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Abstract

The explosive growth of mobile internet is a major driver of wireless telecommunications market
today. In future years, the number of online wireless users will exhibit strong progression in every
geographic region and devices will tend to support multimedia applications which need big trans-
mission data rates and high quality. Third generation telecommunication systems, like UMTS in
Europe, aim at rates approaching 2 Mbits/s in particular cellular environments, but they will ini-
tially be deployed in coexisting second generation systems, like GSM, which were conceived to
support voice traffic, but are evolving to higher-data-rates versions like GPRS. These hybrid sys-
tems have the target to support globally data rates at least of 144 kbits/s and locally of 2 Mbits/s.

This thesis makes several contributions to the area of mobile advanced receivers for CDMA
and approximate/exact maximum likelihood (ML) detection for multi-input multi-output (MIMO)
systems. Advanced signal processing techniques are applied to increase the performance of the
receiver by mitigating the distortion caused by radio propagation channel and the interference in-
troduced by the multiple access to the wireless system.

The conventional receiver for DS-CDMA is matched filter. These receivers are interference lim-
ited. Another receiver called zero forcing (ZF) separates cochannel signals but at the expense of
increase in signal-to-noise (SNR) at the output of the receiver and because of noise enhancement
the performance of the ZF receiver degrades at low SNR. In order to improve the performance
of the receiver a natural choice is to minimize the overall error, which results in minimum mean
square error (MMSE) receiver. Better results can be obtained if some valid constraints are used for
detection. The third type of receiver is ML receiver but unfortunately the computational complex-
ity grows exponentially in the number of users, in case of CDMA and in the number of antennas
in case of MIMO systems. An alternative to ML (by enumeration) technique is to increase the
likelihood function iteratively until local/global maximum is reached. This iterative technique
is called expectation maximization (EM) algorithm. The EM algorithm is a broadly applicable
approach to the iterative computation of ML estimates, useful in variety of incomplete-data prob-



lems, where algorithms such as the Newton-Raphson method may turn out to be more complicated.
On each iteration of the EM algorithm, there are two steps- called expectation step or E-step and
maximization step or M-step. The basic idea of the EM algorithm is to associate with the given
incomplete-data problem, a complete-data problem for which ML estimation is computationally
more tractable.

In the first part of the thesis, we use EM algorithm to estimate the channel amplitudes blindly
and compare the results with the Cramer-Rao bound (CRB). Furthermore, we find low complexity
relaxed ML detection for the CDMA, and show its superior performance to the MMSE receiver.
The second part of the thesis concerns the detection problem in MIMO systems. As mentioned
earlier, the ML method by enumeration for detection is computational complex. In the language
of optimization theory, the ML problem is NP-hard. Recently, low complexity exact ML has been
obtained by sophisticated method called sphere decoding. The sphere decoding searches the clos-
est point in a lattice to a given received signal. Its computational complexity is polynomial (if the
radius of the sphere is optimally chosen) for high SNR and at low SNR its complexity explodes.
We are able to device an algorithm for exact ML detection using a discrete geometric approach.
The advantage of this algorithm is that its performance is polynomial irrespective of the SNR
and no heuristic is employed in our algorithm. An alternative way to ML problem is to devise
low complexity algorithms whose performance is close to the exact ML. This can be done using
semidefinite programming (SDP) approach. The computational complexity of the SDP approach
is comparable to the average complexity of the sphere decoder but still it is quite complicated for
large systems. We obtained low complexity (by reducing the number of the variables) approximate
ML by second order cone programming (SOCP) approach.

In the above discussion the channel state information is assumed to be known at the receiver. We
further looked into the problem of detection with no channel knowledge at the receiver. The result
was the joint channel-symbol estimation. We obtained the results of joint channel-symbol estima-
tion using EM algorithm and in order to reduce the complexity of the resulting EM algorithm, we
used mean field theory (MFT) approach (a method vastly used in statistical physics). The MFT
approach is used to approximate the posteriori MAI probabilities for MIMO system and the results
are compared with exact ML for a known channel.



Résume

Cette thése apporte plusieurs contributions dans le domaine des récepteurs CDMA avancés, et
des techniques de détection par maximum de vraisemblance (MV) exact et approché pour les
systemes multi-entrées multi-sorties (MEMS). Des techniques de traitement de signal élaborées
sont utilisées pour améliorer les performances du récepteur en atténuant la distorsion causée par
le canal radio, et Iinterférence introduite par I’acces multiple.

Dans la premiére partie de cette thése, nous utilisons I’algorithme d’Expectation-Maximization
(EM) pour estimer en aveugle les amplitudes des coefficients du canal, et nous comparons les
résultats avec la borne de Cramér-Rao. De plus, nous développons une version relaxée de la dé-
tection MV, a faible complexité, et montrons que ses performances surpassent celles du détecteur
a erreur quadratique moyenne minimale (EQMM). La deuxiéme partie de cette thése concerne le
probléme de la détection dans les systemes MEMS. En effet, I’énumération inhérente au détecteur
MV rend sa complexité rédhibitoire. En langage de théorie de I’optimisation, le probléme de
détection MV est NP-complet. Récemment, la détection MV exacte a faible complexité a été ren-
due possible par I’algorithme de décodage par sphére (sphere decoding). Le décodeur par sphére
cherche le point d’un treillis le plus proche du signal recu. Sa complexité a haut rapport signal-
a-bruit est polynomiale (a condition que le rayon de la sphére soit choisi de maniére optimale).
La complexité explose lorsque le rapport signal-a-bruit diminue. Nous proposont un algorithme
de détection MV exacte utilisant une approche géométrique discréte. L’avantage de cet algo-
rithme est sa complexité polynomiale, quel que soit le rapport signal-a-bruit, et le fait qu’aucune
méthode heuristique n’est employée. Une solution alternative au probléme de la détection MV
est de développer des algorithmes a faible complexité dont la performance est proche de celle du
détecteur MV exact. Ceci peut étre fait grace a I’ utilisation de la méthode de programmation semi-
définie (en anglais, semi-definite programming). Cette approche offre une complexité comparable
a celle du décodeur par sphére, qui reste assez élevée pour des systémes de grande taille. Nous
obtenons une méthode MV approchées a faible complexité par I’approche de la programmation en
cbne du deuxiéme ordre. Nous établissons également des bornes sur la performance de la méthode



de programmtion semi-définie.

Jusqu’ici, la connaissance de I’état du canal était considérée comme parfaite. Nous avons
également exploré le probleme de la détection sans connaissance du canal au récepteur. Le résultat
est un algorithme d’estimation conjointe du canal et des symboles, basé sur I’algorithme EM, et
la théorie du champ dynamique moyen (CDM, ou mean field theory, méthode largement utilisée
en physique statistique) pour en réduire la complexité. L’approche du CDM est utilisée pour
approximer les probabilités a posteriori d’interférence d’accés multiple. Les performances de la
méthode proposée sont comparées a celles du détecteur MV exact pour un canal connu.
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Chapter 1

Introduction

The continous growth of traffic and emergence of new services have begun to change the structure
of the wireless networks. Future mobile communications systems will be characterized by high
throughput, integration of services and flexibility. The advent of 37¢ generation systems will open
up a range of possible services and will significantly increase the available data rates and decrease
the Bit Error rate (BER). To achieve high data rates at such BERs, multiple access interference
(the major impairment) cancelation will be required. 37¢ generation systems will use one form or
another of Direct Sequence Code Division Multiple Access (DS-CDMA). In the first part of the
thesis we study multiuser detection, which has the potential of improving DS-CDMA communica-
tions. In multiple access techniques different users share the same communication medium. The
three basic multiple access techniques are, Frequency Division Multiple Access (FDMA), Time
Division Multiple Access (TDMA) and the Code Division Multiple Access (CDMA). In CDMA
system different codes are assigned to each user. In FDMA users are given a separate carrier fre-
quency and in FDMA the users are multiplexed by orthogonal time slots. A CDMA scheme is
one in which each user transmits his signal using a bandwidth much larger than the data rate [17].
Two major spreading schemes exist, namely the direct sequence and frequency hopping spreading
[14]. In DS-CDMA all users use the same bandwidth, but each user is assigned a distinct code. In
practical systems, a combination of the above three multiple access schemes is usually employed
(taken two at a time traditionally). An example is the European Global system for Mobile Com-
munications (GSM) or the North American 1S-54 standard that are both based upon a combination
of FDMA and TDMA multiple access strategies.Another example, Qualcomm Inc.’s 1S-95, is di-

1



2 Chapter 1 Introduction

rect sequence CDMA based mobile cellular system, with user assigned distinct, pseudo-random
(PN) spreading sequences in an otherwise frequency split system. The goal is to make different
user signals look as noise-like for each other possible. Other methods of spreading the spectrum
like frequency hopping (FH) CDMA, never really became popular for wireless systems.

Perhaps the foremost concern in the successful implementation of future cellular networks is ca-
pacity, and can be defined as the number of concurrent users that can be supported for a given total
bandwidth. Consequently, a number of comparisons between the above multiple access methods
have been carried out in recent years in order to establish the superiority of one over the other in
terms of system capacity. However, no practical examples are available to make one believe that
one system is better than the other.

1.1 Characterization of the propagation channel

The basic phenomena that influence radio propagation in wireless communication system are:

1. reflection, which occurs when a propagating electro-magnetic wave impinges on a smooth
surface with a dimension several times larger the wavelength (X ),

2. scattering, which happens when the wave strikes a rough surface or a body whose dimen-
sions are lesser or of the order of ), thus causing the reflected energy to scatter all over,

3. diffraction,which arises when a dense obstructing body of dimension larger than A lies in
the path between transmitter and receiver; the electromagmetic wave rolls around the body
and can reach the receiver even when there is no line of sight path.

