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Présentée au département Signal et Images,
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Paris, ENST
Juillet 2003





Abstract

The explosive growth of mobile internet is a major driver of wireless telecommunications market

today. In future years, the number of online wireless users will exhibit strong progression in every

geographic region and devices will tend to support multimedia applications which need big trans-

mission data rates and high quality. Third generation telecommunication systems, like UMTS in

Europe, aim at rates approaching
�

Mbits/s in particular cellular environments, but they will ini-

tially be deployed in coexisting second generation systems, like GSM, which were conceived to

support voice traffic, but are evolving to higher-data-rates versions like GPRS. These hybrid sys-

tems have the target to support globally data rates at least of 144 kbits/s and locally of 2 Mbits/s.

This thesis makes several contributions to the area of mobile advanced receivers for CDMA

and approximate/exact maximum likelihood (ML) detection for multi-input multi-output (MIMO)

systems. Advanced signal processing techniques are applied to increase the performance of the

receiver by mitigating the distortion caused by radio propagation channel and the interference in-

troduced by the multiple access to the wireless system.

The conventional receiver for DS-CDMA is matched filter. These receivers are interference lim-

ited. Another receiver called zero forcing (ZF) separates cochannel signals but at the expense of

increase in signal-to-noise (SNR) at the output of the receiver and because of noise enhancement

the performance of the ZF receiver degrades at low SNR. In order to improve the performance

of the receiver a natural choice is to minimize the overall error, which results in minimum mean

square error (MMSE) receiver. Better results can be obtained if some valid constraints are used for

detection. The third type of receiver is ML receiver but unfortunately the computational complex-

ity grows exponentially in the number of users, in case of CDMA and in the number of antennas

in case of MIMO systems. An alternative to ML (by enumeration) technique is to increase the

likelihood function iteratively until local/global maximum is reached. This iterative technique

is called expectation maximization (EM) algorithm. The EM algorithm is a broadly applicable

approach to the iterative computation of ML estimates, useful in variety of incomplete-data prob-
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lems, where algorithms such as the Newton-Raphson method may turn out to be more complicated.

On each iteration of the EM algorithm, there are two steps- called expectation step or E-step and

maximization step or M-step. The basic idea of the EM algorithm is to associate with the given

incomplete-data problem, a complete-data problem for which ML estimation is computationally

more tractable.

In the first part of the thesis, we use EM algorithm to estimate the channel amplitudes blindly

and compare the results with the Cramer-Rao bound (CRB). Furthermore, we find low complexity

relaxed ML detection for the CDMA, and show its superior performance to the MMSE receiver.

The second part of the thesis concerns the detection problem in MIMO systems. As mentioned

earlier, the ML method by enumeration for detection is computational complex. In the language

of optimization theory, the ML problem is NP-hard. Recently, low complexity exact ML has been

obtained by sophisticated method called sphere decoding. The sphere decoding searches the clos-

est point in a lattice to a given received signal. Its computational complexity is polynomial (if the

radius of the sphere is optimally chosen) for high SNR and at low SNR its complexity explodes.

We are able to device an algorithm for exact ML detection using a discrete geometric approach.

The advantage of this algorithm is that its performance is polynomial irrespective of the SNR

and no heuristic is employed in our algorithm. An alternative way to ML problem is to devise

low complexity algorithms whose performance is close to the exact ML. This can be done using

semidefinite programming (SDP) approach. The computational complexity of the SDP approach

is comparable to the average complexity of the sphere decoder but still it is quite complicated for

large systems. We obtained low complexity (by reducing the number of the variables) approximate

ML by second order cone programming (SOCP) approach.

In the above discussion the channel state information is assumed to be known at the receiver. We

further looked into the problem of detection with no channel knowledge at the receiver. The result

was the joint channel-symbol estimation. We obtained the results of joint channel-symbol estima-

tion using EM algorithm and in order to reduce the complexity of the resulting EM algorithm, we

used mean field theory (MFT) approach (a method vastly used in statistical physics). The MFT

approach is used to approximate the posteriori MAI probabilities for MIMO system and the results

are compared with exact ML for a known channel.
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Résumé

Cette thèse apporte plusieurs contributions dans le domaine des récepteurs CDMA avancés, et

des techniques de détection par maximum de vraisemblance (MV) exact et approché pour les

systèmes multi-entrées multi-sorties (MEMS). Des techniques de traitement de signal élaborées

sont utilisées pour améliorer les performances du récepteur en atténuant la distorsion causée par

le canal radio, et l’interférence introduite par l’accès multiple.

Dans la première partie de cette thèse, nous utilisons l’algorithme d’Expectation-Maximization

(EM) pour estimer en aveugle les amplitudes des coefficients du canal, et nous comparons les

résultats avec la borne de Cramér-Rao. De plus, nous développons une version relaxée de la dé-

tection MV, à faible complexité, et montrons que ses performances surpassent celles du détecteur

à erreur quadratique moyenne minimale (EQMM). La deuxième partie de cette thèse concerne le

problème de la détection dans les systèmes MEMS. En effet, l’énumération inhérente au détecteur

MV rend sa complexité rédhibitoire. En langage de théorie de l’optimisation, le problème de

détection MV est NP-complet. Récemment, la détection MV exacte à faible complexité a été ren-

due possible par l’algorithme de décodage par sphère (sphere decoding). Le décodeur par sphère

cherche le point d’un treillis le plus proche du signal reçu. Sa complexité à haut rapport signal-

à-bruit est polynomiale (à condition que le rayon de la sphère soit choisi de manière optimale).

La complexité explose lorsque le rapport signal-à-bruit diminue. Nous proposont un algorithme

de détection MV exacte utilisant une approche géométrique discrète. L’avantage de cet algo-

rithme est sa complexité polynomiale, quel que soit le rapport signal-à-bruit, et le fait qu’aucune

méthode heuristique n’est employée. Une solution alternative au problème de la détection MV

est de développer des algorithmes à faible complexité dont la performance est proche de celle du

détecteur MV exact. Ceci peut être fait grâce à l’utilisation de la méthode de programmation semi-

définie (en anglais, semi-definite programming). Cette approche offre une complexité comparable

à celle du décodeur par sphère, qui reste assez élevée pour des systèmes de grande taille. Nous

obtenons une méthode MV approchées à faible complexité par l’approche de la programmation en

cône du deuxième ordre. Nous établissons également des bornes sur la performance de la méthode
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de programmtion semi-définie.

Jusqu’ici, la connaissance de l’état du canal était considérée comme parfaite. Nous avons

également exploré le problème de la détection sans connaissance du canal au récepteur. Le résultat

est un algorithme d’estimation conjointe du canal et des symboles, basé sur l’algorithme EM, et

la théorie du champ dynamique moyen (CDM, ou mean field theory, méthode largement utilisée

en physique statistique) pour en réduire la complexité. L’approche du CDM est utilisée pour

approximer les probabilités a posteriori d’interférence d’accès multiple. Les performances de la

méthode proposée sont comparées à celles du détecteur MV exact pour un canal connu.
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Contents

Abstract i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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Chapter 1

Introduction

The continous growth of traffic and emergence of new services have begun to change the structure

of the wireless networks. Future mobile communications systems will be characterized by high

throughput, integration of services and flexibility. The advent of ����� generation systems will open

up a range of possible services and will significantly increase the available data rates and decrease

the Bit Error rate (BER). To achieve high data rates at such BERs, multiple access interference

(the major impairment) cancelation will be required. ����� generation systems will use one form or

another of Direct Sequence Code Division Multiple Access (DS-CDMA). In the first part of the

thesis we study multiuser detection, which has the potential of improving DS-CDMA communica-

tions. In multiple access techniques different users share the same communication medium. The

three basic multiple access techniques are, Frequency Division Multiple Access (FDMA), Time

Division Multiple Access (TDMA) and the Code Division Multiple Access (CDMA). In CDMA

system different codes are assigned to each user. In FDMA users are given a separate carrier fre-

quency and in FDMA the users are multiplexed by orthogonal time slots. A CDMA scheme is

one in which each user transmits his signal using a bandwidth much larger than the data rate [17].

Two major spreading schemes exist, namely the direct sequence and frequency hopping spreading

[14]. In DS-CDMA all users use the same bandwidth, but each user is assigned a distinct code. In

practical systems, a combination of the above three multiple access schemes is usually employed

(taken two at a time traditionally). An example is the European Global system for Mobile Com-

munications (GSM) or the North American IS-54 standard that are both based upon a combination

of FDMA and TDMA multiple access strategies.Another example, Qualcomm Inc.’s IS-95, is di-
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2 Chapter 1 Introduction

rect sequence CDMA based mobile cellular system, with user assigned distinct, pseudo-random

(PN) spreading sequences in an otherwise frequency split system. The goal is to make different

user signals look as noise-like for each other possible. Other methods of spreading the spectrum

like frequency hopping (FH) CDMA, never really became popular for wireless systems.

Perhaps the foremost concern in the successful implementation of future cellular networks is ca-

pacity, and can be defined as the number of concurrent users that can be supported for a given total

bandwidth. Consequently, a number of comparisons between the above multiple access methods

have been carried out in recent years in order to establish the superiority of one over the other in

terms of system capacity. However, no practical examples are available to make one believe that

one system is better than the other.

1.1 Characterization of the propagation channel

The basic phenomena that influence radio propagation in wireless communication system are:

1. reflection, which occurs when a propagating electro-magnetic wave impinges on a smooth

surface with a dimension several times larger the wavelength ( � ),

2. scattering, which happens when the wave strikes a rough surface or a body whose dimen-

sions are lesser or of the order of � , thus causing the reflected energy to scatter all over,

3. diffraction,which arises when a dense obstructing body of dimension larger than � lies in

the path between transmitter and receiver; the electromagmetic wave rolls around the body

and can reach the receiver even when there is no line of sight path.

Depending on the type of environment, i.e., urban, rural etc., one or several of these phenom-

ena might occur. Therefore, channel models have been developed for a particular environments

that take into account the effects of these mechanisms, and translate them into signal distortions

like time-spreading and loss in signal-to-noise ratio (due to multi-path components). The transmit-

ted signal can therefore be considered to be passing through a channel which has a certain impulse

response.

There is another concern, called fading, which is the power variation at the receiver due to time

varying channel. There are two types of fading:

1. large -scale fading, defined as the average signal power attenuation due to motion over large

areas, occurring due to major contours (hills, buildings etc) between the transmitter and

the receiver. The receiver is said to be shadowed by these imposing obstacles. Shadowing

is statistically characterized as log-normally distributed random variable. If P is the power
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transmitted to the kth mobile situated at a distance ��� from the base station, then the received

power is given by

� ��� ���
� �

���
�	� ��� ���

� ��� ���
� � � ����
 � ���

� 
�
���������� � ���� 
 ���
�����

where
� �

denotes a zero mean Gaussian random variable (in dB) with standard deviation  
(also in dB). The large scale fading mechanism is surrounding and distance dependent, i.e.,

even for vehicles moving at high speeds, the variation over time is rather slow.
� ����� 
 � ���

is the free space path loss at a reference distance � 
 somewhere close to the transmitting

antenna. Hence the estimate of the total path loss (in dB) including the mean path loss (nth

power loss with distance) and the variations about the mean accounting for shadowing, can

be obtained ( ! � �
) for free space. It can be smaller in the presence of a guided wave

phenomenon in urban streets and larger when obstacles are present, e.g., when the mobile

station is situated indoors.

2. Small scale fading manifests itself as rapid changes in amplitude and phase of the received

signal. These variations are the result of a large number of multi-path components with

uniformly distributed phases adding up over time. When the received signal is composed of

multiple reflected rays plus a significant line of sight, the envelope amplitude due to small

scale fading has Rician pdf. The fading in this instance is called Rician fading. Rayleigh

fading occurs when there is no lone-of-sight component present between transmitter and the

receiver.

The worst case variations can be of the order of 20-30 dB. The variations are carrier fre-

quency dependent.

The most important concept in describing the channel is channel coherence. Below we discuss

several types of coherences that a wireless channel may exhibit.

1.2 Coherence versus selectivity

Fading is a general term used to describe a wireless channel affected by some type of selectivity.

A channel has selectivity if it varies as a function of either time, frequency or space. The opposite

of selectivity is coherence. A channel has coherence if it does not change as a function of time,

frequency, or space over a specified window of interest.
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Indeed the wireless channels may be functions of time, frequency, and space. The most fun-

damental concept in channel modeling is classifying the three possible channel dependencies of

time, frequency, and space either coherent or selective. We will discuss each type of coherence

briefly.

1.2.1 Temporal coherence

If the envelop of the modulated carrier wave does not change over a time window of interest, the

wireless channel is said to have temporal coherence. Mathematically, we express this condition in

terms of a narrow-band (no frequency dependence), fixed (no spatial dependence) channel,
�� ��� � :

� �� ��� � ����� 

	�� � � � � � � 
 ��

���

� (1.1)

where
� 
 is some constant voltage,

���
is the size of the time window of interest, and � 
 is some

arbitrary moment in time. The largest value of
� �

, on average, for which the above equation holds

is called the coherence time and is the approximate time window over which the channel appears

static. In the microwave and millimeter frequency regime the most common cause of temporal

incoherence is the motion by either the transmitter or the principal scatterers in the propagation

environment.

1.2.2 Frequency coherence

A wireless channel has frequency coherence if the magnitude of the carrier wave does not change

over frequency window of interest. This window of interest is usually the bandwidth of the trans-

mitted signal. Mathematically, we express the condition of frequency coherence in terms of the

static (no time dependence), fixed channel,
�� � � � :

� �� � � � ����� 
 	�� � � � � � � � ��
 	 �
� (1.2)

where
� 
 is some constant amplitude, 	 � is the size of the frequency window of interest, and � � is

the center carrier frequency. The largest value of 	 � for which equation (1.2) holds is called the

coherence bandwidth and is the approximate range of frequencies over which the channel appears

static.

The dispersion of multi-path propagation causes frequency coherence in the wireless communi-

cations system. Since each received multi-path wave has traveled a different path from the trans-

mitter, the same transmitted signal will arrive at the receiver as a cluster of symbols, each with
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unique time delay. A dispersive channel, in time domain, introduces inter-symbol interference

(ISI). In the frequency domain, a dispersive channel has peaks and valleys across the bandwidth of

interest. This behavior in the frequency domain gives rise to two distinct classifications of fading

in wireless communications. A wireless channel with a coherence bandwidth that is less than the

bandwidth of the transmitted signal is said to have frequency-selective fading. A channel with co-

herence bandwidth that is greater than the transmitted signal bandwidth is said to have frequency

flat fading.

1.2.3 Spatial coherence

Spatial coherence of a wireless channel is defined as the magnitude of the carrier wave that does

not change over spatial displacement of the receiver. Once again, we express the condition of spa-

tial coherence in terms of a static narrow-band channel,
�� � � � , which is function of one-dimensional

(1D) space, r:

� �� � � � ����� 

	 � � � � � � � 
 � 

� �

� (1.3)

where
� 
 is some constant amplitude,

� �
is the size of the position displacement, and

� 
 is an

arbitrary position in space. The largest value of
� �

for which the equation (1.3) holds is called

coherence distance and is approximate distance that a wireless receiver can move with channel

appearing to be static. Spatial coherence is the result of the multi-paths arriving at the receiver

from different directions. These multi-path waves create pockets of constructive and destructive

interference so that the received signal power does not appear to be constant over small changes

in the receiver position. Thus, this type of channel exhibits spatial selectivity. If the distance tra-

versed by a receiver is greater than the coherence distance of the channel, we say that the channel

experiences small-scale fading (see [19] for more details on wireless channels).

1.3 Detection in CDMA system

Now we discuss briefly the detectors used in the CDMA system.

The conventional receiver used in the CDMA is the matched filter. It consists of parallel bank of

K (the number of users) filters, each matched to its own code waveform. If only one user is active

in the system, then this receiver is optimal for a particular user communicating over additive white

Gaussian noise. If we accurately model interference from other users as an additive white Gaus-

sian noise, the matched filter receiver works as Maximum Likelihood (ML) single user detector.

One of the disadvantages of the conventional scheme is that it is severely affected by multiple
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access interference (MAI), making such system interference limited [12]. The conventional detec-

tors also suffers from the near far problem in practice, which means that high power users destroys

the communication of low power users, even if the code waveforms have low cross-correlations.

Better results can be obtained if we jointly detect all users. For asynchronous transmission of L

information bit per user using Binary Phase Shift Keying (BPSK)or Quadrature Phase Shift key-

ing (QPSK) modulation and spreading, the ML detection is equivalent to minimizing Euclidean

distance between actual and the received signal, assuming an additive white Gaussian noise chan-

nel. This problem is NP-hard and it is too complex for asynchronous CDMA even for a moderate

number of users.

For certain special correlation matrices, it has been shown that the ML detection can be obtained

in polynomial time [50, 61]. In [61], the authors identify a class of optimum multiuser detection

problem which can be solved in polynomial complexity in the number of users. The identifica-

tion is based on transforming a quadratic 0-1 programming problem into an equivalent problem in

graph theory with positive edge weights. For synchronous CDMA, the result translates to design-

ing a set of pseudo-random codes with the property that the cross correlation between every pair

of codes in the set over one symbol period is non-positive. The authors also devised the method to

construct codes with that property.

The exponential complexity of the ML detection has inspired a considerable effort over the past

decade to device suboptimal low complexity receivers. Iterative methods to the ML problem have

also been suggested in overwhelming articles. Without the ambition of being exhaustive, we refer

to [34,48,114,113,112,111,42,43,49,47,59]. Based on iteratively maximizing the likelihood func-

tion, in [34] EM algorithm is applied to the CDMA detection problem by treating the bits of the

interfering users as hidden data when updating the estimate for a given user’s bit. Their derivation

led to the iterative receivers that use soft-decisions for interference cancelation and/or sequential

(rather than parallel) updates of estimates for users’ data. Low complexity successive interference

cancelation with SISO decoding is performed in [39]. The channel parameters are updated using

the EM algorithm. The feature of their algorithm is that single user SISO decoders provide at

each iteration an estimate of the a posteriori probabilities (APP) for the user code symbols, which

are used to form soft estimate of interference to be subtracted from the received signal. In this

way, the contribution of a user is effectively subtracted from the signal only if the symbol decision

is sufficiently reliable. Using this scheme performance very close to single user performance is

achieved after few iterations.

Another possibility to find low complexity solution is to relax the Finite Alphabet (FA) constraint

and to solve the resulting constrained problem. In [88,89], the solution is allowed to lie in a closed

convex set. One way [89], is to confine the solution vector to lie within a hypercube described by

the data points. The algorithm [88] constrains the data estimate to lie within sphere.

To make a ML decision for a multiuser detection (MUD), we need to solve a binary constraint
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problem.

1.4 Outline of the thesis

The objective of the first part of this work is to use a constrained optimization for the CDMA and

also use EM algorithm for the amplitude estimation in the synchronous CDMA case.

In [88], the authors considered the problem of maximizing the likelihood function over a sphere,

i.e. confine the solution vector to lie within the sphere and project the solution vector on the

sphere. This detector is ML under the assumption that the detected data vector is constrained to

lie within a hypersphere. Based on the defining Karush-Kuhn-Tucker point, it is shown that the

suggested detector is closely related to the MMSE detector. They analysed the convergence issues

and gave an efficient implementation procedure. In fact, in the sphere constrained problem the

solution vector lies on the sphere and not in the interior of the constraining sphere (as is done in

[88]). The other problem with their method is that a small error in the solution vector can cause a

large error when projected on to a sphere (provided the solution vector is well inside the sphere).

In chapter 4, we constrain the solution vector to lie almost on (very close to) the sphere and we

jointly estimate the complex channel coefficients and data vector. It is done as follows. In the

objective function, we subtract/add the Kullback-Leibler (KL) distance function or euclidean dis-

tance function to keep the old parameter set close to the new ones. These distance functions can

be considered as penalty terms. The above augmented cost function can be maximized/minimized

subject to the constraint that the detected data vector lies on the sphere. In chapter 5, we further

improved the result by solving exactly the sphere constraint problem (i.e solution vector lying on

the surface of the sphere).

In [109], the authors used a Gaussian mixture formulation to model the synchronous CDMA and

they used the EM algorithm to cope with the unknown amplitudes. They solved the problem by

first projecting the received signal on the signal subspace to reduce the dimensionality of the prob-

lem. In chapter 3, we showed that the dimensionality reduction operation results in the failure of

the EM algorithm when the number of users are moderate or small and discuss the convergence

issues.

The results of chapter 3, chapter 4, and chapter 5 are published in [110], [98], and [116] respec-

tively.

The second part of the thesis concerns detection of MIMO systems.

Digital communications using multiple-input-multiple output (MIMO), sometimes called ”vol-

ume to volume”wireless link, has emerged as one of the most significant technical breakthroughs

in modern communications. The technology figures prominently on the list of recent technical

advances with a chance of resolving the bottleneck of traffic capacity in future Internet-intensive
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wireless networks. Perhaps even more surprising is that just a few years after its invention, the

technology seems poised to penetrate large-scale standard-driven commercial wireless products

and networks such as broadband wireless access systems, wireless local area networks (WLAN),

3G networks and beyond.

A MIMO system is simply the deployment of multiple antennas at the transmitter and the receiv-

ing end for a wireless system. New MIMO systems represent a huge change in how wireless

communications systems are designed. This change reflects how we view multi-path in a wireless

system:

The Old perspective: The ultimate goal of wireless communications is to combat the distortion

caused by multi-path in order to approach the theoretical limit of capacity for band-limited chan-

nel.

The New respective: Since multi-path propagation actually represents multiple channels be-

tween a transmitter and receiver, the ultimate goal of wireless communications is to use multi-path

to provide higher total capacity than the theoretical limit for a conventional band-limited channel.

This philosophical reversal implies that many of the engineering design rules of thumb that were

based on pessimistic worst-case scenario channel models have now become unrealistically opti-

mistic. The idea behind MIMO is that the signals on the transmit antennas at one end and the

receive antennas at the other end are ”combined” in such a way that the BER or data rate of the

communication for each MIMO user will be improved. Such an advantage can be used to increase

the network’s quality of service. However, reliable decoding in these systems requires very high

complexity.

