
k )︸ ︷︷ ︸

interference

+z
(1)
k,i , i = 1, ...,∞

We have assumed for simplicity that the interferer is synchronous to the desired
signal. Consider and upper-bound on the achievable rate where we assume a genie-
aided decoder which passes the symbol positions of the interferer to the receiver of
the desired signal. For this rate to be achievable without a genie, we must have
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that R2 ≤ I(U (2);R(1))), and use a multiuser receiver to decode the desired signal.
In the genie-aided case, the rate of the desired user’s signal is

R1 ≤ I(U (1);R(1), U (2))

= I(U (1);R(1)|U (2))

= (1− η)I(U (1);R(1)|U (2) = 0) + ηI(U (1);R(1)|U (2) = 1)(5.1)

Each of the mutual information functionals in (5.1) can be expressed as in (3.1),
and in the case of very strong interference, the second term will be negligible. We
see, therefore, that the influence of the interference is a reduction in throughput by
a factor 1−η. The fact that channel knowledge is unavailable at the receiver makes
the problem similar to that of the erasure channel, where erasures are generated by
the presense of an interfering symbol. In practice, the genie-aided scheme could be
implemented using a threshold rule on the front-end filter output, which is chosen
so that the probability of detecting the presence of strong interference (and thus
declaring an erasure) is very close to 1 when an interferer is transmitting. Random
coding bounds similar to those of Section 3 for m-PPM modulation and a modified
decoding rule taking into account interference are readily obtained.

6. Conclusions

In this work we studied the achievable rates of memoryless signaling strategies
over ultrawideband (UWB) multipath fading channels. In particular we focused
on strategies which do not have explicit knowledge of the instantaneous channel
realization, but may have knowledge of the channel statistics. We evaluated the
mutual information of general binary flash-signaling and achievable rates for m-
PPM as a function of the channel statistics, which can be seen as a practical
coded-modulation strategy for implementing flash-signaling. We can conclude that
m-PPM combined with simple analog front-end receivers can provide virtually the
same data rates as general binary flash-signaling. Finally, we briefly examine the
robustness of flash-signaling for interference-limited systems, where it is shown
that flash-signaling seems to be an efficient means for combating severe near-far
interference.
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