Depending on the type of environment, i.e., urban, rural etc., one or several of these phenom-
ena might occur. Therefore, channel models have been developed for a particular environments
that take into account the effects of these mechanisms, and translate them into signal distortions
like time-spreading and loss in signal-to-noise ratio (due to multi-path components). The transmit-
ted signal can therefore be considered to be passing through a channel which has a certain impulse
response.

There is another concern, called fading, which is the power variation at the receiver due to time
varying channel. There are two types of fading:

1. large -scale fading, defined as the average signal power attenuation due to motion over large
areas, occurring due to major contours (hills, buildings etc) between the transmitter and
the receiver. The receiver is said to be shadowed by these imposing obstacles. Shadowing
is statistically characterized as log-normally distributed random variable. If P is the power
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transmitted to the kth mobile situated at a distance d;, from the base station, then the received
power is given by

Py 4 = Py — Ly4B

d
Ly.ap = Li(do)aB + 1010910(d—k)n + Gs

o

where G, denotes a zero mean Gaussian random variable (in dB) with standard deviation o
(also in dB). The large scale fading mechanism is surrounding and distance dependent, i.e.,
even for vehicles moving at high speeds, the variation over time is rather slow. Ly(d,)qn
is the free space path loss at a reference distance d, somewhere close to the transmitting
antenna. Hence the estimate of the total path loss (in dB) including the mean path loss (nth
power loss with distance) and the variations about the mean accounting for shadowing, can
be obtained ( n = 2) for free space. It can be smaller in the presence of a guided wave
phenomenon in urban streets and larger when obstacles are present, e.g., when the mobile
station is situated indoors.

2. Small scale fading manifests itself as rapid changes in amplitude and phase of the received
signal. These variations are the result of a large number of multi-path components with
uniformly distributed phases adding up over time. When the received signal is composed of
multiple reflected rays plus a significant line of sight, the envelope amplitude due to small
scale fading has Rician pdf. The fading in this instance is called Rician fading. Rayleigh
fading occurs when there is no lone-of-sight component present between transmitter and the
receiver.

The worst case variations can be of the order of 20-30 dB. The variations are carrier fre-
guency dependent.

The most important concept in describing the channel is channel coherence. Below we discuss
several types of coherences that a wireless channel may exhibit.

1.2 Coherence versus selectivity

Fading is a general term used to describe a wireless channel affected by some type of selectivity.
A channel has selectivity if it varies as a function of either time, frequency or space. The opposite
of selectivity is coherence. A channel has coherence if it does not change as a function of time,
frequency, or space over a specified window of interest.
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Indeed the wireless channels may be functions of time, frequency, and space. The most fun-
damental concept in channel modeling is classifying the three possible channel dependencies of
time, frequency, and space either coherent or selective. We will discuss each type of coherence
briefly.

1.2.1 Temporal coherence

If the envelop of the modulated carrier wave does not change over a time window of interest, the
wireless channel is said to have temporal coherence. Mathematically, we express this condition in
terms of a narrow-band (no frequency dependence), fixed (no spatial dependence) channel, E(t) X

1

|h(t)] = Vo, for [t —to| < 3 (L.1)

where V, is some constant voltage, T is the size of the time window of interest, and ¢, is some
arbitrary moment in time. The largest value of T, on average, for which the above equation holds
is called the coherence time and is the approximate time window over which the channel appears
static. In the microwave and millimeter frequency regime the most common cause of temporal
incoherence is the motion by either the transmitter or the principal scatterers in the propagation
environment.

1.2.2 Frequency coherence

A wireless channel has frequency coherence if the magnitude of the carrier wave does not change
over frequency window of interest. This window of interest is usually the bandwidth of the trans-
mitted signal. Mathematically, we express the condition of frequency coherence in terms of the
static (no time dependence), fixed channel, & (f):

IW(f) = Vo, for |fo—f]< (1.2)

B,
2
where V,, is some constant amplitude, B, is the size of the frequency window of interest, and f. is
the center carrier frequency. The largest value of B, for which equation (1.2) holds is called the
coherence bandwidth and is the approximate range of frequencies over which the channel appears
static.

The dispersion of multi-path propagation causes frequency coherence in the wireless communi-
cations system. Since each received multi-path wave has traveled a different path from the trans-
mitter, the same transmitted signal will arrive at the receiver as a cluster of symbols, each with
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unique time delay. A dispersive channel, in time domain, introduces inter-symbol interference
(1S1). In the frequency domain, a dispersive channel has peaks and valleys across the bandwidth of
interest. This behavior in the frequency domain gives rise to two distinct classifications of fading
in wireless communications. A wireless channel with a coherence bandwidth that is less than the
bandwidth of the transmitted signal is said to have frequency-selective fading. A channel with co-
herence bandwidth that is greater than the transmitted signal bandwidth is said to have frequency
flat fading.

1.2.3 Spatial coherence

Spatial coherence of a wireless channel is defined as the magnitude of the carrier wave that does
not change over spatial displacement of the receiver. Once again, we express the condition of spa-
tial coherence in terms of a static narrow-band channel, A(r), which is function of one-dimensional
(1D) space, r:

D,
2
where V, is some constant amplitude, D, is the size of the position displacement, and r, is an

()| = Vo, for |r—r| < (L.3)

arbitrary position in space. The largest value of D, for which the equation (1.3) holds is called
coherence distance and is approximate distance that a wireless receiver can move with channel
appearing to be static. Spatial coherence is the result of the multi-paths arriving at the receiver
from different directions. These multi-path waves create pockets of constructive and destructive
interference so that the received signal power does not appear to be constant over small changes
in the receiver position. Thus, this type of channel exhibits spatial selectivity. If the distance tra-
versed by a receiver is greater than the coherence distance of the channel, we say that the channel
experiences small-scale fading (see [19] for more details on wireless channels).

1.3 Detection in CDMA system

Now we discuss briefly the detectors used in the CDMA system.

The conventional receiver used in the CDMA is the matched filter. It consists of parallel bank of
K (the number of users) filters, each matched to its own code waveform. If only one user is active
in the system, then this receiver is optimal for a particular user communicating over additive white
Gaussian noise. If we accurately model interference from other users as an additive white Gaus-
sian noise, the matched filter receiver works as Maximum Likelihood (ML) single user detector.
One of the disadvantages of the conventional scheme is that it is severely affected by multiple



6 Chapter 1 Introduction

access interference (MAI), making such system interference limited [12]. The conventional detec-
tors also suffers from the near far problem in practice, which means that high power users destroys
the communication of low power users, even if the code waveforms have low cross-correlations.
Better results can be obtained if we jointly detect all users. For asynchronous transmission of L
information bit per user using Binary Phase Shift Keying (BPSK)or Quadrature Phase Shift key-
ing (QPSK) modulation and spreading, the ML detection is equivalent to minimizing Euclidean
distance between actual and the received signal, assuming an additive white Gaussian noise chan-
nel. This problem is NP-hard and it is too complex for asynchronous CDMA even for a moderate
number of users.

For certain special correlation matrices, it has been shown that the ML detection can be obtained
in polynomial time [50, 61]. In [61], the authors identify a class of optimum multiuser detection
problem which can be solved in polynomial complexity in the number of users. The identifica-
tion is based on transforming a quadratic 0-1 programming problem into an equivalent problem in
graph theory with positive edge weights. For synchronous CDMA, the result translates to design-
ing a set of pseudo-random codes with the property that the cross correlation between every pair
of codes in the set over one symbol period is non-positive. The authors also devised the method to
construct codes with that property.

The exponential complexity of the ML detection has inspired a considerable effort over the past
decade to device suboptimal low complexity receivers. Iterative methods to the ML problem have
also been suggested in overwhelming articles. Without the ambition of being exhaustive, we refer
to [34,48,114,113,112,111,42,43,49,47,59]. Based on iteratively maximizing the likelihood func-
tion, in [34] EM algorithm is applied to the CDMA detection problem by treating the bits of the
interfering users as hidden data when updating the estimate for a given user’s bit. Their derivation
led to the iterative receivers that use soft-decisions for interference cancelation and/or sequential
(rather than parallel) updates of estimates for users’ data. Low complexity successive interference
cancelation with SISO decoding is performed in [39]. The channel parameters are updated using
the EM algorithm. The feature of their algorithm is that single user SISO decoders provide at
each iteration an estimate of the a posteriori probabilities (APP) for the user code symbols, which
are used to form soft estimate of interference to be subtracted from the received signal. In this
way, the contribution of a user is effectively subtracted from the signal only if the symbol decision
is sufficiently reliable. Using this scheme performance very close to single user performance is
achieved after few iterations.

Another possibility to find low complexity solution is to relax the Finite Alphabet (FA) constraint
and to solve the resulting constrained problem. In [88,89], the solution is allowed to lie in a closed
convex set. One way [89], is to confine the solution vector to lie within a hypercube described by
the data points. The algorithm [88] constrains the data estimate to lie within sphere.

To make a ML decision for a multiuser detection (MUD), we need to solve a binary constraint



1.4 Outline of the thesis 7

problem.