For a wide class of space-time transmission schemes, ML decoding requires to solve an integer

least square problem, which is, in general, NP-hard. Practical methods to solve this employ ap-

proximations or heuristics. One of the suboptimal receivers used in MIMO systems is the zero

forcing receiver, (i.e., invert the channel matrix and round to the closest integer and is called Babai

estimate). The other more sophisticated but suboptimal receivers are nulling and cancelling (De-

cision feedback MIMO). They use the Babai estimate for one of the entries of symbol and assume

that this symbol is known, subtract out its effect to obtain a reduced integer least square prob-

lem, then proceed similarly for the next symbol. Another receiver proposed in Bell laboratories

is nulling and cancelling with optimal ordering, also called BLAST [3]. The basic principle of

BLAST is to perform nulling/cancelling from the strongest to the weakest signal. However, BER

performance of these receivers are inferior to those of exact ML methods. Exact methods that

search over the entire Finite Alphabet(FA) require an exponential search. More sophisticated ex-

act methods such as Kannan’s algorithm [74], the KZ algorithm [41], and the sphere decoding

algorithm [3] attempt to reduce the search space. In the sphere decoding algorithm, we find the

lattice points lying in a hypersphere centered around the received signal, and then we determine

the closest lattice point to the received signal. The expected complexity of the sphere decoder
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when the radius is chosen correctly is � � !�� � (for high SNRs). Choosing the optimal radius for the

sphere decoder is NP-hard. Recently semidefinite relaxation has been successfully applied to the

CDMA and MIMO systems. Using semidefinite relaxation very close to exact ML performance is

obtained with complexity of ��� ! ��� � � . Semidefinite programming (SDP) relaxation has been used

for decoding in CDMA by [99,100,40,101]. The authors in [100] used SDP relaxation scheme to

the synchronous CDMA and also showed that some existing detectors such as the decorrelator,

the LMMSE detector, and a particular form of the modified SAGE detector can be considered

as degenerate forms of the SDP relaxation ML. The SDP ML detector offers an attractive trade-

off between BER performance and computational cost. Lattice reduction aided detector for the

MIMO system was proposed in [73]. In [73], the authors used a lattice reduction technique for

two transmit antennas and two receive antennas systems. They used a Gauss lattice basis reduc-

tion method to enhance the performance of the MIMO system. The work in [73] was extended for

general MIMO systems in [72], using algorithm proposed by A. K. Lenstra, H. W. Lenstra, and

Lovasz (“ LLL algorithm “) for lattice reduction, which is quite complex as compared to Gauss

method (Gauss method works for
� � �

system). The objective of the second part of the thesis

is to device low complexity algorithms for channel estimation and symbol detection. First of all,

we assume that the channel state information is known at the receiver. As stated earlier the com-

plexity of the SDP relaxation is ��� !���� � � . Still for large system this could be computationally quite

complex. In chapter 8, we propose to apply a second order cone programming (SOCP) approach

to resolve large system problems, which offers substantial computational savings over SDP re-

laxation scheme and the sphere decoding, while maintaining the performance arbitrarily close to

ML. In chapter 9, we derive exact ML detection scheme for MIMO system, when the number of

receiving antennas is fixed, by maximizing the Euclidean distance function over zonotope. Using

a classical theorem of discrete geometry, it is shown that vertices search can be done in polynomial

time � � !�� � , where ! 		� are the number of transmit antennas and receive antennas respectively.

This method is polynomial time irrespective of the SNR (as opposed to the sphere decoder whose

complexity is exponential at low SNRs).

In the above chapters for MIMO detection, we assume that the channel is known at the receiver. In

chapter 11, we propose to detect the symbols of each user and estimate the channel iteratively for

a multiuser space time coding system. The channel gets estimated blindly via expectation maxi-

mization (EM) algorithm by formulating the problem as a Gaussian mixture model. The estimated

channel is then used to detect the symbols for each user, which is also done in an iterative fashion,

i.e., by user-wise detection. We consider FA for MAI, to simplify and to reduce the complexity

of the resulting EM algorithm, we consider the introduction Mean Field methods for approximat-

ing the a posteriori MAI symbol probabilities. The idea of the Mean Field method is borrowed

from the statistical physics community where it is extensively used for approximating probabili-

ties in Ising model [97]. The BER using our method is very close to the exact ML, i.e., ML by
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exhaustive search with exact channel state information at the receiver. In chapter 10, we use the

EM algorithm to estimate the channel and to detect the information bits iteratively. Two cases for

interfering users bits are considered, corresponding to Gaussian and discrete MAI priors. The al-

gorithm iterates between channel estimates and symbol estimates until convergence. Simulations

shows that BER quite close to the ML is achieved. In this chapter we also make use of the Mean

Field method to simplify posteriori probability of interfering users bits while dealing the case of

discrete MAI prior.

The results of the chapter 8, chapter 9, chapter 10, and chapter 11 will be published in [22], [20],

[53], and [51] repectively.
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Iterative estimation for CDMA
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Chapter 2

CDMA fundamentals

In this chapter, we introduce the CDMA channel model and present optimal decisions rules.

2.1 System model

Let us consider a CDMA channel that is shared by K active users. Each user is assigned a signature

waveform � � ��� � of duration
�

, where
�

is the symbol interval. A signature waveform may be

expressed as

� � ��� � �
��� �
�
���
��� � � ! ��� ��� � ! � � � 	 
 
 � 
 �

(2.1)

where
"
� � � ! � 	 
 
 ! 
 � � 
 $ is a code sequence consisting of � chips that take values

"
	 $ ,
and � ��� � is the pulse of duration

� �
, where

� �
is the chip interval. Thus, we have � chips per

symbol and
� � � ��� . Without loss of generality we assume that � signature waveforms have

unit energy.

The information sequence of the ��� � user is denoted by
" ��� � � � $ , where the value of each infor-

mation symbol may be chosen uniformly from the set
�

. All data sequences are equally probable

and each symbol is statistically independent of the other symbols and also between users. Let us

consider the block of symbols of some arbitrary length,
�

. The corresponding equivalent low-pass

13
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waveform received over the channel for the ��� � user can be expressed as

� � ��� � � � � ��� � �
��
� �
�
� ! ����� � ��� ��� ��� � ��� � � � � 	 (2.2)

for

 
 � 
 � � � 
 � � , where � denotes the convolution operator, � � ��� � is the complex channel

impulse response and
! � ��� � represents the energy per symbol. The composite transmitted signal

for the � users may be expressed as

� ��� � � ��
� �
� � � ��� ��� � � � ��

� �
�
��
� �
�
� ! � ��� � ��� ��� � � � ��� � � � ����� � � � �	� � � 	 (2.3)

where
� � is the transmission delay for user � , which satisfy the condition


 
 � � 
 �
for

� � 
 	 � 	    	 � . Without loss of generality, we assume that

 
 � � 
 ��
 
    	 
 � �

� �
. This

is the model for the multiuser transmitted signal in asynchronous mode. For the synchronous case

all time delays are zero.

For a frequency non-selective channel, the signal bandwidth is significantly smaller than the co-

herence bandwidth of the channel, and the multi-path components are not resolvable [14]. In this

case, the received signal is the transmitted signal multiplied by a complex-valued random pro-

cess representing the time variant characteristics of the channel. Furthermore, if we assume that

the signal duration is significantly smaller than the coherence time of the channel, the channel is

slowly fading and the channel parameters, attenuation and phase shift, are essentially constant for

the duration of at least one symbol interval. When these assumptions are applied for all users,

they experience the same simple AWGN channel. The transmitted signal is also assumed to be

corrupted by AWGN. Hence the received signal may be expressed as

� ��� � � � ��� � � ! ��� � (2.4)

where ! ��� � is the noise, with variance  


.

2.2 Detection of signals in AWGN

In this section the matched filter (MF) output for DS-CDMA system with � users is derived. The

sampled output 
 contains all data from the received continuous time signal
� ��� � , i.e., it is sufficient

statistics for detection. The problem of detecting the signals can be viewed as an � hypothesis

testing model, where � is the number of all possible combinations of the data symbols ��� � �
� .

Each particular combination of � for hypothesis � � is denoted by � � . The hypothesis testing can

be modeled as

� � � ��� � � � ��� 	 � � � � ! � � � 	 ��� � � � � 	 � � � � �
� 	


 
 � 
 � 	 (2.5)
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where � ��� 	 � � � and ! ��� � represent the signal for hypothesis � � with data symbols � � and AWGN,

respectively. The white noise has double-sided power spectral density � 
�� �
.

The problem is to observe
� ��� � and to decide which hypothesis is true with minimum probability

of error. The following idea will enable us to solve this problem easily. Our observation is a time

continous random waveform. The first step is to reduce it to random variables collected in so

called received vector. The method to obtain the received vector
�

is defined by series expansion

[24].

� � ������ �
� ��� ��� �� ��� � ���

� � ������ �
� ��� ��� �� ��� � � � � ���� � ! � � ��� �� � � (2.6)

� � � � � � ! � (2.7)

where
� � is the ��� � component of the vector

�
and � �� ��� � is the ��� � basis function for the series

expansion. The vector � consisting of the components
" � � $ is called the signal vector and ! is the

noise vector.

A sufficient statistics of
� ��� � is the sampled output of the matched filter of all the users for the

whole interval. The MF output for the ��� � user during the � � � signal interval is


 ����� � � �
	 ���
��

� �����

� � �����
� ��� ��� � ��� � � � ��� � � ��� 	 
 
 � 
 � 	 
 
 � 
 � 	

� � 	 ��� ��
 � ��� �� � ��� � � ��� ��� � ��� � � � � � � � � ! ��� ��� � ��� � � � ��� � � ��� (2.8)

Using vector notation, the
� � matched filter outputs can be expressed as


 � ��� � ��� (2.9)

where 
 ��� 
 � 
 �    
 � � ��� � , 
 ��� � ��� 
 � � 
 �    
 � � � ��� � , � ��� � � 
 �    � � � ��� � , � ��� � ��� � � � 
 �    � � � � ��� � ,� ��� � � 
 �    � � � ��� , and
� ��� � ��� � � � 
 �    � � � � ��� � .� is the diagonal matrix that contains the channel coefficients of the users, and � is the

� � � � �
correlation matrix of � � . The Gaussian noise vector

�
has zero mean and autocorrelation matrix

! � ��� � � �  


� (2.10)
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2.3 The optimum detector

The maximum a posteriori (MAP) detection criteria which minimizes the probability of error is

based on maximizing the probability that � was transmitted given that 
 is received. Thus, it

decides � � if

� � � � � 
 ��� � � ��� � 
 � ���� 


if the prior probabilities are equal then we have

� � � � � 
 � �
� ��
 � � � � � � � � �� ��
 � � � � ��
 � � � � (2.11)

where � is the term which does not depend on which hypothesis is true. To maximize
� � � � � 
 � ,

we need only to maximize the likelihood function
� ��
 � � � � . Hence, for equal prior probabilities

we decide � � if

� ��
 � � � ��� � ��
 � � � � 	 ���� 


This is known as the maximum likelihood (ML) decision rule. Since the noise
�

is Gaussian and

the mean value of 
 conditioned on the transmitted vector � is,
! � 
 � � � � ��� � . This results in

conditional pdf,

� ��
 � � � �



�	�  


� �
��
 
 � � �

� 
 
���
�� � � ��

� ��� � � � � � � ��
 � ��� � �

 

 � (2.12)

The negative loglikelihood function is

� ��� � � ��
 � ��� � � � � � � ��
 � ��� � � 	
and to do ML detection for the symbols we have

�
� � �

� � � ��! ��������� � � � � ��� � � � � � " 
 � � � $  (2.13)

The solution of the above equation requires a search over all the
� �
� possible combinations

of the components of the vector � . It is thus clear that the computational complexity increases

exponentially with the number of users.

In the case of synchronous system, real channels and binary symbols, we can write the detection

problem as the following optimization problem

�
� � �

� �
�
�
���������! #" � � � � � ��� � � � 
 � � � 	 (2.14)

and in the case of complex channels and QPSK symbols we have

�
� � �

��� � � ! ���%$'&
� �
& �)( � � � � � ��� � � � � � " 
 � � � $ (2.15)
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which can be written as

�
� � �

� �
�
�
���� �����! #" � �

�
� � �� �� � � �� � �
 (2.16)

In the above equation we have converted complex quantities into twice larger real quantities.

In this chapter, we have developed the MAP and ML criteria for a CDMA channel. These criteria

describe the decision rules based on the received signal. It is also shown that finding ML solution

requires complexity that grows exponentially with the number of users.
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Chapter 3

Iterative blind demodulation of

synchronous CDMA

Multiuser detection is known to drastically increase the bandwidth efficiency of CDMA systems

compared to conventional detection method using RAKE receiver.

Widely used techniques consist of removing the multiple access interference (MAI) from the re-

ceived signal before making the data decision. In this chapter, iterative blind estimation of the

complex amplitudes of the users is considered. A Gaussian mixture model formulation of the prob-

lem is introduced, and the Expectation Maximization (EM) algorithm is used for the estimation

of the users’ amplitudes. Simulation results compare the performance of the proposed algorithm

with the Cramer-Rao bound.

19
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3.1 Introduction

Code Division Multiple Access (CDMA) is one of the most common multiple access techniques

for wireless communication systems. In CDMA, all users use the entire frequency band and are

separated at the receiver by each user’s quasi-orthogonal spreading codes in order to reduce inter-

user interference. In recent years, various kinds of receivers have been proposed for the CDMA

system. In this chapter, we consider the problem of estimating the received amplitudes of the users

knowing only their spreading codes. Talwar, et al [81] proposed iterative least square with enumer-

ation (ILSE). This method solves the problem by estimating the channel by short training sequence

or from previous estimates and finds the data sequence over all possible data in the Finite Alphabet

(FA). The authors also proposed iterative least square with projection (ILSP) which also initially

estimates the channel with the same method as for ILSE but treats the problem as a continuous

optimization problem, and projects the results onto the discrete alphabet. Iterative joint symbol de-

tection and channel estimation for the CDMA using SAGE algorithm is proposed in [48]. In [34],

the EM and SAGE algorithms are applied to derive various multiuser detectors for the white Gaus-

sian noise channel. Monte Carlo simulations show near-far resistance of these schemes. In [114],

the authors have proposed a class of nonlinear multiuser detectors. These “iterated-decision” mul-

tiuser detectors use optimized multi-pass algorithms to successively cancel MAI from the received

data and generate symbol decisions whose reliability increases monotonically with each iteration.

They significantly outperform decorrelating detectors and linear MMSE detectors, but have the

same order of computational complexity. In [80,109], the authors considered the projection of the

received signal on the signal subspace of the received signal autocorrelation matrix, and applied

the Gaussian mixture formulation for amplitudes estimation. Their proposed algorithm is faced

with two problems

1. Eigenvalue decomposition of the received signal autocorrelation matrix (a computationally

complex operation), an other algorithm must be used for signal subspace tracking and also

signal subspace mismatch can deteriorate estimation of the parameters.

2. The most important one is that by projecting the data vector onto signal subspace or any

other matrix of lower dimension, it can be imagined (and this is borne out by experience

with EM like techniques), that the result may not converge to true means of the Gaussians.

This can be explained by the following reason: Let M be the number of Gaussians and P

be the dimensionality of the data. If the dimension is decreased from P to q, the average

Euclidean distance between any two means decreases as
� � � � , and the probability that

the means are separated by less than
�  increases. The criterion for the separation of two

Gaussian distributions in one dimension is that the distance between two means is greater

than twice the standard deviation (
�  ). Furthermore, Gaussians that are poorly separated in

the original dimension will tend to become even more poorly separated as the dimension-
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ality is decreased. Thus, it is very important that the Gaussians remain well separated after

projection onto a lower dimensional space. If they are not, it will be difficult for the EM

algorithm to recognize overlapping components as distinct Gaussian distributions, resulting

in a total failure of the EM algorithm.

Our approach, considers directly the output of the channel (the received signal) as the mixture

of a known number of Gaussian and estimates its parameters. This avoids the discussed problems,

and by keeping the spreading factor not too high, the computational complexity is kept moderate

(comparable to the case in which the projection is done) . Direct Maximum Likelihood (ML) esti-

mation of parameters is complex, and therefore we use expectation maximization (EM) algorithm

to find the parameters of our model. Mixture models, in particular mixtures of Gaussian, have

been a popular tool for density estimation, clustering and unsupervised learning with wide range

of applications. Mixture models are one of the most useful tools for handling incomplete data,

in particular hidden variables. For Gaussian mixtures, the hidden variable indicate for each data

point the index of the Gaussian that generated it. The EM technique is used to iteratively update

the maximum likelihood estimate of the parameters of the mixture which are used to obtain the

amplitudes of the users.

The rest of the chapter is organized as follows: The signal model for the problem is described

in section 3.2. Section 3.3 is devoted to the principle of the EM algorithm. In section 3.4, 3.5, 3.6

and 3.7 EM formulation of the problem, convergence rate, simulations, performance are repec-

tively analyzed. Some conclusions are finally drawn.

3.2 Signal model

We consider DS CDMA with � -users and a processing gain
�

. The output of the channel is chip

matched filtered and sampled at the chip rate. The system is assumed to be synchronous. In a

single data interval we have a
�

-dimensional vector � , given by

� � � ��� � ! (3.1)

where � is
� � � matrix whose columns are � users normalized spreading sequences:

� ��� � � � � 
 �    � � �  (3.2)

In eq (3.1),
� � diag � � � 	 � 
 	      � � � , are the users’ received amplitudes,

� � � � � 	 � 
 	    	 � � �contains the symbols transmitted by the users, and ! is a
�

dimensional Gaussian random vector

for noise with covariance matrix given by  

 �

, where
�

is identity matrix.
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We assume that the symbols of the different users are independent i.e.
! � � � ��� � � 


for � � �
and



otherwise.

We can write equation (3.1) as

� � � � � ! 	 (3.3)

where � � � � is � � � � � dimensional matrix.

Given model of equation (3.3) our goal is to estimate
�

( i.e. users signal amplitudes) from

multiple independent observations of � .

3.3 EM framework for Maximum Likelihood estimation

First of all, we briefly describe EM algorithm.The Expectation-Maximization (EM) algorithm

[77,79], is a broadly applicable approach to the iterative computation of maximum likelihood

(ML) estimates, useful in a variety of incomplete-data problems. The EM algorithm is closely

related to the ad hoc approach to estimation with missing data, where the parameters are estimated

after filling in initial values for the missing data. The latter are then updated by their predicted

values using these initial parameters estimates. The parameters are then re-estimated, and so on,

proceeding iteratively until convergence. The development of the EM algorithm and the related

methodology together with the availability of inexpensive and rapid computing power have made

the analysis of data sets much more tractable than they were earlier.

EM algorithm is an iterative approach to Maximum Likelihood Estimation (MLE), originally for-

malized in ( Dempster, Laird and Rubin, [78] ). Each iteration is composed of two steps: an

expectation (E) step and a maximization (M) step. The aim is to maximize the loglikelihood� � ��� � � ��� ��� � � ��� � � , where
�

are the parameters of the model and D are the data. Suppose

that this optimization problem would be simplified by the knowledge of the additional variable 	 ,

known as missing or hidden data. The set
� � � ��
 	 is referred to as the complete data set (in the

same context D is referred to as incomplete data set). Correspondingly, the loglikelihood function� � � ��� � � � is referred to as complete data likelihood. 	 is chosen such that the function
� � � ��� � � �

would be easily maximized if 	 were known. However, since 	 is not observable,
� �

is a random

variable and cannot be maximized directly. Thus, the EM algorithm relies on integrating over the

distribution of 	 , with the auxiliary function ��� � 	 �� � � !�
 � � � � ��� � � � � 	 �� � , which is the expected

value of the complete data likelihood, given the observed data D and the parameter
��

computed at

the previous iteration. Intuitively, computing � corresponds to filling the missing data using the

knowledge of the observed data and previous parameters. The auxiliary function is deterministic

and can be maximized. An EM algorithm iterates the following two steps, for k=1,2,...., until a

local or global maximum of the likelihood is found.
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Expectation: Compute

��� ��� � 	 � 
 � � ! 
 � � � � ��� � � � � 	 � 	 � 
 � (3.4)

Maximization: Update the parameters as

� 	 � � ��
 � �
� �

� ����� ��� ��� � 	 � 
 � 	 (3.5)

Often in practice, the solution to the M step exists in closed form. In some cases, it is difficult

to analytically maximize � � ��� � 	 � 
 � , as required by the M-step of the above algorithm, and we

are only able to compute a new value
� 	 � � ��
 that produces an increase of Q at each iteration,

i.e., choose
� 	 � � ��
 to increase the � �� � function � � ��� � 	 � 
 � at each iteration. Hence the likelihood

function increases after each iteration. In this case we have so called generalized EM (GEM) al-

gorithm.

We have explained EM algorithm for ML estimation but it can also be used for maximum a poste-

riori estimation problems. The expectation step remains the same as for the ML estimation but the

maximization step differs in that the objective function for the maximization is equal to � � ��� � 	 � 
 �
augmented by the log prior density, � ��� � � � � .
The EM algorithm has several appealing properties relative to other iterative algorithms such as

Newton-Raphson and Fisher’s scoring methods for finding MLEs. Some advantages compared to

the other algorithms are as follows:

1. The EM algorithm is numerically stable with each EM iteration increasing the likelihood

(except at the fixed point of the algorithm).

2. The EM algorithm has reliable global convergence under fairly general conditions.

3. The EM algorithm is generally easy to program, since no evaluation of the likelihood nor its

derivatives are involved.

4. The EM algorithm requires small storage space. For instance, it does not have to store infor-

mation matrix or its inverse at any iteration.

3.4 Formulation of EM for Gaussian mixture problems

We consider the BPSK case in which the transmitted data take on two possible values
" � 
 	 � 
 $

with all symbol vectors being equally likely.

In ML estimation problems we have a density function
� � � � � � that is governed by the set of

parameters
�

(e.g.
�

might be the set of Gaussians and
�

could be the means and covariances).

The data is of size � , supposedly drawn from this distribution, i.e
� � � � � 	       � � � . That is, we
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assume that these data vectors are independent identically distributed (i.i.d) with distribution
�

.

Therefore, the resulting density for the samples is

��� � � � � �
��� � �

� � � � � � � � � � � � � �  

This function
� � � � � � is called the likelihood of the parameters given the data, or just the

likelihood function. In the ML problem, our goal is to find
�

that maximizes
�

. That is, we wish

to find
� � where

� � ��� � ��� � 
� � � � � � �  (3.6)

Assuming that the channel output � can be approximated by Gaussian distributions, i.e.,
� � � � � �

can be modeled as P-dimensional mixture of Gaussians. We can write

� � � � � � ����
� �
�
	 � � � � � � � 	�� � � 	 (3.7)

where � � �

� and

� � � � � � 	�� � � � 

� � � � 	�
 
 
 
 � � � � � 
 
���
���� �



� � � � � � � � � � �� � � � � � ��� 	 (3.8)

with 	 ��� 

, and � �� � � 	 � � 


. The parameter vector
�

consists of mixing proportions 	 � ,
the means vectors � � , and the covariance matrices � � . Given M and given N independent, i.i.d.

samples
"
� � $ � � , we obtain the following likelihood

� � � � �
�
� � � � �

��� ��
� �
� 	 � � � � � � � � 	�� � � (3.9)

which is difficult to optimize because it contains the logarithm of a sum. If we consider X as

incomplete, since we do not know which index j, within the mixture probability density function

output has originated. Consider 	 � "
� $
�� � � as the incomplete data, and we suppose the existence

of unobserved data items � " 
 � $
�� � � whose values indicate which component density generated

each data item, then the likelihood expression is significantly simplified. That is, we assume

that 
 � � 
 	    	 � for each i, and 
 � � � if the � ��� sample was generated by the � ��� mixture

component. The complete data likelihood becomes.