1.4 Outline of the thesis

The objective of the first part of this work is to use a constrained optimization for the CDMA and
also use EM algorithm for the amplitude estimation in the synchronous CDMA case.
In [88], the authors considered the problem of maximizing the likelihood function over a sphere,
i.e. confine the solution vector to lie within the sphere and project the solution vector on the
sphere. This detector is ML under the assumption that the detected data vector is constrained to
lie within a hypersphere. Based on the defining Karush-Kuhn-Tucker point, it is shown that the
suggested detector is closely related to the MMSE detector. They analysed the convergence issues
and gave an efficient implementation procedure. In fact, in the sphere constrained problem the
solution vector lies on the sphere and not in the interior of the constraining sphere (as is done in
[88]). The other problem with their method is that a small error in the solution vector can cause a
large error when projected on to a sphere (provided the solution vector is well inside the sphere).
In chapter 4, we constrain the solution vector to lie almost on (very close to) the sphere and we
jointly estimate the complex channel coefficients and data vector. It is done as follows. In the
objective function, we subtract/add the Kullback-Leibler (KL) distance function or euclidean dis-
tance function to keep the old parameter set close to the new ones. These distance functions can
be considered as penalty terms. The above augmented cost function can be maximized/minimized
subject to the constraint that the detected data vector lies on the sphere. In chapter 5, we further
improved the result by solving exactly the sphere constraint problem (i.e solution vector lying on
the surface of the sphere).
In [109], the authors used a Gaussian mixture formulation to model the synchronous CDMA and
they used the EM algorithm to cope with the unknown amplitudes. They solved the problem by
first projecting the received signal on the signal subspace to reduce the dimensionality of the prob-
lem. In chapter 3, we showed that the dimensionality reduction operation results in the failure of
the EM algorithm when the number of users are moderate or small and discuss the convergence
issues.
The results of chapter 3, chapter 4, and chapter 5 are published in [110], [98], and [116] respec-
tively.

The second part of the thesis concerns detection of MIMO systems.
Digital communications using multiple-input-multiple output (MIMO), sometimes called "vol-
ume to volume™wireless link, has emerged as one of the most significant technical breakthroughs
in modern communications. The technology figures prominently on the list of recent technical
advances with a chance of resolving the bottleneck of traffic capacity in future Internet-intensive



8 Chapter 1 Introduction

wireless networks. Perhaps even more surprising is that just a few years after its invention, the
technology seems poised to penetrate large-scale standard-driven commercial wireless products
and networks such as broadband wireless access systems, wireless local area networks (WLAN),
3G networks and beyond.

A MIMO system is simply the deployment of multiple antennas at the transmitter and the receiv-
ing end for a wireless system. New MIMO systems represent a huge change in how wireless
communications systems are designed. This change reflects how we view multi-path in a wireless
system:

The Old perspective:  The ultimate goal of wireless communications is to combat the distortion
caused by multi-path in order to approach the theoretical limit of capacity for band-limited chan-
nel.

The New respective:  Since multi-path propagation actually represents multiple channels be-
tween a transmitter and receiver, the ultimate goal of wireless communications is to use multi-path
to provide higher total capacity than the theoretical limit for a conventional band-limited channel.
This philosophical reversal implies that many of the engineering design rules of thumb that were
based on pessimistic worst-case scenario channel models have now become unrealistically opti-
mistic. The idea behind MIMO is that the signals on the transmit antennas at one end and the
receive antennas at the other end are "combined” in such a way that the BER or data rate of the
communication for each MIMO user will be improved. Such an advantage can be used to increase
the network’s quality of service. However, reliable decoding in these systems requires very high
complexity.

For a wide class of space-time transmission schemes, ML decoding requires to solve an integer
least square problem, which is, in general, NP-hard. Practical methods to solve this employ ap-
proximations or heuristics. One of the suboptimal receivers used in MIMO systems is the zero
forcing receiver, (i.e., invert the channel matrix and round to the closest integer and is called Babai
estimate). The other more sophisticated but suboptimal receivers are nulling and cancelling (De-
cision feedback MIMOQ). They use the Babai estimate for one of the entries of symbol and assume
that this symbol is known, subtract out its effect to obtain a reduced integer least square prob-
lem, then proceed similarly for the next symbol. Another receiver proposed in Bell laboratories
is nulling and cancelling with optimal ordering, also called BLAST [3]. The basic principle of
BLAST is to perform nulling/cancelling from the strongest to the weakest signal. However, BER
performance of these receivers are inferior to those of exact ML methods. Exact methods that
search over the entire Finite Alphabet(FA) require an exponential search. More sophisticated ex-
act methods such as Kannan’s algorithm [74], the KZ algorithm [41], and the sphere decoding
algorithm [3] attempt to reduce the search space. In the sphere decoding algorithm, we find the
lattice points lying in a hypersphere centered around the received signal, and then we determine
the closest lattice point to the received signal. The expected complexity of the sphere decoder
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when the radius is chosen correctly is O(n?) (for high SNRs). Choosing the optimal radius for the
sphere decoder is NP-hard. Recently semidefinite relaxation has been successfully applied to the
CDMA and MIMO systems. Using semidefinite relaxation very close to exact ML performance is
obtained with complexity of O(n3-%). Semidefinite programming (SDP) relaxation has been used
for decoding in CDMA by [99,100,40,101]. The authors in [100] used SDP relaxation scheme to
the synchronous CDMA and also showed that some existing detectors such as the decorrelator,
the LMMSE detector, and a particular form of the modified SAGE detector can be considered
as degenerate forms of the SDP relaxation ML. The SDP ML detector offers an attractive trade-
off between BER performance and computational cost. Lattice reduction aided detector for the
MIMO system was proposed in [73]. In [73], the authors used a lattice reduction technique for
two transmit antennas and two receive antennas systems. They used a Gauss lattice basis reduc-
tion method to enhance the performance of the MIMO system. The work in [73] was extended for
general MIMO systems in [72], using algorithm proposed by A. K. Lenstra, H. W. Lenstra, and
Lovasz (“ LLL algorithm ) for lattice reduction, which is quite complex as compared to Gauss
method (Gauss method works for 2 x 2 system). The objective of the second part of the thesis
is to device low complexity algorithms for channel estimation and symbol detection. First of all,
we assume that the channel state information is known at the receiver. As stated earlier the com-
plexity of the SDP relaxation is O(n3-3). Still for large system this could be computationally quite
complex. In chapter 8, we propose to apply a second order cone programming (SOCP) approach
to resolve large system problems, which offers substantial computational savings over SDP re-
laxation scheme and the sphere decoding, while maintaining the performance arbitrarily close to
ML. In chapter 9, we derive exact ML detection scheme for MIMO system, when the number of
receiving antennas is fixed, by maximizing the Euclidean distance function over zonotope. Using
a classical theorem of discrete geometry, it is shown that vertices search can be done in polynomial
time O(n™), where n,m are the number of transmit antennas and receive antennas respectively.
This method is polynomial time irrespective of the SNR (as opposed to the sphere decoder whose
complexity is exponential at low SNRs).

In the above chapters for MIMO detection, we assume that the channel is known at the receiver. In
chapter 11, we propose to detect the symbols of each user and estimate the channel iteratively for
a multiuser space time coding system. The channel gets estimated blindly via expectation maxi-
mization (EM) algorithm by formulating the problem as a Gaussian mixture model. The estimated
channel is then used to detect the symbols for each user, which is also done in an iterative fashion,
i.e., by user-wise detection. We consider FA for MAI, to simplify and to reduce the complexity
of the resulting EM algorithm, we consider the introduction Mean Field methods for approximat-
ing the a posteriori MAI symbol probabilities. The idea of the Mean Field method is borrowed
from the statistical physics community where it is extensively used for approximating probabili-
ties in Ising model [97]. The BER using our method is very close to the exact ML, i.e., ML by
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exhaustive search with exact channel state information at the receiver. In chapter 10, we use the
EM algorithm to estimate the channel and to detect the information bits iteratively. Two cases for
interfering users bits are considered, corresponding to Gaussian and discrete MAI priors. The al-
gorithm iterates between channel estimates and symbol estimates until convergence. Simulations
shows that BER quite close to the ML is achieved. In this chapter we also make use of the Mean
Field method to simplify posteriori probability of interfering users bits while dealing the case of
discrete MAI prior.

The results of the chapter 8, chapter 9, chapter 10, and chapter 11 will be published in [22], [20],
[53], and [51] repectively.
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Chapter 2

CDMA fundamentals

In this chapter, we introduce the CDMA channel model and present optimal decisions rules.

2.1 System model

Let us consider a CDMA channel that is shared by K active users. Each user is assigned a signature
waveform py(¢) of duration 7', where T' is the symbol interval. A signature waveform may be
expressed as

7

pe(t) = ) ap(n)p(t —nT), 0<t<T (2.1)
0

3
Il

where {ax(n), 0 <n < N — 1} is a code sequence consisting of N chips that take values {£},
and p(t) is the pulse of duration T, where T, is the chip interval. Thus, we have N chips per
symbol and T' = NT,. Without loss of generality we assume that K signature waveforms have
unit energy.