� ��� � � � 	 	�� � � � � �
�
� � � � �

��� � � � � � � 
 � � � ��
 � � �
�
� � � � �

��� � 	���� � ��� � � � � � ��� � � (3.10)
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The problem, of course, is that we do not know the values of � . We can proceed if we assume �
to be a random quantity.

First of all we derive the expression for the distribution of the hidden data. Let

��� � � 	 � � 	    	 	 � � 	 � � � 	    	 � �� �
be the appropriate parameters for the likelihood

� � � � � 	 	�� � . Given
� �

, we can easily compute

��� � � � � � �� � for each � and


.The mixing proportion parameter 	 � can be thought of as prior proba-

bilities of each mixture component. Using Bayes’s rule we have

� ��
 � � � � 	 � � � � 	 ���� � � � � � � � � ���� �� � � � � � � � � 	 ���� � � � � � � � � ���� �� �� � � 	 � � � � � � � � � �� � 	 (3.11)

and

����
 � 	 	 � � � �� � � ����
 �
�
� � 	 � � � 	 (3.12)

where 
 � ��
 � 	    	 
 � � is an instance of the hidden data independently drawn. Now we can start

computing the E-step of EM algorithm.

��� � 	 � � � � �
� ��� �

��� � � � � � 	 	 
 � ��� ��
 � 	 	 � � � 	 (3.13)

which can further be written as

� � � 	 ��� � � ���  � �    ����� � �
�
� � � � �

��� � 	�� � � � � � � � � � � � �
��
� �
� � ��
 �

�
��� 	 � ��� �  (3.14)

The above equation can be further simplified as

� � � 	 ��� � � ���  � �    ����� � �
�
� � � � �

�
�
�
�
� � � � � � ��� � 	 � � � � � � � � � � �

��
� �
� � ��
 �

�
��� 	 ��� � (3.15)

� � � 	 � � � � �� �
�
�

�
� � � � �

��� � 	 � � � � � � � � � � � ���  � �    ����� � �
� � � �
	

��
� �
� � ��
 �

�
� � 	 � � � (3.16)

After some simplification and using the fact that � �� � � � ��
 � � ��� 	 � � � � 

, the above equation can

be written in the following form

��� � 	 ��� � � �� �
�
�

�
� � � � �

��� � 	 � � � � � � � � � � ��� � � � � � 	 ��� � (3.17)

��� � 	 ��� � � �� �
�
�

�
� � � � �

��� � 	 � ��� � � � � � 	 ��� � � �� �
�
�

�
� � � �

� ��� � � � � � � � � � � ��� � � � � � 	 ��� �  (3.18)
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The mixing proportions ( 	 � ) and covariance matrices in our case are constant and are given

by
�
�
� and  


 �
respectively. To this end, we have for a d-dimensional Gaussian

� � � � � � � 	�� � � � 

� � � � � 



 � � � � � 
 
 � � � 
 
 	 � � ��� 
������  � 	 � � �	� 
 (3.19)

Taking log of the above equation, ignoring constant terms and plugging into eq. (3.19), we have

��� � 	 ��� � � �� �
�
�

�
� � � � �

� 

�
� ��� � � � � � � 


� � � � � �
� � � � � �� � � � � �

� � ��� � � � � � 	 ��
 � (3.20)

Differentiating eq (3.20) with respect to �
�

and setting it to zero, we get

�
� � � �� � � � � � � � � � � 	 � � �� �� � � ��� � � � � 	 � � � 	 (3.21)

where the posteriori probabilities � � � � � � 	 � � � is defined as follows:

��� � � � � 	 � � � � 	 � � � �
	 � � � � � ��
	 �� �� � � 	 � � � ��� � � � � �� �  (3.22)

The algorithm works as follows. Firstly the posteriori probabilities are calculated using initial

estimates of means. The posteriori probabilities tell us the probability that each received data

belongs to each Gaussian. These posteriori estimates are used to find the update means of the

mixture. These two steps are repeated until convergence. The convergence of the EM algorithm

to a solution and the number of iterations depends on the tolerance, the initial parameters, the data

set, etc. Using EM for Gaussian mixture, the amplitudes of the users are estimated as follows

[109]

� � � �  


��
� �
�

�
�
� �

� � � � � � �
� � � � ! � � � � �
� � ��� ! � � � � �

�


��
� �
�

�
�
���

� ��� ! � � � � �
� � � � ! � � � � �
� � ��� ! � � � � � (3.23)

where,

� � � � � � �


��
� �
�



�

� �
� �  



� � � �

� � ���
��


�  

 � � � ��� � � � � � � �
� � � (3.24)

and

� � � � � � � �



� � �  


� 
 
 
 � � � �



�  


� � � �
� � � � � � �
� � (3.25)

and � � � 	 � � 
 	 � 	    	 �

� � is the set of all
�

� transmitted vectors. From the estimate of � , the

amplitudes can be estimated as

� � �
�
� � � � � ��� � (3.26)
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3.5 Convergence rate of EM algorithm for Gaussian mixtures

Before deriving an expression for the convergence rate of the EM algorithm for the Gaussian

mixture model, we state two results available in the statistical literature regarding the convergence

of EM. First, it has been established that, under mild conditions EM is guaranteed to converge

toward a local maximum of the loglikelihood function [79]. (Indeed the convergence is monotonic:� � � 	 � � ��
 � � � � � 	 � 
 � , where
� 	 � 
 is the value of the parameter vector

�
at iteration � ). Second,

considering EM as a mapping
� 	 � � ��
 � � � � 	 � 
 � with fixed point

� � � � � � � � , we have

� 	 � � ��
 � � � ��� � � � � �
� � � � � 	 � 
 � � � � (3.27)

when
� 	 � � ��
 is near

� � , and thus

� � � 	 � � ��
 � � � � � 
 � � � � � � � �
� � �

� �  � � � 	 � 
 � � � � � 	 (3.28)

with

� ��� � � � � �
� � �

� � �� 

(3.29)

almost surely. That is, EM is a first order algorithm.

Now we prove the result for the convergence rate of EM algorithm for Gaussian mixture model.

Theorem: For Gaussian mixtures, the convergence rate
�

of the EM algorithm for means and

hence for the channel is bounded by

� �
��� � 	 � � ��
� � � ��

���
��� � 	 � 
� � � ��

���

 ��� � � � ����

� �� �
��� ��� � � �

�� � 	 � � ��
 � � � ���� � 	 � 
 � � � �� (3.30)

where � � , � are means, and channel coefficients respectively, and � � � denotes the converged

point.
�

and
� �� � denotes the Identity matrix and Hessian of the likelihood function at � �� and�

���
� �	 ���
  �
� ���� 	 � 
 . The higher the values of � � � , the slower will be the convergence.

Proof: Xu and Jordan [82], showed that for each iteration the following relationship holds

between the gradient of the loglikelihood and the EM update step:

� 	 � � ��
� � � 	 � 
� � � 	 � 
���
� �
� � �

�
��� � � �

���
�
 (3.31)

From the above equation, using Taylor expansion around the convergent point � �� for large k and

noting that
� 	 � 
���

� ��
���
�
��� � ����

� 

, we have

� 	 � � ��
� � � 	 � 
� � � ����
� �� � � � 	 �



� � � �� � 	 (3.32)
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which can be written as

� 	 � � ��
� � � �� � � 	 � 
� � � �� � � ����
� �� � � � 	 �



� � � �� � (3.33)

� 	 � � ��
� � � �� � � � � � ����
� �� � � � � 	 �



� � � �� �  (3.34)

The result follows after using Schwarz inequality. It has been proved by Ma et al.[83] that the

asymptotic convergence rate of EM for Gaussian mixtures, locally around the true solution � �� ,

is � � �
�
� �
���
� � �� � � where � � 


is an arbitrary small number, � � � � means that it is higher order

infinitisimal as ��� 

, and � � � �� � is a measure of overlap of Gaussians in the mixture.

In other words, the large sample local convergence rate of the EM algorithm tends to be asymp-

totically super-linear when � � � �� � tends to zero.

3.6 Simulations

The performance of the proposed method was evaluated as a function of SNR (signal to noise

ratio) based on Monte Carlo simulations. The method was tested for 500 Monte Carlo trials per

SNR point across range of SNR’s. In each trial, the amplitude estimation error was recorded.

Data block of 32 symbols were used in all simulations. The spreading gain was 32. The proposed

method worked quite well for the two and three users case (due to the fact that there were only

four and eight mixture of Gaussians respectively). In figure 3.1, the performance is compared

with the approximate Cramer Rao bound which is not as tight as the Cramer-Rao bound (CRB).

The difference between the simulations and the CRB can be explained by the fact that the initial

parameter values for the EM algorithm were given as random numbers, i.e., initial values were

not confined to be in the vicinity the true value of the parameter. This was done in order to show

the results for EM in a more realistic way (because in reality it is very difficult to know a priori

good starting points for an algorithm). Figure 3.2 compares the estimation error for three and four

users. Beyond three users, the estimation error increased quite substantially (as is clear from figure

3.2). This effect can be explained from the fact that as the number of users increases, it is more

probable for the EM algorithm to converge at false means of the mixture of Gaussians (if random

initialization is done as in our case). Therefore, very good initialization is needed when number

of users grows large. In figure 3.3 we show the failure of the EM algorithm for two closely spaced

Gaussians. Figure 3.3 is the plot of three realizations of mixture of two Gaussians. The mean of

the first Gaussian is � � � 	 � � and that of the second Gaussian is � ��
  � 	 �  � � . It is clear from the

figure that EM did not converge to the true means. However, in figure 3.4 we have shown the plot

of two well separated Gaussians. The mean of the first Gaussian is � � � 	 � � and that of the second

Gaussian is � � � 	 
 � . Due to well separateness of the Gaussians, the EM converged almost to the

true means.
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3.7 Conclusions

In this chapter, we presented a Gaussian mixture formulation of the problem which consists of

blindly estimating the users amplitudes for the synchronous CDMA system. We proposed an EM

based algorithm to estimate the parameters of the mixture. The theoretical convergence rate for the

means in the Gaussian mixture case was also presented. Simulation results show the usefulness

of the method. The estimation error is compared with the approximate Cramer-Rao lower bound.

The behavior of the convergence of the EM algorithm to the means of Gaussians is also discussed.
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Chapter 4

Iterative constrained penalized

likelihood estimation of parameters for

CDMA

We describe in this chapter an iterative method for Maximum Likelihood (ML) parameter esti-

mation corrupted by additive white Gaussian noise. In the objective function, we subtract/ add

a Kullback-Leibler (KL) distance function or an Euclidean distance function to keep the old pa-

rameter set close to the new ones and can be considered as penalty term. The above augmented

cost function can be maximized/minimized over the constraint that the detected data vector lies

on the sphere. We simplify this constraint function by using a first order Taylor expansion at

the old parameter value. The useful behavior of the proposed algorithm is verified by numerical

experiments.

33
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4.1 Introduction

In CDMA system, all resources are in principle available to all users simultaneously. The users

are distinguished from each other by user specific signature sequences, modulating the transmit-

ted data symbols using direct sequence spread spectrum techniques. In the past, many iterative

techniques have been considered, see for example [81,92]. The unconstrained ML problem can

be solved quite easily and is known as the decorrelating detector. In [99,40], the authors consider

application of semidefinite programming (SDP) approach to the detection problem in CDMA, giv-

ing very close to ML performance. This method is however computationally complex for a large

number of users. In [89], a constrained Maximum Likelihood problem was considered where the

solution vector is constrained to lie with in a hypercube (“ Box constrained ML”). Special cases

of this algorithm correspond to known, non-linear successive and parallel interference cancelation

structures, using a clipped soft decision function for making tentative decisions. These structures

are therefore ML under the assumption that the detected vector lies within a hypercube. In the

same paper, the authors investigated the convergence issues and suggest an efficient implemen-

tation. Similarly, they also proposed a method of maximizing likelihood function over a sphere

by confining the solution vector to lie within the sphere, and by projecting the solution vector on

the sphere. This detector is ML under the assumption that the detected vector is constrained to lie

within a hypersphere. Based on the Karush-Kuhn-Tucker point, it is shown by simulations that

the suggested detector is closely related to the MMSE detector. The authors analyse also the con-

vergence issues and give an efficient implementation. In fact, in the sphere constrained problem

the solution vector lies on the sphere, and not in the interior of the constraining sphere (as is done

in [88]). The other problem with the above method is that small error in the solution vector can

cause large error when projected on to the sphere (provided the solution vector is well inside the

sphere). In this chapter, we constrain the solution vector to lie almost (very close) on the sphere,

and we jointly estimate the complex channel coefficients and data vector.

The rest of the chapter is organized as follows: The signal model for our problem is described

in section 4.2. In section 4.3, we develop sphere constrained approximate penalized likelihood

function. In section 4.4, we analyze the performance of the proposed method and simulations are

presented.

4.2 Signal model

In this section, discrete-time baseband up-link signal model for CDMA communication system is

described. We consider asynchronous CDMA with single path channels. The signal is corrupted

by the presence of an additive white Gaussian noise (AWGN) with zero mean and variance
���
 �

 


. The number of users in the system are assumed to be K. The processing gain, � � �

� � ��� ,
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where
�
� is symbol duration and

���
is the chip duration. The users transmit binary information

symbol streams ��� � ! � � " ��
 	 
 $ , ! � 
 	 
 	      	 � � 

is the symbol index and

�
is the length

of the data block. � � � ! � � � � � � ! � � 
 �        � � � ! � 
 � � ��� where � � ��� � � � � 
 � � � 	 
 � � � �
is the spreading code of user k to modulate ! ��� bit. In mobile radio channels, each transmission

path encounters temporal and spatial fading [9,11,16]. Furthermore, each user is transmitting at a

specific power level. In our single path K-user system, this corresponds to each user being received

with a random, time-dependent amplitude and phase, or equivalently, an arbitrary user k is affected

by a random, time dependent complex channel coefficients, � � ��� � . The received baseband signal

can be written as [95]

� �
� � ��
� �
� ��
� �
� � � ��� � � � ��� � � ! (4.1)

� �
� � ��
� �
� ��
� �
� � � ��� � ��� ��� �

��
�


 � � �����
� � ��� �
 	 � � � 
 ��� � � � �

���
� � ! (4.2)

Where
� � is the ��� � user time delay. The convenient matrix notation is given by

� � � � � � ! (4.3)

where the symbol vector is given by � � ��� � � 
 � 	 � 
 � 
 � 	      	 � � �
� � 
 � ��� � ��� � 	 � 
 	      	 � � � ���and � is

� � � � � diagonal matrix containing the physical channel parameters. The complex

channel coefficients � � ��� � contain all the fading and attenuation effects of the radio channel. � is

the matrix of transmitted waveforms with column



expressed as

� � �
��
�


 � � �����
� ����� �
 	 � � � 
 � � � � � �

���
� (4.4)

A minimal set of sufficient statistics of dimension
� � is obtained through correlation, matched to

the received signal. This also ensures the maximization of the SNR, i.e,


 � � � � � � � � � � � � � ! � ��� � ��� (4.5)

where � is the spreading sequence correlation matrix and z is a zero mean Gaussian vector with

covariance  


� .
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4.3 Sphere constrained approximate ML

Given the set of data 
 � � � � , our goal is to find parameters that maximize the � ��� � ��
 � � � or

minimize the negative of it. In iterative parameter estimation, given an old set of parameters
� �

we need to find a new set of parameters
� � � � that improves the likelihood at each iteration. In

our approach, we want the detected vector to lie close to the sphere, therefore we also require that

the new parameter vector to stay ”close” to the old set of parameters. In order to achieve it, we

incorporate a distance function , which can also be thought of as a penalty function.The role of the

distance function is to constrain the new parameter set to the old ones. We now search for new set

of parameters
� ��� � that minimizes the distance function summed with the negative loglikelihood

function subject to spherical constraint. We will call this function as ”augmented log-likelihood”.

More formally, the update is found by setting
� ��� � � �

� �
�
�
� �
� � � � where

� � � � � � � ��� � ��
 � � � � � � � � � 	 � � � � � ��� � � � � � �  (4.6)

Lagrange multiplier, � [23,26] is used to enforce the spherical constraint on symbols. The distance

function � � � � � 	 � � � in our case is KL divergence but other distance function can also be used. The

KL divergence is given by

� � � � � 	 � � � � � � � ��
 � � � � ���
� ��
 � � �� ��
 � � � � � 
  (4.7)

We approximate the sphere constraint by the first order Taylor expansion around � � (old parameter

set), i.e.,

� � � �	� � � ��� � � �	� � � � 	
� ��� � � � � ��� � ��� � �

� � � � � � � � 	 	 (4.8)

where � � is the value of the symbol vector at iteration � . Substituting equation (4.7) and equation

(4.8) in equation (4.6) we get

� � � � � � � ��� � ��
 � � � � � � � � � 	 � � � � � � ��� � � � ��� � � ����� �
�	� � � � � � � 	 �  (4.9)

The first order approximation is valid because distance function (penalty function) will force the

new parameters to remain close to the old ones at each iteration and hence the estimated vector �
will always be close to the surface of the sphere. The KL divergence after bit of algebra can be

written in the following form

� � � � � 	 � � � � �
�
 � �
 � � � � � � � � �

�
 � � � � � � � � 	 � � � � � � � � � � � 	 � 	 (4.10)

where
�

is identity matrix and � � is mean of the distribution. The above expression is a convex

function. Plugging in values from the received signal and omitting constant terms gives

� � � � � 	 � � � �



�  

 ����� � � ��� � � � � � � � � � � � � � � � � 	 (4.11)
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and

� ��� � ��
 � � � � �
�
 �

��� � � � � �
�
 � � ��
 � ��� � � � � � � ��
 � ��� � � 	 (4.12)

which after permuting C and d gives

� ��� � ��
 � � � � �
�
 �

��� � � � � �
�
 � � ��
 � � � � � � �

� �
��
 � � � � � (4.13)

where
�

is a diagonal matrix with diagonal entries given by ��� � � 
 � 	 � 
 � 
 �       ��� � � � 
 � � and
� � diag � � � is vector composed of diagonal elements of matrix � . The log-likelihood equation

can be further simplified as (after omitting constants)

� � ��� � ��
 � � � �
�
 � � ��
 � �

� �

 � 
 � � � � � � � � 
 � � � � � � � � �  (4.14)

Taking the gradient with respect to � of the above function gives

� � � � ��� � ��
 � � � �


 

 � � � � 
 � � � � � � � (4.15)

The distance function after permuting � and � is written as

� � � � � 	 � � � �



�  

 ��� � � � ��� � � � � � � � � � � � � � � � � (4.16)

the subscript � indicates that the parameter is computed at � � � iteration. Rearranging and taking

gradient with respect to � gives

� � � � � � � 	 � � � �


 

 � � � � � � � � � ��� � � � � � (4.17)

Putting the above two gradients in the augmented loglikelihood equation and equating the resulting

equation to zero gives

� � 

� � � � � � �

� �
� � � 
 � � � ��� � � � � � (4.18)

Similarly we take the gradient of the augmented loglikelihood function with respect to � and

equating it to zero gives

� � �
�

 

 � � ��� � � � � 
 
 � � 
 �



 

 � � ��� � � � � � � � � � � (4.19)

This expression is function of � , i.e., Lagrange multiplier, which is given by

� �
� 	 � � 
 ��� � 


��� 	 (4.20)

where

� � � � ��� � � 	 (4.21)
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 � � � � � � � � 	 (4.22)

� � � � � � � � � 	 (4.23)

and � � � � � , � � � � � where
�

is

� � �
�

 

 � � ��� � � � (4.24)

,

� �


 

 � � 
 	 (4.25)

and

� � 

 

 � � ��� � � � � 	 (4.26)

We also calculated the formulas for � and � when Euclidean distance function is used instead of

KL divergence function. The Euclidean distance between two parameters set is defined by

� � � � � 	 � � � �



�
� � � � � � 
 (4.27)

The Euclidean distance function after bit of simplification is written as

� � � � � 	 � � � �



� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (4.28)

where the subscript � denotes the value of the parameter at the � � � iteration. In our case the

parameter set is given by
� � � � 	 � � , where � is vector composed of diagonal elements of � . With

the same procedure as is done for KL distance case, i.e., taking gradient of the distance function

with respect to � and � and also taking gradient of the loglikelihood function with respect to �
and � and plugging the results into augmented loglikelihood function and imposing the spherical

constraint.The update equations for � and � are given by

� � �
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� �
�


 

 � � 
 � � � � 	 (4.29)

where
�

is identity matrix. Similarly for � , we have

� � �
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� �
�


 

 � � 
 � � � � � � � � � 	 (4.30)

where � is given by

� � � 	 �
�

 ��� � !

� � 	 (4.31)
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where
� � � � � � � � � , � � � � � � ��� , ! � � � ��� � � � and � � � � � . The expression for

�

and � are as follows

� � �
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� �
	 (4.32)

and

� �


 

 � � 
 � � � (4.33)

The algorithm works as follows:

1) We start with the initial estimate of � � and � � ,
2) We calculate � (the updated value) using eq. 4.29, the updated value of � is used to calculate

� . These values are in turn plugged into update expression for � , eq. 4.30 to get � updates. These

two steps are continued until � ����� � � ��� � � � � � � � �
, where

�
is small number. Note that in the

update equations for � and � (in case of KL distance), there are matrix inversions, i.e, we have to

invert a matrix at each iteration which is computationally expensive. In the following lines we will

derive a low complexity algorithm by eliminating matrix inversion. This is done by polynomial

expansion of the signature correlation matrix, � , i.e.,

�
� � � � � � � �

� � � ��
� �
� �
� � � � (4.34)

where � is equal to matrix � with diagonal elements put to zero and �
� � �

, where
�

is the

identity matrix. If the elements of � are small compared to one, i.e., low cross-correlation. The

matrix �
� �

can be approximated by a first order expansion (neglecting higher order terms), i.e.,

�
� � � � � � (4.35)

In this way matrix inversion is replaced by adding two simple matrices.

4.4 Simulations and conclusion

In this section we investigate the amplitude error and BER performance based on the simulations.

The codes were selected at random and we considered two different scenarios. A lightly loaded

case with six number of users as well as a highly loaded case with, � � � �
. In both cases the

processing gain was kept to 32. We plot the amplitude estimation error versus different values

of SNR. As is clear from the figure (4.4), the estimation error decreases as the value of the SNR

increases for both cases. However, the estimation error of the highly loaded case is more than

the lightly loaded case. We also simulated for BER for lightly loaded case. It is clear from the

figure (4.1) and figure (4.3) that our receivers ( with KL distance function and Euclidean distance

function ) performs better than MMSE and the receiver proposed in [88] (they have the same



40 Chapter 4 Iterative constrained penalized likelihood estimation of parameters for CDMA

performance). The MMSE receiver on average constrains the vector to lie within sphere [88]. In

[88] the authors considered the constraint that the symbol vector lie within sphere. On the other

hand as we approximate the spherical constraint with the first order Taylor expansion and we also

do not let previously estimated vectors to be far from the new estimate (thanks to the distance

function), therefore we are always close to the sphere. Hence, we can consider our constraint

to be the shell region between two concentric hyper spheres, which is more constraining than

a bowl constraint. We also plot the BER for approximate proposed receiver in figure (4.2). The

approximation is done to reduce the complexity of the receiver. It is hoped that with the increase in

the number of users, better results are expected owing to the fact that the first order approximation

of the sphere will almost lie on the surface of the sphere, i.e., we will be almost on the surface of

the sphere. In the figure (4.2), we also compared the low complexity version (approx. of the �
� �

)

of the algorithm with the MMSE. As is clear from the figure, it performs better than MMSE and

the performance is almost identical with that of the exact proposed receiver. In all the simulations

for the BER, the estimated values of the amplitudes were used. While in the case of MMSE,

true amplitudes were used in the simulations. Figure 4.5 shows the two iterations of the proposed

algorithm.
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Chapter 5

Exact sphere constrained maximum

likelihood detection of parameters for

CDMA

We describe a method for Maximum Likelihood (ML) parameter estimation corrupted by an addi-

tive white Gaussian noise. The ML cost function is maximized over the constraint that the detected

data vector lie on the sphere. The results are compared with MMSE and with [88]. Simulations

results show superior performance in terms BER of our method comparing to both the methods. In

chapter 4 we jointly estimated channel/symbols iteratively using approximate sphere constraint.

In this chapter we detect symbol vector using exact sphere constraint assuming that the channel is

known.
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5.1 Introduction

The conventional receiver consists of a bank of a single-user matched filters followed by quantiz-

ers. It is reliable if the signature waveforms have low cross-correlations for all the possible delays,

and if the power of all the users are not very different. Since these conditions are often difficult to

satisfy in practice, several new multiuser detectors have been proposed. The linear decorrelating

receiver is simple and can significantly outperform the conventional receiver in both synchronous

and asynchronous CDMA system. This detector does not require estimation of the users powers,

and achieves the optimal near-far resistance. However, the inversion of the channel performed

by the decorrelating filter enhances noise. This creates a gap between the error probability of the

decorrelator and the single user bound. Other recent approaches to the multiuser detection include

multistage detectors. For example, in a two stage detector, decisions made by the first stage are

used for interference cancellation in the second stage.

The linear MMSE detector achieves robustness against MAI by selecting the linear filter that min-

imizes the mean-square value of the output MAI plus noise. In [15] decision feedback and partial

feedback detectors for asynchronous CDMA channels are introduced. The derivation of the feed-

back detector is based on spectral factorization which leads to a white noise channel model. In the

same paper, the authors also described the implementation of the ML detector for this model.

The optimal detector is ML but prohibitively complex. However by relaxing the constraint, less

complex approximate ML detectors can be obtained. In the previous chapter, we solved the ML

problem by relaxing the sphere constraint (approximate sphere constraint). In this chapter, we will

solve the ML problem with the exact sphere constraint, i.e., the ML cost function is maximized

over the constraint that the detected data vector lie on the sphere and hence better results are ex-

pected. This is confirmed by simulation results. The rest of the chapter is organized as follows.

In section 5.2 we describe signal model. Sphere constrained ML is given in section 5.3. In sec-

tion 5.4 we show relationship between the sphere constraint and MMSE receiver. Simulations and

conclusions are drawn in the last section.

5.2 Signal Model

In this section, discrete-time base band up-link signal model for CDMA communication system is

described. We consider a asynchronous CDMA with single path channels. The signal is corrupted

by the presence of an additive white Gaussian noise (AWGN) with zero mean and variance
� �
 �

 


. The number of users in the system are assumed to be K. The processing gain, � � �

� � ��� ,
where

�
� is symbol duration and

���
is the chip duration. The users transmit binary information

symbol stream ��� � ! � � " ��
 	 
 $ , ! � 
 	 
 	      	 � � 

is symbol interval index and

�
is the length

of the data block. � � � ! � � � � ��� ! � � 
 �        � � � ! � 
 � � � � with � ����� � � � ��
 � � � 	 
 � � � � is
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the spreading code of the user k to modulate ! ��� bit. The received base band signal can be written

as,

� �
� � ��
� �
� �
�
� �
� ��� ��� �

��
�


 � � ��� �
� � ��� �
 	 � � � 
 ��� � � � �

���
� � !  (5.1)

The convenient matrix notation is given by

� � ��� � ! 	 (5.2)

where the symbol vector is given by � � ��� � � 
 � 	 � 
 � 
 � 	      	 � � �
� � 
 � � � � ��� � 	 � 
 	      	 � � � � � .

� is the matrix of transmitted waveforms with the column



expressed as

� � �
��
�


 � � �����
� ����� �
 	 � � � 
 ��� � � � �  

���
� (5.3)

Where
� � is the time delay of ��� � user. A minimal set of sufficient statistics of dimension

� �
is obtained through correlation, matched to the received signal. This also ensures the maximization

of the SNR, i.e.,


 � � � � � � � ��� � � � ! � � � � � 	 (5.4)

where � is the correlation matrix and z is zero mean Gaussian vector with covariance  


� .

5.3 Sphere constrained ML

Given the set of data 
 � � � � , our goal is to find parameters that maximize the � ��� � ��
 � � � or

minimize the negative of it. The negative loglikelihood function of 
 is given by

� ��� � � � � � � � � 
 � �  (5.5)

The sphere constrained ML problem for the asynchronous CDMA is then described as

� � �
���
�
�
� � � � � �

� � 
 � � 	 (5.6)

subject to � � � � � � . The Lagrangian function associated with the above problem can be written

as

� ��� 	 � � � � � � � � � 
 � � � � ��� � � �	� � �  (5.7)
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To calculate the stationary points, we differentiate
� ��� 	 � � with respect to � and � . The solution

of the above problem is given by

� � ��� � � � �
� �

 (5.8)

Now the problem is to find the Lagrange multiplier. Using the quadratic constraint, we can write


 � ��� � � � �
� 


 � � �  (5.9)

We proceed by computing computing the eigenvector decomposition of matrix � .

� � � � � 
 � � � � � � � � � �
� 
 �	� �  (5.10)

Which can further be written as

� � � � �
�
�

� 
�
� � �  � �


 �	� � � 

(5.11)

where
� � � � � � 
 � � ,  � are the eigenvalues of � with  � �    �  � , and � are the eigenvectors

of � . The zeroes of � � � � can be found numerically using Newton-Raphson method. We choose �
such that � � � � is positive definite. This selection of � forces the � � � � to be convex. Now the

problem is to find � for which � � � � is zero. We find the bounds for � in order to restrict our search

to find the zeroes of � � � � . The bounds can be straightforwardly obtained and are given by

�

 � � 
 � �� �

�  � 	 (5.12)

and

��� � � 
 � �� �
�  �  (5.13)

A different approach to detect the data vector containing users’ symbols is as follows. The

likelihood function with its corresponding constraint can be written as�� � �� ��
��� � 
 ��� � � � �� � �� � � � � 
 � � (5.14)

where �� � � � 
�� 	 (5.15)

and �� �
�

� � 
� 
 � 
��  (5.16)

The solution to the above problem is given by�� � �
�
�
� �
�� � 	 (5.17)

where
�
�
�
� is the eigenvector corresponding to the minimum eigenvalue of matrix

�� . The mini-

mum eigenvector is scaled such that the last term of this vector is


.
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5.4 Relationship between MMSE and sphere constraint

In this section we proof an analytic relationship which shows that the MMSE on the average im-

poses the sphere constraint on the symbols thus verifying the result shown through the simulations

in [88]. The MMSE estimate of the symbols is given by [88]

� � ��� �  

 � �

� �

 	 (5.18)

where  



is the noise variance. Having the above expression we can write

� � � � ��� � ��� �  

 � �

� 


 
 �

� ��� � ��� �  

 � �

� 

��� � � � � ��� � � � � � ���  

Assuming that � and
�

are independent and
�

is zero mean. Taking expectation of the above

expression we have

! � � � � � � � � � ��� �  

 � �

� 

���

 �  



� ��� 	 (5.19)

where we have used the fact that
! � �
� � � � �

and
! � ��� � � �  



� . The above expression can

further be simplified as

! � � � ��� � ��� � �  ��� �  

 � �

� � �  (5.20)

Let � � � � � � be the eigen decomposition of the matrix � . Then we have

! � � � ��� � ��� � � � � �  � � � � � �  

 � �

� � � 	
� ��� � � � � �  � � � � � �  



� � � �

� � � 	
� ��� � � � � �  � � � � �  


 � � � � �
� � � 	

� ��� � � � � �  � � � � �  

 � �

� �
� � ��� 	

! � � � � � � ��� � � � � � � �  

 � �

� �
� � � �

� ��� � � � � � � � � �  

 � �

� �
���

� ��� � � � � �  

 � �

� � � �
�
�� � �
�

� �
� � �  


 	 (5.21)
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where � � are the eigenvalues of the matrix � .

! � � � � � �
�
�� � �
�




 �  



�
� ��


 �
�� � �
�

� �
� � �  


 	

where � � is the maximum eigenvalue of the matrix � . The above expression can be written as

! � � � � � 
 � �
� � �  


 � � 	
which can further be written as

! � � � � � 
 � � 	 (5.22)

hence establishing that the MMSE on average pose the sphere constraint.

5.5 Simulations and conclusion

In this section, we investigate BER performance based on the simulations. The codes were selected

at random and we considered a lightly loaded case with six number of users. The processing gain

was kept to 32. We simulated for BER using our constrained ML detector. It is clear from the

figure that our receiver performs better than MMSE and the receiver proposed in [88] (they have

the same performance). The MMSE receiver on the average constrains the data vector to lie within

sphere [88]. In [88] the authors considered the constraint that the data vector lie within sphere,

which is a loose constraint comparing to that of ours. Also we compared this algorithm with the

one proposed in the previous chapter, which was approximation to the exact sphere constraint. It

is clear from the figure that our algorithm outperforms the approximate constraint sphere receiver

proposed in the previous chapter.
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Chapter 6

Introduction to MIMO system

Multiple-input multiple-output (MIMO) systems are today regarded as one of the most promising

research areas of wireless communications [21]. This is due to the fact that MIMO channels

can offer a significant capacity gain over traditional single-input single-output (SISO) channels.

The increase in spectral efficiency offered by MIMO systems is based on the utilization of space

(or antenna) diversity at both the transmitter and the receiver. With MIMO systems, the data

stream from a single user is demultiplexed into ! separate sub-streams; ! is equal to the number

of transmit antennas. Each sub-stream is then encoded into channel symbols. It is common to

impose the same data rate on all transmitters, but adaptive modulation rates can also be utilized on

each sub-stream. The signals are received by � receive antennas.

With this transmission scheme, there is a linear increase in spectral efficiency compared to the

logarithmic increase in more traditional systems utilizing receive diversity or no diversity. The

high spectral efficiencies attained by MIMO systems are enabled by the fact that in a rich scattering

environment, the signals from each individual transmitter appear highly uncorrelated at each of

the receive antennas. When the signals are conveyed through uncorrelated channels between the

transmitter and the receiver, the signals corresponding to each of the individual transmit antennas

have attained different spatial signatures. The receiver can use these differences in the spatial

signature to simultaneously and at the same frequency separate the signals that originated from

different transmit antennas. MIMO systems offer diversity gain and multiplexing gain.

53
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6.1 Diversity gain

Diversity is used in wireless systems to combat small scale fading caused by multi-path effects.

The basic principle of diversity is that several replicas of the information signal are received

through independent fading links (branches), then with high probability at least one or more of

these links will not be in fade at any given instant and this probability will increase if the num-

ber of diversity branches increases. Diversity processing that reduces fading is a powerful tool to

increase capacity and coverage of radio networks. The three main form of diversity traditionally

exploited in the wireless systems are temporal diversity, frequency diversity and spatial (or an-

tenna) diversity.

Temporal diversity: It is applicable in a channel that has time selective fading. The informa-

tion is transmitted with spreading over a time span that is larger than the coherence time of the

channel. The coherence time is the minimum time separation between independent channel fades.

Time diversity is usually exploited via interleaving, forward error correction codes (FEC), and

automatic repeat request (ARQ). One drawback of time diversity is the inherent delay incurred in

time spreading.

Frequency diversity: It is effective when the fading is frequency selective. It can be exploited

by spreading the information over a frequency span larger than the coherence bandwidth of the

channel. The coherence bandwidth is the minimum frequency separation between independent

channel fades and is inversely proportional to the delay spread of the channel. Frequency diversity

cab be exploited through spread spectrum techniques or through interleaving and FEC in conjunc-

tion with multi-carrier modulation.

Spatial diversity: In space diversity we receive or transmit information signals from antennas

that are spaced by more than coherence distance apart. The coherence distance is the minimum

spatial separation of the antennas for independent fading and depends on the angle spread of the

multi-paths signals arriving at or departing from antenna array. For example, if the multi-path sig-

nals arrive from all directions in azimuth, antenna spacing on the order of

  � � � 
  �� � � is adequate

[11] for independent fading. On the other hand, if the multi-path angle spread is smaller, the co-

herence distance is larger. Empirical measurement show a strong coupling between antenna height

and coherence distance for the base station antennas. Higher antenna heights imply larger coher-

ence distances. At the terminal end, which is usually low and buried in scatterers, a

  � � � 
  �� �

separation will be adequate. Receive diversity is well studied subject [9]. The use of multiple

antennas at the base station in combination with the transmit diversity has become an active area

of research in the past few years [93,96]. Transmit diversity in the case when the channel is known

at the transmitter involves transmission such that the signals sent from the individual antennas

arrive at the receive antennas in phase. In the case when the channel is not known at the transmit-

ter side, transmit diversity require more sophisticated methods such as space-time coding which

use coding across antennas (space) and time. The basic idea is to send information with different
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preprocessing (coding, modulation, delay, etc.) from different antennas such that the receiver can

combine these signals to obtain diversity.

In a MIMO system both transmit and receive antennas combine to give a large diversity order. Let

! and � be transmit and receive antennas respectively, a maximum of ! � links are available and

if all of these links fade independently, we get ! � � � � order diversity.

Transmit and receive diversity are both similar and different in many ways. While receive di-

versity needs merely multiple antennas which fade independently, and is independent of cod-

ing/modulation schemes, transmit diversity needs special modulation/coding schemes in order to

be effective. The receive diversity provides array gain, whereas transmit diversity does not provide

array gain when the channel is unknown at the transmitter.

6.1.1 Multiplexing gain

Spatial multiplexing requires multiple antennas at both ends of the link [2]. The idea of spatial

multiplexing is that the use of multiple antennas at the transmitter and the receiver in conjunction

with the rich scattering in the propagation environment opens up multiple data pipes within the

same frequency band to yield a linear ( in the number of antennas ) increase in capacity. This

increase in capacity comes at no extra bandwidth or power consumption and therefore is very

attractive. In spatial multiplexing the symbol stream to be transmitted is broken up into several

parallel symbol streams which are then transmitted simultaneously and within the same frequency

band from the antennas. Due to multi-path propagation, each transmit antenna induces a different

spatial signature at the receiver. The receiver exploits these signatures differences to separate the

individual data streams.

6.2 The MIMO channel model

A commonly used channel model in MIMO wireless communications is the block fading model,

where the channel matrix entries are i.i.d. complex Gaussian (Rayleigh fading), constant during

the block of symbols, and change in an independent fashion from one block to another. We assume

that channel is only known at the receiver. The input-output relation of � � ! matrix channel can

be written as

� � � � � ! (6.1)

where
�

is the size of number of receive antennas and � is size of number of transmit antennas and

! is Gaussian noise vector. The elements of � are i.i.d. circularly symmetric complex Gaussian

with zero mean and unit variance. Equivalently, each entry of � has uniformly distributed phase

and Rayleigh distributed magnitude.
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6.3 Capacity of MIMO channels

In this section we briefly give some capacity formulas for the MIMO systems. Assuming that the

transmitted signal vector is composed of ! statistically independent equal power components each

with a circularly symmetric complex Gaussian distribution, the capacity of deterministic MIMO

channel � is given by

� � � ��� 
 � det � � �
���
! � � � ��� � � � � � � 	 (6.2)

where � is the average transmit power. When ! � � and � � �
� , we get

� � ! � ��� 
 � 
 � �! � � � � � ! � � � � � ! � �  (6.3)

It is clear from the above equation that the capacity scales linearly with the increase in SNR. Now

we give the equation of the capacity when the channel � is assumed to be random. The ergodic

capacity is given by [1]

� � !
�
" � ��� 
 � det � � �

���
! � � � ��� $ � � � � � � 	 (6.4)

where
!
� is the expectation with respect to random channel. Note that for fixed � as ! gets

larger
�
� � � � �

�
� and hence the ergodic capacity in the limit of large ! equals

� � � � ��� 
 � 
 � � � � � � � � �  (6.5)

The ergodic capacity grows linearly with the number of receive antennas, which hints at significant

capacity gains of MIMO fading channels. Now we discuss some receivers for the MIMO systems.

6.4 Zero forcing receiver

The zero forcing receivers simply inverts the channel transfer matrix, assuming that � is invertible.

The estimate of data symbol vector � is obtained as

�� � �
� � �  (6.6)

For ill-conditioned � the zero forcing receiver performs well in high SNR regime, whereas in the

low SNR regime there will be significant noise enhancement.

6.5 Minimum mean-square error receiver (MMSE)

The zero forcing receiver yields perfect separation of the co-channel signals at the cost of noise

enhancement. An alternative is MMSE receiver, which minimizes the overall error due to noise
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and mutual interference between co-channel signals. In this case, an estimate of � is obtained

according to

�� � �
! � � �� 



�
�
�
���
! � � � �

� � � 	 (6.7)

where we assume that
! " � � � $ ���

�
�
� and

!#" ! ! � $ �  


�
�
� . The MMSE receiver is less

sensitive to noise at the cost of reduced signal separation quality. At high SNR the performance of

the zero forcing and MMSE receiver is same.

6.6 V-BLAST receiver

In V-BLAST rather than jointly decoding all the transmit signals, we first decode the “strongest”

signal, then subtract this strongest signal from the received signal, proceed to decode the strongest

signal of the remaining transmit signals, and so on. The optimum detection order in such nulling

and cancelling strategy is from the strongest to the weakest signal. Assuming that the channel is

known at the receiver, the main steps of the V-BLAST algorithm can be summarized as follows:

1) Nulling: an estimate of the strongest transmit signal is obtained by nulling out all the weaker

transmit signals (say using zero forcing criterion).

2) Slicing: the estimated signal is detected to obtain the data bit.

3) Cancelation: These data bits are remodulated and the channel is applied to estimate its vector

signal contribution at the receiver. The resulting vector is then subtracted from the received signal

vector and the algorithm returns to the nulling step until all transmit signals are decoded.

6.7 Maximum likelihood receiver

The receiver which yields the best performance in terms of error rate is maximum likelihood (ML)

receiver. However, this receiver is computationally complex. Assuming that the channel state

information is known at the receiver, ML receiver computes the estimate of data bits according to

�� � �
� � � � !�� � � � � � � � �



	 (6.8)

where the minimization is performed over all possible codeword vectors � . Note that the

complexity increase exponentially with the number of transmit antennas.

6.8 Transmit diversity

Transmit diversity is a technique which realizes spatial diversity gain in systems with multiple

transmit antennas without requiring channel knowledge in the transmitter.
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6.8.1 Indirect transmit diversity

In indirect transmit diversity we convert spatial diversity into time or frequency diversity, which

can be readily exploited by the receiver. We shall discuss two techniques, namely delay diversity

which converts spatial diversity into frequency diversity and intentional frequency offset diversity

which converts spatial diversity into time diversity.

Delay diversity: Let us assume ! � �
and � � 


. In delay diversity the spatial diversity is

converted into frequency diversity by transmitting the data bearing signal from the first antenna

and a delayed replica from the second antenna. Assuming that the delay is one symbol interval,

the effective SISO channel seen by the receiver is

��� � � �

 � � � � � 
 � � � � � � 
 � � (6.9)

where
� 
 and

� �
denote the channel gains between the transmit antennas



and

�
, and the receive

antenna respectively. The channel gains are assumed i.i.d. Gaussian. To show spatial diversity is

converted into frequency diversity, we compute the frequency correlation function

��� �

 ��� � �



�
!#" ��� � � �


 � � � � �� � � � 
 � 	 � � � 
 � $ 	 (6.10)

arranging the above two equations we get

��� �

 ��� � �



� � 
 � � � � 
 ��� �  (6.11)

The function
� ��� �


 ��� �
is fully decorrelated for � � 
  � . Such a channel looks exactly like a

�

paths channel with independent path fades and the same energy per path. Therefore Viterbi (ML)

sequence detector will capture the diversity in the system.

Intentional frequency offset diversity: Let us assume two transmit and one receive antenna case.

After coding and modulation, we transmit the signal from the first antenna and a frequency shifted

(phase rotated) version thereof from the second antenna. The effective SISO channel seen by the

receiver is
�
� � ! � � � 
 � � � � � 
 � � �  	 !���� (6.12)

where
� �

with
� � � � � 
 � �

. Having the same assumptions as for delay diversity, the temporal cor-

relation function of stochastic channel is � � � � � �
 ! " � � � ! � � �� � ! � � � $ . Using the above equation

we have

� � � � � 

� � 
 � � � 
 � � �  � 	 (6.13)

if
� � � � � � is small data symbols spaced � symbols intervals apart undergo close to independent

fading. The resulting temporal diversity can be exploited by using FEC in combination with time

interleaving just as we may do in naturally time fading channels.

Below we describe two direct transmit diversity schemes, i.e., space-time block coding and

space-time trellis coding which are popular now-a-days.
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6.8.2 Space-time block coding

Space-time block coding has attracted much attention for practical applications [76,93]. A simple

space-time block code known as Alamouti scheme performs very similar to maximum-ratio com-

bining (MRC), a technique which realizes spatial diversity gain by employing multiple receive or

transmit antennas ( but needs channel knowledge at the transmitter for the later). We briefly review

receive MRC for ! � 

and � � �

. The receive signal are given by

� 
 � � 
 � � ! 


� � � � � � � ! � 	
where

� 
 and
� �

denote the Gaussian i.i.d. channel gains between the transmit antenna and receive

antenna. ! 
 and ! � are Gaussian noise samples. The receiver estimates the transmitted data

symbols by forming the decision variable


 � � �
 � 
 � � � � � � � � � � 
 �

 � � � � � 
 � � � � �
 ! 
 � � � � ! �  (6.14)

Clearly, if either
� 
 or

� �
is not faded we have good channel. Thus we get second order diversity.

Now we consider the case of two transmit antennas at the transmitter side and the receiver side

is equiped with one receive antenna. In Alamouti scheme at a given period, two signals are si-

multaneously transmitted from two antennas. In the first time instant, the signal transmitted from

antenna 1 is � 
 and the signal transmitted from antenna 2 is � � . In the next time instant
� � � � is

transmitted from antenna 1 and � �
 is transmitted from antenna 2. The received signal
� 
 and

� �
is

given by

� 
 � � 
 � 
 � � � � � � ! 