The information sequence of the kth user is denoted by {dy(m)}, where the value of each infor-
mation symbol may be chosen uniformly from the set D. All data sequences are equally probable
and each symbol is statistically independent of the other symbols and also between users. Let us
consider the block of symbols of some arbitrary length, L. The corresponding equivalent low-pass

13
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waveform received over the channel for the kth user can be expressed as

L
sk(t) = cr(t) * > V/Ei(i)dy (i)p (t — iT), (2.2)
i=1

for 0 < ¢t < (L + 1)T, where * denotes the convolution operator, ¢, () is the complex channel
impulse response and E () represents the energy per symbol. The composite transmitted signal
for the K users may be expressed as

K K
s(t) =Y skt =) =YY VEp(@)dg (6)ek(t) * pe(t — iT — 75), (2.3)
k=1 k=1 i=1
where 7 is the transmission delay for user k, which satisfy the condition 0 < 7, < T for
k=1,2,...,K. Without loss of generality, we assumethat 0 < 7, < 1o < ... , < 7 < T. This
is the model for the multiuser transmitted signal in asynchronous mode. For the synchronous case
all time delays are zero.

For a frequency non-selective channel, the signal bandwidth is significantly smaller than the co-
herence bandwidth of the channel, and the multi-path components are not resolvable [14]. In this
case, the received signal is the transmitted signal multiplied by a complex-valued random pro-
cess representing the time variant characteristics of the channel. Furthermore, if we assume that
the signal duration is significantly smaller than the coherence time of the channel, the channel is
slowly fading and the channel parameters, attenuation and phase shift, are essentially constant for
the duration of at least one symbol interval. When these assumptions are applied for all users,
they experience the same simple AWGN channel. The transmitted signal is also assumed to be

corrupted by AWGN. Hence the received signal may be expressed as
r(t) = s(t) +n(t) (2.4)

where n(t) is the noise, with variance o2.

2.2 Detection of signals in AWGN

In this section the matched filter (MF) output for DS-CDMA system with K users is derived. The
sampled output y contains all data from the received continuous time signal r(¢), i.e., it is sufficient
statistics for detection. The problem of detecting the signals can be viewed as an M hypothesis
testing model, where M is the number of all possible combinations of the data symbols d € DX,
Each particular combination of d for hypothesis H; is denoted by d;. The hypothesis testing can
be modeled as

H; r(t) = s(t,d;) + n(T), —oo<t<oo, dje D' 1<i< M, (2.5)
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where s(t,d;) and n(t) represent the signal for hypothesis H; with data symbols d; and AWGN,
respectively. The white noise has double-sided power spectral density N, /2.

The problem is to observe r(t) and to decide which hypothesis is true with minimum probability
of error. The following idea will enable us to solve this problem easily. Our observation is a time
continous random waveform. The first step is to reduce it to random variables collected in so
called received vector. The method to obtain the received vector r is defined by series expansion
[24].

= )yt

rp = / " s()pr)dt + / " (T grdt 2.6)

—0o0 —00

Ty = Sk + Nk (27)

where ry, is the kth component of the vector r and ¢ (¢) is the kth basis function for the series
expansion. The vector s consisting of the components{sy } is called the signal vector and = is the
noise vector.

A sufficient statistics of r(¢) is the sampled output of the matched filter of all the users for the
whole interval. The MF output for the kth user during the ith signal interval is

(i+1)T+7
i) = [ r(Oprlt —iT — m)dt, 1<k <K, 1<i<L,
T+
(i+1)T+Tk
= / s(t)pr(t —iT — %) + n(t)px(t — 1T — 13 )dt (2.8)
1T 47g

Using vector notation, the LK matched filter outputs can be expressed as
y=RCd+ z (2.9)

wherey = [y(1)...y(D)]7, y(i) = [y1(1) ... yx (D)7, d = [d(1) ... d(L)]7, d(3) = [di(1) ... dx (L)]T,
z=1[2(1)...2(L)], and z(i) = [21(1) ... zx (L)]".

C is the diagonal matrix that contains the channel coefficients of the users, and R isthe LK x LK
correlation matrix of p;. The Gaussian noise vector z has zero mean and autocorrelation matrix

E[zz"] = 6°R (2.10)
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2.3 The optimum detector

The maximum a posteriori (MAP) detection criteria which minimizes the probability of error is
based on maximizing the probability that d was transmitted given that y is received. Thus, it
decides H; if

P(Hily) > P(Hjly) i # j

if the prior probabilities are equal then we have

P(y|H;)P(H;)

P(ly) = =250

= OP(y|H) (2.11)

where C is the term which does not depend on which hypothesis is true. To maximize P(H,|y),
we need only to maximize the likelihood function P(y|H;). Hence, for equal prior probabilities
we decide H; if

P(y|Hi) > P(y|Hj), i #j

This is known as the maximum likelihood (ML) decision rule. Since the noise z is Gaussian and
the mean value of y conditioned on the transmitted vector d is, E[y|d] = RCd. This results in
conditional pdf,

1 (y — RCA)® R '(y — RCd)
(mo?)KL2|R|1/? exp(— o2 ) (2.12)

P(yld) =
The negative loglikelihood function is
I(d) = (y — RCd)"R™(y — RC4),
and to do ML detection for the symbols we have
d = arg mingpix d¥CHRCd — 2Re{y" Cd}. (2.13)

The solution of the above equation requires a search over all the DX possible combinations
of the components of the vector d. It is thus clear that the computational complexity increases
exponentially with the number of users.

In the case of synchronous system, real channels and binary symbols, we can write the detection
problem as the following optimization problem

d = arg min,, . d"CTRCD —2yTCd, (2.14)
and in the case of complex channels and QPSK symbols we have

d=arg mingeri1ya5yx d¥CHRCd — 2Re{y” Cd} (2.15)
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which can be written as

N T3 T ~

d=arg minge 132K d " Rd—2d" gy (2.16)
In the above equation we have converted complex quantities into twice larger real quantities.

In this chapter, we have developed the MAP and ML criteria for a CDMA channel. These criteria
describe the decision rules based on the received signal. It is also shown that finding ML solution
requires complexity that grows exponentially with the number of users.
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Chapter 3

Iterative blind demodulation of

synchronous CDMA

Multiuser detection is known to drastically increase the bandwidth efficiency of CDMA systems
compared to conventional detection method using RAKE receiver.

Widely used techniques consist of removing the multiple access interference (MAI) from the re-
ceived signal before making the data decision. In this chapter, iterative blind estimation of the
complex amplitudes of the users is considered. A Gaussian mixture model formulation of the prob-
lem is introduced, and the Expectation Maximization (EM) algorithm is used for the estimation
of the users’ amplitudes. Simulation results compare the performance of the proposed algorithm
with the Cramer-Rao bound.

19
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3.1 Introduction

Code Division Multiple Access (CDMA) is one of the most common multiple access techniques
for wireless communication systems. In CDMA, all users use the entire frequency band and are
separated at the receiver by each user’s quasi-orthogonal spreading codes in order to reduce inter-
user interference. In recent years, various kinds of receivers have been proposed for the CDMA
system. In this chapter, we consider the problem of estimating the received amplitudes of the users
knowing only their spreading codes. Talwar, et al [81] proposed iterative least square with enumer-
ation (ILSE). This method solves the problem by estimating the channel by short training sequence
or from previous estimates and finds the data sequence over all possible data in the Finite Alphabet
(FA). The authors also proposed iterative least square with projection (ILSP) which also initially
estimates the channel with the same method as for ILSE but treats the problem as a continuous
optimization problem, and projects the results onto the discrete alphabet. Iterative joint symbol de-
tection and channel estimation for the CDMA using SAGE algorithm is proposed in [48]. In [34],
the EM and SAGE algorithms are applied to derive various multiuser detectors for the white Gaus-
sian noise channel. Monte Carlo simulations show near-far resistance of these schemes. In [114],
the authors have proposed a class of nonlinear multiuser detectors. These “iterated-decision” mul-
tiuser detectors use optimized multi-pass algorithms to successively cancel MAI from the received
data and generate symbol decisions whose reliability increases monotonically with each iteration.
They significantly outperform decorrelating detectors and linear MMSE detectors, but have the
same order of computational complexity. In [80,109], the authors considered the projection of the
received signal on the signal subspace of the received signal autocorrelation matrix, and applied
the Gaussian mixture formulation for amplitudes estimation. Their proposed algorithm is faced
with two problems

1. Eigenvalue decomposition of the received signal autocorrelation matrix (a computationally
complex operation), an other algorithm must be used for signal subspace tracking and also
signal subspace mismatch can deteriorate estimation of the parameters.

2. The most important one is that by projecting the data vector onto signal subspace or any
other matrix of lower dimension, it can be imagined (and this is borne out by experience
with EM like techniques), that the result may not converge to true means of the Gaussians.
This can be explained by the following reason: Let M be the number of Gaussians and P
be the dimensionality of the data. If the dimension is decreased from P to g, the average
Euclidean distance between any two means decreases as +/g/P, and the probability that
the means are separated by less than 2o increases. The criterion for the separation of two
Gaussian distributions in one dimension is that the distance between two means is greater
than twice the standard deviation ( 2¢). Furthermore, Gaussians that are poorly separated in
the original dimension will tend to become even more poorly separated as the dimension-



3.2 Signal model 21

ality is decreased. Thus, it is very important that the Gaussians remain well separated after
projection onto a lower dimensional space. If they are not, it will be difficult for the EM
algorithm to recognize overlapping components as distinct Gaussian distributions, resulting
in a total failure of the EM algorithm.

Our approach, considers directly the output of the channel (the received signal) as the mixture
of a known number of Gaussian and estimates its parameters. This avoids the discussed problems,
and by keeping the spreading factor not too high, the computational complexity is kept moderate
(comparable to the case in which the projection is done) . Direct Maximum Likelihood (ML) esti-
mation of parameters is complex, and therefore we use expectation maximization (EM) algorithm
to find the parameters of our model. Mixture models, in particular mixtures of Gaussian, have
been a popular tool for density estimation, clustering and unsupervised learning with wide range
of applications. Mixture models are one of the most useful tools for handling incomplete data,
in particular hidden variables. For Gaussian mixtures, the hidden variable indicate for each data
point the index of the Gaussian that generated it. The EM technique is used to iteratively update
the maximum likelihood estimate of the parameters of the mixture which are used to obtain the
amplitudes of the users.

The rest of the chapter is organized as follows: The signal model for the problem is described
in section 3.2. Section 3.3 is devoted to the principle of the EM algorithm. In section 3.4, 3.5, 3.6
and 3.7 EM formulation of the problem, convergence rate, simulations, performance are repec-
tively analyzed. Some conclusions are finally drawn.

3.2 Signal model

We consider DS CDMA with K-users and a processing gain P. The output of the channel is chip
matched filtered and sampled at the chip rate. The system is assumed to be synchronous. In a
single data interval we have a P-dimensional vector z, given by

z=SAb+n (3.1)

where S is P x K matrix whose columns are K users normalized spreading sequences:

S:[31\32|...5K]. (32)

Ineq (3.1), A = diag(41, Asg, .....Ax ), are the users’ received amplitudes, b = [b1,bo, ... ,bk]
contains the symbols transmitted by the users, and » is a P dimensional Gaussian random vector
for noise with covariance matrix given by o2I, where I is identity matrix.
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We assume that the symbols of the different users are independent i.e. E[bib)] = 1fork =1
and 0 otherwise.
We can write equation (3.1) as

z=Hb+n, (3.3)

where H = SAis (P x K) dimensional matrix.
Given model of equation (3.3) our goal is to estimate A (i.e. users signal amplitudes) from
multiple independent observations of z.

3.3 EM framework for Maximum Likelihood estimation

First of all, we briefly describe EM algorithm.The Expectation-Maximization (EM) algorithm
[77,79], is a broadly applicable approach to the iterative computation of maximum likelihood
(ML) estimates, useful in a variety of incomplete-data problems. The EM algorithm is closely
related to the ad hoc approach to estimation with missing data, where the parameters are estimated
after filling in initial values for the missing data. The latter are then updated by their predicted
values using these initial parameters estimates. The parameters are then re-estimated, and so on,
proceeding iteratively until convergence. The development of the EM algorithm and the related
methodology together with the availability of inexpensive and rapid computing power have made
the analysis of data sets much more tractable than they were earlier.

EM algorithm is an iterative approach to Maximum Likelihood Estimation (MLE), originally for-
malized in ( Dempster, Laird and Rubin, [78] ). Each iteration is composed of two steps: an
expectation (E) step and a maximization (M) step. The aim is to maximize the loglikelihood
1(0; D) = log L(0; D), where @ are the parameters of the model and D are the data. Suppose
that this optimization problem would be simplified by the knowledge of the additional variable y,
known as missing or hidden data. The set D. = DU is referred to as the complete data set (in the
same context D is referred to as incomplete data set). Correspondingly, the loglikelihood function
1.(0; D,) is referred to as complete data likelihood. x is chosen such that the function [.(6; D)
would be easily maximized if y were known. However, since  is not observable, [. is a random
variable and cannot be maximized directly. Thus, the EM algorithm relies on integrating over the
distribution of , with the auxiliary function Q(6, §) = E,[l.(6; D.|D, 6], which is the expected
value of the complete data likelihood, given the observed data D and the parameter 6 computed at
the previous iteration. Intuitively, computing @) corresponds to filling the missing data using the
knowledge of the observed data and previous parameters. The auxiliary function is deterministic
and can be maximized. An EM algorithm iterates the following two steps, for k=1,2,...., until a
local or global maximum of the likelihood is found.
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Expectation: Compute
Q(6;6™)) = Ey[ic(8; De|D, 6] (34)

Maximization: Update the parameters as

0%+ = arg 1z, Q(0;09), (3.5)

Often in practice, the solution to the M step exists in closed form. In some cases, it is difficult
to analytically maximize Q(6;6%)), as required by the M-step of the above algorithm, and we
are only able to compute a new value #*+1) that produces an increase of Q at each iteration,
i.e., choose +1) to increase the Q(.) function Q(8;6%)) at each iteration. Hence the likelihood
function increases after each iteration. In this case we have so called generalized EM (GEM) al-
gorithm.

We have explained EM algorithm for ML estimation but it can also be used for maximum a poste-
riori estimation problems. The expectation step remains the same as for the ML estimation but the
maximization step differs in that the objective function for the maximization is equal to Q(8; )
augmented by the log prior density, log p(0).

The EM algorithm has several appealing properties relative to other iterative algorithms such as
Newton-Raphson and Fisher’s scoring methods for finding MLEs. Some advantages compared to
the other algorithms are as follows:

1.  The EM algorithm is numerically stable with each EM iteration increasing the likelihood
(except at the fixed point of the algorithm).

2. The EM algorithm has reliable global convergence under fairly general conditions.

3. The EM algorithm is generally easy to program, since no evaluation of the likelihood nor its
derivatives are involved.

4. The EM algorithm requires small storage space. For instance, it does not have to store infor-
mation matrix or its inverse at any iteration.

3.4 Formulation of EM for Gaussian mixture problems

We consider the BPSK case in which the transmitted data take on two possible values {—1,+1}
with all symbol vectors being equally likely.

In ML estimation problems we have a density function P(z|@) that is governed by the set of
parameters 6 (e.g. P might be the set of Gaussians and 8 could be the means and covariances).
The data is of size N, supposedly drawn from this distribution, i.e X = [z1, ...... zy]. Thatis, we
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assume that these data vectors are independent identically distributed (i.i.d) with distribution P.
Therefore, the resulting density for the samples is

p(X]0) = HP z0) = L(0]X).

This function L(6|X) is called the likelihood of the parameters given the data, or just the
likelihood function. In the ML problem, our goal is to find € that maximizes L. That is, we wish
to find 6* where

0" = argmng(9|X). (3.6)

Assuming that the channel output = can be approximated by Gaussian distributions, i.e., P(z/0)
can be modeled as P-dimensional mixture of Gaussians. We can write

M
P(z)0) = Y a;P(z|m;, %), (3.7)
j=1
where M = 2% and
1 1 Tl
P(z|m;,%;) = PRIGEIEE exp —5(:1: —m;) D (x —my) ), (3.8)

with o; > 0, and Zj”il a; = 1. The parameter vector & consists of mixing proportions «;,
the means vectors m ;, and the covariance matrices ¥;. Given M and given N independent, i.i.d.
samples {z;}V, we obtain the following likelihood

N M
=Y log Y a;jP(zi|mj, %) 3.9
t=1  j=1

which is difficult to optimize because it contains the logarithm of a sum. If we consider X as
incomplete, since we do not know which index j, within the mixture probability density function
output has originated. Consider xy = {z}}Y, as the incomplete data, and we suppose the existence
of unobserved data items = {y;}¥; whose values indicate which component density generated
each data item, then the likelihood expression is significantly simplified. That is, we assume
that y, € 1,..., M for each i, and y; = & if the ¢*» sample was generated by the & mixture
component. The complete data likelihood becomes.

N
log(P(x,Y16)) Zlog (@ely) P(y)) =) log(ow,py, (4]6y,)) (3.10)
t=1
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The problem, of course, is that we do not know the values of Y. We can proceed if we assume Y
to be a random quantity.
First of all we derive the expression for the distribution of the hidden data. Let

(I 9 p9 9
09 = (af,... 0oy, 07,...,0%)

be the appropriate parameters for the likelihood L(©Y]x,Y). Given ©9, we can easily compute
pj(xt|0§) for each ¢ and j.The mixing proportion parameter o; can be thought of as prior proba-
bilities of each mixture component. Using Bayes’s rule we have

p(yt“(zh@g) — agtpyt (‘Tt|ogt) — (])\A/Z[‘thyt(xﬂo,’gt) , (311)
p(z¢|©9) Y oke1 ok (z4]67)
and
p(ylx, ©) = [ [ p(yelze, ©9), (3.12)
t=1
where y = (y1,... ,yn) is an instance of the hidden data independently drawn. Now we can start
computing the E-step of EM algorithm.
Q(0,0%) = "log(L(Olx, y))p(ylx, ©9), (3.13)
yeN

which can further be written as

N
Q(©,09) Z Z Zlog Qy, Dy, (7¢]6y,) H (yjlzj,|©7). (3.14)
j=1

y1=1 yn=1t=1
The above equation can be further simplified as

M N M N

Q(0,09) Z Z szlﬂ/t log(aypi(x4|6;)) H (yjlz;, ©9) (3.15)

y1=1 yny=1t=1 =1 j=1

M N

M
Q0,09 =" "log(api(:|0:)) Z

=1 t=1

N
H (yjlz5, ©9) (3.16)

”M:

After some simplification and using the fact that Zé\ilp(ydﬁj, ©9) = 1, the above equation can
be written in the following form

M N
Q0,09 = > log(aupi(z:|01))p(l]z:, ©) (317)

=1 t=1

Q(©,09) EZlog a)p(l|zy, ©9) +Ezl09 pi(z4|0,))p(l]z¢, ©9). (3.18)

=1 t=1 =1 t=1
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The mixing proportions («;) and covariance matrices in our case are constant and are given
by 2~ % and o1 respectively. To this end, we have for a d-dimensional Gaussian

_ 1 —1/2(z—m))TS Y (z—m
pl($|ul,21)—We (2B (wmm) (3.19)