� � � � � 
 � � � � � � � �
 � ! � 	
where

� 
 and
� �

denote the zero mean Gaussian i.i.d. channel gains between transmit antenna 1

and receive antenna and transmit antenna 2 and receive antenna respectively. The above equations

can be re written in matrix form as

� � � � � � ! 	
where

� ��� � 
 � � � � is the received vector,

� � �
� � 
 � �
� � � � � �
 � 	
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is the equivalent channel matrix, � � � � 
 � � � � and ! � � ! 
 ! � � � . Note that columns of � � are

orthogonal. On the receiving side (assuming perfect channel knowledge) the received vector
�

is

multiplied by � �� which results

�� � � �� �  
The estimates of the symbols � 
 and � � are given by

�� 
 � � � � 
 �

 � � � � � 
 � � 
 � �! 


�� 
 � � � � 
 �

 � � � � � 
 � � � � �! � 	

where
�! 
 � � �
 ! 
 � � � ! � � and

�! � � � � � ! 
 � � 
 ! � � . The symbols
�� 
 and

�� � are independently

sent to an ML decoder.

The Alamouti scheme is a special case of the so-called space-time block codes.

6.8.3 Space-time trellis codes

Space-time trellis codes are extension of Trellis codes to the case of multiple transmit and receive

antennas. In the space-time trellis coding the information stream to be transmitted is encoded by

the space-time encoder into blocks of size ! � �
, where

�
is the size of the burst over which

the channel is assumed to be constant. One data burst therefore consists of
�

vectors � � � � �

 	    	 � � 
 � of size ! � 
 with the data symbols taken from finite complex alphabet chosen such

that the average energy of the constellation element is


. The � � � � receive symbol vector is given

by

� � � � !
� � � � � ! � 	 � � 
 	    	 � � 


where ! � is the complex valued Gaussian noise and
!
� is symbol energy. When the channel is

known to the receiver the ML decoder computes the estimated vector sequence as

�� � � �
� �
�
�
���

�
� �
�
� �
�
� � � � � � ! � � � � � �



	

where � � � � 
    � � � � � and the minimization is over all possible codeword matrices � . Here

we review the design criteria of the STTC when the receiver knows the channel. We consider the

pairwise error probability. Let � � � � 
    � � � � � and
! � � � 
    	 � � � � � be two different space-

time codewords of size ! � � and assume that � was transmitted. In case when SNR is high, the

average probability ( average over all channel realizations) that the receiver decides erroneously

in favor of the signal
!

is upper bounded by

� � � � ! � 
 �
!
�
� �

�
� 	 � ��� � 
 � � 	 � ��� � 
 � ��

� �
� � � ��	 � � � � � 	 (6.15)



6.8 Transmit diversity 61

where 	 � � � � � � � ! � � � ��� ��� and
� ��	 � � � � denotes the rank of the matrix 	 � � � and � � ��	 � � � �

denotes its nonzero eigenvalues respectively.

The design criteria for STTC is follows:

1). The rank criterion: In order to achieve the maximum diversity ! � , the matrix 	 � � � has to be

full rank for every pairwise distinct codewords � and
!

.

2). The determinant criterion: If a diversity advantage of ! � is the design target, the minimum

of the determinant of 	 � � � taken over all pairs of distinct codewords � and
!

must be maximized.

STTC offer better performance than STBC at the cost of increased decoding complexity.
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Chapter 7

Fundamentals on semidefinite and

second order cone programming

Semidefinite programming [60,66] is a special case of convex programming where the feasible

region is an affine subspace of positive semidefinite matrices. There has been much interest in this

area lately, partly because of applications in combinatorial optimization and in control theory and

also because of the development of efficient interior-point algorithms [56]. Semidefinite programs

are natural generalizations of linear programs.

The use of semidefinite programming in combinatorial optimization is not new though. Eigenvalue

bounds have been proposed for combinatorial optimization since the late � 
�� . An explicit use of

semidefinite programming in combinatorial optimization appeared in the seminal work of Lovasz

[62] on the so-called theta function, and this lead Grotschel, Lovasz and Schrijver [115] to de-

velop the only known (and non-combinatorial) polynomial-time algorithm to solve the maximum

stable set problem for perfect graphs.
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7.1 Standard form of linear program

Let � � � � and
� � � � ,

� � � � � � with rows, � � � � � 	 � � 
 	    		� , � � � � decision

vector,



is the vector of zeros, appropriately dimensioned. The linear program is

����� � � � 	����
	
� �
����� � � � � � � � 	 � � 
 	    		� 	 � � 

(7.1)

7.2 Semidefinite program (SDP)

Here instead of vectors � � we use symmetric matrices
� � � � � � � , � � 
 	    		� , � � � � � �

and
� � � � � � instead of cost and decision vectors � and � . The matrix

�
is symmetric (i.e.,

� � � � - this allows to make the assumption that � and
� � , � � 
 	    		� are also symmetric).

We have
��� � � 	�� � � � � � � � � 	 � � . The semidefinite program can be written as

����� ��� � � � � 	����
	�� �
����� � ��� � � � � � � � � � � 
 	    		� 	 � � 

(7.2)

7.3 Second order cone program (SOCP)

Let
� � � � � � � � , � � � � � ,

� � � � ,

 � 
 	    	 � and � � � � � � , 
 � 
 	    	 � are decision

variables. The general second order cone program is

����� � � � � � �    � � � � � �

���
	
� �
����� � � � � � �    � � � � � � �

��� ��� 
 	 
 � 
 	    	 � 	 (7.3)

where the relation � ��� is defined as � 
 � � �

 � �    � �



� .

7.4 An overview on solving semidefinite and second order cone pro-

grams

Semidefinite programs can be solved very efficiently using interior point methods [56,58,70,52].

The most efficient variants solve the primal and the dual of the SDP and SOCP problems simulta-

neously.
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7.4.1 Interior point methods

In nonlinear programming [23,71], one of the approaches to transform constrained optimization

problems into unconstrained problems is to implement inequality constraints by adding a barrier

term to the cost function. In the case of minimization problem, the value of the barrier term

grows to infinity when the boundary is approached but it is small in the interior of the feasible

region. The barrier prevents the line search [57] starting from the interior from leaving interior.

Furthermore a close point to the boundary will have a descent direction which automatically will

be directed away from the boundary. In order to produce the sequence of iterates that converges to

the optimum which is usually located on the boundary, a mechanism that reduces the influence of

the barrier term as the optimization process continues has to be incorporated. This is achieved by

adding a weight to the barrier term and diminishing it successively. Under certain conditions, the

minima of the sequence of the barrier problems can be shown to converge to an optimal solution

of the original problem. This is known as sequential unconstrained minimization technique which

interior point methods are based upon. Typically, the minima are not computed exactly but ap-

proximated by a few Newton’s steps. Since Newton’s method works particularly well on the class

of barrier problems associated with SDP and SOCP, the algorithm converges very fast.

Here we introduce some barrier functions for SDP and SOCP and show how Newton’s method

can be used to solve optimization problems.

7.4.2 Barrier functions for SDP and SOCP

We now define the notion of barrier functions for convex sets in general and for SDP and SOCP,

in particular. Then we explain how we can use barrier functions to find the optimal solutions of

these problems. The formal definition of the barrier function is given below:

Barrier function: Let ��� � � be a convex set with nonempty interior. Then the function
����� � � � � � � � is called a barrier function if it has the following properties.

1)
�

is convex

2) For each sequence of points � � �
� � � � � � such that � ��� ��� � � � exists and belongs to boundary,�
	 ��� � , the � ��� �
� � � � � � � � �

Note that since the domain of
� � � � is

� � � � � � and by the properties of
� � � � , the minimum value of

�
is attained in the

� � � � � � .
7.4.3 Barrier function for SDP

First let us define some notation. If
� � � � � � , define � �
� � � � � � . i.e., the vectorization of a

matrix. Now consider the SDP:����� ��� � � � � 	 �  � ��� � � � � � � � � 	�� ��� � � 
 	    		� 	 � � 

(7.4)
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where � 	 � 	 � � � � � 	 � �

 	    		� , � � is the set of ! �	! symmetric matrices. Recall that

� � 

if , and only if � � � � � � 


for all � � 
 	    � , where � � � � � is the i-th eigenvalue of matrix
�

. As the eigenvalues are positive so as their product and hence logarithm of the product of the

eigenvalues is defined. We can use the following function as a barrier for SDP:

�
�



� � � � � 	 � � 	 �

�
� � ��� � � � � � � � � ��� det

�

Before forming the Lagrangian function and the equations which we shall use to find the critical

points of it, let us slightly change the form of these equations. Let
� � � �

� �
�

whose � � � row is

� �
� � � � and
� � � � whose � � � entry is

� � . Since

��� � � � � � � � � � � �
� � � � � �
� � (7.5)

we can write the set of equations
� � � � � � , for � � 
 	    		� as

� � �
� � � �
. Applying the

barrier function we get the following SDP

� ��! ��� � � � � � � � ��� det
� �  � � � �
� � � � (7.6)

Then the Lagrangian function of the above problem is:

� � � 	 
 � � ��� � � � � � � � ��� det
� � ��

� �
� 
 � �

� � � � �
� � � (7.7)

where
� � � and 
 � � � . Equating to zero the derivative of the Lagrangian we have

� �
� � � �
� � � � � � �
� � �

� � � 
 � � � 

(7.8)

� �
	 � � � � � � �
� � � 

(7.9)

Let � � � � � �
. Then we can write the above equations as,

� � �
� � � �

� � � � �
� 
 �

� � � 


� � � � � � � 

(7.10)

The third equation can be written as
� � �

�
� �

or
� � � � �

where
�

is ! � ! identity matrix. It

can be shown that for
�

and � positive semidefinite,
� � � � �

, if and only if
� � � � � � � � �

.
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7.4.4 Barrier function for SOCP

We now define a suitable barrier function for SOCP and calculate the derivatives of its Lagrangian

function. For simplicity let us consider the following single block SOCP:����� � � � �  � � � � � 	 � ��� 

(7.11)

where
� � � � � � , � � � � ,

� � � � , and � � � � are the variables. The relation � � � 

is defined

as � 
 � � �

 � �    � �



� . Let’s write the constraints � 
 � � � �

�
� �

as �

� �

�


 � �
�



 �    � �


�
� � � 


. Let � � � � 
 	 � � 	 � 
 	    	 � �
� � ��� . We can write

�


� �
�


 � �
�



 �    � �


�
� � � � � 	 � (7.12)

A suitable barrier function for SOCP is:

� ��� � �



 � � � �

�
� � 
 � (7.13)

By similar procedure as for SDP, the SOCP problem is replaced by����� � � � � � � ��� � �



 � � � �

�
� � 
 � 	 � � � � (7.14)

for
� � 


. Therefore the Lagrangian function of this problem is:

� � � 	 
 � � � � � � � � ��� � �



 � � � �

�
� � 
 � � 
 � � � � � � � (7.15)

� �
� � � � �

� �
�



 � � � �

�
� � 
 � � 
 	 � � � 	 � � 
 	    	 � � �

� � � � 
 � � � 


� � � � � � � � � 

(7.16)

Introducing the slack variable
�
, this system is equivalent to

�
� � �

� � 
 � � � �

� � � �
�



 � � � �

�
� � 
 	 � � 


(7.17)

where
� � 
��

� �
� �������

�
��� � 	 � . This in turn can be written equivalently as:

� � � � � � 	 � 
 � � � � � � 
 � 
 � ��� � � 
 	 � 	    	 ! (7.18)

The first equation can be obtained by multiplying from the left the equation
� � 
��

� �
� �������

�
��� � 	 � � 


by � � and noting that � � 	 � � �



 � � �� � � 
 . The second set of equation arise from observing that

� �� � � � 
� 
 �
� �

�



 � � � �

�
� � 
 (7.19)

Thus just like SDP, applying logarithmic barrier function to SOCP problems results in getting

primal and dual feasibility and a relaxed form of complementarity conditions.
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7.5 Newton’s method

So far we have been trying to find equations by using barrier functions. Now we wish to solve

these systems. For SDP and SOCP the logarithmic barrier function resulted in a system of equa-

tions which contained primal and dual feasibility (a set of linear equations) and a relaxed form of

complimentary conditions ( a set of nonlinear equations). To handle the nonlinear equations, the

main tool is using the Newton’s method. The general approach is as follows:

We start with an estimate of the solution � � 	 
 	 � � . Next we seek a direction ��� � 	 � 
 	 � � � such

that moving in that direction with an appropriate step length will bring us closer to the solution of

the system. The Newton’s method replaces, � � 	 
 	 � � with � � � � � 	 
 � � 
 	 � � � � � , and plugs it

into system of equations. Then, noting that ��� � 	 � 
 	 � � � are unknowns, it removes any nonlinear

terms in � � � and solves the remaining system of linear equations (see [56,58] for more details).



Chapter 8

Maximum likelihood detection of a

MIMO system using a second order

cone programming approach

Multiple antenna systems are capable of providing high data rate transmission over wireless chan-

nels. To secure reliability of the data transmission, special attention has to be paid to the design

of the receiver. The optimum receiver structure is the maximum likelihood sequence estimation

(MLSE). However, the computational complexity of the ML decoding requires us to solve an Inte-

ger Least Square (ILS) problem, which is, in general, NP-hard. Recently,a semidefinite program-

ming (SDP) relaxation approach has been proposed to approximately solve NP-hard problems in

polynomial time [101]. Its worst case computational complexity is ��� ! ��� � � . Even the SDP ap-

proaches are computationally expensive for large systems. The other approach currently used for

ML decoding is the sphere decoding scheme [3]. The average case complexity of this scheme is

��� ! � � , when the radius, r, is correctly chosen (which is itself a NP-hard problem). Also, at low

SNRs, the complexity of the sphere decoder explodes. In this chapter, we propose to apply a second

order cone programming (SOCP) approach [69] to resolve large system problems, which offers

substantial computational savings over the SDP relaxation and sphere decoding schemes, while

maintaining the performances arbitrarily close to ML.

69
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8.1 Introduction

Multiple antenna wireless communication systems are capable of providing data rates at poten-

tially very high level [1,13]. However,a reliable decoding in these systems requires a very high

complexity. For a wide class of space-time transmission schemes [2], ML decoding requires us to

solve ILS problem, which is, in general, NP-hard. Practical methods to solve this problem are to

employ heuristics, or some approximation to the original problem. For example, MIMO Decision

Feedback Equalization(DFE), nulling and cancelling with optimal ordering (BLAST), are some

of these. However, the performance in terms of bit error rate is inferior to that of the exact ML

methods.

One of the methods recently proposed is sphere decoding. In the sphere decoding algorithm, we

find lattice points lying in the hypersphere centered around the received signal and then determine

the point closest to the received signal. This algorithm has a polynomial complexity for high

SNRs and when the radius is optimally chosen. Choosing the optimal radius is however, NP-hard.

Moreover at low SNRs the complexity of sphere decoding is exponential.

In this chapter, we propose a novel method for data detection. The detection is based on trans-

forming a quadratic 0-1 programming problem [64,55,54] into an equivalent problem in graph

theory, called weighted Maximum Cut (MAX-CUT for short) in a graph. A MAX-CUT problem

[5,25,67,68] can be solved in polynomial time for some classes of graphs, e.g, planar graphs, with

positive edge weights. But if the graph contains negative weights too, the MAX-CUT problem

becomes NP-hard. A standard way to solve a NP-hard combinatorial optimization problem is to

first formulate it as a mathematical programming problem, and then to relax some of its constraints

in order to solve it in polynomial time. A MAX-CUT problem (with negative and positive edge

weights) can be solved to a very good approximation using a SDP relaxation, and the worst case

result is

  �� � � � � � � � � � � � � � [4]. Still the MAX-CUT using SDP relaxation can be computa-

tionally complex for large sizes. We propose to use SOCP to the problem at hand for computa-

tional reduction. SOCP takes the advantage of reducing the number of variables in the problem;

hence, optimization can be done much faster comparing with the SDP. In the following lines we

briefly describe the MAX-CUT problem and the Goemans-Willianson approach to MAX-CUT on

an undirected graph. In section 8.2 we describe MAX-CUT on a graph. Goemans-Williamson

approach for the MAX-CUT problem is described in section 8.3. Section 8.4 and section 8.5 are

devoted to signal model and second order cone programming for ML decoding respectively. Sim-

ulations and conclusions are drawn in the last section.



8.2 The MAX-CUT on an undirected graph 71

8.2 The MAX-CUT on an undirected graph

Let
� � � � 	 ! � be an undirected graph, where

� � " 
 	    	 ! $ are the nodes and
!

is the set of

edges, with cardinality,
� ! � � � are the edges. Let � � � be the weights given to an edge connecting

the node � to the node


. The maximum cut entails partitioning,

�
into ��� �

and
�� � � � � ,

such that, sum of the weights on the edges from the subset � of
�� is maximized. In other words,

� � � 
�� � � � � � 
����
	 �

$ 	 � � � 
 � � � �
�
� � � � �� ( � � �  (8.1)

Such a partition is known as a cut. Before the � 
 � � , two approaches were known for the MAX-CUT

problem. These approaches are discussed below.

8.2.1 Two approaches

One approach, the Greedy Approach, works as follows: choose a node arbitrarily, and add it to � .

Then for each remaining node ! , if the sum of the weights from ! to the nodes in the current � are

less than the sum of the weights from ! to the nodes in the current
�� , add ! to � ; otherwise, add

it to
�� . Let � � � � � � � � � � denote the value of this cut. It can be shown that:

� � � � � � � � � � � �

	 � � � 
 � �
� � � � � � � � � 
�� � � � �  (8.2)

A second approach, the Randomized Approach, works by randomly assigning nodes to � and
�� .

Let us denote the value of the cuts generated in this fashion by � � � � � � � � . It is shown that

! � � � � � � � � ��� � �

	 � � � 

� � � � �

(8.3)

Until the early � 
 � � , it was not known whether this factor of
�

could be improved.

8.3 The Goemans-Williamson approach

Goemans-Williamson [4] approached the problem as follows: � � � � , let

� � �

 ��


if � �
�
� 


otherwise

Then we have,


 �
� � ��� �



�

if � ��� 	 
 � �� or vice-versa

otherwise
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So then the objective becomes to maximize � � � ��� 	 �
 � 
 � � � ��� � with �

� � 


This problem

is NP-Hard. In order to deal with less complex problem, Goemans and Williamson considered the

following relaxation. Associate to each vertex � � � a vector � � � � � , they considered� � 
 �
��� �

� � �
� � 
 � � � � � � ���
	�� �
����� � � �  � � � 
 	 � � � �  (8.4)

Because of the constraint � �  � � � 

, the vectors � � 	    	 � � are constrained to lie on n-dimensional

sphere, � �
� �

. Now there are two questions remaining: 1) How to solve this? 2) How good is the

solution?

8.3.1 How to solve this?

Consider the
� � � � � � , with form

� ��� � � 	    	 � � �
Let

� � � � � , and let us index
�

with 
 � � 	 � � 
 	    	 ! 	 
 � 
 	    	 ! . Thus, 
 � � � � �� � � . The

following formulation is then obtained� � 
 �
� � �

� � �
� � 
 � 
 � � � ��� 	�� �
����� � 
 � � � 
 	 � � � � � ! �

� � 

(8.5)

where the notation
� � 


indicates that the matrix
�

is positive semidefinite.

Figure 8.1: A cut in a graph given by random hyperplane
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8.3.2 Randomized rounding algorithm

We now present the algorithm for MAX-CUT. For convenience, let us assume that we have an

optimal solution to the above equation. the slight inaccuracy in solving it can be absorbed into

approximation factor. Let � � 	    	 � � be the optimal solution, and let � � ��� be the corresponding

objective function value. These vectors lie on the n-dimensional unit sphere � �
� �

. We need to

obtain a cut � � 	 �� � whose weight is a large fraction of � � ��� .

Let
� � � denote the angle between vectors � � and � � . The contribution of this pair of vectors to

� � ��� is � 	 �
 � 
#� � � � � � � � . Clearly, the closer
� � � is to � , the larger this contribution will be.

In turn, we would like vertices � � and � � to be separated if
� � � is large. The following method

accomplishes precisely this. Pick
�

to be a uniformly distributed vector on the unit sphere � �
� �

and let � � " � � � � �  � � 
 $ . Observe now that the probability that the vectors � � and � � are on the

opposite sides of the hyperplane is exactly the proportion of the angle between � � and � � to � , i.e.,� � � � � � � � �  � � � � � . Let the cut generated by the random hyperplane be � � � � � � � � � 
 � (see figure).

Then by linearity of expectations

! � � � � � � � � � � 
 ��� � �
� � �

� � � � � � � � �� � � �
� (8.6)

Since the expected value of the given cut is at most as large as the optimal cut, and since the

expected value of the optimal cut is less than the value of the semidefinite relaxation, we have

�
� � �

� � � � � � � � �� � � �
�



� � ��� 
 � � 
 � � � � � 
 � � �

� � �
� � �

� � 
 � � �� � � � (8.7)

Now, the following question arises: does there exists

 
 	 
 


such that 	 � � � � � 
 � 
� � � � � � � 
 � � ?. If such an 	 exists then by comparing term by term the sums we can write

�
� � � 	 �

� �
� � 
 � � �� � � � 
 �

� � � � � �
� � � � � � � � �� � � �

�  (8.8)

It follows that we seek an 	 that is at most as large as

����
	�	
��� 	 � �	 � � 
� 	 � � � �	 � � 
by renaming 
 � � �� � � , we see that such an 	 at most equals

	 � ������ ��� � � �
� � � � � � � ��� �
� � 
 � 
 � (8.9)

This minimum is approximately

  �� � � as shown in [4].

8.4 Signal Model

We assume a discrete time block fading multiple antenna channel model with � transmit and �
receive antennas, also we assume that the receiver has perfect channel knowledge. The received
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signal at an instant is

� � � � � ! 	 (8.10)

where � � � � � � is a known channel matrix, and ! � � � � � is the i.i.d. zero mean white

Gaussian noise with variance  


. The fading coefficients are i.i.d. Gaussian with zero mean

and unit variance. Under the aforementioned assumptions, the ML criterion requires us to find� � �
� � �

, where � � � " ��
 	 
 $ , which minimizes � � � � � �


. Now we develop SOCP method

for the ML detection.