Taking log of the above equation, ignoring constant terms and plugging into eq. (3.19), we have

Q(6,87) ZZ ~ S 108(13)) — 5 (e — m) S (e — m)p(z,07) (320

=1 t=1

Differentiating eq (3.20) with respect to m; and setting it to zero, we get

_ S mip(l|z, ©9)

, (3.21)
i p(l|z:, ©9)
where the posteriori probabilities p(I|z, ©9) is defined as follows:
6
p(l|zt,©9) = /Py (21/6%) (3.22)

Zk 1%%(%\99)

The algorithm works as follows. Firstly the posteriori probabilities are calculated using initial
estimates of means. The posteriori probabilities tell us the probability that each received data
belongs to each Gaussian. These posteriori estimates are used to find the update means of the
mixture. These two steps are repeated until convergence. The convergence of the EM algorithm
to a solution and the number of iterations depends on the tolerance, the initial parameters, the data

set, etc. Using EM for Gaussian mixture, the amplitudes of the users are estimated as follows
[109]

X pi(z(n) N pi(z(n)|HY)
HITL didl =2 dei (3.23)
;; p(z(n) 2:: z:: p(z(n)|HY)
where,
2K 1
p(z|H) = Z meﬁp( 5 (¢ — Hd;)" (z — Hd;) (3.24)
and
(2l H) = e 1 (3.25)
PRI = 0r a2y P2 P02 (2 — HAYT (z — Hd) '
and [d;,i = 1,2,...,2%] is the set of all 2% transmitted vectors. From the estimate of H, the

amplitudes can be estimated as

Ap =/ (HTH)g (3.26)
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3.5 Convergence rate of EM algorithm for Gaussian mixtures

Before deriving an expression for the convergence rate of the EM algorithm for the Gaussian
mixture model, we state two results available in the statistical literature regarding the convergence
of EM. First, it has been established that, under mild conditions EM is guaranteed to converge
toward a local maximum of the loglikelihood function [79]. (Indeed the convergence is monotonic:
1(©k+1) > 1(6k)), where ©) is the value of the parameter vector © at iteration k). Second,
considering EM as a mapping ©+1) = M (©®)) with fixed point ©* = M (©*), we have

okt _ o* » w(@(k) - 0% (3.27)
00*
when ©*+1) is near ©*, and thus
0%+ — e < | 24O 1ow _ g (3:29)
00
with
oM (6%)
3.29
(v — 50" || #0 (3.29)

almost surely. That is, EM is a first order algorithm.
Now we prove the result for the convergence rate of EM algorithm for Gaussian mixture model.

Theorem: For Gaussian mixtures, the convergence rate r of the EM algorithm for means and
hence for the channel is bounded by

ngk+l) —m* § HI . Al [ H*+D — B (3.30)
[P m; e [ |

where m;, H are means, and channel coefficients respectively, and ()* denotes the converged
point. I and hy,; denotes the Identity matrix and Hessian of the likelihood function at m} and
P, = m The higher the values of || A||, the slower will be the convergence.

t=1"5

Proof:  Xu and Jordan [82], showed that for each iteration the following relationship holds
between the gradient of the loglikelihood and the EM update step:

(k1) _ (k) _ plky 9L
m; m; = Py, B my=m " (3.31)

From the above equation, using Taylor expansion around the convergent point m; for large k and
noting that Pr(nk] 86l |m;=m; = 0, we have

(k‘|‘1) _ m( )-I—P* B (m (k) _ m’;)’ (3.32)

J m; 't mj J
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which can be written as

mg-kH) —m; = mg-k) —mj+ Pr hyj (mg-k) —mj) (3.33)
(k+1) * x Pk (k) *
m; —mj = (I + Py hyi)(m;” —mj). (3.34)

The result follows after using Schwarz inequality. It has been proved by Ma et al.[83] that the
asymptotic convergence rate of EM for Gaussian mixtures, locally around the true solution m?,
is 0(60-5*€(m;)) where € > 0 is an arbitrary small number, O(z) means that it is higher order
infinitisimal as z — 0, and e(m}) is a measure of overlap of Gaussians in the mixture.

In other words, the large sample local convergence rate of the EM algorithm tends to be asymp-
totically super-linear when e(m) tends to zero.

3.6 Simulations

The performance of the proposed method was evaluated as a function of SNR (signal to noise
ratio) based on Monte Carlo simulations. The method was tested for 500 Monte Carlo trials per
SNR point across range of SNR’s. In each trial, the amplitude estimation error was recorded.
Data block of 32 symbols were used in all simulations. The spreading gain was 32. The proposed
method worked quite well for the two and three users case (due to the fact that there were only
four and eight mixture of Gaussians respectively). In figure 3.1, the performance is compared
with the approximate Cramer Rao bound which is not as tight as the Cramer-Rao bound (CRB).
The difference between the simulations and the CRB can be explained by the fact that the initial
parameter values for the EM algorithm were given as random numbers, i.e., initial values were
not confined to be in the vicinity the true value of the parameter. This was done in order to show
the results for EM in a more realistic way (because in reality it is very difficult to know a priori
good starting points for an algorithm). Figure 3.2 compares the estimation error for three and four
users. Beyond three users, the estimation error increased quite substantially (as is clear from figure
3.2). This effect can be explained from the fact that as the number of users increases, it is more
probable for the EM algorithm to converge at false means of the mixture of Gaussians (if random
initialization is done as in our case). Therefore, very good initialization is needed when number
of users grows large. In figure 3.3 we show the failure of the EM algorithm for two closely spaced
Gaussians. Figure 3.3 is the plot of three realizations of mixture of two Gaussians. The mean of
the first Gaussian is (—2,2) and that of the second Gaussian is (—1.7,2.2). It is clear from the
figure that EM did not converge to the true means. However, in figure 3.4 we have shown the plot
of two well separated Gaussians. The mean of the first Gaussian is (—2,2) and that of the second
Gaussian is (—2,0). Due to well separateness of the Gaussians, the EM converged almost to the
true means.
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3.7 Conclusions

In this chapter, we presented a Gaussian mixture formulation of the problem which consists of
blindly estimating the users amplitudes for the synchronous CDMA system. We proposed an EM
based algorithm to estimate the parameters of the mixture. The theoretical convergence rate for the
means in the Gaussian mixture case was also presented. Simulation results show the usefulness
of the method. The estimation error is compared with the approximate Cramer-Rao lower bound.
The behavior of the convergence of the EM algorithm to the means of Gaussians is also discussed.
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Figure 3.1: Amplitude estimation error.
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Chapter 4

Iterative constrained penalized
likelihood estimation of parameters for
CDMA

We describe in this chapter an iterative method for Maximum Likelihood (ML) parameter esti-
mation corrupted by additive white Gaussian noise. In the objective function, we subtract/ add
a Kullback-Leibler (KL) distance function or an Euclidean distance function to keep the old pa-
rameter set close to the new ones and can be considered as penalty term. The above augmented
cost function can be maximized/minimized over the constraint that the detected data vector lies
on the sphere. We simplify this constraint function by using a first order Taylor expansion at
the old parameter value. The useful behavior of the proposed algorithm is verified by numerical
experiments.
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4.1 Introduction

In CDMA system, all resources are in principle available to all users simultaneously. The users
are distinguished from each other by user specific signature sequences, modulating the transmit-
ted data symbols using direct sequence spread spectrum techniques. In the past, many iterative
techniques have been considered, see for example [81,92]. The unconstrained ML problem can
be solved quite easily and is known as the decorrelating detector. In [99,40], the authors consider
application of semidefinite programming (SDP) approach to the detection problem in CDMA, giv-
ing very close to ML performance. This method is however computationally complex for a large
number of users. In [89], a constrained Maximum Likelihood problem was considered where the
solution vector is constrained to lie with in a hypercube (“ Box constrained ML"). Special cases
of this algorithm correspond to known, non-linear successive and parallel interference cancelation
structures, using a clipped soft decision function for making tentative decisions. These structures
are therefore ML under the assumption that the detected vector lies within a hypercube. In the
same paper, the authors investigated the convergence issues and suggest an efficient implemen-
tation. Similarly, they also proposed a method of maximizing likelihood function over a sphere
by confining the solution vector to lie within the sphere, and by projecting the solution vector on
the sphere. This detector is ML under the assumption that the detected vector is constrained to lie
within a hypersphere. Based on the Karush-Kuhn-Tucker point, it is shown by simulations that
the suggested detector is closely related to the MMSE detector. The authors analyse also the con-
vergence issues and give an efficient implementation. In fact, in the sphere constrained problem
the solution vector lies on the sphere, and not in the interior of the constraining sphere (as is done
in [88]). The other problem with the above method is that small error in the solution vector can
cause large error when projected on to the sphere (provided the solution vector is well inside the
sphere). In this chapter, we constrain the solution vector to lie almost (very close) on the sphere,
and we jointly estimate the complex channel coefficients and data vector.

The rest of the chapter is organized as follows: The signal model for our problem is described
in section 4.2. In section 4.3, we develop sphere constrained approximate penalized likelihood
function. In section 4.4, we analyze the performance of the proposed method and simulations are
presented.