8.5 SOCP ML decoder

The problem can be written (after neglecting constant term) as

� � � � � � � 

� � $

� � � � ( �
� ��� � � � � � � 	 (8.11)

where � � � � � �
and � � � � . Since

� 
� � � � 	 � � 	 (8.12)

are the diagonal entries in J, can be absorbed in the vector � . Thus without loss of generality, we

can assume that all diagonal entries of � are zeros. The above equation is equivalent to

� � � � � � � � � �%$ � � � � ( ���  � �����  � � 
 � �� 
 (8.13)

where
��

is of the form �� �
�
� �
� � 
 � (8.14)

Since this cost function is symmetric, 
 � � � � 

need not be maintained explicitly. It can be

shown that the MAX-CUT problem is equivalent to ML detection with BPSK [67]. As mentioned

earlier that the MAX-CUT problem is NP-hard, therefore we will use some relaxation scheme to

find near optimum solution. In this respect, note that

��� � 
�� � � 
��
�



� � 
��

�



�

 
 	 �



� � 


(8.15)

� � � � � �� � 
 
 	 � � � � � � � �� � � 
 ��

(8.16)

where � � is all zero vector except 1 at position


. Maximizing � � �� � implies minimizing

�
subject

to
�
� � �� � 
 �
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In order to minimize the last expression, we convert MAX-CUT problem into following

quadratic problem ����� ������� � �
� �
	�� �
����� � �

� � �� � � � 
 


� � � � � �� � 
 
 	 
 � 
 	    	 !
� � � � � � � �� � � 
 ��
 	 
 � 
 	    	 !

(8.17)

A non-convex quadratic constraint problem is given by����� ������� � � � � � �
	�� �
����� � � � � � � � � �� � � � � 
 
 	 � � 
 	 � � � 		� (8.18)

where � � �
� � ! � 	 � � � � ,
� � � � � and

� � � � . � � ! � is the set of real symmetric matrices. The

above problem can be written as

� � ! � � � � � � � �
��� � 
 ��� � � � ��� � � � � � � � �� � � � � 
 
 	 � � 
 	    		�

� � � � � � �
� ! � �


 � (8.19)

Tr(.) is the trace operator. This problem is NP-hard because of the last constraint. By imposing

the constraint

� � � � � (8.20)

instead of

� � � � � (8.21)

we get a SDP relaxation.

The second relaxation using SOCP (for definition of SOCP see, e.g. [7]) proposed in [6] is as

follows. First, suppose that we are given

� � � � ! � � 	 (8.22)

where � � ! � � denotes the set of ! � ! positive definite matrices. It is easy to see that for � �
� � ! �
� � 
 � � � � � � � 	 ��� � � � ��� 


(8.23)

using this relaxation we relax the constraint (9.43) to

��� � � � �
� � � ��� � � 


(8.24)
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for � ��� � � 	 which are convex quadratic constraints. If � � � � ! � � then the right hand

side of the above equation also implies the left hand side. A convex quadratic constraint cannow

be easily transformed into second order cone constraints. To do this, for � � � � � we first

decompose � � � � � , where

� � ��� � � (8.25)

and � � �
� ! � � � � . Such a decomposition is always possible, as � is symmetric and positive

semidefinite. The constraint

��� � � � � � � � ��� (8.26)

is equivalent to

� � � ��� � 
 ��� � � � �  (8.27)

It is known that any

� � ��� 	 � ! ��� 	�� � � 	 (8.28)

� � � � � � 	 � � 
 	�� � 

(8.29)

can be written as [6,7],
�����

� � � �
� � � �����


 � � � (8.30)

Where the norm is Euclidean. If we take

� � � � � 	�� � 
 	 � � 	 � � ��� � � � � 	 (8.31)

we can convert the inequality,

� � � � � � 
 ��� � � � � 	 (8.32)

into the following linear inequality with an additional second order cone condition [6],��
�

 � � � � � � �
 � � � � � � �

� � � �

���
� ��� � � � � � (8.33)

where

� � � � � � � � � � � � � � ���� ��
� �

 �


� � (8.34)
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is the second order cone. This is the basic idea of the SOCP relation for the non-convex quadratic

programming. The final form of SOCP is as follows. ����� ������� � � � �
���
	
� �
����� � ��� � � � � � � � �� � � � � 
 	 � � 
 	    		���

�

 � � � � � � �
 � � � � � � �

� � � �

���
�

� � � � � ! � � � � � � � 	
� � � � � 	 � � � ��� 	

(8.35)

The above SOCP has � � !


� variables. Now we use the technique exposed in [6] to further relax

the constraints. We now describe their method. From now for the sake of simplicity we omit the

subscript � and consider the linear inequality

��� � � � � �
� � � � � 
 


(8.36)

Let

� � ��
� �
� � � � � � �� (8.37)

be the spectral decomposition of Q, where � � are the eigenvalues and � � are the corresponding

eigenvectors. Without loss of generalit,y we assume that

� � �    � �
� � 
 � �

� � � �    � � � 	 (8.38)

and put

� � �
�

�
� �
� � � � � � �� 	 (8.39)

we can further write

� � � � � � � � � � � � � 
 

(8.40)

� � � � � �� � � ��� � � � � �� � � 
 
 	 
 � � � 
 	    	 !  (8.41)

Summing then up eq (8.36) and eq (8.40), we produce a new ( weaker) inequality

� � � � � � ��� � ��
� �
� � � � � � � � �� � � � � � � � � 
 


(8.42)
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If � � 	 � � satisfies eq (8.36) and eq (8.40), then it also satisfies eq (8.42), but the converse is not

generally true. Putting

� � � ��� � � � � �� � � 	 (8.43)

we obtain the following convex quadratic constraints

� � � � � � ��
� �
� � � � � � � � � � � � � 
 


(8.44)

� � � � � �� � � � � 
 
 	 
 � � � 
 	    	 ! (8.45)

where inequality (8.45) are the relaxed version of ! �	�
equalities.

The advantage of this method is that we can reduce the number of variables from � � !


� to the

total number of the ! � �
smallest eigenvalues of � � � . On the other hand, the inequality eq (8.44)

and eq (8.45) are weaker than the original constrainst, i.e., eq (8.36), eq (8.40) and eq (8.41). In

fact, if we do not impose an upper bound on
� � , than any � can satisfy eq (8.44) and eq (8.45) with

large
� � � (note that ��� � 
 � 
 � �

). Therefore, we require some restriction on
� � in advance.

Using the technique described above, we can convert the MAX-CUT problem, eq (8.17), into

SOCP for MAX-CUT as ����� ������� � �
���
	�� �
����� �

�
� � � � �
� � ��

� �
� � � � � � � � � 
 


� � �

�
� �� � � � � 
 
 	 
 � � � 
 	    	 !

� � � � � �� � 
 
 	 
 � 
 	    	 !
��

� �
� � � � � 
 !



(8.46)

where

� � �
�

�
� �
� � �

�

�
� �� 	 (8.47)

� � ��
� �
� � �

�

�
� �� 	 (8.48)

with

� � � 	    
� �
� � 
 � �

� � � � 	    	 � � �  (8.49)
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It is straight forward to derive the last constraint in (8.46) bound from expression (8.43)

� � � ��� � �

�
� �� � �  (8.50)

The above SOCP MAX-CUT can be solved very efficiently by primal-dual interior point method

[56].

8.6 Conclusions

In this chapter, we proposed a new ML detection method for the MIMO channel. This method is

based on relaxing the MAX-CUT problem and solving the resulting system by SOCP. We have

shown that the MAX-CUT (equivalently ML detection) problem can be formulated into SOCP

problem. The advantage of the proposed method over the SDP relaxation is that the difference in

the number of variables between SDP relaxation and SOCP increases as ! becomes large. Hence

MAX-CUT SOCP is numerically more efficient. Although, in general, the lower bound computed

by SOCP relaxation is not as good as a bound obtained with SDP relaxation in theory, they are

often close to each other [6]. The proposed method has three significant advantages over the sphere

decoding technique.

1) The proposed method is polynomial time irrespective of the value of the SNR as opposed to

sphere decoding which has exponential complexity for low SNR values.

2) The SOCP has no heuristic parameters to set (unlike the sphere decoder in which the optimal

radius has to be selected in a heuristic way).

3) The sphere decoder complexity, ��� !�� � , is at each time instant, while there is no such problem

in SOCP approach.

Moreover our approach does not require number of the receive antennas to be greater than number

of the transmit antennas as the BLAST receiver does. Simulations results in figure 8.2 show that

SOCP gives very close approximation to the exact ML and that there is almost no difference

between the performance of the SDP and SOCP method. Simulations are performed for two

transmit and two receive antennas. In general for large ! the saving of CPU time gets larger for

SOCP in comparison to SDP method.
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Chapter 9

A polynomial time algorithm for exact

maximum likelihood decoding of

MIMO channels

The information capacity of wireless communication systems may be increased dramatically by

employing multiple transmit and receive antennas. Often the optimal receiver in Maximum like-

lihood sequence detector (MLSD), which is considered to be practically infeasable due to high

computational complexity. Therefore, in practice one often settles with less complex suboptimal

receiver structure. In this chapter, we propose a polynomial time algorithm for exact maximum

likelihood (ML) decoding for MIMO channels. The problem is posed as maximizing a quadratic

form in � binary variables (BPSK case) with the vertices of a hypercube as constraint. We con-

sider � receive antennas and � transmit antennas. We assume that � � � , and that � is

fixed. The maximization of ML cost function with vertices of hypercube, i.e.,
" ��
 	 
 $

�
, as con-

straints, translates to having a symmetric matrix in quadratic form with fixed rank, � and with

the hypercube constraint. With singular value decomposition (SVD)[8] of the symmetric matrix

and suitable affine transformation of the hypercube constraint one ends up with maximizing a

quadratic function (Euclidean distance) over extreme points (vertices) of zonotope (definition of

zonotope will be given later). Using a classical theorem of discrete geometry, it is shown that the

vertices search can be done in polynomial time ����� � � �
� . The overall complexity of the algo-

81
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rithm is the complexity to find extreme point of zonotope plus the complexity of the SVD operation

plus the evaluation of the objective function at the vertices. To find the vertices of zonotopes, an

efficient algorithm called reverse search algorithm can be employed [102,106,107]. Our approach

has potential benefits over currently popular sphere decoding scheme [3]. The average case com-

plexity of sphere decoding scheme is � ��� � � plus the complexity to perform QR decomposition

�


� � � � of the channel, when radius, r, is correctly chosen (which is NP-hard problem). Also at low

SNRs the complexity of the sphere decoder explodes. The other problem with sphere decoding is

that some form of the heuristics is used to choose the radius of hypersphere. On the contrary, the

proposed method has polynomial complexity independent of SNR and also no heuristic is used in

the algorithm.
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9.1 Introduction

Multiple antenna wireless communication systems are capable of providing data rate at poten-

tially very high rates. To secure high reliability of the data transmission special attention has to

be payed to the design of the receiver. In many communications systems the optimal receiver

structure is maximum likelihood sequence detector (MLSD). However, computational complexity

of the traditional MLSD often prohibits its practical implementation. Thus often one settles with

suboptimal receivers like, MIMO-DFE, BLAST, are some of them. Recently, sphere decoding has

gained quite popularity due to its average polynomial complexity (at high SNR) in the number of

variables (antennas). The sphere decoder has average complexity of � ��� � � , when the radius of

the hypersphere is optimally chosen (which is NP-hard). But it has exponential complexity for

low SNRs. The other problem with the sphere decoder is that at each time instant it has aver-

age complexity, ����� � � , which can be computationally very complex for large tramsmitted data

blocks. In this chapter, we focus on MLSD. It is assumed that the receiver has perfect knowledge

of the channel. We propose a novel exact method for data detection using some beautiful results

in discrete geometry. The detection is based on maximizing ML function subject to vertices of

zonotope (special polytope) constraint. We will show that optimal solution to the problem is poly-

nomially bounded in � . The chapter is organized as follows. Signal model is described in section

9.2. In section 9.3 discrete geometric approach for ML is explained. Conclusions are drawn in the

last section.

9.2 Signal Model

We assume a discrete time block fading multiple antenna channel model with � transmit and �
receive antennas, we have assumed that the receiver has perfect channel knowledge. The received

signal at an instant is

� � � � � ! (9.1)

where

� � � � � � 	 (9.2)

is a known channel matrix,

!�� � � � � (9.3)

is the i.i.d. zero mean white Gaussian noise with variance  


. The fading coefficients are i.i.d.

Gaussian with zero mean and unit variance. Under the aforementioned assumptions the ML cri-

terion requires us to find � � �
� � �

, where � � � " ��
 	 
 $ , which minimizes � � � � � �


. The
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problem can be written (after neglecting constant terms) as

� � � � � � � � � � $
� � � � ( � � � � � � � � � � 	 (9.4)

where

� � � � � � � ! � � � � �  (9.5)

The above equation, i.e., � � � � , is equivalent to

� � � � � � � � � � $ � � � � ( � � ��� �  � � 
 � �� 
 	 (9.6)

where
��

is �� �
�
� �
� � 
 � (9.7)

Since this cost function is symmetric, 
 � � � � 

need not been maintained explicitely.

9.3 Discrete geometric approach to MLSD

A basic problem in discrete optimization consists in optimizing a quadratic over some hypercube.

This type of problem is NP-hard, and it is still considered a computational challenge to solve gen-

eral modest size problems of this type to optimality. Quadratic programming (QP) over vertices

of cube appears in various equivalent formulations in the literature. Our problem (MLSD) is max-

imization of a quadratic function over vertices of hypercube. Before delving into the solution of

this problem we define some geometrical objects.

Polytope:

A polytope (convex polytope) is a convex hull of finite set of points in � � (which are always

bounded) or as bounded intersection of finite set of half spaces. Polytope can also be defined as a

finite region of d-dimensional space enclosed by a finite number of hyperplanes.

Zonotope [103, pp. 198-199]:

Zonotopes are special polytopes that can be viewed in various ways : for example, as projec-

tions of cubes, as Minkowski sums of line segments, and set of bounded linear combinations of

vector configurations. Each of these description gives different insight into the combinatorics of

zonotopes. A zonotope is the image of a cube under an affine projection, � � � � of the form

[103],

� � � � � � � � � � � � � " � 
 � � � 
 � � � $ (9.8)
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� � � � � � � "
� � � � � � � ��� ��

� �
� � � � � 	 � 
 


� � 
 
 $ (9.9)

for some matrix (vector configuration),

� ��� � � 	    	 � � � � � � � �  (9.10)

Equivalently, since every d-cube � � , is a product of line segments

� � � � � �    � � � 	 (9.11)

we get that every zonotope is the Minkowski sum of a set of line segments. Infact, if
�

� � � is

linear we get

� � � � � � � � � � � � �    � � � �
� �

� � � � � � � � � � � � � � � � � � � �
��� � � � 	 � � � �    � � � ��	 � � � (9.12)

and thus

� � � � ��� � � � 	 � � � � � � � � � � � � 	 � � � � � 	 (9.13)

for an affine map given by

�

� � � ��
 � � � 
 � �  (9.14)

Having defined polytope/zonotope, we can proceed with our problem. First, we begin by

spectral factorization of �� � � ��� 	 (9.15)

where � � � � � � is the matrix composed of suitably scaled eigenvectors. We can write eq (9.6)

as

� ��
 � � 
 � �� 
 ��� � � 
 �



� � � 
 ��� � � � 
 � " � 
 	 
 $ � � � (9.16)

Consider affine map [103 pp. 199],

�
� � � � � � � � � � 
  (9.17)

This linear transformation maps a
" � 
 	 
 $

� � �
(hypercube) into a symmetric zonotope. For every

extreme point
��

of zonotope there exists an extreme point
�
 � " ��
 	 
 $

� � �
such that

�� � � � �

and thus eq (9.6) can be written in the following form

� ��
 � � � � ��� ��� ��� ��� ��	 � � � � 
 (9.18)
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Figure 9.1: 3 dimentional zonotope with 5 generators.

From the above equation it is clear that our objective function and constraint both are symmetric

and some of the extreme points of hypercube will correspond to some points lying inside or on the

facets of zonotope. Observe that extreme points which lie inside or on the facets of the zonotope

cannot be candidate for the maximization of our objective function. Therefore the maximum

is attained at some vertex �� of
�

. Thus MLSD is thus reduced to the enumeration of vertices of

zonotope
�

. Now the problem is to calculate the number of facets and vertices of a � dimensional

zonotope given by ����� generators. Let 	�

� ��� and 	�������� ��� denote the number of vertices

(extreme points) and facets of
�

, repectively. The answer to the above question is given by the

following classical theorem in discrete geometry:

Theorem:

Let
�

be � dimensional zonotope given by ����� generators ������� � . Then

	

�� ������ �����! " # 
 $ �&%(' ) 	������*� ���+�� $ ���,��.-/� ' (9.19)

where $10 2 ' 3 054� 0 - 2 � 4 2 4 (9.20)

Furthermore, the equalities are attained by certain zonotopes and therefore the bounds are best

possible. From the above theorem it is clear that the upper bound of 	6����� is 78�9���:��� � ����� �<;
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Figure 9.2: 3 dimensional zonotope with 10 generators.

����� � � �
� , for large � . The bound on the number of vertices is the expression

� � � � � 
 � � � �
�
� �
�
�
�
� � (9.21)

and the dominating one is the last term �
�

� � 
 � (9.22)

which is of � ��� � � �
� for large � . Thus the number of vertices are polynomially bounded and

there exists efficient algorithm to generate extreme points of � as given by the following theorem.

Theorem[105] :

Given � � 

generators of a zonotope there is � � ��� � 
 � � � � � ��� � � , for large � , time algo-

rithm to generate extreme points of zonotope for � � �
.

Uptil now we know the bound on the vertices but we do not know an algorithm to generate them.

In order to explain it, we need a relationship between arrangements of hyperplanes and zonotopes.

Arrangements of hyperplanes [104, pp.4]:

A finite set of hyperplane in
! � defines a dissection of

! � into connected pieces of various di-

mensions. We call this dissection the arrangement
� � � � of H. For example, a finite set of lines

in two dimensions dissects the plane into connected pieces of dimensions two, one and zero. It

has been shown [104, pp. 20-26] that a zonotope in
! � corresponds to an arrangement in

! �
� �

.

For example a two dimensional zonotope has corresponding one dimensional arrangement. In
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[104,105] an algorithm is given to construct arrangements. The overall structure of the algorithm

is given below.

The overall structure:

The construction of an arrangement proceeds incrementally, that is, the arrangement is built by

adding hyperplane one at a time to the already existing arrangement. The order in which the hy-

perplanes are added is irrelevant. Let � denote the set of hyperplanes � � � � � 	    	 � � � in
! �

and define

� � � " � � 	    	 � � $ (9.23)

for

 
 � 
 ! .

� � � � denotes the data structure to be described that represents the arrangement
� � � � . It is assumed that the normal-vector of hyperplanes in � span

! � . Let the normal vectors

of
� � 	    	 � � span

! � . Construct
� � � � � .

For i running from � � 

to ! , construct

� � � � � from
� � � � � � � by insertion of

� � . Finally,
� � � � � � � � � � . Unfortunately, this algorithm may not be very practical because it has to store in

memory the list of all vertices and faces generated before. This means that only the storage of ver-

tices is of size � ��� � � �
� . In order to alleviate the complexity there exits an efficient algorithm,

known as reverse search algorithm [102,106,107], for generating full dimensional regions. The

advantage of this algorithm is that it can be highly parallelized and is also space and time efficient.

In order to explain the basic idea of reverse search, let
�

be a connected graph and suppose we

have some objective function to be maximized over these vertices. A local search algorithm on
�

is a deterministic procedure to move from any vertex to some neighboring vertex which is larger

with respect to objective function until there exists no better neighboring vertex. A vertex without

a better neighboring vertex is called local optimal. The algorithm is finite for any starting vertex, it

terminates in finite number of steps. Simplex algorithm is an example of local search algorithms.

Let us imagine the simple case that we have finite search algorithm and there is only one local

optimum vertex � � ( which is also optimal solution). Consider the directed graph
�

with same

vertex set as
�

and the edges which are all ordered pair � � 	 ��� � of consecutive vertices � and ���
generated by local search algorithm. It should be clear that

�
is a tree spanning all vertices with

the only sink � � . Thus if we trace this graph
�

from � � systematically, say by depth first search,

we can enumerate all vertices. The major operation here is tracing each edge against its orientation

which corresponds to reversing the local search, while the minor work of backtracking is simply

performing the search algorithm itself. We do not have to store any information about visited

vertices for this search because
�

is itself a tree. Observe that for each vertex � , every vertex 

below � in

�
(those 
 such that there is directed path from 
 to � ) has no larger objective value

and whenever it detects a vertex with lower objective value, then abandon going lower in the tree.

The advantage of the reverse search algorithm are:

1) Time complexity is proportional to the size of the output times a polynomial in the size of

input
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2) Space complexity is polynomial in the size of input,

3) Parallel implementation is straight forward. We believe that we can exploit the symmetry of

our problem to further reduce the complexity, i.e., time and memory, of the reverse search algo-

rithm. Having found the vertices with the help of reverse search algorithm, the task remaining is

to calculate the value of the objective function at those vertices. We need to evaluate the objective

function only on half the number of vertices (thanks to symmetry of our constraint) resulting in

overall complexity of ����� � � � � � � for the proposed method. � � � is the complexity to calcu-

late SVD of a symmetric � ��� matrix. Having found the vertex of zonotope that maximizes our

objective function, the corresponding vertex of hypercube can be found by,
� � � � 
 .

9.4 Conclusions

In this chapter, we have shown theoretically a polynomial time algorithm to decode exactly a

MIMO system when the number of receiving antennas is fixed. By posing the problem as maxi-

mization of quadratic form over zonotope and using some classical theorems of discrete geometry,

we were able to solve the problem in polynomial time. Comparing our method with the sphere

decoding, we have the following three advantages over the later:

1) The sphere decoder has exponential complexity at low SNRs while there is no such problem

in our method (it is independent of SNR).

2) The sphere decoder has polynomial complexity (at high SNRs) at each time instant (because

the received signal point moves from one point to another in lattice at each time instant) for flat

fading or for block fading channels, while no such problem exists in our method.

3) No heuristic is employed in our algorithm, where as in the sphere decoder radius of the sphere

is chosen heuristically and choosing the optimum radius of the sphere is NP-hard.

The disadvantage of our algorithm is that the degree of the polynomial increases as the number of

receive antennas, � , increases. Although, we have assumed perfect channel knowledge but the

same analysis applies for noisy channel estimates too.
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Chapter 10

Blind iterative receiver for multiuser

MIMO systems

The information capacity of wireless communication systems may be increased dramatically by

employing multiple transmit and receive antennas. In this chapter, we consider multiuser wireless

communication system, employing multiple transmit and receive antennas. We estimate jointly

channel and symbols user-wise by Maximum Likelihood approach (ML) approach. Two models

are considered for the symbols of the interferers, corresponding to Gaussian and discrete priors.

In the latter case, in which the finite alphabet gets exploited for the MAI symbols, a simplification

for the posterior MAI symbol probabilities is introduced based on Mean Field Theory.
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10.1 Introduction

Multiple Input Multiple Output (MIMO) system has gained much interest recently [44]. Deploy-

ing multiple antennas at both, the base station and the remote stations increase capacity of the

wireless channels. The gain in capacity is because of diversity, spatial multiplexing, interference

rejection and array gain. In order to fully exploit the advantages of an antenna array, one must

know the channel that will distort the signal as well as well as interfering noise. In [45] joint

channel estimation and decoding for linear MIMO systems has been carried out assuming short

training sequance for channel estimation. In this chapter, we consider the problem of estimation of

channel-symbols user-wise (i.e., considering other users as interferers) blindly (without training

sequence). We use two approaches for the parameter estimation. In the Gaussian prior case [94],

only the Multiple Access Interference (MAI) are modeled as stationary (white) sequences. We use

ML formulation that gets implemented via Expectation Maximization (EM) algorithm to alternate

between channel and the User of Interest (UoI) symbols estimates. Alternatively, we consider ex-

ploiting the finite alphabet for the MAI symbols, leading to significant MAI reduction capability.

To simplify and to reduce the complexity of the resulting EM algorithm in the second approach,

we consider the introduction of Mean Field methods for the approximation of the posterior MAI

symbol probabilities. The chapter is organized as follows: In section 10.2, we define the com-

munication model. Section 10.3 describes user-wise channel-symbol estimation with Gaussian

prior on MAI. In section 10.4, we describe user-wise channel-symbol estimation procedure using

discrete prior on MAI symbols. Conclusions are drawn in section 10.5.

10.2 Communication model

We model a wireless communication system with K users. Each user is equipped with N transmit

antennas. The base station has M receive antennas. We assume flat fading between each transmit-

receive pair. We denote 	 � � � as complex fading gain from the ! ��� transmitter antenna to the �
���

receive antenna, where 	 � � � � � � � 
 	 
 � is assumed to be zero mean circularly symmetric complex

Gaussian random variable with unit variance. This is equivalent to the assumption that signals

transmitted from different antennas undergo independent Rayleigh fades. It is also assumed that

the fading gains remain constant over the entire signal frame, but they may vary from one frame

to another. The received discrete time signal at instant t can be written as

� � � �
� � � ! � 	 (10.1)

where � � � � ��� � � ��� 
 � � � � ���
�
� � � , is the symbol vector. � � ��� � � � � 
 � � � � � � � � � , is the received signal,

! � � � ! � � ! 
 � � � � ! � � � � is a Gaussian noise vector. � � � � � � �� � � 
� � � � � � �� � � � is a vector consisting of
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symbols transmitted from N transmit antennas at an instant � . � � � � � " ��
 	 
 $ . �� � � is the transpose

operator. Channel matrix � is given by

� ��� � � � 
 � � � � � � 	 (10.2)

where � � is as follows

� � �

�����
�

	 � � � � 	 � 
 � �    	 � � � �	 � � � 
 	 � 
 � 
    	 � � � 

...

...
. . .	 � � � � 	 � 
 � �    	 � � � �

������
� (10.3)

10.3 User-wise channel-symbols estimation with Gaussian MAI prior

The received signal is given by the equation (10.1). Each user channel is modeled as Gaussian

vector which might be correlated in space, i.e., between antennas, but are assumed independent

between users. The channel vector for user � can be written as
� �� � � � 
 	 � � � � � � . In the first

approach we assume that the interfering symbols as Gaussian i.i.d. random variables with known

variance  


� . Given

�
snapshot, i.e.,

"
� � $ � � , we are now ready to define the complete data set.

The complete data set is chosen as
"
� 	 � � 	 � � $ , where � � is the group of the interfering users’

information bits transmitted at all time instants and � � is their channel matrix and � is composed

of the received vector from time instant



to time instant
�

. Without loss of generality, we will

detect user 1 first. The pdf of the complete data set is given by

� � � 	 � � 	 � �
� � � 	 � � � � � � � � � 	 � � � ��� � 	

� � � 	 � � � � � � �
� � � 	 � � � 	 (10.4)

� � vector is composed of user 1 transmitted data at all time instants, � � � � � 	 � � , � ��� �
� � � 	 � � � and

� � � �
� � � 	 � � � are given by

� � � � � 	 � � � � � � � ���
��

 

 � � � �
� � � � � � �
� � � 	 (10.5)

where � �
is constant not depending on parameters to be estimated, �� � � is the Hermitian transpose

and

� ��� �
� � � 	 � � � � � 
 � � ���

��

�  


�
� � � � � � 	 (10.6)

where � 
 is another constant. In the above equation we have assumed without loss of generality

that the prior mean for the interfering users’ symbols is zero and the variance  


� of the symbols is

known.

Having the above equations we are now ready to evaluate the E-step of the algorithm. Since we

are conditioning on the received data, we take expectations with respect to � � (interfering users’
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symbols) and their channel, � � .

��� � � 	 � � � � 	 � 
� � 	 � 
� � � !#" � ��� � � � 	 � � 	 � �
� � � 	 � � � � � � 	 � 
� 	 � 	 � 
� � $ 	 (10.7)

where �� � 	 � 
 is the iteration index and
!

is the expectation operator.

Evaluating the expectations and dropping the terms that do not depend on the parameters the

above equation can be written as

��� � � 	 � � � � 	 � 
� 	 � 	 � 
� � � � � � �
� ! " � � � � � � � � � � � � � � � ��� � � �

� � � � � � � � � � � � �
�
�
� � 	 � 
� 	 � 	 � 
� $ 	

(10.8)

� � � are the symbols transmitted by interfering users (with � transmit antennas each) at time instant

� , � � is the received signal at instant � , � � � is the transmitted data vector of user 1 at instant � , � �
is

the channel matrix for user 1 and � � is the channel matrix for the interfering users. � ��� � � � � � � .
The above equation can be further written as

��� � � 	 � � � � 	 � 
� 	 � 	 � 
� � � � � � �
� ! " � � � � � � � � � � �

�
� �
� � � � � �

� � � � � � � �

�
� �
� �
�
�
� � 	 � 
� � 	 � 
� $ 	

(10.9)

where
� � � � � � � � �

and
� � � ����� � � � � and

�
is identity matrix. Similarly, we can define

�

�
� � � � �

� �
, and

�
�
� � ��� � � � � . We have used the property that � ��� � � 	 � � � � � � � � � ����� ��	�� ,�

is Kronecker product. The symbols � � � are obtained by maximizing eq (10.9) over BPSK.

Differentiating the E-step equation with respect to
� �

yields

� � � ��
� �
� �

� � � � � � � �
� � ��
� �
� �

� � � � � � � � � � �  �� �
�
� � � (10.10)

where

�
� � � �

!#" � � �
�
�
� � 	 � 	 � 
� $ 	 (10.11)

in addition to
�
� � � we also need second order moment of � � � . and

�� � is

�� �
� !#" � �

�
�
� � 	 � 
� 	 � 	 � 
� $  (10.12)

Now the problem is to derive the expressions for
�
� � � and

�� � , i.e., the conditional mean of

the interfering users bit and the conditional mean of the interfering users channel. In order to

accomplish this, we first write the pdf for the observed data

� � � � � 	 � � � � � �
� � � � � � � �

� �
��� � � 	 (10.13)

where � � is another constant and � ��� is given by

� ��� � � � � � � � � � �� � � � � � � �� � ��
�  


 � 	 (10.14)
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where � � and � � are the data vector composed of transmitted symbols at all time instants of user

1 and the rest of the users respectively. In deriving the above equation, we used the fact that!#" � � $ �


. From now we will omit the EM iteration index, i.e., � . The conditional pdf of � � � as

a function of known pdfs is follows (using the fact that transmitted symbols at instant � results in

received vector at the same instant),

� ��� � �
�
�
� � 	 � � � � � � � � � � 	 � � � � ��� � � � � � � � � � � 	 � � � � 	 (10.15)

where � � is the vector of symbols of all the users at instant � , � � is the received vector at instant

� , � � � are the interfering users data vector transmitted at instant � , and � is the channel matrix.

Substituting the corresponding expressions and rearranging gives

� ��� � �
�
�
� � 	 � � � � �  �

�

�
�

� � � � �
�� � � � � � �
� � � � � � � � ��� � � �

�
 � �
�
��� � � � � �

�
� � �

� �
��� � �  

(10.16)

Since the conditional pdf of
�
� � will be Gaussian, it is easy to show that

�
� � � �

� � � 

 � � �� � �

� � �� �
� � � � � 	 (10.17)

where

�
� �
� �

�


 

 � �� � �

� �
�  


�
	 (10.18)

where
�

is identity matrix. Similarly the expression for
�� � is as follows

��
�
� ����� � �� � �

� � � � ��
� �
�


 

 � � �� � � �

� � �� � �
� � � � � 	 (10.19)

where �
� �� � is given by

�
� �� � �



 

 ��
� �
�

� �� �
�

�
� � �

� ��
�
�
� 	 (10.20)

and
�

�
� � � � �

� �
.

The algorithm detects user-wise channel- symbols. First, user 1 channel-symbols are estimated

from the above procedure. Then the contribution of that user is subtracted from the received signal

to get more clean signal. Then the user second is detected. The same procedure is repeated for

the other users. After convergence of the EM algorithm, the solution of � � � from equation (10.9)

is projected on finite alphabet to get the symbols estimate. The same process is done for the other

users too. The overall algorithm works as follows: first we initialize � �
and � � , 2) We evaluate�

� � � from equation (10.17) and
��
� from equation (10.19). These values are plugged into equation

(10.9) and equation (10.10) to get the channel-symbol update. These steps are repeated until

convergence.
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10.4 User-wise symbol estimation using discrete MAI prior

The steps for deriving the algorithm are essentially the same except that the conditional mean of

� � � will be different than previously discussed, i.e., Gaussian random variable for the priors, which

will result in different channel-symbols estimates. The conditional mean for � � � is given by

�
� � � �

!#" � � �
�
�
� � 	 � 	 � 
� $ � �

� � 	
� � � � ��� � �

�
�
� � 	 � 	 � 
� �  (10.21)

From now for the sake of simplicity we will omit the EM iteration index, i.e., k. In order to calcu-

late the conditional mean we have to evaluate the above expression, which is summation of all in-

terfering users’ symbols at instant � multiplied by their corresponding pdfs, which is computation-

ally very expensive. Mean Field (MF) methods [36,37,91], provide tractable approximations for

the computation of high dimensional sums and integrals in the probabilistic models. By neglecting

certain dependencies between the random variables, a closed set of equations for the expected val-

ues of these variables are derived which often can be solved in a time that grows polynomially in

the number of variables [91, chapter.2]. The MF approximation is obtained by taking the approx-

imating family of probability distribution by all product distribution, i.e., ����� � � � ��� � ��� ���
�
�
� � .

We now choose a distribution which is close to the true distribution, i.e., � ��� � �
�
�
� � 	 � � � . The

parameter of the distribution is chosen so as to minimize Kullback-Leibler (KL) distance, i.e.,

� � � � � � ��� � �
�
�
� � 	 � � � � �

� � 	
� ��� � � �

� ! ����� � � �� ��� � �
�
�
� � 	 � � � 	 (10.22)

where � ��� � � � ��� 	 �
� ��
 �

� �
� ���
��� � � � � and � � � � �

" � 
 	 
 $ .

� ��� � �
�
�
� � 	 � � � � � � � � � � 	 � � �� � � 	 � � � �

� � 	 � � � �
� � � � � � ��� � � �

� 	 (10.23)

where Z is independent of � � � , � � � �
� � 	 � � � has the Gaussian distribution and the � � is the vector

of symbols of all users at instant � . After some simplification � ��� � � can be written as

� ��� � � �


 

 � � � �� �
� � � � � � � � � � � � � � � � �
� � �  (10.24)

The above equation has the form

� ��� � � � �
� � �

� � � � � � � ���� �
� � �

�
� � � �
� � � � 	 (10.25)

where � is a term independent of � � � , � � � � �� � � � � � � � � � , and
� � � � � � � �

�� � � � � � � � � � . �� � �
is the


 ���
element of the vector � � � � . The KL distance between � and � ��� � �

�
�
� � 	 � � � can be

written as

� � � � � � ��� � �
�
�
� � 	 � � � � � ! � � � � � � � � � � � 	 (10.26)
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where

� � � � � � �
� � 	
� ��� � � �

� ! � ��� � � � 	 (10.27)

is the entropy and

� � � � � �
� � 	
����� � � � � ��� � � 	 (10.28)

is the variational energy. The most general form of probability distribution for our problem is

���
��� � � �
� � � � �


 � � � � � � �
� 	 (10.29)

where � � is the variational parameter which corresponds to the mean, i.e., � � � ! " � � � � $ . The

entropy can be written as

� � � � � � �
�


 � � �
�

� � 
 � � �
�

� 
 � � �
�

� � 
 � � �
� 	 (10.30)

and similarly the variational energy can be written as

� � � � � �
� � �

� � � � � � �
� � �

�
� � � �  (10.31)

In order to evaluate � � we have to minimize the variational free energy, i.e.,

� � � � � � � � � � � � � � (10.32)

Differentiating this equation with respect to � �� � gives nonlinear fixed point equations, i.e.,

� � � � � ! � � �
�
�
� � � � �

��� � � 	 
 � 
 	 � � � � � � � 
 � � (10.33)

In the matrix form we can write the above equation as

� �����	��
 � �
� � ��� � 	 (10.34)

where
� � � � � � . The huge computational task (complexity grows exponentially with the number

of interfering users times the transmitted symbols per user) of exact averages over � ��� � �
�
�
� � 	 � � �

has been replaced by solving the above set of � � � 
 � � nonlinear equations, which can be done in

time that grows only polynomially. As the above equation is nonlinear there may be local minima

or saddle points. In order to avoid it, the solution must be compared by their value of variational

free energy
� � � � .
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10.5 Simulations and conclusions

In this chapter, we derived two receivers for user-wise joint channel-symbols estimate. In the first

approach, the Gaussian prior on the interfering users’ symbols is assumed and the EM algorithm is

used for user-wise channel- symbols estimation. In the second proposed receiver a discrete prior is

assumed on the interfering users’ bits. In the later case, the complexity of computing the posteriori

probabilities grows exponentially in the number of interfering users times the symbols per user.

We derived low complexity method to circumvent this problem. The exact posteriori probabilities

are replaced by the approximate separable distributions. The distributions are calculated by MFT

(variational approach). Simulation results are shown in figure 10.1. The simulations were per-

formed by considering one transmit and four receive antennas. The number of the users were two

in the system. We used the estimated channel for our proposed receiver and it shows very close

performance in the terms of the BER to the exact ML (i.e., when the channel is exactly known)

approach.
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Figure 10.1: Av. BER of K=2 N=1, M=4 vs ���������
	�� .



Chapter 11

Blind iterative receiver for multiuser

space-time coding systems

Space-time coding (STC) techniques, which combine antenna array signal processing and chan-

nel coding techniques, are very promising approaches to substantial increase in capacity in the

wireless communications channels [10]. The goal of the system is to exploit this capacity in a

practical way. In this work, by drawing analogies between a synchronous CDMA and an STC

multiuser system, we apply multiuser detection techniques to the problem at hand. We use Gaus-

sian mixture modeling to estimate the channel using the EM based approach, and we consider

the Maximum Likelihood (ML) approach for detecting the symbols for all the users in an iterative

fashion. Symbols are detected user-wise, considering the rest of the symbols as interfering sym-

bols. Two models are considered for the symbols of the interferers, corresponding to Gaussian

and discrete priors. In the latter case, in which the finite alphabet gets exploited for the MAI

symbols, a simplification for the posterior MAI symbol probabilities is introduced based on Mean

Field Theory [97].
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11.1 Introduction

Deploying multiple antennas at both, the base station and the mobile stations, increase the capacity

of wireless channels. The recently developed space-time coding (STC) techniques integrate the

methods of transmitter diversity and channel coding, and provide significant capacity gains over

the traditional communication systems in the fading wireless channels. Two types of Space-time

coding schemes exist in the literature, i.e., Space-time block coding (STBC) and Space-time trellis

coding (STTC).

Recently, iterative processing has attracted vast attention due to its successful applications in many

areas of the coding and the signal processing.

In this work, we detect symbols of the each user and estimate the channel jointly. The channel

gets estimated blindly via Expectation Maximization (EM) algorithm by formulating the problem

as Gaussian mixture model. The estimated channel is than used to detect the symbols for each

user, which is also done in iterative fashion, i.e., user-wise detection. The detection of symbols are

done in two ways. In the first case of user-wise detection, the symbols of other users (interfering

users) are modeled as Gaussian random variables. Alternatively, we consider exploiting the finite

alphabet for the MAI symbols, leading to significant MAI reduction capability. To simplify and to

reduce the complexity of the resulting EM algorithm in the second case, we consider the introduc-

tion of Mean Field methods for the approximation of the posterior MAI symbol probabilities. The

chapter is organized as follows: In section 11.2, we define the signal model. Section 11.3, 11.4,

describe Gaussian mixture model based estimation of the channel and the effect of the dimension-

ality reduction on the Gaussian mixture problem respectively. In section 11.5, we describe the

detection procedure for our problem. In section 11.6 conclusions are drawn.

11.2 Signal model

We consider the Space-time block coding (STBC) system with � users. Each user is equipped

with � transmit antennas. The base station has � receiving antennas. The ��� � user’s STBC is

defined by a � � � � � code matrix
� � , where

�
denotes the number of time slots for transmitting

an STBC codeword or the temporal transmitter diversity order. A STBC encoder takes as input

the code vector ��� , and transmits each row of symbols in
� � at

�
consecutive time slots. At each

time slot, the symbols contained in an N-dimensional row vector of
� � are transmitted through �

transmitter antennas simultaneously. For two antennas system the code matrix is given by

� �
�

� � 
 � � � � �� � � � � � � � � 
 � � (11.1)

where �� � � denotes the transpose and � ��� � � " 
 	 ��
 $ . We consider flat fading channel between

each transmitter-receiver pair. The coefficient 	 � � � is the path gain from transmit antenna � to the
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receive antenna



at time � . The path gains 	 � � � are modeled as samples of independent complex

Gaussian random variables with mean zero and variance


. This is equivalent to the assumption

that signals transmitted from different antennas undergo independent Rayleigh fades. It is also

assumed that the fading gain remains constant over the entire signal frame and vary from one

frame to another (quasi-static fading).

The model for our problem is given by [92]
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� ��� �
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 � �
(11.2)

In the above equation,

� � ��� � � � 
 � 	 � � � � � � � � � � � � ��� � 	 � � 
 	 � � � � � 	 (11.3)

consist of the received signal from time slots



to
�

, at the � � � receiver antenna. � � denotes

the channel response of the user � and

��� ��� ��� � 
 � ��� � � � � � � ��� ��� ��� � (11.4)

is the code vector of the ��� � user, with � � ��� � � " 
 	 ��
 $ ; and

! � ��� ! � � 
 ��! � � � � � � � ! � � � ��� � (11.5)

is the additive noise vector at the � � � receiver antenna. �� � � denotes transpose operator.

For single user, the Alamouti scheme, (two transmit antennas), STBC is given by�
� � � 
 �
� � � � � � �

�
� � 
 � � � � �� � � � � � � � � 
 � �

� 	 � � �	 � � 
�� �
�
!�� � 
 �
! � � � � �

It can be further written as

�
� � � 
 �
� � � � � � �

� ��� �

� 	

�
� 	 � � � 	 � � 
	 �� � 
 � 	 �� � � �� ��� �

� 	
 

�
� � 
 �
� � � � �

� ��� �

�  

�

�
! � � 
 �
!�� � � � � �

� ��� �

� 	
(11.6)
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where �� � � is the Hermitian transpose. From the above equation we can see the analogy between

multiuser STBC signal model and synchronous CDMA signal model [109]. By stacking all � � ,

we get the following equation for two transmit antenna system.�����
�
�

�

�



...

� �

������
�

� ��� �

� �

 � � �

�

�����
�
�
��

�

�
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� ��

������
�

� ��� �

�  �

 � � 


�
� � 
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� � � � �

� ��� �

�  �

 � �

�

�����
�
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�
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! �

������
�

� ��� �

� �

 � � �

(11.7)

11.3 Gaussian mixture model based channel estimation

The Gaussian mixture model was considered for the synchronous CDMA system in [109,110].

Due to analogy between the synchronous CDMA and Space time multiuser system, we can use

the method used for the synchronous CDMA to the problem at hand. In ML estimation problem

we have density function
� � � � � � that is governed by the set of parameters

�
(e.g.

�
might be set

of Gaussians and
�

could be the means and covariances). The data is of size
�

, supposedly drawn

from this distribution, i.e.,

� ��� � � 	       � � �  (11.8)

That is, we assume that these data vectors are independent identically distributed (i.i.d) with dis-

tribution
�

. Therefore the resulting density for the samples is

� � � � � � � ��
� �
�
� � ��� � � � � � � � � � �  (11.9)

This function
� � � � � � is called the likelihood of the parameters given the data, or just the

likelihood function. In the ML problem, our goal is to find
�

that maximizes
�

. That is, we wish

to find
� � where

� � ��� � ��� � 
� � � � � � �  (11.10)

Assuming that the channel output, i.e., � can be approximated by Gaussian distributions, i.e.,� � � � � � can be modeled as MP-dimensional mixture of Gaussians. We can write

� � � � � � �
��
� �
� 	 � � � � � � � 	�� � � 	 (11.11)

where � � �
�
� and

� � � � � � 	�� � � � 

� � � � 	 � 
 
 
 
 � � � � � 
 
���
�� � �



� � � � � � � � � � �� � � � � � � � 	 (11.12)
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	 � � 
 	 � ! �
��
� �
� 	 � � 
  (11.13)

The parameter vector
�

consists of mixing proportions 	 � , the means vectors � � , and the co-

variance matrices � � . Given � and given
�

independent, i.i.d. samples
"
� � $ � � , we obtain the

following likelihood

� � � � � �� � � � �
��� ��

� �
�
	 � � � � � � � � 	�� � � (11.14)

which is difficult to optimize because it contains logarithm of a sum. If we consider X as incom-

plete, since we do not know which index j, within the mixture probability density function resulted

for a specific output. The complete ”data set” in this case is,

� � � 	    	 � � 	 � � 	    	 � � � 	 (11.15)

where � � denotes the component of the pdf from which � � is drawn. Using complete data set we

can optimize our problem using EM algorithm.

The update for means is given by the following equation (for details see chapter 3 of this

thesis).

� 	 � � ��
� � � � � � � � 	 �



� ��� � � �� � � � � � 	 �



� ��� � 	 (11.16)

where the posteriori probabilities
� 	 � 
� ��� � is defined as follows:

� 	 � 
� ��� � � 	 	 � 
� ���
� � � � 	 � 
� 	�� 	 � 
���� �� �

� 	 	 � 
� ���
� � � � 	 � 
� 	�� 	 � 
���  (11.17)

The mixing proportions ( 	 � ), and the covariance matrices in our case are of constant values and

are given by
�
�
�
�

, and  

 �

respectively. The channel gets estimated in similar fashion as is done

in chapter 3, i.e., using eq. 3.23, eq. 3.24, eq. 3.25 and eq. 3.26.

11.4 Effect of dimensionality reduction

on the Gaussian mixture problem

Dimensionality reduction has been subject of keen study for the past few decades [29,31,32].