4.2 Signal model

In this section, discrete-time baseband up-link signal model for CDMA communication system is
described. We consider asynchronous CDMA with single path channels. The signal is corrupted
by the presence of an additive white Gaussian noise (AWGN) with zero mean and variance % =
a2. The number of users in the system are assumed to be K. The processing gain, N = Ty/T,



4.2 Signal model 35

where T} is symbol duration and 77 is the chip duration. The users transmit binary information
symbol streams dy(n) € {-1,1}, n = 0,1,....., L — 1 is the symbol index and L is the length
of the data block. si(n) = (sg(nN + 1).......sx.(n + 1)N)7 where s (i) € (—=1/v/N,1/v/N)
is the spreading code of user k to modulate »!* bit. In mobile radio channels, each transmission
path encounters temporal and spatial fading [9,11,16]. Furthermore, each user is transmitting at a
specific power level. In our single path K-user system, this corresponds to each user being received
with a random, time-dependent amplitude and phase, or equivalently, an arbitrary user k is affected
by a random, time dependent complex channel coefficients, cx (7). The received baseband signal
can be written as [95]

L-1 K
r=>3 Y cr()zpli) +n (4.1)
=0 k=1
L1 K OiN 47
r= cx(2)dg (7) sk (1) +n 4.2)

O(L—i)N—r—1

Where 7y, is the kth user time delay. The convenient matrix notation is given by
r=S8Cd+n 4.3)

where the symbol vector is given by d = (d1(0),d2(0), .....,dx (L — 1))T = (d1,dsa, .....,drx )"
and C is LK x LK diagonal matrix containing the physical channel parameters. The complex
channel coefficients ¢ (i) contain all the fading and attenuation effects of the radio channel. S is
the matrix of transmitted waveforms with column j expressed as

OiN+7,
S 5 = Sk (’L) (44)

O(L—i)N—rp—1

A minimal set of sufficient statistics of dimension LK is obtained through correlation, matched to
the received signal. This also ensures the maximization of the SNR, i.e,

y=28"r=815Cd+ S"n=RCd+ 2 (4.5)

where R is the spreading sequence correlation matrix and z is a zero mean Gaussian vector with
covariance o2R.
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4.3 Sphere constrained approximate ML

Given the set of data y € RZX, our goal is to find parameters that maximize the log P(y|@) or
minimize the negative of it. In iterative parameter estimation, given an old set of parameters 6;
we need to find a new set of parameters @, that improves the likelihood at each iteration. In
our approach, we want the detected vector to lie close to the sphere, therefore we also require that
the new parameter vector to stay “close” to the old set of parameters. In order to achieve it, we
incorporate a distance function , which can also be thought of as a penalty function.The role of the
distance function is to constrain the new parameter set to the old ones. We now search for new set
of parameters 6;,1 that minimizes the distance function summed with the negative loglikelihood
function subject to spherical constraint. We will call this function as "augmented log-likelihood”.
More formally, the update is found by setting 6,1 = argmn, L(6) wWhere

1(6) = —log P(y|6) + dis(8,6;) + \(dTd — LK). (4.6)

Lagrange multiplier, A [23,26] is used to enforce the spherical constraint on symbols. The distance
function dis(#, 0;) in our case is KL divergence but other distance function can also be used. The
KL divergence is given by

dis(0,0;) = / P(y|6) log 5((;‘3)) dy. 4.7)
y 1

We approximate the sphere constraint by the first order Taylor expansion around d; (old parameter
set), i.e.,

d¥d — LK = (d¥d — LK) g, + (d — d;)TV4(dTd — LK)|4—q,, (4.8)

where d; is the value of the symbol vector at iteration 4. Substituting equation (4.7) and equation
(4.8) in equation (4.6) we get

1(0) = —log P(y|0) + dis(0,0;) + \(d — d;)TV4(d¥d — LK)|4—q,)- (4.9)

The first order approximation is valid because distance function (penalty function) will force the
new parameters to remain close to the old ones at each iteration and hence the estimated vector d
will always be close to the surface of the sphere. The KL divergence after bit of algebra can be
written in the following form

dis(6,0;) = % + %trace([) + 525 (mg — mg,) TR (mg — my,), (4.10)

202

where T is identity matrix and my is mean of the distribution. The above expression is a convex
function. Plugging in values from the received signal and omitting constant terms gives

1
dis(0,6;) = E(RCd — R(Cd),)T(Cd — (Cd);), (4.11)
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and

log P(y|6) = £ 1og(27) — 55 (y — RCA)T R~ (y — RCd), (4.12)
which after permuting C and d gives

log P(y|60) = &< log(27) — 55 (y — RDc)" R~ (y — RDc) (4.13)

where D is a diagonal matrix with diagonal entries given by (d1(0),d2(0)......dx(L — 1)) and
¢ = diag(C) is vector composed of diagonal elements of matrix C. The log-likelihood equation
can be further simplified as (after omitting constants)

—log P(yl0) = 5= (y" R~'y —y" Dc — " D"y + ¢" D" RDv). (4.14)

— 202

Taking the gradient with respect to ¢ of the above function gives
1 T T
—V_.log P(y|0) = ﬁ(_D y+ D" RDc) (4.15)
The distance function after permuting C and d is written as
dis(6,0;) = %(RDC — R(De))T(De = (De)y) (4.16)
ag

the subscript ¢ indicates that the parameter is computed at sth iteration. Rearranging and taking
gradient with respect to c gives

V.dis(8,0;) = = (D" RDc — DT R(Dc);) (4.17)

1
0.2
Putting the above two gradients in the augmented loglikelihood equation and equating the resulting
equation to zero gives

c= %(DTRD)_l(DTy + DTR(Dc¢);) (4.18)

Similarly we take the gradient of the augmented loglikelihood function with respect to d and
equating it to zero gives

2 ol a1
d:(FC RC) I(FC y+ —C R(Cd); — 2)d;) (4.19)

This expression is function of A, i.e., Lagrange multiplier, which is given by

+\/h? —4gj
)\:hh—g], (4.20)

29

where

h = 4eUd,;, (4.21)
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j=elUe— LK, (4.22)

g =4d]Ud;, (4.23)

andU = XTX, e = a+ vwhere X is

2
X =(5C"RO)™! (4.24)
ag
1 T
a=—C"y, (4.25)
and
1
v = —CTR(Cd);, (4.26)
g

We also calculated the formulas for C and d when Euclidean distance function is used instead of
KL divergence function. The Euclidean distance between two parameters set is defined by

1
dis(0,0:) = 510 — 0;]% (4.27)
The Euclidean distance function after bit of simplification is written as
1
dis(0,6;) = 5(cTc +d¥d —2cTc; — 2dVd; + cF'e; + dF d;) (4.28)

where the subscript 7 denotes the value of the parameter at the ith iteration. In our case the
parameter set is given by 8 = (c, d), where c is vector composed of diagonal elements of C. With
the same procedure as is done for KL distance case, i.e., taking gradient of the distance function
with respect to ¢ and d and also taking gradient of the loglikelihood function with respect to ¢
and d and plugging the results into augmented loglikelihood function and imposing the spherical
constraint. The update equations for ¢ and d are given by

1 1
c= (;DTRD + I)_l(ﬁDTy +¢), (4.29)

where I is identity matrix. Similarly for d, we have

1 1
d=(=CTRC+ 1) (5C"y +d; — 2d;), (4.30)
g g
where A is given by
Vm2 —
)\:m:t m 4ln’ (4.31)

2l



4.4 Simulations and conclusion 39

where | = 4dF'Ud;, m = 4d'UW,n = WIUW — LK and U = XT X. The expression for X
and W are as follows

1
X = (;CTRC + )71, (4.32)
and
1
W =—=C"y+d; (4.33)
ag

The algorithm works as follows:

1) We start with the initial estimate of C; and d;,

2) We calculate C' (the updated value) using eq. 4.29, the updated value of C is used to calculate
. These values are in turn plugged into update expression for d, eq. 4.30 to get d updates. These
two steps are continued until ||vec(C;11 — C;)|| < 6, where ¢ is small number. Note that in the
update equations for C' and d (in case of KL distance), there are matrix inversions, i.e, we have to
invert a matrix at each iteration which is computationally expensive. In the following lines we will
derive a low complexity algorithm by eliminating matrix inversion. This is done by polynomial
expansion of the signature correlation matrix, R, i.e.,

R =(+Q)7 =} (-Q) (4.34)

where @ is equal to matrix R with diagonal elements put to zero and Q° = I, where I is the
identity matrix. If the elements of () are small compared to one, i.e., low cross-correlation. The
matrix R~! can be approximated by a first order expansion (neglecting higher order terms), i.e.,

R'=1-Q (4.35)

In this way matrix inversion is replaced by adding two simple matrices.

4.4 Simulations and conclusion

In this section we investigate the amplitude error and BER performance based on the simulations.
The codes were selected at random and we considered two different scenarios. A lightly loaded
case with six number of users as well as a highly loaded case with, K = 24. In both cases the
processing gain was kept to 32. We plot the amplitude estimation error versus different values
of SNR. As is clear from the figure (4.4), the estimation error decreases as the value of the SNR
increases for both cases. However, the estimation error of the highly loaded case is more than
the lightly loaded case. We also simulated for BER for lightly loaded case. It is clear from the
figure (4.1) and figure (4.3) that our receivers ( with KL distance function and Euclidean distance
function ) performs better than MMSE and the receiver proposed in [88] (they have the same
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performance). The MMSE receiver on average constrains the vector to lie within sphere [88]. In
[88] the authors considered the constraint that the symbol vector lie within sphere. On the other
hand as we approximate the spherical constraint with the first order Taylor expansion and we also
do not let previously estimated vectors to be far from the new estimate (thanks to the distance
function), therefore we are always close to the sphere. Hence, we can consider our constraint
to be the shell region between two concentric hyper spheres, which is more constraining than
a bowl constraint. We also plot the BER for approximate proposed receiver in figure (4.2). The
approximation is done to reduce the complexity of the receiver. It is hoped that with the increase in
the number of users, better results are expected owing to the fact that the first order approximation
of the sphere will almost lie on the surface of the sphere, i.e., we will be almost on the surface of
the sphere. In the figure (4.2), we also compared the low complexity version (approx. of the R 1)
of the algorithm with the MMSE. As is clear from the figure, it performs better than MMSE and
the performance is almost identical with that of the exact proposed receiver. In all the simulations
for the BER, the estimated values of the amplitudes were used. While in the case of MMSE,
true amplitudes were used in the simulations. Figure 4.5 shows the two iterations of the proposed
algorithm.
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Figure 4.5: Two iterations of the proposed algorithm.



Chapter 5

Exact sphere constrained maximum
likelihood detection of parameters for
CDMA

We describe a method for Maximum Likelihood (ML) parameter estimation corrupted by an addi-
tive white Gaussian noise. The ML cost function is maximized over the constraint that the detected
data vector lie on the sphere. The results are compared with MMSE and with [88]. Simulations
results show superior performance in terms BER of our method comparing to both the methods. In
chapter 4 we jointly estimated channel/symbols iteratively using approximate sphere constraint.
In this chapter we detect symbol vector using exact sphere constraint assuming that the channel is
known.
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5.1 Introduction

The conventional receiver consists of a bank of a single-user matched filters followed by quantiz-
ers. Itis reliable if the signature waveforms have low cross-correlations for all the possible delays,
and if the power of all the users are not very different. Since these conditions are often difficult to
satisfy in practice, several new multiuser detectors have been proposed. The linear decorrelating
receiver is simple and can significantly outperform the conventional receiver in both synchronous
and asynchronous CDMA system. This detector does not require estimation of the users powers,
and achieves the optimal near-far resistance. However, the inversion of the channel performed
by the decorrelating filter enhances noise. This creates a gap between the error probability of the
decorrelator and the single user bound. Other recent approaches to the multiuser detection include
multistage detectors. For example, in a two stage detector, decisions made by the first stage are
used for interference cancellation in the second stage.

The linear MMSE detector achieves robustness against MAI by selecting the linear filter that min-
imizes the mean-square value of the output MAI plus noise. In [15] decision feedback and partial
feedback detectors for asynchronous CDMA channels are introduced. The derivation of the feed-
back detector is based on spectral factorization which leads to a white noise channel model. In the
same paper, the authors also described the implementation of the ML detector for this model.
The optimal detector is ML but prohibitively complex. However by relaxing the constraint, less
complex approximate ML detectors can be obtained. In the previous chapter, we solved the ML
problem by relaxing the sphere constraint (approximate sphere constraint). In this chapter, we will
solve the ML problem with the exact sphere constraint, i.e., the ML cost function is maximized
over the constraint that the detected data vector lie on the sphere and hence better results are ex-
pected. This is confirmed by simulation results. The rest of the chapter is organized as follows.
In section 5.2 we describe signal model. Sphere constrained ML is given in section 5.3. In sec-
tion 5.4 we show relationship between the sphere constraint and MMSE receiver. Simulations and
conclusions are drawn in the last section.

5.2 Signal Model

In this section, discrete-time base band up-link signal model for CDMA communication system is
described. We consider a asynchronous CDMA with single path channels. The signal is corrupted
by the presence of an additive white Gaussian noise (AWGN) with zero mean and variance % =
a2. The number of users in the system are assumed to be K. The processing gain, N = Ty/T,
where T} is symbol duration and 77 is the chip duration. The users transmit binary information
symbol stream di(n) € {—1,1}, n =0,1,....., L — 1 is symbol interval index and L is the length
of the data block. sg(n) = (sg(nN + 1).......sp(n + 1)N)T with si(i) € (=1/V/N,1/V/N) is
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the spreading code of the user k to modulate n** bit. The received base band signal can be written
as,

-1 K 0iN 47,
r=>Y " dili) sk (1) + n. (5.1)
=0 k=1

O(r—iyN—r—1

The convenient matrix notation is given by
r=.S8d+n, (5.2)

where the symbol vector is given by d = (d1(0), d2(0), .....,dx (L — 1)) = (d1,day ey dr i)
S is the matrix of transmitted waveforms with the column j expressed as

05N 47,
sj = sk (i) (5.3)

OL—4)N-—7,-1-

Where 7y, is the time delay of kth user. A minimal set of sufficient statistics of dimension LK
is obtained through correlation, matched to the received signal. This also ensures the maximization
of the SNR, i.e.,

y=58Tr=581Sd+ S8Tn = Rd + z, (5.4)

where R is the correlation matrix and z is zero mean Gaussian vector with covariance o2R.

5.3 Sphere constrained ML

Given the set of data y € REX, our goal is to find parameters that maximize the log P(y|6) or
minimize the negative of it. The negative loglikelihood function of y is given by

I(d) = d"Rd — 2y" d. (5.5)
The sphere constrained ML problem for the asynchronous CDMA is then described as
d = argmin,d* Rd —2y" d, (5.6)

subject to d”'d = LK. The Lagrangian function associated with the above problem can be written
as

L(d,)\) = d"Rd — 2yTd + \(d"d — LK). (5.7)
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To calculate the stationary points, we differentiate L(d, A) with respect to d and A\. The solution
of the above problem is given by

d=(R+ M)y (5.8)
Now the problem is to find the Lagrange multiplier. Using the quadratic constraint, we can write
y'(R+ \)"%y = LK. (5.9)
We proceed by computing computing the eigenvector decomposition of matrix R.
fO) =yT(UsUT 4 A1) 2 - LK. (5.10)
Which can further be written as
22

fA) = Z m ~LK =0 (5.11)

where z; = (UTy);, o; are the eigenvalues of R with o1 < ... < o, and U are the eigenvectors
of R. The zeroes of f(A) can be found numerically using Newton-Raphson method. We choose A
such that R + AI is positive definite. This selection of A forces the f(\) to be convex. Now the
problem is to find A for which f () is zero. We find the bounds for X in order to restrict our search
to find the zeroes of f(\). The bounds can be straightforwardly obtained and are given by

>\<M—O'1

LK ’ (5'12)
and
> _ . .
A on (5 13)

A different approach to detect the data vector containing users’ symbols is as follows. The
likelihood function with its corresponding constraint can be written as

d'Rd
subject to d'd=LK +1=C (5.14)
where
- d
d= ( ) : (5.15)
1
and
_ R -
R:< : y) (5.16)
—y 0

The solution to the above problem is given by
d = Viin(R), (5.17)

where V,,;n, is the eigenvector corresponding to the minimum eigenvalue of matrix R. The mini-
mum eigenvector is scaled such that the last term of this vector is 1.
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5.4 Relationship between MMSE and sphere constraint

In this section we proof an analytic relationship which shows that the MMSE on the average im-
poses the sphere constraint on the symbols thus verifying the result shown through the simulations
in [88]. The MMSE estimate of the symbols is given by [88]

d=(R+ %)y, (5.18)
where o is the noise variance. Having the above expression we can write

d"d=Tr[(R+o*T) *yy"

=Tr[(R+ o’ ) *(Rd + z)(d" R+ 2")).

Assuming that d and z are independent and z is zero mean. Taking expectation of the above
expression we have

E[dYd) = Tr[(R + o’1)"%(R? + 0?R)], (5.19)

where we have used the fact that E[dd”] = I and E[2z7] = o2R. The above expression can
further be simplified as

E[d"d] = Tr[R.(R+ o*I)!]. (5.20)
Let R = USUH be the eigen decomposition of the matrix R. Then we have

B[d"d) = Tr[USUR (USUH + 021) Y],
= TrlUSU*.(USU" + s*vU™)™),
= TrlUSU? (U + 2D U7,
= TrlUsUR (U(E + o1~ tut)),
Bld"d) = Tr[U(S(S + o”1) U]

= Tr[UHU(Z(Z 4 021) 1)

LK
CTHSE o) =S N 5.21
—T[(+0)]—§/\,+02, (5.21)
i=1 7t
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where )\; are the eigenvalues of the matrix R.

T
Bld d) = Zl—}—a?)\_ ZA1+02’

where A; is the maximum eigenvalue of the matrix R. The above expression can be written as

Eld"d) < s LK,

/\1+0'

which can further be written as
E[d"d) < LK, (5.22)

hence establishing that the MMSE on average pose the sphere constraint.

5.5 Simulations and conclusion

In this section, we investigate BER performance based on the simulations. The codes were selected
at random and we considered a lightly loaded case with six number of users. The processing gain
was kept to 32. We simulated for BER using our constrained ML detector. It is clear from the
figure that our receiver performs better than MMSE and the receiver proposed in [88] (they have
the same performance). The MMSE receiver on the average constrains the data vector to lie within
sphere [88]. In [88] the authors considered the constraint that the data vector lie within sphere,
which is a loose constraint comparing to that of ours. Also we compared this algorithm with the
one proposed in the previous chapter, which was approximation to the exact sphere constraint. It
is clear from the figure that our algorithm outperforms the approximate constraint sphere receiver
proposed in the previous chapter.
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Figure 5.1: Av. BER of six users vs SNR(dB).
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Chapter 6

Introduction to MIMO system

Multiple-input multiple-output (MIMO) systems are today regarded as one 