In this section we will discuss the effect of dimensionality reduction on the Gaussian mixture

problem.
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In the following lines we will consider the effect of projection based on the principal compo-

nent analysis (PCA) and random projections (to reduce the dimensionality of the problem) on the

Gaussian mixture problem.

Lemma: ([108,46]). For any � � 

, pick a � -separated mixture of

�
Gaussians in � � . Let

� 	 � � � 
 	 
 � designate the confidence interval and accuracy parameters, respectively. Suppose the

mixture is projected into a randomly chosen subspace of dimension

� � � �
� 
 � !

�
� 	 (11.18)

where � � is some universal constant. Then, with

� ��� � �
� � � � � 
 � 
 � �

(11.19)

over the choice of subspace, the projected mixture in � � will be � � � 
 � � � -separated.

The c-separation for two Gaussians is defined by

� � � � � � 
 � � � � � � � � � � � � � � � � � � 	 � � � � � � � 
 ��� (11.20)

where � � and � 
 , are the covariance matrices of the two Gaussians respectively. A mixture of

Gaussian is � -separated if its component Gaussians are pairwise � -separated. From the above

lemma, it is clear that the separation between the Gaussians is reduced by the projection operation

and the techniques like the EM works only well for well separated Gaussians (i.e., if they do not

overlap too much).

11.4.1 Dimensionality reduction using PCA

Principal component analysis is an extremely important tool for data analysis which has found use

in many experimental and theoretical studies. It defines a d-dimensional subspace of � � which

captures as much of the variation in the data set as possible.

The projection by PCA is quite easy to obtain. Let
�

and � denote the mean and covariance of the

high dimensional data � . The positive semidefinite matrix � can be written in the form 	 � � 	 ,

where
� � � � � � � � � 	    	 � � � is the diagonal matrix containing the eigenvalues of � , and 	 is the

orthogonal ! � ! matrix. If the data points are rotated by 	 , the resulting data 	 � � 	    	 	 � �
has mean 	 � and covariance



�

��
� �
� ��	 � � � 	

� � ��	 � � � 	 � � � � 	 � 	 � � �
(11.21)
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Assume the eigenvalues are ordered so that � � � � 
 �    � � � . Then the direction of max-

imum variance of the rotated data is simply the first coordinate axis. Similarly, to select the

d-dimensional subspace of maximum variance, simply pick the first � coordinate axis of the ro-

tated space. In summary, PCA projects each point � � � � � to � �� � � � � � , where
� � is � � !

projection matrix consisting of the first � rows of 	 . The projected data then has covariance

� � � � � 
 �    �� � � � . Now the question is that how much can PCA reduce the dimension of a

mixture of � Gaussians?. It is quite easy to symmetrically arrange a group of � spherical Gaussians

in � � 




so that a PCA projection to any smaller dimension will collapse some of the Gaussians

together, and thereby decisively derail any hope of estimating the mean of the Gaussians. Thus

PCA cannot in general be expected to reduce the dimension of a � Gaussians to below some criti-

cal value. Moreover, it is rather time-consuming process for high dimensional data. A much faster

technique for dimensionality reduction is by random projection. Now we perform analysis of the

random dimensionality reduction problem.

11.4.2 Random projection for dimensionality reduction

First we show that the Gaussians do not spread out (that is they are well separated) after random

projection, that is, � � ��� � � � � 
 � � ��� � � � � . This is quite straightforward. Write the projection,

say
� � , as a � � ! matrix with orthogonal rows.

� � transforms Gaussian � � � 	�� � in � � to

� � � � � 	 � � � � � in � � , and

� � ��� � � � � � � � � � ��� � � �
� � � � � � � � �� � �

� � � �
�
�
���

� � � � ��� � � � � � � � � � � �
� � � � � � � � � � �

� � � �
�
�
� �

� � � � � ��� � � � � � � �
� � � � � � � � � � � � �



� � �

�
�
���

� � � �� � �
� � � ��� � � �  (11.22)

We have used the fact that
� � � � �

� .

Consider � identically distributed independent (i.i.d.) random variables which are components

of the mean vector
�

. The goal is to calculate the probability distribution of the sum of the squares

of the difference of the two mean vectors
�

and
�

, each of which is a vector with � components

which are i.i.d. random variables, i.e.,

� � � � � 	 � 
 	 � � � � � � � ! �
� � � � � 	 � 
 	 � � � � � �  (11.23)
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Let � be the components of the difference of the means, i.e.,

� � � � � � � � � 	 � 
 	 � � � � � �  (11.24)

The probability density function of � is follows

��� � � � � ��
� � � � � � � � � � � � (11.25)

The joint probability density function,

� � � � 	 � 
 	 � � � � � � 	 (11.26)

is

� � � � 	 � 
 	 � � � � � � � ��� � � � ��� � 
 � � � � ��� � � �  (11.27)

Considering Gaussian probability density function for each component, the joint probability den-

sity function for means is:

� � � � 	 � 
 	 � � � � � � �



� � � �
�


� � �
� � � � � ��

� �
�
�

�

�
�

 � 	 (11.28)

where we have assumed that the Gaussian is zero mean with variance �


. This density function is

spherically symmetric hence it can be written in the form of

� � � � � � � � � � � � � � � �� � � � � � �
� �
� �
� � 	 (11.29)

where � � denotes the surface area of d-dimensional sphere. Let

� � � � �� �
�
 (11.30)

The criterion for the separation of two Gaussian is that the distance between two means is greater

than twice the standard deviation. We are interested to find the probability that

�
��
� �
� �

� �  � � �

� 	 (11.31)

i.e.,

�
��
� �
�
� 
� �  � � � �  

�
 (11.32)

The solution to this problem takes the form of the standard distribution of the sum of the

squares of � normally distributed random variables,
� � 	


 � � � . 	



distribution is one of the classic

distribution of statistics. We can calculate the probability that

�
��
� �
�
� 
� �  � � � 	 
 	 (11.33)
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as

� ��� � � � � 	

 � � � � � � 
 �

� �



� � �
� � � � � �� � �

� �
� �
� � 	 (11.34)

which can be written as

� ��� � �



� � ��� � � 
 �
� 
 �� � �

� �
� � � �� ��� 	 (11.35)

where � �� � is Gamma function. In order to calculate the minimum dimension for which the prob-

ability that

�
���� ��
� �
� �

� � �  � � � 	

we solve the inequality

� �
�  


�

 � �

�
�
� �
� � 	

for the smallest value of
�

�
�
� . If we have � mean vectors whose components are identically dis-

tributed independent random variables, then there are � 	 � � ��

 difference vectors. The probability

that no pair of means will be separated by less than
�  is then,

� �
�  


�

 � �

�
�
� �
� � �
� � � ��
 � 	 (11.36)

therefore from eq (11.36) we have

� �
�

� � � �
�  


�

 � �

�
�
� �

�



��� ��� � 

 �
� 
 �� � �

� �
� � � �� � �

� �� � � � 
 
 

� 
 
 
 � � � � � � 
 � (11.37)

Plot of the above equation (see fig 11.3) shows that when the data is projected into a space of

smaller dimension,
� � � , the probability of overlap between the means increases rapidly as

�

decreases.

11.5 User-wise symbol estimation using Gaussian prior on MAI

The discrete time received signal is given by equation (11.2), i.e., � � ��� � ! . This equation can

be further written as

� � � � � � � � �� � �  (11.38)
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Where �� � � denotes the transpose operator, � � , is the information bits of user 1 and � � are the

information bits of the rest of the users. Without loss of the generality, we detect the symbols for

user 1 first, and for user � in the last, i.e., in the ascending order of the users.

In the first approach we assume the input interfering symbols as Gaussian i.i.d. random vari-

ables with variance  


� , [94]. Given the above model we are now ready to define complete data

set. We choose complete data set as 
 � "
� 	 � � $ . The derivation of the algorithm is as follows:

The pdf of the complete data set can be written as,

� � � 	 � �
� � 	 � � � � � � � � � 	 � � � ��� �

� � 	 � � � 	 (11.39)

where � � � � � 	 � � and � ��� �
� � 	 � � � is given by

� � � � � 	 � � � � � � � � �
� 

 

 � � � ��� � � � � � �
� � � 	 (11.40)

where � �
is constant not depending on parameters to be estimated.

� ��� �
� � 	 � � � � � 
 � � � �

��

�  


�
� �� � � � 	 (11.41)

where � 
 is another constant. In the above equation, we have assumed without loss of generality

that the prior mean for the interfering users’ symbols is zero and the variance  


� of the symbols

is known. Having the above equations we are now ready to evaluate the E-step of the algorithm.

Since we are conditioning on the received data, we take expectations with respect to � � (interfering

users’ symbols).

����� � � � 	 � 
� � � !#" � ��� � � � 	 � �
� � 	 � � � � � � 	 � 
� � $ (11.42)

where �� � � is the iteration index. In the above equation, we will use the estimated value of the

channel which is estimated by GMM approach and has fixed value. Evaluating the expectations,

and dropping the terms that do not depend on the parameters, the above equation can be written as

����� � � � 	 � 
� � � ! " � � � � � � � � � � � � � � � �
� � � � � � � � � � �

�
�
� � 	 � 
� $ 	 (11.43)

where

� ��� � � � � � �  (11.44)

The above equation can be further written as

� ��� � � � 	 � 
� � � ! " � � � � � � � � �

�
�
� ��� � �

� � � � � � �

�
�
� �
�
�
� � 	 � 
� $ 	 (11.45)

where

� � � � � � � 	 (11.46)
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and

� � � � ��� � � � � 	 (11.47)

�
is identity matrix. Similarly, we can define

�

�
� � �

� �
� ! �

�
�
� ����� � � � �  (11.48)

We have used the property that

� ��� � � 	 � � � � � � � � � � ��� ��	��  (11.49)

The estimate od � � can be obtained by maximizing the eq.(11.46) over finite alphabet, which

is BPSK in our case. where

�
� �

� !#" � �
�
�
� � 	 � 	 � 
� $  (11.50)

In addition to
�
� � we need second order moment of � � too. As the expressions for � � depend on

the conditional mean and the second order moment, therefore now the problem is to find their

expression. In order to accomplish this, we first write the pdf for the observed data

� � � � � 	 � � � � � �
� � ��� � � � �

� �
��� � � 	 (11.51)

where � � is another constant and � ��� is given by

� ��� � � � � � � � � � �� � � � � � � �� � ��
�  


 �  (11.52)

In deriving the above equation we used the fact that
! " � � $ � 


. The conditional pdf of � � as a

function of known pdfs is follows

� ��� �
�
�
� � 	 � � � � � � � � � 	 � � � ��� � � � � � � � � 	 � � � (11.53)

Substituting the corresponding expressions and rearranging gives

� ��� �
�
�
� � 	 � � � � �  �

�

�
�

� � � � �
�� � � � � ��� � � � � � �
� � �

�
 � �
�
���� � �

�
� � �

� �
��� � �  (11.54)

Since the conditional pdf of
�
� � will be Gaussian, it is easy to show that

�
� �

� � � � 

 � � �� �

� � �� �
� � � � 	 (11.55)

where

�
� �
� �

�
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� �
�  


�
	 (11.56)
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where
�

is identity matrix. The algorithm detects user-wise symbols. First, symbols of user 1

are detected from the above procedure. Then the contribution of that user is subtracted from the

received signal to get more clean signal. Then the same procedure is repeated for the other users.

We can also vary the detection procedure by detecting user-wise bit by bit. For the later case, the

algorithm will work as follows: First of all, bit number one will be detected by maximizing the

Expectation equation with respect to that bit, considering all other bits (including other bits of the

user to be detected) as the Gaussian random variables. Secondly, the contribution of this detected

bit will be subtracted from the received signal. Then we estimate the second information symbol

assuming the rest of the symbols as Gaussian random variables. We continue in this fashion until

the last symbol of the user to be detected is estimated. By doing so the bit detection will improve

because at each step Inter-symbol Interference (ISI) caused by the detected bit is subtracted from

the received signal. The improvement will result provided that the bits are correctly detected and

this also will improve detection for the rest of the symbols because at each step more clean signal

will be processed. Solution of � � from equation (11.43) is projected on finite alphabet to get the

symbols estimate .

11.5.1 User-wise symbol estimation using discrete MAI prior

The steps for deriving the algorithm are essentially the same except that the conditional mean of

� � will be different than previously discussed, i.e., the Gaussian random variable for the priors,

which will result in different symbol estimates. The conditional mean for � � is given by
�
� �

� ! " � �
�
�
� � 	 � 	 � 
� $ � �

� �
� � � ��� �

�
�
� � 	 � 	 � 
� � (11.57)

From now, for the sake of simplicity, we will omit the EM iteration index, i.e., k. In order to cal-

culate the conditional mean we have to evaluate the above expression, which is summation of all

interfering users’ symbols multiplied by their corresponding pdfs, which is computationally very

expensive. Mean Field (MF) methods [33,38], provide tractable approximations for the compu-

tation of high dimensional sums and integrals in the probabilistic models. By neglecting certain

dependencies between the random variables, a closed set of equations for the expected values of

these variables are derived which often can be solved in a time that grows polynomially in the num-

ber of variables [91, chapter.2]. The MF approximation is obtained by taking the approximating

family of probability distribution by all product distribution, i.e.,

����� � � ��� � ���
��� � � �  (11.58)

We now choose a distribution which is close to the true distribution, i.e., � ��� �
�
�
� � 	 � � � . The

parameter of the distribution is chosen so as to minimize Kullback-Leibler (KL) distance, i.e.,

� � � � � � ��� �
�
�
� � 	 � � � � �

� �
����� � �

� ! � ��� � �� ��� �
�
�
� � 	 � � � 	 (11.59)
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where � ��� � � ��� 	 �
� ��
 �

� �
� � � ��� � � � and � � � �

" ��
 	 
 $ .

� ��� �
�
�
� � 	 � � � � � � � � � 	 � �� � � � � �

� � 	 � � �
� � � � � � ��� � �

� (11.60)

where Z is independent of � � and � � � � � 	 � � has Gaussian distribution. After some simplification

� ��� � can be written as

� ��� � �
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The above equation has the form

� ��� � � �
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where � is a term independent of � � ,

� � � �
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and
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is the � ��� element of the vector � � � . The KL distance between � and � ��� �
�
�
� � 	 � � � can be

written as

� � � � � � ��� �
�
�
� � 	 � � � � � � � � � � � � � � � � � 	 (11.65)

where

� � � � � � �
� �
����� � � �

� ����� � � 	 (11.66)

is the entropy and

� � � � � �
� �
����� � � � ��� � 	 (11.67)

is the variational energy. The most general form of probability distribution for our problem is

� � ��� � �
� � � � �


 � � � � � �
� 	 (11.68)

where � � is the variational parameter which corresponds to the mean, i.e.,

� � � ! " � � � $  (11.69)
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The entropy can be written as

� � � � � � �
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�
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and similarly variational energy can be written as

� � � � � �
� � �

� � � � � � � � � �
� � � � � (11.71)

In order to evaluate � � we have to minimize the variational free energy, i.e.,

� � � � � � � � � � � � � �  (11.72)

Differentiating this equation with respect to � �� � gives nonlinear fixed point equations, i.e.,

� � � � � ! � � �
�
�
� � � � � ��� � � 	 � � 
 	 � � � � � � � 
 � � (11.73)

In the matrix form we can write the above equation as

� ��� � ��
 � �
� � ��� � 	 (11.74)

where

� � � � � �  (11.75)

11.5.2 Linear response theory

In approximating the posteriori probability � ��� �
�
�
� � 	 � � � , the correlations were neglected, when

����� � � is chosen to factorize, i.e.,

! � � � � � " � � � � � � $�� ! � " � � � � � � $ �
! � " � � � $

! � " � � � $ 	 (11.76)

where
! � "  %$ stands for expectation with respect to distribution � . A correction to the estimate is

found by differentiating the following equation

! " � � � $ � �
� � �

�
� � � � � 	 �



(11.77)

with respect to
� � to obtain linear response relation [97], i.e.,

� !#" � � � $� � �
� !#" � � � � � ��$

� !#" � � � $
! " � � � $  (11.78)

The above relation is exact when expectation is taken according to exact probability distribution.

However, if
! " � � � $ is reasonably well approximated with the mean field method, we can get the

right hand side of the above equation by differentiating the left side of the equation with respect
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to
� � . In this way, we can improve the covariance and hence the second moment of the interfering

users’ bits which will result in improved channel estimates and symbol detection of the UoI as

compared to Naive Mean Field Theory (NMFT). NMFT does not take into account correlations

between random variables. This improvement is gained at the expense of very little additional

complexity.

The huge computational task (complexity grows exponentially with the number of interfering

users times the transmitted symbols per user) of exact averages over � ��� �
�
�
� � 	 � � � has been

replaced by solving the above set of � � � 
 � � nonlinear equations, which can be done in time

that grows only polynomially. As the above equation is nonlinear there may be local minima or

saddle points. In order to avoid it, the solution must be compared by their value of the variational

free energy
� � � � .
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11.6 Conclusions and simulations

In this work, we proposed channel estimation and symbol detection for the Space-time block

coded multiuser system. The channel is estimated blindly by formulating the STBC systems as

the Gaussian mixture model. For the symbol detection two procedures are proposed. In the first

approach, the Gaussian prior on the interfering users’ symbols is assumed and the EM algorithm

is used for user-wise symbol estimation. In the second proposed receiver a discrete prior is as-

sumed on the interfering users’ bits. In the later case, the complexity of computing the posteriori
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probabilities grows exponentially in the number of interfering users times the symbols per user.

We derived low complexity method to circumvent this problem. The exact posteriori probabilities

are replaced by the approximate separable distributions. The distributions are calculated by MFT

(variational approach). Figure 11.1 shows the channel estimation error for the system. Figure 11.2

shows the BER versus SNR for two users. We consider the case of two transmit and four receive

antennas. It is clear from the figure for BER that the behavior of our algorithm is very close to

the exact ML curve. It is also clear that we obtain better BER with the linear response theory in

comparison to the naive mean field theory. In figure 11.3, the effect of projection on the Gaussian

mixture problem. It is clear from the figure that the overlap between Gaussians increases rapidly

as the dimensions decrease is less than ten. This means that the EM algorithm will not converge

to true channel values when the dimension is reduced than ten.
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Chapter 12

Conclusions

This thesis focused on iterative methods for CDMA and MIMO detection systems. Based on sim-

ulations results, the performance of the algorithms proposed in this thesis were compared with the

existing methods for estimation/detection.

Most of the research in CDMA/MIMO detection has focused on developing new or improved

suboptimal multiuser detection schemes that are more feasible to implement. The main goal of

this thesis was to find algorithms which are capable of finding approximate/exact solution, given

limited computational complexity.

After introduction to the CDMA, in chapter 3 we estimated the channel amplitudes using a Gaus-

sian mixture formulation of the problem. The amplitudes were estimated blindly without training

sequence using EM algorithm. In the same chapter the effect of projection on a lower dimension

to reduce the dimensionality of problem was shown. It was clear from the simulations that for

the EM algorithm, one cannot reduce the dimensionality to an arbitrary lower dimension (using

random projection) because if the separation between Gaussians are not enough, the EM algorithm

completely fails to converge to true parameter values.

In chapter 4, we evaluated the ML technique to estimate the parameters of the asynchronous

DS-CDMA. The exact ML problem was relaxed to the ML problem with the constraint that the

Euclidean norm of the symbol vector is a hypersphere. We relaxed the sphere constraint by using

the first order Taylor expansion and in order that the current estimate is not far from the previous

estimate we incorporated a distance function in the ML cost function, and iteratively estimate the
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amplitudes and detect symbol vector.

In chapter 5, the same problem was solved using an exact sphere constraint ( as opposed to the

linear approximation in the previous chapter) and we compared the results with the MMSE and

the receiver proposed in chaper 4.

The second part of the thesis was focused on MIMO systems.

Recently, approximate algorithms for ML detection gained quite popularity. Specially, the SDP

approach was shown to be very useful in the detection problem encountered in the communication

systems. Still, the complexity of the SDP method is quite large for large systems and also the per-

formance of the SDP approach is based on the simulations results only. We give an introduction of

the MIMO systems and fundamentals of the semidefinite and the second order cone programming

approach in chapter 6 and chapter 7 respectively. Chapter 8 was devoted to the approximate low

complexity MIMO detection problem. First we formulated the ML detection as SOCP problem.

The advantage of the SOCP approach is that it has less number of variables and hence numerically

more efficient as compared to the SDP approach. This computational advantage is at the expense

of very little performance loss.

In chapter 9, we solved the ML detection problem exactly in polynomial time for a fixed number of

the receive antennas. The proposed method is based on minimizing a quadratic (ML cost function)

subject to the constraint that the symbol vector lies on the vertices of the cube. This problem can

be posed (after SVD operation) as maximizing the Euclidean distance subject to the constraint that

the data vector lies on the vertices of a lower dimensional zonotope (a geometrical object). Using

a classical algorithm in discrete geometry, the polynomial complexity of the method was shown.

Our algorithm has potential benefits over the sphere decoder: in our algorithm same complexity is

SNR independent, whereas the sphere decoder has exponential complexity at low SNRs.

In the first chapters of the second part, the perfect channel knowledge was assumed at the

receiver. However, the receiver does not have a priori knowledge of the channel. In the following

two chapters we iteratively, jointly estimated the channel and the symbols. In chapter 11 after

finding analogy between the synchronous CDMA to the space-time coded system, we used the

Gaussian mixture formulation to estimate the channel. We further showed theoretically the effect

of the projection on the Gaussian mixture model and hence confirmed the results of chapter 3.

After estimating the channel, the symbol detection is done in an iterative way. The complexity of

detecting the users information bits was circumvented by using the mean field approaches, which

are used vastly by the statistical physics community to approximate probabilities. In chapter 10,

we used the EM algorithm to jointly estimate the channel-symbols. Here too, we used MFT to

approximate the posteriori probabilities of the interfering users’ symbols, and we compared the

results with the ML solution found by exhaustive search.

In the following lines we give some directions for future works, which could be the extension of
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this thesis, as well as completely new directions. One proposed direction is to evaluate the perfor-

mance of the MIMO detection schemes proposed in this thesis to the case when the receiver has

noisy channel estimates.

In [73] lattice-reduction aided detectors for
� � �

antenna system has been analyzed and the au-

thors showed the enhanced performance of MIMO systems when used in conjunction with the

traditional linear and nonlinear detectors with quite low complexity. Their work was extended to

arbitrary MIMO systems in [72], but at the expense of increased complexity. This complexity is

due to the LLL algorithm [74] used for lattice reduction. New low complexity algorithms must

be devised for lattice reduction so that it can be implemented in real-time for the communications

system for decoding. Another possibility for research is to minimize ML cost function for de-

tection (which is a quadratic form) over a lattice generated by the channel matrix. One should

use Minkowski’s convex body theorem/Geometry of numbers [27,28,30] to find a non-zero lattice

point (information vector) which minimizes the value of the quadratic form.
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